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Abstract—In this paper, we propose an approach to address the
problems with ambiguity in tuning the process and observation
noises for a discrete-time linear Kalman filter. Conventional
approaches to tuning (e.g. using normalized estimation error
squared and covariance minimization) compute empirical mea-
sures of filter performance and the parameter are selected
manually or selected using some kind of optimization algorithm
to maximize these measures of performance. However, there
are two challenges with this approach. First, in theory, many
of these measures do not guarantee a unique solution due to
observability issues. Second, in practice, empirically computed
statistical quantities can be very noisy due to a finite number
of samples. We propose a method to overcome these limitations.
Our method has two main parts to it. The first is to ensure
that the tuning problem has a single unique solution. We achieve
this by simultaneously tuning the filter over multiple different
prediction intervals. Although this yields a unique solution,
practical issues (such as sampling noise) mean that it cannot
be directly applied. Therefore, we use Bayesian Optimization.
This technique handles noisy data and the local minima that it
introduces. We demonstrate our results in a reference example
and demonstrate that we are able to obtain good results. We
share the source code for the benefit of the community1.

I. INTRODUCTION

State estimation through Kalman filters consist of two main
steps: state prediction followed by a measurement update,
both predicated on models of the system. The state prediction
step uses a process model to predict how the state evolves
over time. The measurement update step uses an observation
model to relate a measured quantity to the state estimate.
Since both the process and observation models are imperfect,
errors in these models are treated as random noise terms
that are injected into the system. Most designs assume the
noise in these systems is white, zero mean and uncorrelated.
As a result, filter tuning consists of choosing the values of
the process and observation noise covariances, thereby fully
defining the noise distribution.

Given the critical role that tuning plays in the performance
of these algorithms, multiple techniques for tuning filters have
been developed [1], [2], [3]. Perhaps the simplest approach
is to use a two-stage divide-and-conquer strategy. In the first
stage, the observation covariance is estimated by operating
the system in lab conditions and monitoring the sensor noise
characteristics. In the second stage, the observation covariance

1https://github.com/arpg/kf bayesopt

is held fixed, and the process noise covariance is determined.
Since the process noises contain information about the state
disturbances and dynamic model uncertainties, which often
cannot be reproduced in lab settings, the covariance is often
chosen by collecting data from an operational domain and
quantifying the quality of the estimates. Typically a perfor-
mance cost is assigned, and the process noise covariance is
adjusted to minimize the value of that cost.

Other approaches include ‘black box’ auto-tuning methods
[4], [5], [6], which construct a cost function to be minimized
based on properties of the state or statistical principles regard-
ing estimates produced. We demonstrate that, even in simple
examples, these methods do not guarantee convergence to a
unique optimum, and frequently converge to the incorrect opti-
mum. We also shed light on the relationship between noise pa-
rameter identifiability and use of consistency metrics as fitness
measures for auto-tuning methods, particularly to understand
how mismatches between the filter-assumed and true system
noise parameters impacts search algorithm convergence. Novel
solutions to these issues are presented via measurement and
process noise perturbation strategies, and demonstrated on
reference examples via Bayesian optimization.

II. PRELMINARIES

A. Discrete and Continuous Time Systems

Our approach depends upon adjusting the prediction interval
in the Kalman filter. Therefore, it is important to understand
the relationship between the discrete and continuous time
systems. The state of the system at time t is xt. The system is
described by continuous time process model and observation
models,

ẋt = Axt + Gut + Γvt,

zt = Hxt + wt,
(1)

where ut is the control input, the process noise is the additive
white process vt with intensity V, and the measurement noise
is an additive white noise process wt with continuous time
intensity W. In discrete time, the state at timstep k is xk. The
system evolution from timestep k − 1 to k is

xk = Fkxk−1 + Bkuk + vk, (2)

https://github.com/arpg/kf_bayesopt


where uk is the control input and vk is the process noise,
which is assumed to be zero mean and independent with
covariance Qk. The observation model is

zk = Hkxk + wk, (3)

where wk is the observation noise.
The discrete-time system is derived from the continuous

time system using techniques such as Van Loan’s method [7],

Fk = eAt∆t, Bk =

∫ ∆t

0

eAtmdm,

Qk =

∫ ∆t

0

eAtmΓVΓT eA
Tmdm.

(4)

If the observation is from an integrating sensor, the discrete
time observation vector is Rk = W/∆t [7]. For a non-
integrating sensor Rk = Rt, i.e. it is independent of ∆t.

B. Kalman Filter

A Kalman filter can be used to find the optimal state
estimate [8], via a two stage process of prediction followed
by measurement update. The prediction is

x̂k|k−1 = Fkx̂k−1|k−1 + Bkuk (5)

Pk|k−1 = FkPk−1|k−1F
>
k + Qk (6)

while the update is

x̂k|k = x̂k|k−1 + Wkez,k, (7)

Pk|k = Pk|k−1 −WkSk|k−1W
>
k , (8)

Sk|k−1 = HkPk|k−1H
>
k + Rk (9)

Wk = Pk|k−1H
>
k S−1

k|k−1 (10)

where ez,k = ẑk|k−1 − zk is the innovation vector.
One important issue with this method is tuning: given Fk

and Hk, the process and observation noise processes V and W
must be determined. This is normally achieved by exploring
different values of V and W and applying a fitness measure.

C. Parameter Fitness and Tuning

Two widely used measures for fitness are the normalized es-
timation error squared (NEES) and the normalized innovation
error squared (NIS). The NEES is computed from

εx,k = eT
x,kP−1

k|kex,k, (11)

where ex,k = x̂k|k − xk. Because we need to know xk,
NEES requires a groundtruth measurement of the system state.
The NIS, on the other hand, only depends on the observation
sequence and does not require knowledge of groundtruth. It is
computed from

εz,k = eT
z,kS−1

k|k−1ez,k, (12)

where ez,k is the innovation vector. If the filter is statistically
consistent, it can be shown that the expected values of the
NEES and the NIS are [9]

E [εx,k]≈nx, E [εz,k]≈nz, (13)

Although the εz,k and εx,k are widely used, they have the
property that they are bounded from below (by 0) but not
from above. This naturally introduces a bias or asymmetry in
the measure. To overcome this, we use a log measure instead:

JNEES =

∣∣∣∣∣log

(∑T
k=1 ε̄x,k/T

nx

)∣∣∣∣∣ ,
ε̄x,k =

1

N

N∑
i=1

εix,k.

(14)

where N is the number of Monte Carlo runs and T is the
period of sampling. JNEES is not bounded. However, when
the filter is consistent, JNEES = 0.

D. Related Work

Though the problem of Kalman filter tuning has been widely
studied, it remains a challenging open problem for which no
single best technique exists [10], [11]. These include: max-
imum likelihood and Bayesian inference [12], least squares
for data processed via Kalman smoothing [13], and auto-
/cross-correlation analysis [14]. These methods are theoret-
ically advantageous for well-defined linear systems where
noise models have known structure, and are useful in online
settings. Yet, they can also suffer from numerical stability and
implementation issues, making them harder to use. Moreover,
they are difficult to generalize for non-linear filters, e.g. since
the optimal set of noise parameters in linearization-based
filters can vary significantly with system state and time [15].

The family of ‘black box’ optimization approaches consid-
ered here offers a computationally attractive and flexible alter-
native, whereby filter-assumed noise parameters are adjusted
via search algorithms to maximize a set of filter output fitness
measures, which are assessed on candidate filter runs against
truth model simulations and/or recorded measurement logs. In
addition to being highly parallelizable in most cases, black
box optimization can readily leverage useful but complex
stochastic fitness measures that do not yield tractable ‘well-
behaved’ expressions for objective functions and gradients
with respect to unknown noise parameters.

The defining features of black box methods are the choice
of filter output fitness measure and search algorithm. Powell
[3] proposed using a mean weighted filter state error norm as a
fitness measure to be minimized via downhill simplex search.
In earlier work, Oshman and Shaviv [16] presented a fitness
measure based on chi-square tests for NEES consistency
(evaluated using truth model simulations) to tune process noise
covariance parameters via genetic algorithms. More recently,
[4] developed a technique using Bayesian optimization search
and generalized filter output fitness measures based on NIS
consistency tests with real/logged data, as well as NEES
consistency tests with truth model simulation runs. Other
metrics closely related to NIS consistency assessment [17],
[18], [19] could also be adapted as fitness measures.

While search methods like genetic algorithms and Bayesian
optimization can explore the global parameter space, the
observability (i.e. identifiability) of noise parameters relative



to estimation error and consistency-based fitness metrics is not
well understood. For instance, [16] noted that their approach
generally converged towards an infinite basin of feasible
parameters which all satisfy the NEES consistency criterion,
without necessarily minimizing the resulting steady state P.
As such, [16] also proposed a fitness measure to minimize fil-
ter covariance, while ensuring NEES consistency within some
tolerance. However, the general conditions for convergence
toward unique or multiple/infinite solutions remain unclear.
Ref. [10] addresses the observability of Q and R in discrete
time Gauss-Markov linear systems by deriving a matrix rank
test. This is theoretically useful for assessing uniqueness of
time invariant Q and R parameters, provided the hypothesized
matrix structures match the true system behavior. Otherwise,
the correctness and sensitivity of the matrix structures and
values cannot be readily deduced.

III. THE PROBLEM OF OBSERVABILITY

The non-uniqueness (non-observability) of noise parameters
via consistency-based fitness metrics is a key problem for
black box tuning approaches. We illustrate this using the
following linear example. We seek to tune the process and
observation noise processes for a 1D particle. The particle’s
state is its position and velocity,

xt =
[
xt ẋt

]>
.

It moves with a constant velocity with noise injected into the
acceleration. The particle’s position is periodically observed
by a non-integrating sensor. Therefore, the continuous time
equations are

A =

[
0 1
0 0

]
, G =

[
0
1

]
, H =

[
1 0

]
, Γ =

[
0
1

]
.

Van Loan’s method yields the familiar discrete-time equations

Fk =

[
1 ∆t
0 1

]
, Bk =

[
∆t2/2

∆t

]
, Hk =

[
1 0

]
,

Qk = V

[
∆t3/3 ∆t2/2
∆t2/2 ∆t

]
, Rk = W.

(15)

Suppose the actual (groundtruth) process and observation
noise intensities are Va = 1 and Wa = 0.1. However,
these values are not known, and a black-box tuning algorithm
will try candidate values for V and W. In the appendix, we
derive the expressions to compute JNEES(V,W,Va,Wa).
Fig. 1 plots these values for different choices of (V,W).
When V < Va and W < Wa (bottom left), JNEES is
high because the filter is inconsistent. When V > Va and
W > Wa (top right), JNEES is large again because the
filter is conservative. The thick curved blue line shows where
JNEES ≈ 0 and shows multiple solutions which appear
consistent. The yellow curve is the set of samples of (V,W)
for which JNEES(V,W,Va,Wa) ∈ [−0.0025, 0.0025]
(εx,k(V,W,Va,Wa) ∈ [1.995, 2.005]). We refer to this
curve as the “NEES line.” Fig. 2 plots the log determinants
of Pk−1|k−1(V,W) and Pa

k|k−1(V,W,Va,Wa) along this
curve. These results largely support Oshman and Shaviv [16]:
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Fig. 2: Log determinant of the actual and computed covariance
matrices along the NEES line. The jagged appearance is due
to the quantization in the sampling. V = Va and W = Wa

at point 149.

there are multiple solutions which appear to be consistent with
the NEES, and the optimal solution occurs near where the
covariance is minimized. However, we see it is possible to
choose values which are slightly inconsistent.

There are two implications for these results. The first is that,
to compute the optimal solution, we had to derive closed form
solutions for the NEES. This is possible in linear systems only
by knowing the groundtruth noises, which are not available in
practice, and for nonlinear systems is generally unachievable
in closed form. Therefore, empirical techniques will have to be
used. Second, tuning to incorrect noises means that the filter
is not robust to changes in the configuration. For example, if
the correct values for V and W are used, the filter should
be consistent given any timestep length. Slight errors in these
values no longer means this is true.

For example, consider the filter solution when V =
1.045,W = 0.95 which is around point 130 on Fig. 2.
For ∆t = 0.1 this gives a the value JNEES = 0.0018
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Fig. 3: εx,k for different values of ∆t.

(εx,k = 2.0037). Furthermore, if one computes the values of
εx,k(V,W,Va,Wa) using fixed values for noise intensities
but varying ∆t, there is a clear and significant change in the
NEES for these various timestep lengths.

Our motivation is to find a way to expose the er-
rors more clearly, since they can lead to suboptimal so-
lutions in auto-tuning techniques. In Fig. 3, we compute
εx,k(V,W,Va,Wa) using fixed values for the noise inten-
sities but varying ∆t between 0.1 s and 1 s. As can be seen,
these results suggest that the impact of a tuning error becomes
more significant if the filter timestep changes relative to the
timestep used when tuning the original filter.

IV. NOISE TUNING

A. The Effects of Noise Perturbations

The previous section demonstrated that the JNEES values
are ambiguous in supporting correct noise tuning. When cou-
pled with minimising the covariance, the values can be found
in theory; however, the differences can be small. The dif-
ferences become apparent at long prediction intervals, which
is computationally costly, and worse converges very slowly
over lengthening intervals. However, this can suggest that one
strategy is to use different timestep lengths and observe the
effect on estimation statistics.

To motivate this, Fig. 4 shows the effect of computing
over several different timesteps. For each timestep, van Loan’s
technique was used to construct the system and the NEES was
calculated. As before, only the values close to 2 were kept.
For each value of ∆t a different NEES curve is generated.
All of the curves intersect at the same point which is the
groundtruth value of the intensity. This is hardly surprising. If
the filter is tuned to the groundtruth values, it should generate
the same NEES irrespective of the timestep length. However,
it also suggests that the observability of the optimal tuning
parameters can be influenced by timestep length.

The foregoing has been conducted purely using a theoretical
analysis of NEES calculations. To test the effect of this, we
used 200 Monte Carlo runs and computed JNEES using (14).
Figs. 5a and 5b plot the JNEES values for ∆t = 0.1 and ∆t =
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Fig. 4: Overlay of NEES curves with values of ∆t =
[0.1, 0.2, 0.3, 0.4, 0.5]. Each cell contains the count of the
number of runs within which a NEES value of 2 is obtained.

0.5 respectively. These show that, despite sampling noise, we
see a very similar behaviour again with the curve being shifted
and values along a ridge being very similar.

B. Cost Function for Optimization

The conclusion of the foregoing argument is that there is
implicit dependence of JNEES as a function of ∆t. To our
knowledge, this is not very well-explored in the literature. In
auto-tuning Kalman filter algorithms, the JNEES is typically
evaluated conditioned upon a single value of ∆t. Of course,
the alternative, where ∆t is allowed to vary as a parameter
to JNEES , results in a computationally expensive parameter
search. Yet the extreme value and implicit function theorems
imply that such a minimum exists somewhere between ∆t =
(0, h) where h is “small,” as is typical for numerical integra-
tion and required for local truncation error to be acceptably
low, and as long as there are no discontinuities in F or S.

To avoid the need for an expensive search, we choose a
sample of ∆t values and a logical operation in our search:
for each pair [V,W], W ∈ [0.01, 0.5], V ∈ [0.1, 5.0],
groundtruth V = 1,W = 0.1 we calculate JNEES using
∆t = 0.1 and ∆t = 0.5. Then, we only record the larger
JNEES and get another plot.The results are shown in Fig.
5a,5b,5c. Note the plots show lg(JNEES) because, in this way,
JNEES smaller than 1 will be negative, its color is more clear.
In Fig.5a, there is a blue curve shows the small JNEES . The
red arrow points out the minimum value, which is not around
the groundtruth. in Figure 5b, the minimum is also not at the
groundtruth. We find that the global minimum JNEES is quite
random when ∆t = 0.1 or ∆t = 0.5 or other single ∆t. Thus,
when we use an optimization algorithm to search the surface,
the possible estimations can be quite random. However, this
situation is different in case Figure 5c. The global minimum
is always around [0.1,1]. It’s obvious now the ∆t influences
the cost function distribution. It would be interesting to see
the mapping between different ∆t value and JNEES , which
is shown in Figure 6. It shows that when both V,W are
around the groundtruth value, JNEES is small whatever the



∆t is. These experiments motivates us to tune the KF with
different dt and find the solution that can give consistent
JNEES . The solution should be the close to the groundtruth.
In our experiment, we found that find the solution that gives
consistent JNEES with only two different dt are sufficient.

V. EXPERIMENTS

To investigate the effects of choosing multiple sample times,
we apply a Bayesian optimization (BO) auto-tuning algorithm
on two linear systems, namely: a 1D tracking problem and
a 2D tracking problem. In both examples, the process and
measurement noises parameters are optimized together. For the
1D tracking, one process and one measurement noise param-
eter are jointly optimized. For the 2D tracking problem, two
process and two measurement noise parameters are optimized.
We run two examples for the following purposes.

A. Bayesian optimization tuning

• 1D tracking: For the 1D (particle) tracking system we
introduced before, we can see the benefits of using
multiple sample time during the optimization. We display
the numerical optimization result and show the process
of BO, from where we can see the exploration ability of
the Bayes optimization.

• 2D tracking system: In the 2D tracking system, we are
going to optimize 4D parameters. i.e. 2 process noise
parameters and 2 measurement noise parameters. We
perform the χ2 test to show that the filter is consistent.

We use our previous work’s optimization process [4]. i.e.
GPBO (Gaussian Process Bayesian Optimization). The dif-
ference is that for each set of the noise estimation, now we
run the Kalman filter (N Monte Carlo simulations) with two
sample time (∆t = 0.1 and ∆t = 0.5). We pick the larger cost
and feed it into the Bayesian optimization. The motivation is
that we want the cost remain small with different sample time.

Results are compared from four auto-tuning strategies. The
first one is the proposed GPBO algorithm with the JNEES

cost function. To assess the value of the multiple sample
time strategy, we compare it to our previous approach, where
we use ∆t = 0.1 only. To further extend our previous
work, we compare the GPBO with the Downhill Simplex
(DS) algorithm. From Figure 5c, we can see that even the
groundtruth is at the correct position, the cost along the
blue curve is close to each other, which brings a challenge
to the optimizer. We show that the GPBO can efficiently
explore the cost surface and achieve better results than the
Downhill Simplex algorithm. After optimization convergence
of each method across 200 Monte Carlo runs, the following
are evaluated to compare the resulting filter tuning solutions:
the numerical value of the optimized noise parameters; filter
dynamic consistency, i.e. the error between the groundtruth
state and the estimation should be within a threshold σ; and
BO surrogate model visualizations, to demonstrate the solution
search process.

B. 1D tracking system

The Bayes Opt searching range for V is [0.1, 5] and W is
[0.01, 0.5]. Two sampling periods (∆t = 0.1s, ∆t = 0.5s)
were used and each Monte Carlo run was carried out for
T = 200∆t (this means that were either 2000 or 400 timesteps
per filter). For the kernel function, the Matérn Kernel [20]
with ν = 3 and automatic relevance determination (ARD)
was used. For remaining parameters such as the kernel mean,
kernel hyperparmeter re-learn iteration number and the acqui-
sition function optimization number, default values from the
Bayesian optimization library [21] are used.

GPBO was performed 50 times to optimize V and W. The
results are shown in Table I. From the table we can see our
optimization appears robust: the estimation variance is small
and the mean is close to the groundtruth value, which is a
significant improvement from our previous GPBO method.
Note also that the estimation has a large variance owing to the
simulations’ stochasticity. The downhill simplex algorithm, as
expected, can get trapped in different local minima because
we initialize the sample at different points. Even with the
multiple timestep strategy, the downhill simplex struggles
to converge to the groundtruth. An effective optimizer must
explore different regions of parameter space to find the global
minima, a strength of BO. Figure 7 shows the convergence of
the resulting GPBO surrogate function and the set of sampled
v and w parameters across 200 iterations. From Figure 7, we
can see as the number of iterations increases, GPBO explores
increasingly around the local optimum. Finally, the optimal
solution is found around V = 1, W = 0.1.

C. 2D tracking system

So far, we have only considered the motion of a 1D
particle which required two scalar intensity values. However,
our method directly extends to vector-valued intensity values.
There, in this section we demonstrate the performance of
the approach in a 2D tracking system, where the state is
x = [x, y, ẋ, ẏ]T . We assume the same control input as in the
previous systems, add white Gaussian process noise to [ẋ, ẏ],
and add white Gaussian measurement noise to position [x, y].
The discrete time system is

F =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 B =


0.5∆t2

0.5∆t2

∆t
∆t



Q =


∆t3

3 V0 0 ∆t2

2 V0 0

0 ∆t3

3 V1 0 ∆t2

2 V1
∆t2

2 V0 0 ∆tV0 0

0 ∆t2

2 V1 0 ∆tV1


(16)

We apply the same optimization methods as in the tracking
1D example for 50 independent trials. We need to increase
the GPBO initial sample to 120 and the iteration to 300 since
the dimension is higher.

For each optimization result of the algorithm, we apply
it to the Kalman Filter again with 200 Monte Carlo runs
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Fig. 5: In Figures (a), (b), (c), the colorbar shows the value of lg(JNEES). In (a), ∆t = 0.1; In (b), ∆t = 0.5; In (c), we
calculate JNEES at both ∆t for each [V,W] pair but only pick the larger cost. The red arrow indicates where the JNEES is
the smallest in each plot. We can see that only in (c) we have a global minima around the groundtruth value [V = 1,W = 0.1]

(a) (b)

Fig. 6: Figure (a) fixes W = 0.1 and plots V,∆t versus lg(JNEES). Figure (a) fixes V = 1 and plots W,∆t versus
lg(JNEES). We can see only when both V,W are around the groundtruth value, JNEES is small whatever the ∆t is.

TABLE I: Tracking 1D Optimization result

GPBO, ∆t = 0.1, 0.5 GPBO, ∆t = 0.1 DS ∆t = 0.1, 0.5 DS ∆t = 0.1 Groundtruth
v w v w v w v w

Mean 0.958 0.152 1.682 0.296 0.602 0.182 0.317 0.145 w = 0.1
Variance 0.115 0.010 2.043 0.076 0.094 0.011 0.412 0.012 v = 1

and record the E [ε̄z,k] ,E [ε̄x,k] ,E [ε̄z,k ε̄z,k] ,E [ε̄x,k ε̄x,k] for
validation. We choose sample time dt = 0.1 to collect the
data. Note that we don’t draw the box plot of the downhill
sample algorithm with a single sample time since its value is
too large. It is hard to visualize other methods’ box plots (will
be like a line) if we draw it. As we can see, generally the
proposed method has better NIS and covariance. However, we

still hope them can be closer to the expectations, which brings
questions to our future work. 1: If we use NIS based cost
function, what the NEES value will be from the optimization
result? 2: Is it possible to add the covariance into the cost
function constraints so that we can “force” the optimization
result has a better χ2 test?

Finally, we perform the direct consistency check of the
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Fig. 7: GPBO surrogate model for JNEES cost, showing initial random sample points (green dots) and best estimate (red
crosses) infered by GPBO in different iterations. GPBO successfully explore the blue (possible low cost) area and the final
surrogate model is similar to the real cost surface from Figure 5c. Finally, it finds the minimum around v = 1 and w = 0.1.
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Fig. 8: Orange lines: 2σ bounds; blue line: error between the estimated states and the real states in KF’s each step. If the
system is consistent, around 95% error should be within 2σ range. (a) is from the estimation result of 1D tracking system. (c)
is from 2D tracking system.
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Fig. 9: For each method’s 50 runs result, we apply them to the Kalman filter, record the
E [ε̄z,k] ,E [ε̄x,k] ,E [ε̄z,k ε̄z,k] ,E [ε̄x,k ε̄x,k] and plot the box plot. Red dash line: Expected value. GPBO2: GPBO with
two sample time approach; GPBO1: GPBO with sample time at 0.1; DS2: Downhill Simplex with two sample time approach.

proposed method for both 1D and 2D system. We randomly
choose one the optimization result and apply it to the Kalman

filter. Then we plot each timestep’s error and the 2σ boundary,
where the σ =

√
Pk|k. If the system is consistent, around 95%



error should be within 2σ range.

VI. CONCLUSION

We have demonstrated that there is implicit dependence of
JNEES on ∆t, and that as a result, many auto-tuning algo-
rithms face significant challenge short of running a search over
multi-dimensional space for optimal noise parameters and their
corresponding ∆t. While it is true that around the groundtruth
noise parameters, JNEES will be small independent of what
∆t is, we identify that for other guesses at noise parameters,
the JNEES is highly dependent on timestep choice. To address
this, we propose a simple sampling procedure that appears
to remedy this problem while allaying grievous increases in
computational cost. Finally, we demonstrate this new approach
on an auto-tuning algorithm for Kalman filter noise parame-
ters. As future work, we believe a proof of this technique
would be highly valuable. Furthermore, there exists an open
investigation into the effectiveness of various statistical tests
for significance in the mean and variance of the auto-tuning
algorithms.

APPENDIX

In this appendix, we compute the expression to derive a
closed-form solution for the NEES directly from the system
equations. We assume that the system model equations At,
Gt, Γt and Ht are correct. Only the noise intensities are
unknown. For simplicity, we follow the work of Nishimura and
Hellner and compute the NEES of the predicted covariance.

First consider the filter which has been tuned with the inten-
sities V and W. Using van Loan’s method, we compute the
discrete time process model together with the noise covariance
matrices Qk(V) and Rk(W), where we have included the
intensities to emphasise the functional dependency. The filter
will then predict the covariance history according to

Pk|k−1(V,W) = Xk(V,W)Pk−1|k−1(V,W)X>k (V,W)

+ Kk(V,W)Rk(W)K>k (V,W)

+ Qk(V),
(17)

where

Kk(V,W) = FkWk(V,W) (18)
Xk(V,W) = Fk −Kk(V,W)Hk, (19)

and Wk(V,W) is the usual Kalman filter weight.
However, the real system has noise intensities Va and Wa.

Given that there are no errors in the system model equations,
the expected value of the mean squared error of the filter is
actually

Pa
k|k−1(V,W,Va,Wa) =

Xk(V,W)Pa
k−1|k−1(V,W,Va,Wa)X>k (V,W)

+ Kk(V,W)Rk(Wa)K>k (V,W) + Qk(Va).

(20)

Given this, the expected value of the NEES is

εx,k(V,W,Va,Wa) =

trace
(
P−1

k|k−1(V,W)Pa
k|k−1(V,W,Va,Wa)

)
.

(21)

The JNEES of this value is

JNEES(V,W,Va,Wa) =

∣∣∣∣log
εx,k(V,W,Va,Wa)

nx

∣∣∣∣ .
(22)
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