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Abstract

Big data generated from the Internet offer great potential for predictive analysis.
Here we focus on using online users’ Internet search data to forecast unemployment
initial claims weeks into the future, which provides timely insights into the direction
of the economy. To this end, we present a novel method PRISM (Penalized Regres-
sion with Inferred Seasonality Module), which uses publicly available online search
data from Google. PRISM is a semi-parametric method, motivated by a general state-
space formulation, and employs nonparametric seasonal decomposition and penal-
ized regression. For forecasting unemployment initial claims, PRISM outperforms
all previously available methods, including forecasting during the 2008-2009 finan-
cial crisis period and near-future forecasting during the COVID-19 pandemic period,
when unemployment initial claims both rose rapidly. The timely and accurate un-
employment forecasts by PRISM could aid government agencies and financial insti-
tutions to assess the economic trend and make well-informed decisions, especially in

the face of economic turbulence.
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1. Introduction

Driven by the growth and wide availability of Internet and online platforms, big data are
generated with an unprecedented speed nowadays. They offer the potential to inform
and transform decision making in industry, business, social policy and public health
(Manyika et al., 2011; McAfee and Brynjolfsson, 2012; Chen et al., 2012; Khoury and
Ioannidis, 2014; Kim et al., 2014; Murdoch and Detsky, 2013). Big data can be used for
developing predictive models for systems that would have been challenging to predict
with traditional small-sample-based approaches (Einav and Levin, 2014; Siegel, 2013).
For instance, numerous studies have demonstrated the potential of using Internet search
data in tracking influenza outbreaks (Ginsberg et al., 2009; Yang et al., 2015; Ning et al.,
2019; Yang et al., 2020), dengue fever outbreaks (Yang et al., 2017), financial market
returns (Preis et al., 2013; Risteski and Davcev, 2014), consumer behaviors (Goel et al.,
2010), unemployment (Ettredge et al., 2005; Choi and Varian, 2012; Li, 2016) and housing
prices (Wu and Brynjolfsson, 2015).

We consider here using Internet users” Google search to forecast US unemployment
initial claims weeks into the future. Unemployment initial claims measure the number
of jobless claims filed by individuals seeking to receive state jobless benefits. It is closely
watched by the government and the financial market, as it provides timely insights into
the direction of the economy. A sustained increase of initial claims would indicate rising
unemployment and a challenging economy, whereas a steady decrease of initial claims
would signal recovery of labor market. During the great financial crises of 2008 and
the COVID-19 pandemic, these unemployment data have been a key focus for govern-
ment agencies when making fiscal and monetary policy decisions under unprecedented
pressure.

Weekly unemployment initial claim is the (unadjusted) total number of actual initial
claims filed under the Federal-State Unemployment Insurance Program in each week

ending on Saturday. The Employment and Training Administration (ETA) of the US
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Department of Labor collects the weekly unemployment insurance claims reported by
each state’s unemployment insurance program office, and releases the data to the public
at 8:30 A.M. (eastern time) on the following Thursday. Thus, the weekly unemployment
initial claim data are reported with a one-week delay: the number reported on Thursday
of a given week is actually the unemployment initial claim number of the preceding
week. For accessing the general economic trend, it is, therefore, highly desirable for
government agencies and financial institutions to predict the unemployment situation
of the current week, which is known as nowcasting (Giannone et al., 2008), as well as
weeks into the future. In this article, we use the general phrase forecasting to cover both
nowcasting (the current week) and predicting into future weeks.

In contrast to the one-week delayed unemployment reports by the Department of La-
bor, Internet users” online search of unemployment-related query terms provides highly
informative and real-time information for the current unemployment situation. For in-
stance, a surge of Internet search of “unemployment office”, “unemployment benefits”,
“unemployment extension”, etc. in a given week could indicate an increase of unem-
ployment of that week, as presumably more people unemployed are searching for infor-
mation of getting unemployment aid. Internet search data, offering a real-time “peek”
of the current week, thus, augments the delayed official time-series unemployment data.

There are several challenges in developing an effective method to forecast weekly
unemployment initial claims with Internet search data. First, the volatile seasonality
pattern accounts for most of the variation of the target time series. Figure 1 (bottom)
plots the weekly unemployment initial claims from 2007 to 2016; the seasonal spikes
are particularly noteworthy. A prediction method should address and utilize the strong
seasonality in order to achieve good prediction performance. Second, the method needs
to effectively incorporate the most up-to-date Internet search data into the modeling of
target time series. Third, as people’s search pattern and the search engine both evolve
over time, the method should be able to accommodate this dynamic change.

Most time series models rely on state-space models to deal with seasonality, where
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Figure 1: (Top) The cumulative absolute error of nowcasting of different methods. (Bot-
tom) The unemployment initial claims for the same period of 2007 — 2016.

the latent components capture the trend and seasonality (Aoki, 1987; Harvey, 1989).
Among the time series models, structural time series models and innovation state-space
models are two main frameworks (Harvey and Koopman, 1993; Durbin and Koopman,
2012; Hyndman et al., 2008), both of which have various extensions of seasonal pattern
modeling and can incorporate exogenous signals as regression components (see Sup-
plementary Material A2 for more discussion). For nowcasting time series with seasonal
pattern, Scott and Varian (2013, 2014) developed a Bayesian method based on the struc-
tural time series model, using a spike-and-slab prior for variable selection, and applied it
to nowcast unemployment initial claims with Google search data by treating the search
data as regressors. Alternative to this regression formulation, Banbura et al. (2013) pro-
posed a nowcasting method using a factor model, in which target time series and related
exogenous time series are driven by common factors.

Here we introduce a novel prediction method PRISM, which stands for Penalized Re-



gression with Inferred Seasonality Module, for forecasting times series with seasonality,
and use it to forecast unemployment initial claims. Our method is semi-parametric in
nature, and takes advantage of both the state-space formulation for time series forecast-
ing and penalized regression. With the semi-parametric method PRISM, we significantly
expand the range of time series models for forecasting, going beyond the traditional ap-
proaches, which are often tailored for individual parametric models. PRISM offers a
robust and more accurate forecasting alternative to traditional parametric approaches
and effectively addresses the three aforementioned challenges in forecasting time series
with strong seasonality. First, our method accommodates various nonparametric and
model-based seasonal decomposition tools, and effectively incorporates the estimated
seasonal components into predictive modeling. It thus can robustly handle complex sea-
sonal patterns. Second, different from the traditional regression formulation, our joint
modeling of the target time series and the exogenous variables accommodates the poten-
tial causal relationship between them — people do online Google search in response of
becoming unemployed. Third, PRISM uses dynamic forecasting — training its predictive
equation each week for the forecasting — and utilizes rolling window and exponential
weighting to account for the time-varying relationship between the target time series and
the exogenous variables. For forecasting unemployment initial claims, PRISM delivers
superior performance over all existing forecasting methods for the entire time period of
2007 — 2019, and is exceptionally robust to the ups and downs of the general economic
environment, including the huge volatility caused by the 2008 financial crisis.

While the forecasting target here is the unemployment initial claims, we want to
highlight that PRISM applies to forecasting other time series with complex seasonal

patterns.



2. Data and Method

2.1. Initial Claims Data and Internet Search Data from Google

The weekly (non-seasonally adjusted) initial claims are our target time series. The initial
claims for the preceding week are released every Thursday. The time series of the ini-
tial claims from 1967 to present are available at https://fred.stlouisfed.org/series/
ICNSA.

The real-time Internet search data we used were obtained from Google Trends (www .
google.com/trends) with Python package pytrends. The Google Trends website, which
is publicly accessible, provides weekly (relative) search volume of search query terms
specified by a user. Specifically, for a user-specified query term, Google Trends provides
integer-valued weekly times series (after 2004); each number in the time series, ranging
from 0 to 100, represents the search volume of that search query term in a given week
divided by the total online search volume of that week; and the number is normalized
to integer values from 0 to 100, where 100 corresponds to the maximum weekly search
within the time period (specified by the user). Figure Al in the Supplementary Material
illustrates the Google Trend time series of several search query terms in a 5-year span.

The search query terms in our study were also identified from the Google Trends tool.
One feature of Google Trends is that, in addition to the time series of a specific term (or
a general topic), it also returns the top query terms that are most highly correlated with
the specific term. In our study, we used a list of top 25 Google search terms that are most
highly correlated with the term “unemployment”. Table Al of the Supplementary Ma-
terial lists these 25 terms, which were generated by Google Trends on January 11, 2018;
they included 12 general unemployment related query terms, such as “unemployment
office”, “unemployment benefits” and “unemployment extension”, as well as 13 query
terms that were combinations of state names and “unemployment”, such as “California

unemployment” and “unemployment Florida”.


https://fred.stlouisfed.org/series/ICNSA
https://fred.stlouisfed.org/series/ICNSA
www.google.com/trends
www.google.com/trends

2.2. Overview of PRISM

PRISM employs a two-stage estimation procedure for forecasting time series y; using its
lagged values and the available exogenous variables x;. The derivation and rationale of

each step will be described subsequently.

Input: Target time series {y;.;_1)} and exogenous time series {z,: }. In the forecast-
ing of unemployment initial claims, {y;.;_1)} is the official weekly unemployment
initial claim data reported with one-week delay, and {wto:f} is the multivariate Google

Trends data starting from 2004.

Stage 1 of PRISM: Seasonal decomposition. Decompose {y;}, the univariate time
series of interest, into the seasonal component {7;}, and the seasonally adjusted com-
ponent z; = y; — ;. In particular, with a fixed rolling window length M, Stage
1 nonparametrically decomposes {y(;_).(;—1)} into estimated seasonal component

{’AYz‘,t}i:(t, M), (t—1) and estimated seasonally adjusted component {Z;;} = (t— M), (t-1)

yeoes

using data available at time t.

Stage 2 of PRISM: Penalized regression. Forecast target time series using;:
K K p
. ! 1) 4 1) 4 !
Ver1 = Pl;) +) “](- )thj,t +) 5]( )')’tfj,t + 2,31( )xi,t (2.1)
j=1 j=1 i=1

where the coefficients are estimated by a rolling-window L; penalized linear regres-
sion using historical data for each forecasting horizon: I = 0 corresponds to nowcast;
I > 1 corresponds to forecasting future weeks. Note that for notational ease, we will

suppress “(1)” in the superscripts of the coefficients in the subsequent discussion.

2.3. Derivation of PRISM

PRISM is motivated by a general state-space formulation for univariate time series with

seasonal pattern. We postulate that the seasonal and seasonally adjusted component
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{7t} and {z:} each evolve according to a linear state-space model with state vectors {s; }

and {h;} respectively:

Yt =Zt + 7t (2.2a)
Zt = 'w'ht + €t (22b) Yt = 'U/SiL + gt (22d)
h; = th—l + Nt (22C) St = Pst—l + wy (228)

where (e, {1, n;, w;)’ S N(0,H),and 6 = (w, F,v, P, H) are the parameters.

Our state-space formulation contains a variety of widely used time series models,
including structural time series models (Harvey, 1989) and additive innovation state-
space models (Aoki, 1987; Ord et al., 1997, Hyndman et al., 2008). Under the general
formulation (2.2), a specific parametric model can be obtained by specifying the state
vectors {h:} and {s;} along with the dependence structure H. We highlight a few
special cases of model (2.2) in Supplementary Material.

PRISM also models the contemporaneous information from exogenous variables. Let
xr = (X146, X214, ..., xp,t)’ be the vector of the exogenous variables at time t. We postulate
a state-space model for x; on top of y;, instead of adding them as regressors as in tradi-

tional models. In particular, at each time ¢, we assume a multivariate normal distribution

for x; conditional on the level of unemployment initial claims y;,

x|yt ~ Np(px + v:8,Q) (2.3)

where B8 = (B1,...,Bp)", tx = (Pxy, .-+, 1z,)", and Q is the covariance matrix. x; is
assumed to be independent of {y;, x; : | < t} conditional on y;. For {y;} following the

general state-space model (2.2), our joint model for y; and x; can be diagrammed as:

— (st,ht) — (stp1,he1) —

! !
Yt Yi+1
1 1
Tt L1



To forecast y;,; under above model assumptions at time t, we consider the predictive
distribution of y;; by conditioning on the historical data {y;.(;_1)} and contemporane-
ous exogenous time series {z,:} as well as the latent seasonal component {y.;_1)}-
Z1.(t—1) is known given yy.;_q) and 7q.,;_1). We can derive a universal representation
of the predictive distribution p(y;; | Z1.(4-1), Y1:(4—1), Tt,:t), which is normal with mean
linear in zy.(;_1), 71.4—1) and @ as in (2.1) (see Supplementary Material for the proof).
This observation leads to our two-stage semi-parametric estimation procedure PRISM

for nowcasting y; and forecasting y;,; (I > 1) using all available information at time ¢.

2.4. Stage 1 of PRISM: seasonal decomposition

PRISM estimates the unobserved seasonal components y1,(;_1) in the first stage. For this
purpose, various seasonal decomposition methods can be used here, including nonpara-
metric methods such as the classical additive seasonal decomposition (Stuart et al., 1963)
and parametric methods based on innovation state-space models. We use the method
of Seasonal and Trend decomposition using Loess (STL) (Cleveland et al., 1990) as the
default choice. The STL method is nonparametric. It is widely used and robust for
decomposing time series with few assumptions owing to its nonparametric nature.

At every time ¢t for forecasting, we apply the seasonal decomposition method (such
as the default STL) to historical initial claims observations y;_y).;—1) with M being a
large number. For each rolling window from t — M to t — 1, the univariate time series
Y(t—M):(t—1) 18 decomposed into three components: seasonal, trend and the remainder.
Denote 4;; and Z;; as the estimates of v; and z; using data available at time t. Then, at
each t the seasonal decomposition generates estimated seasonal component time series
{’?i/t}i:(t—M),...,(t—l) and seasonally adjusted time series {2i/f}i:(t—M),...,(t—1); the latter is
the sum of trend component and remainder component. In our forecasting of unemploy-

ment initial claims, we took M = 700. We describe the basic procedure of the default

STL in the Supplementary Material.



2.5. Stage 2 of PRISM: penalized linear regression

For each fixed forecasting horizon I (> 0), we estimate y;,; by the linear predictive

equation:
K K p
Do =py+ Y a2 i+ Y 0ii—ji+ ) Bixip (2.4)
=1 =1 i=1

where for notational ease we have suppressed I in the coefficients and used the generic
notations i, «;, §; with the understanding that there is a separate set of {y,, a =
(a1,...,ax),0 = (81,...,0k),8 = (B1,...,Bp)} for each I. At each time t and for each

forecasting horizon [, the regression coefficients y,, o, § and 3 are obtained by minimiz-

ing
; K K
w " (yr+l —Hy — Zl 0jZrjr — Z OYr—jr
= j=1
p 2
=Y Bixie) A (el + 18]11) + 28], (2.5)
i=1

where N is the length of a rolling window, w is a discount factor, and A; and A, are

nonnegative regularization parameters.

2.6. Features of PRISM

There are several distinct features of our estimation procedure. First, a rolling window of
length N is employed. This is to address the fact that the parameters in the predictive Eq.
(2.4) can vary with time ¢. In our case, people’s search pattern and the search engine tend
to evolve over time, and it is quite likely that the same search phrases would contribute
in different ways over time to the response variable. Correspondingly, the coefficients
in (2.4) need to be estimated dynamically each week, and the more recent observations
should be considered more relevant than the distant historical observations for inferring
the predictive equations of current time. The rolling window of observations and the

exponentially decreasing weights are utilized for such purpose. Our use of exponential
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weighting is related to the weighted least square formulation that is usually referred to
as discounted weighted regression in the econometrics literature (Ameen and Harrison,
1984; Taylor, 2010).

Second, since the number of unknown coefficient in (2.4) tends to be quite large
compared to the number of observations within the rolling window, we applied L; reg-
ularization in our rolling-window estimation (Tibshirani, 1996), which gives robust and
sparse estimate of the coefficients. Up to two L; penalties are applied: on («, d) and on
B, as they represent two sources of information: information from time series compo-
nents {Z;} and {§:}, and information from the exogenous variables {x;}.

Third, PRISM is a semi-parametric method. The predictive Eq. (2.4) is motivated and
derived from our state-space formulation (2.2). However, the estimation is not para-
metric in that (i) the seasonal and seasonally adjusted components are learned non-
parametrically in Stage 1, and (ii) the coefficients in (2.4) are dynamically estimated each
week in Stage 2. Combined together, the two stages of PRISM give us a simple and
robust estimation procedure. This approach is novel and different from the typical ap-
proaches for linear state-space models, which often estimate unknown parameters using
specific parametrization and select a model based on information criteria (Hyndman

et al., 2008).

2.7. Using PRISM without exogenous variables

In the case when exogenous time series {x;} are not available, PRISM estimates y;;

according to the following linear predictive equation:

K
STt (2.6)
j=1

K
Uepr = py + ) &jZe—jr +
=]
=

which is a degenerated special case of the predictive Eq. (2.4). Under the same estimation
procedure as in (2.5) except that 3 and x; are dropped, predictive Eq. (2.6) can be used

to forecast univariate time series with seasonal patterns without exogenous time series.
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2.8. Constructing point-wise predictive intervals for PRISM estimate

The semi-parametric nature of PRISM makes it more difficult to construct predictive
intervals on PRISM forecasts, as we cannot rely on parametric specifications, such as
posterior distributions, for predictive interval construction. However, the fact that we are
forecasting time series suggests a (non-parametric) method for us to construct predictive
intervals based on the historical performances of PRISM.

For nowcasting at time t, given the historical data available up to time t — 1, we can

evaluate the root mean square error of nowcasting for the last L time periods as

t—1
ser = (+ ), (Jc— yf)z)l/zf
T=t—L

=

where 7, is the real time PRISM estimate for y. generated at time 7. Under the as-
sumption of local stationarity and normality of the residual, se; would be an esti-
mate for the standard error of ;. We can thus use it to construct predictive interval
for the current PRISM estimate. An 1 — a point-wise predictive interval is given by
(9t — zay2 Set, Pt + 242 Ser), where z, /5 is the 1 — a/2 quantile of the standard normal
distribution. Supplementary Material A10 shows that the empirical residuals are ap-
proximately normal, supporting our construction. The point-wise predictive intervals
for forecasting into future weeks can be constructed similarly. In practice, we set L = 52,

estimating the se; based on the forecasts of the most recent one-year window.

2.9. Training PRISM for forecasting unemployment initial claims

In our forecasting of unemployment initial claims, we applied a 3-year rolling window
of historical data to estimate the parameters in (2.5), i.e. N = 156 (weeks). The choice of
3-year rolling window is recommended in the literature (D’Amuri and Marcucci, 2017)
as well as supported by our empirical studies (Supplementary A7). In addition, since the
Google Trends data are only available since 2004, with the 3-year rolling window we are

able to test the performance of PRISM in 2007-2009, the entire span of the financial crisis,
12



which serves as an important test of the capability of the various prediction methods. We
took K = 52 (weeks) to employ the most recent 1-year estimated seasonal and seasonally
adjusted components, and p = 25 (Google search terms) according to the list of top 25
nationwide query terms related to “unemployment” in Table Al.

The weekly search volume data from Google Trends are limited up to a 5-year span
per download. The subsequent normalization of the search volumes done by Google
is based on the search query term and the specified date range, which implies that the
absolute values of search volumes are normalized differently between different 5-year
ranges. However, within the same set of 5-year data the relative scale of variables is con-
sistent (as they are normalized by the same constant). Therefore, to avoid the variability
from different normalization across different 5-year spans, and to ensure the coherence
of the model, for each week, we used the same set of 5-year-span data downloaded for
both the training data and the prediction.

For the choice of the discount factor, we took w = 0.985 as the default choice. This
follows the suggestion by Lindoff (1997) that setting the discount factor between 0.95
and 0.995 works in most applications. We further conducted the experiments for w &
[0.95,0.995] (see Supplementary Material A6) and found the performance of PRISM is
quite robust for w € [0.95,0.995] while w = 0.985 gives optimal accuracy for our in-
sample nowcasting.

For the regularization parameters A; and A; in (2.5), we used cross-validation to
minimize the mean squared predictive errors (i.e., the average of prediction errors from
each validation set of data). We found empirically that the extra flexibility of having two
separate A1 and A, does not give improvement over fixing Ay = A,. In particular, we
found that for every forecasting horizon I = 0,1, 2,3, in the cross-validation process of
setting (A1, Ay) for separate L1 penalty, over 80% of the weeks showed that the smallest
cross-validation mean squared error when restricting A; = A, is within 1 standard error
of the global smallest cross-validation mean squared error. For model simplicity, we thus

chose to further restrict A; = A, when forecasting unemployment initial claims.
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2.10. Accuracy metrics

We used root-mean-squared error (RMSE) and mean absolute error (MAE) to evaluate

the performance of different methods. For an estimator {#;} and horizon I, the RMSE

and MAE are defined, respectively, as RMSE,(g,y) = [(”2—”3——”1) Z?inl (0= y;)?]1/?
and MAE,(g,y) = (nz_n}—_lﬂ) Z?inl—i—l |7t — y¢|, where ny + I and n, are respectively the

start and end of the forecasting period for each /.

3. Results

3.1. Retrospective Forecasting for 2007-2016

We applied PRISM to produce forecasts of weekly unemployment initial claims for the
time period of 2007 to 2016 for four time horizons: real-time, one, two, and three weeks
ahead of the current time. We compared the forecasts to the ground truth — the unem-
ployment initial claims released by the Department of Labor one-week behind real-time
— by measuring the RMSE and MAE.

For comparison, we calculated the RMSE and MAE of four alternative forecasting
methods: (a) Bayesian Structural Time Series (BSTS) (Scott and Varian, 2014); (b) and
(c), two forecasting methods using exponential smoothing: BATS and TBATS (De Livera
et al., 2011); and (d) the naive method, which without any modeling effort simply uses
the last available weekly unemployment initial claims number (which is of the prior
week) as the prediction for the current week, one, two, and three week(s) later. The
naive method serves as a baseline. Both BATS and TBATS are based on innovation
state-space model; BATS is an acronym for key features of the model: Box-Cox trans-
formation, ARMA errors, Trend, and Seasonal components; TBATS extends BATS to
handle complex seasonal patterns with trigonometric representations, and the initial T
connotes “trigonometric”. BSTS only produces nowcasting; it does not produce numbers

for forecasting into future weeks.
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As PRISM uses both historical unemployment initial claims data and Google search
information, to quantify the contribution of the two resources, we also applied PRISM
but without the Google search information. We denoted this method as “PRISM w/o
x;”.

For fair comparison, in generating retrospective estimates of unemployment initial
claims, we reran all methods each week using only the information available up to that
week, i.e., we obtained the retrospective estimation as if we had relived the testing period
of 2007 — 2016. The two exponential smoothing methods (b) BATS and (c) TBATS only
use historical initial claims data and do not offer the option of including exogenous
variable in their forecasting, while the method (a) BSTS allows the inclusion of exogenous
variables. Thus, for forecasting at each week t, BSTS takes the historical initial claim data
and Google Trends data as input, whereas BATS and TBATS use historical initial claim
data only. PRISM was applied twice: with and without Google search information. The
results of BSTS, BATS and TBATS were produced by their respective R packages under
their default settings.

Table 1 presents the performance of forecasting (including nowcasting) unemploy-
ment initial claims over the entire period of 2007 — 2016 for the four forecasting hori-
zons. The RMSE and MAE numbers reported here are relative to the naive method, i.e.,
the number reported in each cell is the ratio of the error of a given method to that of
the naive method. The absolute error of the naive method is reported in the parenthe-
ses. BSTS does not produce numbers for forecasting into future weeks, as its R package
outputs prediction of the target time series only with exogenous variables inputted.

Table 1 reveals the following. First, PRISM uniformly outperforms all the other meth-
ods for the entire period of 2007 — 2016 under all forecasting horizons. Second, the
real-time Google Trends data are very helpful for nowcasting, as PRISM and BSTS have
better nowcasting results than the other methods that use only historical initial claim
data. Third, the contribution of contemporaneous Google Trends data becomes less sig-

nificant in forecasting future weeks, as evidenced by the shrinking performance gap
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between PRISM and “PRISM w/o x;” from nowcasting to forecasting. Fourth, among
the three methods that only use historical initial claim data, the predictive method based
on PRISM without Google information outperforms the exponential smoothing methods
BATS and TBATS.

Following the suggestion of a referee, we further compared the performance of
PRISM to the other methods with an additional metric: Cumulative Sum of Squared fore-
cast Error Differences (CSSED) (Welch and Goyal, 2008), which calculates the cumulative
difference in mean-squared error (MSE) between PRISM and the alternative. The CSSED
at time T for an alternative method m is defined as CSSED,;, prism = Y, (ef/ " e%/PRISM),
where e, and ¢; prisp are the prediction errors at time t for method m and PRISM re-
spectively. The detailed comparison results are given in Supplementary Material A13,
which again shows that the advantage of PRISM over alternatives is consistent over the

whole evaluation period.

real-time 1 week 2 weeks 3 weeks

RMSE

PRISM 0.493 0.483 0.461 0.470

PRISM w/o z; 0.647 0.532 0.507 0.524

BSTS 0.588 - - -

BATS 1.002 0.897 0.848 0.832

TBATS 0.711 0.559 0.544 0.528

naive 1(50551) 1(62227) 1(69747) 1 (73527)
MAE

PRISM 0.539 0.517 0.476 0.460

PRISM w/o x; 0.659 0.559 0.510 0.496

BSTS 0.612 - - -

BATS 0.992 0.898 0.825 0.781

TBATS 0.750 0.599 0.570 0.525

naive 1(33637) 1(41121) 1 (47902) 1 (52794)

Table 1: Performance of different methods over 2007 — 2016 for four forecasting horizons:
real-time, 1 week, 2 weeks and 3 weeks ahead. RMSE and MAE here are relative to the
error of naive method; that is, the number reported is the ratio of the error of a given
method to that of the naive method; the absolute RMSE and MAE of the naive method
are reported in the parentheses. The boldface indicates the best performer for each
forecasting horizon and each accuracy metric.
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To assess the statistical significance of the improved prediction power of PRISM com-
pared to the alternatives, we conducted Diebold-Mariano test (Diebold and Mariano,
1995), which is a nonparametric test for comparing the prediction accuracy between two
time-series forecasting methods. Table 2 reports the p-values of the Diebold-Mariano test
(the null hypothesis being that PRISM and the alternative method in comparison have
the same prediction accuracy in RMSE). With all the p-values smaller than 2.1%, Table 2
shows that the improved prediction accuracy of PRISM over BSTS, BATS, and TBATS is
statistically significant in all of the forecasting horizons evaluated. Further comparison
with two additional methods is presented in Supplementary Material A12, where PRISM
continues to show significant advantage in prediction accuracy over seasonal AR model

and the method of D’Amuri and Marcucci (2017).

real-time 1 week 2 weeks 3 weeks
PRISM w/o 7.86x10° 2.09x102 210x102 395x 103
BSTS 714 x 1073 - - -
BATS 917x1078% 3.60x108 1.05x10? 1.88x10°?
TBATS 520x 1077 724x1073 259%x10% 1.86x 1072

Table 2: P-values of the Diebold-Mariano test for prediction accuracy comparison be-
tween PRISM and the alternatives over 2007-2016 for four forecasting horizons: real-
time, 1 week, 2 weeks and 3 weeks ahead. The null hypothesis of the test is that PRISM
and the alternative method in comparison have the same prediction accuracy in RMSE.

Figure 2 shows the RMSE of the yearly nowcasting results of the different methods;
here the RMSE is measured relative to the error of the naive method. It is seen that
PRISM gives consistent relative RMSE throughout the 2007 — 2016 period. It is note-
worthy that PRISM outperforms all other methods in 2008 and 2009 when the financial
crisis caused significant instability in the US economy. For predictions into future weeks,
PRISM also gives the leading performance for the 2007 — 2016 period (detailed year-by-
year plots for the forecasting performance of the different methods for each forecasting
horizon are provided in Supplementary Material A14).

For a closer look of the performance of different methods, Figure 1 (top) shows how
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the absolute errors of nowcasting accumulate through 2007 to 2016. The cumulative
absolute error of PRISM rises at the slowest rate among all methods. As shown in Fig-
ure 1 (bottom), the 2008 financial crisis caused significantly more unemployment initial
claims. PRISM handles the financial crisis period well, as the accumulation of error is
rather smooth for the financial crisis period. Other methods all accumulate loss in a con-
siderably higher rate during the financial crisis. Furthermore, PRISM handles the strong
seasonality of initial claim data well, since the accumulation of error is smooth within
each year. Among all the methods considered, BATS is bumpy in handling seasonality,

as the accumulation jumps when the initial claim data spikes.
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Figure 2: Yearly nowcasting performance of different methods from 2007 to 2016. RMSE
is measured relative to the error of the naive method; a value above 1 indicates that the
method performs worse than the naive method in that time period.

We further constructed point-wise predictive intervals for the PRISM estimates. Fig-
ure 3 shows the point estimates and 95% predictive intervals by PRISM for the nowcast-
ing during 2008 — 2016 in comparison to the true unemployment initial claims officially
revealed a week later (in red). For 2008 — 2016, the actual coverage of the predictive
interval is 96.6%, which is slightly higher than the nominal 95%. For longer forecast-
ing horizons, the predictive intervals by PRISM also give coverage close to the nominal

95%: for the one-week-ahead, two-week-ahead and three-week-ahead forecasts, the ac-
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tual coverage levels of the PRISM predictive intervals are, respectively, 93.9%, 95.4% and
94.7% (detailed plots of the PRISM predictive intervals are provided in Supplementary
Material A15).
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Figure 3: Predictive Interval of PRISM from 2008 to 2016. The shaded area corresponds to
the 95% point-wise predictive interval of PRISM nowcasting. The blue curve is the point
estimate of PRISM nowcasting. The red curve is the true unemployment initial claims.
The actual coverage of the 95% PRISM predictive interval is 96.6% in 2008 — 2016.

3.2. Out-of-Sample Performance 2017-2019

To further assess PRISM’s performance, we applied PRISM to produce out-of-sample
forecasts of weekly unemployment initial claims for the period of 2017-2019. Note that
the PRISM methodology, including all the model specifications, was frozen at the end of
2016, so this evaluation is completely out of sample.

Table 3 summarizes the prediction errors of PRISM (both with and without Google
data) in both RMSE and MAE in comparison with other benchmark methods. PRISM
again shows consistent advantage over other benchmark methods in out-of-sample pre-
dictions. PRISM with Google data is leading across the board (except for the MAE of
3-week-ahead prediction where it virtually ties with PRISM without Google informa-

tion). Notably, the relative errors compared with the naive method are quite stable over
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real-time 1 week 2 weeks 3 weeks

RMSE
PRISM 0.497 0.442 0.376 0.343
PRISM w/o z; 0.550 0.454 0.387 0.349
BSTS 0.921 - - -
BATS 1.064 0.982 0.907 0.832
TBATS 0.699 0.581 0.512 0.465
naive 1(27941)  1(34936) 1(41651) 1(46749)
MAE
PRISM 0.550 0.484 0.411 0.368
PRISM w/o z; 0.617 0.502 0.422 0.365
BSTS 0.941 - - -
BATS 1.155 0.972 0.907 0.816
TBATS 0.694 0.587 0.505 0.435
naive 1(19686)  1(24630) 1(29971) 1(35016)

Table 3: Performance of different methods over 2017 — 2019 for four forecasting horizons:
real-time, 1 week, 2 weeks and 3 weeks ahead. RMSE and MAE here are relative to the
error of naive method; that is, the number reported is the ratio of the error of a given
method to that of the naive method; the absolute RMSE and MAE of the naive method
are reported in the parentheses. The boldface indicates the best performer for each
forecasting horizon and each accuracy metric.

real-time 1 week 2 weeks 3 weeks
PRISM w/o x; 274x1077 426x10° 125x10° 2.70 x 102
BSTS 264x107° - - -
BATS 380x 1077 3.09x107° 240x107° 459 x10°°
TBATS 1.04x1073 279x1073 746x1073 248 x1073

Table 4: P-values of the Diebold-Mariano test for prediction accuracy comparison be-
tween PRISM and the alternatives over 2017-2019 for four forecasting horizons: real-
time, 1 week, 2 weeks and 3 weeks ahead. The null hypothesis of the test is that PRISM
and the alternative method in comparison have the same prediction accuracy in RMSE.

the years, similar to the results in 2007-2016. Breaking into each year (as shown in Figure
4), PRISM uniformly outperforms other methods in comparison and gives rather stable
error reduction from the naive method over the years, both in- and out-of-sample. This
figure together with Figure 2 shows that PRISM reduced around 50% error from the na-
tive method (in RMSE) year across year from 2007 to 2019. The statistical significance of
PRISM’s improved prediction power is also verified by the Diebold-Mariano test in Ta-
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Figure 4: Yearly nowcasting performance of different methods from 2017 to 2019. RMSE
is measured relative to the error of the naive method; a value above 1 indicates that the
method performs worse than the naive method in that time period.

ble 4, where all the p-values are smaller than 3%. The consistent performance of PRISM
both in the retrospective testing of 2007-2016 and the out-of-sample testing of 2017-2019
indicates the robustness and accuracy of PRISM over changes in economic environments
and trends.

We also constructed point-wise predictive intervals based on the out-of-sample now-
casts in 2017-2019 (Figure 5). Compared with the actual unemployment data released
one weak later by the Department of Labor, the intervals by PRISM capture the actual
numbers of unemployment initial claims in 97.1% of the weeks in 2017 — 2019, which is
higher than the nominal 95% level. This again underscores the stability of the PRISM
methodology.

3.3. Out-of-Sample Performance During COVID-19 Pandemic Period

The global shutdown due to the COVID-19 pandemic has heavily impacted the US econ-
omy and job market. In particular, the numbers of unemployment claims in the US have
skyrocketed to record-breaking levels with more than 40 millions people in total filing

for initial claims since the start of the pandemic. This phenomenon has attracted signif-
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Figure 5: Predictive Interval of PRISM from 2017 to 2019. The shaded area corresponds to
the 95% point-wise predictive interval of PRISM nowecasting. The blue curve is the point
estimate of PRISM nowcasting. The red curve is the true unemployment initial claims.
The actual coverage of the 95% PRISM predictive interval is 97.1% in 2017 — 2019.

icant attention from major news media and the general public (Cohen, 2020a,b; Cassel-
man, 2020). As the weekly unemployment claims remain ”stubbornly high” (Casselman,
2020), concerns for significant layoffs and severe economic downturn persist. Accurate
and reliable forecasting of near-future unemployment claims would thus provide very
valuable insights into the trend of the general economy during such trying times. In light
of this, we further applied PRISM to the out-of-sample data of the COVID-19 pandemic
period to evaluate its performance and robustness to such unusual economic shock.
Table 5 and Figure 6 summarize the performance of PRISM’s real-time nowcasting
of the weekly unemployment claims in comparison with the other methods during the
COVID pandemic period from March 21, 2020 to July 18, 2020. For close examination of
the different methods, we break down the entire period into 3-week windows. During
the first three weeks when the COVID-19 shutdown triggered the sudden and drastic
rise in unemployment claims, both PRISM and BSTS picked up the signal rather quickly

due to the input from the real-time Google Trends data that track the search of unem-
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ployment related query terms. Since April, PRISM began to show its advantage over the
other methods as it adapted the predictive model to the “new regime”, leading the chart
in 5 out of 6 evaluation windows. It is worth pointing out that forecasting unemploy-
ment initial claims during this period is a very challenging task as the unprecedented
huge jump of unemployment claims drastically altered the pattern in the data (includ-
ing the time-series pattern): we noted that PRISM is the only method that consistently
outperforms the naive method throughout this COVID-19 period (the time-series based
methods often performed worse than the naive method). This out-of-sample forecast-
ing performance thus indicates the robustness of PRISM to unusual economic shocks
and events, giving us more evidence of the model’s reliability and accuracy. Further
evaluation of PRISM and the benchmarks for longer-horizon predictions is presented in

Supplementary Material A16, where PRISM also shows advantage in near-future predic-

tions.
Mar 21-Apr4 Apr 11-Apr 25 May 2-May 16 May 23-Jun 6 Jun 13-Jun27 Jul4-Jul 18
RMSE
PRISM 0.684 0.257 0.607 0.538 0.574 0.629
BSTS 0.543 0.838 0.910 0.749 1.009 1.327
BATS 1.701 1.498 0.505 1.104 2.617 2.640
TBATS 1.862 0.432 0.425 1.497 4.496 1.817
naive 1 (2362454) 1 (932295) 1 (488192) 1 (232074) 1(59761) 1 (105392)
MAE
PRISM 0.784 0.215 0.462 0.445 0.711 0.488
BSTS 0.539 0.863 0.879 0.700 1.092 1.460
BATS 1.952 1.514 0.553 0.896 3.236 2.762
TBATS 2.136 0.363 0.453 1.651 5.940 1.818
naive 1 (1986663) 1 (898656) 1 (444600) 1 (206791) 1 (44883) 1 (95054)

Table 5: Performance of PRISM and benchmark methods during the COVID-19 pan-
demic period for real-time nowcasting. Evaluation period is broken down to 3-week
windows. RMSE and MAE here are relative to the error of naive method; that is, the
number reported is the ratio of the error of a given method to that of the naive method;
the absolute RMSE and MAE of the naive method are reported in the parentheses. The
boldface indicates the best performer for each forecasting horizon and each accuracy
metric.
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Figure 6: Nowcasting performance of different methods during the COVID-19 pandemic
period (March 21, 2020 to July 18, 2020). RMSE is measured relative to the error of the
naive method and evaluated in three-week windows; a value above 1 indicates that the
method performs worse than the naive method in that time period.

4. Discussion

The wide availability of data generated from the Internet offers great potential for pre-
dictive analysis and decision making. Our study on using Internet search data to fore-
cast unemployment initial claims illustrates one such potential. The arrival of new
data (sometimes in new forms) requires new methodology to analyze and utilize them.
PRISM is an example where traditional statistical models are brought together with more
recent statistical tools, such as L regularization and dynamic training.

In this article we focus on using Internet search data to forecast unemployment initial
claims weeks into the future. We introduced a novel method PRISM for forecasting time
series with strong seasonality. PRISM is semi-parametric and can be generally applied
with or without exogenous variables. PRISM is motivated from a general state-space
formulation that contains a variety of widely used time series models as special cases.
The two stages of PRISM are easy to implement. The numerical evaluation shows that

PRISM outperforms all alternatives in forecasting unemployment initial claim data for
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the time period of 2007 — 2019. We believe that the accurate and robust forecasts by
PRISM would greatly benefit the public and the private sectors to assess and gauge the
economic trends.

PRISM also demonstrates stable adaptability to unusual economic shocks such as
the 2008-2009 financial crisis and the 2020 COVID-19 pandemic shutdown. The out-
performance of PRISM relative to other methods are robust during long periods of eco-
nomic expansion and during short periods of economic recession. In particular, during
the 2008-2009 financial crisis and the COVID-19 pandemic period, we found that the
real-time data from Google enables PRISM to quickly pick up the signal and the changes
in data patterns and to provide insight on real-time and near-future economic trends.
This gives us confidence that the unemployment forecasts given by PRISM would pro-
vide government agencies with much-needed information to react promptly and make
well-informed decisions in the face of future economic and financial shocks.

The predictive power and advantage of PRISM mainly come from the following fea-
tures: (1) dynamic model training based on a rolling window to account for changes
in people’s search pattern and changes in the relationship between Google search in-
formation and the targeted economic activity/index; (2) utilization of L; penalty to se-
lect the most relevant predictors and to filter out noisy and redundant information; (3)
combination of non-parametric seasonality decomposition and penalized regression for
greater flexibility and adaptability; (4) incorporation of real-time Google search informa-
tion from multiple related query terms to enhance prediction accuracy and robustness.

Although this article focuses on forecasting unemployment initial claims, PRISM can
be generally used to forecast time series with complex seasonal patterns. The semi-
parametric approach of PRISM covers a wider range of time series models than tradi-
tional methods, as PRISM transforms the inference of a complicated class of state-space
models into penalized regression of linear predictive models. Furthermore, dynami-
cally fitting the predictive equations of PRISM addresses the time-varying relationship

between the exogenous variables and the underlying time series. One interesting ques-
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tion for future study is to explore if we can extend PRISM to forecasting unemployment
indicators in more specified industries such as construction, manufacturing, transporta-
tion, finance, and government or to forecasting other unemployment indicators such as
non-farm payrolls. Another direction for future study is to extend PRISM to predict
unemployment indicators for different ethnic or demographic groups. Furthermore, it
would also be of great future interests to see if PRISM can contribute to forecasting
future breaks and macro-economic cycles.

We conclude this article with a few remarks on the detailed implementation of the
PRISM method. We used real-time Internet search data from Google Trends, which pro-
vides publicly available data through subsampling and renormalization: a data set un-
dergoes subsampling (Google draws a small sample from its raw search data for a search
query term) and renormalization (after the sampling, Google normalizes and rounds up
the search volumes so that they become integers between 0 and 100 for each search query
term) when downloaded. Due to the subsampling and renormalization, the search term
volumes are noisy and variable (Yang et al., 2015). The L; regularization adopted in
PRISM has shown advantage in extracting the signals and reducing redundant informa-
tion from Google search data (see Supplementary Material A9 and A11). Furthermore,
the dynamic training with rolling window accounts for changes in search engine algo-
rithms, people’s search patterns, economic trends and other patterns that change over
time (Burkom et al., 2007; Ning et al., 2019). This is also evident in Figure All, where
each of the 25 candidate search terms has distinct patterns coming in and out of the
dynamically fitted model throughout the time. The discount factor adopted also gives
more weights on more recent data to capture more recent economic trends and Google
search changes, which is similar to the data tapering idea proposed by (Dahlhaus, 1988;
Dahlhaus et al., 1997) for improved performance in locally stationary time series. Our
empirical analysis supports the effectiveness of the rolling window and discount factor
(Supplementary Material A6 and A7). Alternative frameworks for inferring time series

models with state-space structures include the dynamic linear model (DLM) (Shumway

26



and Stoffer, 2017).

One limitation with PRISM arises from the data availability from Google Trends.
The public available tool only provides up to 5-year range of weekly search data per
download. Access to data in higher resolution and longer time span requires Google’s
permission to use its nonpublic API. Furthermore, in each downloaded batch, the search
volume data are normalized by Google to the scale from 0 to 100 based on the queried
search term and specific data range of that download. Thus, to avoid the variability
due to the normalization and to ensure the consistency of results, we kept both the
model training and the corresponding prediction within the same (downloaded) set of
5-year data. Furthermore, Google search data may not reflect the entire population
of unemployed people, especially those who would not search online for employment
information. Therefore, what we utilized is essentially the association between the search
volume of related search terms and our target of unemployment claims for PRISM’s
prediction.

The R package PRISM.forecast that implements the PRISM method is available on
CRAN at https://CRAN.R-project.org/package=PRISM.forecast. We also made the

code available at https://github.com/ryanddyi/prism.
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