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Parameter estimation for nonlinear dynamic system models, repre-
sented by ordinary differential equations (ODEs), using noisy and
sparse data is a vital task in many fields. We propose a fast and
accurate method, MAGI (MAnifold-constrained Gaussian process In-
ference), for this task. MAGI uses a Gaussian process model over
time-series data, explicitly conditioned on the manifold constraint
that derivatives of the Gaussian process must satisfy the ODE sys-
tem. By doing so, we completely bypass the need for numerical inte-
gration and achieve substantial savings in computational time. MAGI
is also suitable for inference with unobserved system components,
which often occur in real experiments. MAGI is distinct from existing
approaches as we provide a principled statistical construction under
a Bayesian framework, which incorporates the ODE system through
the manifold constraint. We demonstrate the accuracy and speed of
MAGI using realistic examples based on physical experiments.
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Dynamic systems, represented as a set of ordinary differ-1

ential equations (ODEs), are commonly used to model2

behaviors in scientific domains, such as gene regulation (1),3

biological rhythms (2), spread of disease (3), ecology (4), etc.4

We focus on models specified by a set of ODEs5

ẋ(t) = dx(t)
dt

= f(x(t), θ, t), t ∈ [0, T ], [1]6

where the vector x(t) contains the system outputs that evolve7

over time t, and θ is the vector of model parameters to be8

estimated from experimental/observational data. When f is9

nonlinear, solving x(t) given initial conditions x(0) and θ10

generally requires a numerical integration method, such as11

Runge-Kutta.12

Historically, ODEs have mainly been used for conceptual13

or theoretical understanding rather than data fitting as ex-14

perimental data were limited. Advances in experimental and15

data-collection techniques have increased the capacity to follow16

dynamic systems closer to real-time. Such data will generally17

be recorded at discrete times and subject to measurement18

error. Thus, we assume that we observe y(τ ) = x(τ ) + ε(τ )19

at a set of observation time points τ with error ε governed20

by noise level σ. Our focus here is inference of θ given y(τ ),21

with emphasis on nonlinear f where specialized methods that22

exploit a linear structure, e.g. (5, 6), are not generally ap-23

plicable. We shall present a coherent, statistically principled24

framework for dynamic system inference with the help of Gaus-25

sian processes (GPs). The key of our method is to restrict26

the GPs on a manifold that satisfies the ODE system: thus27

we name our method MAGI (MAnifold-constrained Gaussian28

process Inference). Placing a GP on x(t) facilitates inference 29

of θ without numerical integration, and our explicit manifold 30

constraint is the key novel idea that addresses the conceptual 31

incompatibility between the GP and the specification of the 32

ODE model, as we shall discuss shortly when overviewing our 33

method. We show that the resulting parameter inference is 34

computationally efficient, statistically principled, and effective 35

in a variety of practical scenarios. MAGI particularly works in 36

the cases when some system component(s) is/are unobserved. 37

To the best of our knowledge, none of the current available 38

software packages that do not use numerical integration can 39

analyze systems with unobserved component(s). 40

Overview of our method. Following the Bayesian paradigm, 41

we view the D-dimensional system x(t) to be a realization 42

of the stochastic process X(t) = (X1(t), . . . , XD(t)), and 43

the model parameters θ a realization of the random vari- 44

able Θ. In Bayesian statistics, the basis of inference is 45

the posterior distribution, obtained by combining the like- 46

lihood function with a chosen prior distribution on the un- 47

known parameters and stochastic processes. Specifically, we 48

impose a general prior distribution π(·) on θ and indepen- 49

dent GP prior distributions on each component Xd(t) so that 50

Xd(t) ∼ GP(µd,Kd), t ∈ [0, T ], where Kd : R×R→ R is a pos- 51

itive definite covariance kernel for the GP and µd : R→ R is 52
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Fig. 1. Inference by MAGI for Hes1 partially observed asynchronous system on 2000 simulated datasets. The red curve is the truth. MAGI recovers the system well, without the
usage of any numerical solver: the green curve shows the median of the inferred trajectories among the 2000 simulated datasets, and a 95% interval from the 2.5% and 97.5%
of all inferred trajectories is shown via the blue dashed area.
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the mean function. Then for any finite set of time points53

τd, Xd(τd) has a multivariate Gaussian distribution with54

mean vector μd(τd) and covariance matrix Kd(τd, τd). De-55

note the observations by y(τ ) = (y1(τ1), . . . , yD(τD)), where56

τ = (τ1, τ2, . . . , τD) is the collection of all observation time57

points and each component Xd can have its own set of observa-58

tion times τd = (τd,1, . . . , τd,Nd ). If the d-th component is not59

observed, then Nd = 0, and τd = ∅. N = N1 + · · · + ND is the60

total number of observations. We note that for the remainder61

of the paper, the notation t shall refer to time generically,62

while τ shall refer specifically to the observation time points.63

As an illustrative example, consider the dynamic system in
(1) that governs the oscillation of Hes1 mRNA (M) and Hes1
protein (P ) levels in cultured cells, where it is postulated that a
Hes1-interacting (H) factor contributes to a stable oscillation,
a manifestation of biological rhythm (2). The ODEs of the
three-component system X = (P, M, H) are

f(X, θ, t) =

⎛
⎝ −aP H + bM − cP

−dM + e
1+P 2

−aP H + f
1+P 2 − gH

⎞
⎠ ,

where θ = (a, b, c, d, e, f, g) are the associated parameters. In64

Fig 1 (left panel) we show noise-contaminated data generated65

from the system, which closely mimics the experimental setup66

described in (1): P and M are observed at 15-minute intervals67

for 4 hours but H is never observed. In addition, P and68

M observations are asynchronous: starting at time 0, every69

15 minutes we observe P ; starting at 7.5 minutes, every 1570

minutes we observe M ; P and M are never observed at the71

same time. It can be seen that the mRNA and protein levels72

exhibit the behavior of regulation via negative feedback.73

The goal here is to infer the seven parameters of the system:74

a, b govern the rate of protein synthesis in the presence of the75

interacting factor; c, d, g are the rates of decomposition; and76

e, f are inhibition rates. The unobserved H component poses a77

challenge for most existing methods that do not use numerical78

integration, but is capably handled by MAGI: the P and M79

panels of Fig 1 show that our inferred trajectories provide80

good fits to the observed data, and the H panel shows that81

the dynamics of the entirely unobserved H component are82

largely recovered as well. We emphasize that these trajectories83

are inferred without any use of numerical solvers. We shall84

return to the Hes1 example in detail in the Results section.85

Intuitively, the GP prior on X(t) facilitates computation as86

GP provides closed analytical forms for Ẋ(t) and X(t), which87

could bypass the need for numerical integration. In particular, 88

with a GP prior on X(t), the conditional distribution of Ẋ(t) 89

given X(t) is also a GP with its mean function and covariance 90

kernel completely specified. This GP specification for the 91

derivatives ẋ(t), however, is inherently incompatible with the 92

ODE model because Eq. (1) also completely specifies ẋ(t) 93

given x(t) (via the function f). As a key novel contribution of 94

our method, MAGI addresses this conceptual incompatibility 95

by constraining the GP to satisfy the ODE model in Eq. (1). 96

To do so, we first define a random variable W quantifying 97

the difference between stochastic process X(t) and the ODE 98

structure with a given value of the parameter θ: 99

W = sup
t∈[0,T ],d∈{1,...,D}

|Ẋd(t) − f(X(t), θ, t)d|. [2] 100

W ≡ 0 if and only if ODEs with parameter θ are satisfied by 101

X(t). Therefore, ideally the posterior distribution for X(t) 102

and θ given the observations y(τ ) and the ODE constraint, 103

W ≡ 0, is (informally) 104

pΘ,X(t)|W,Y (τ)(θ, x(t)|W = 0, Y (τ ) = y(τ )). [3] 105

While Eq. (3) is the ideal posterior, in reality W is not generally 106

computable. In practice we approximate W by finite discretiza- 107

tion on the set I = (t1, t2, . . . , tn) such that τ ⊂ I ⊂ [0, T ] 108

and similarly define WI as 109

WI = max
t∈I,d∈{1,...,D}

|Ẋd(t) − f(X(t), θ, t)d|. [4] 110

Note that WI is the maximum of a finite set, and WI → W 111

monotonically as I becomes dense in [0, T ]. Therefore, the 112

practically computable posterior distribution is 113

pΘ,X(I)|WI ,Y (τ)(θ, x(I)|WI = 0, Y (τ ) = y(τ )), 114

which is the joint conditional distribution of θ and X(I) 115

together. Thus, effectively, we simultaneously infer both the 116

parameters and the unobserved trajectory X(I) from the noisy 117

observations y(τ ). 118

Under Bayes’ rule, we have

pΘ,X(I)|WI ,Y (τ)(θ, x(I)|WI = 0, Y (τ ) = y(τ ))
∝ P (Θ = θ, X(I) = x(I), WI = 0, Y (τ ) = y(τ )),
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where the right hand side can be decomposed as
P (Θ = θ,X(I) = x(I),WI = 0,Y (τ ) = y(τ ))
= πΘ(θ)× P (X(I) = x(I)|Θ = θ)︸ ︷︷ ︸

(1)

× P (Y (τ) = y(τ)|X(I) = x(I),Θ = θ)︸ ︷︷ ︸
(2)

× P (WI = 0|Y (τ) = y(τ),X(I) = x(I),Θ = θ)︸ ︷︷ ︸
(3)

.

The first term (1) can be simplified as P (X(I) = x(I)|Θ =
θ) = P (X(I) = x(I)) due to the prior independence of X(I)
and Θ; it corresponds to the GP prior on X. The second term
(2) corresponds to the noisy observations. The third term (3)
can be simplified as
P (WI = 0|Y (τ) = y(τ),X(I) = x(I),Θ = θ)

= P (Ẋ(I)− f(x(I), θ, tI) = 0|Y (τ) = y(τ),X(I) = x(I),Θ = θ)

= P (Ẋ(I)− f(x(I), θ, tI) = 0|X(I) = x(I))

= P (Ẋ(I) = f(x(I), θ, tI)|X(I) = x(I)),

which is the conditional density of Ẋ(I) givenX(I) evaluated119

at f(x(I), θ, tI). All three terms are multivariate Gaussian:120

the third term is Gaussian because Ẋ(I) given X(I) has a121

multivariate Gaussian distribution as long as the kernel K is122

twice differentiable.123

Therefore, the practically computable posterior distribution
simplifies to
pΘ,X(I)|WI ,Y (τ)(θ,x(I)|WI = 0,Y (τ ) = y(τ )) [5]

∝ πΘ(θ) exp
{
−

1
2

D∑
d=1

[
+ |I| log(2π) + log |Cd|+ ‖xd(I)− µd(I)‖2

C−1
d︸ ︷︷ ︸

(1)

+ |I| log(2π) + log |Kd|+
∥∥fx,θ
d,I
− µ̇d(I)−md{xd(I)− µd(I)}

∥∥2
K−1
d︸ ︷︷ ︸

(3)

+Nd log(2πσ2
d) + ‖xd(τd)− yd(τd)‖2

σ−2
d︸ ︷︷ ︸

(2)

]}

where ‖v‖2A = vᵀAv, |I| is the cardinality of I, fx,θd,I is short124

for the d-th component of f(x(I), θ, tI), and the multivariate125

Gaussian covariance matrix Cd and the matrix Kd can be126

derived as follows for each component d:127 
C = K(I, I)
m = ′K(I, I)K(I, I)−1

K = K′′(I, I)− ′K(I, I)K(I, I)−1K′(I, I)
[6]128

where ′K = ∂
∂s
K(s, t), K′ = ∂

∂t
K(s, t), and K′′ = ∂2

∂s∂t
K(s, t).129

In practice we choose the Matern kernel K(s, t) =130

φ1
21−ν

Γ(ν)

(√
2ν l

φ2

)ν
Bν
(√

2ν l
φ2

)
where l = |s − t|, Γ is the131

Gamma function and Bν is the modified Bessel function of132

the second kind, and the degree of freedom ν is set to be 2.01133

to ensure that the kernel is twice differentiable. K has two134

hyper-parameters φ1 and φ2. Their meaning and specification135

are discussed in the Materials and Methods section.136

With the posterior distribution specified in Eq. (5), we137

use Hamiltonian Monte Carlo (HMC) (7) to obtain samples138

of XI and the parameters together. At the completion of 139

HMC sampling, we take the posterior mean of XI as the 140

inferred trajectory, and the posterior means of the sampled 141

parameters as the parameter estimates. Throughout the MAGI 142

computation, no numerical integration is ever needed. 143

Review of related work. The problem of dynamic system in- 144

ference has been studied in the literature, which we now 145

briefly review. We first note that a simple approach to 146

constructing the ‘ideal’ likelihood function is according to 147

p(y(t)|x̂(t, θ,x(0)), σ), where x̂(t, θ,x(0)) is the numerical so- 148

lution of the ODE obtained by numerical integration given θ 149

and the initial conditions. This approach suffers from a high 150

computational burden: numerical integration is required for 151

every θ sampled in an optimization or Markov chain Monte 152

Carlo (MCMC) routine (8). Smoothing methods have been 153

useful for eliminating the dependence on numerical ODE so- 154

lutions, and an innovative penalized likelihood approach (9) 155

uses a B-spline basis for constructing estimated functions to 156

simultaneously satisfy the ODE system and fit the observed 157

data. While in principle the method in (9) can handle an 158

unobserved system component, substantive manual input is 159

required as we show in the Results, which contrasts with the 160

ready-made solution that MAGI provides. 161

As an alternative to the penalized likelihood approach, 162

GPs are a natural candidate for fulfilling the smoothing 163

role in a Bayesian paradigm due to their flexibility and an- 164

alytic tractability (10). The use of GPs to approximate the 165

dynamic system and facilitate computation has been pre- 166

viously studied by a number of authors (8, 11–15). The 167

basic idea is to specify a joint GP over y,x, ẋ with hyper- 168

parameters φ, and then provide a factorization of the joint 169

density p(y,x, ẋ, θ, φ, σ) that is suitable for inference. The 170

main challenge is to find a coherent way to combine infor- 171

mation from two distinct sources: the approximation to the 172

system by the GP governed by hyperparameters φ, and the 173

actual dynamic system equations governed by parameters θ. 174

In (8, 11), the factorization proposed is p(y,x, ẋ, θ, φ, σ) = 175

p(y|x, σ)p(ẋ|x, θ, φ)p(x|φ)p(φ)p(θ), where p(y|x, σ) comes 176

from the observation model and p(x|φ) comes from the 177

GP prior as in our approach. However, there are signif- 178

icant conceptual difficulties in specifying p(ẋ|x, θ, φ): on 179

one hand, the distribution of ẋ is completely determined 180

by the GP given x, while on the other hand ẋ is com- 181

pletely specified by the ODE system ẋ = f(x, θ, t); these 182

two are incompatible. Previous authors have attempted to 183

circumvent this incompatibility of the GP and ODE sys- 184

tem: (8, 11) use a product-of-experts heuristic by letting 185

p(ẋ|x, θ, φ) ∝ p(ẋ|x, φ)p(ẋ|x, θ), where the two distributions 186

in the product come from the GP and a noisy version of the 187

ODE, respectively. In (15), the authors arrive at the same 188

posterior as (8, 11) by assuming an alternative graphical model 189

that bypasses the product of experts heuristic; nonetheless, 190

the method requires working with an artificial noisy version of 191

the ODE. In (12), the authors start with a different factoriza- 192

tion: p(y,x, ẋ, θ, φ, σ) = p(y|ẋ, φ, σ)p(ẋ|x, θ)p(x|φ)p(φ)p(θ), 193

where p(y|ẋ, φ) and p(x|φ) are given by the GP and p(ẋ|x, θ) 194

is a Dirac delta distribution given by the ODE. However, 195

this factorization is incompatible with the observation model 196

p(y|x, σ) as discussed in detail in (16). There is other related 197

work that uses GPs in an ad hoc partial fashion to aid inference. 198

In (13), GP regression is used to obtain the means of x and ẋ 199
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for embedding within an Approximate Bayesian Computation200

estimation procedure. In (14), GP smoothing is used during201

an initial burn-in phase as a proxy for the likelihood, before202

switching to the ‘ideal’ likelihood to obtain final MCMC sam-203

ples. While empirical results from the aforementioned studies204

are promising, a principled statistical framework for inference205

that addresses the previously noted conceptual incompatibility206

between the GP and ODE specifications is lacking. Our work207

presents one such principled statistical framework through the208

explicit manifold constraint. MAGI is therefore distinct from209

recent GP-based approaches (11, 15) or any other Bayesian210

analogs of (9).211

In addition to the conceptual incompatibility, none of the212

existing methods that do not use numerical integration offer a213

practical solution for a system with unobserved component(s),214

which highlights another unique and important contribution215

of our approach.216

Results217

We apply MAGI to three systems. We begin with an illustra-218

tion that demonstrates the effectiveness of MAGI in practical219

problems with unobserved system component(s). Then, we220

make comparisons with other current methods on two bench-221

mark systems, which show that our proposed method provides222

more accurate inference while having much faster runtime.223

Illustration: Hes1 model. The Hes1 model described in the224

Introduction demonstrates inference on a system with an225

unobserved component and asynchronous observation times.226

This section continues the inference of this model. Ref (1)227

studied the theoretical oscillation behavior using parameter228

values a = 0.022, b = 0.3, c = 0.031, d = 0.028; e = 0.5, f = 20,229

g = 0.3, which leads to one oscillation cycle approximately230

every 2 hours. Ref (1) also set the initial condition at the231

lowest value of P when the system is in oscillation equilibrium232

(1): P = 1.439, M = 2.037, H = 17.904. The noise level in233

our simulation is derived from (1) where the standard error234

based on repeated measures are reported to be around 15%235

of the P (protein) level and M (mRNA) level, so we set the236

simulation noise to be multiplicative following a log-normal237

distribution with standard deviation 0.15, and throughout238

this example we assume the noise level σ is known to be 0.15239

from repeated measures reported in (1). The H component240

is never observed. Owing to the multiplicative error on the241

strictly positive system, we apply our method to the log-242

transformed ODEs, so that the resulting error distributions243

are Gaussian. To the best of our knowledge, MAGI is the244

only one that provides a practical and complete solution for245

handling unobserved component cases like this example.246

We generate 2000 simulated datasets based on the above247

setup for the Hes1 system. The left-most panel in Fig 1248

shows one example dataset. For each dataset, we use MAGI249

to infer the trajectories and estimate the parameters. We250

use the posterior mean of Xt = (P,M,H)t as the inferred251

trajectories for the system components, which are generated by252

MAGI without using any numerical solver. Fig 1 summarizes253

the inferred trajectories across the 2000 simulated datasets,254

showing the median of the inferred trajectories of Xt together255

with the 95% interval of the inferred trajectories represented256

by the 2.5% and 97.5% percentiles. The posterior mean of257

θ = (a, b, c, d, f, e, g) is our estimate of the parameters. Table 1258

summarizes the parameter estimates across the 2000 simulated 259

datasets, by showing their means and standard deviations. Fig 260

1 shows that MAGI recovers the system well, including the 261

completely unobserved H component. Table 1 shows that 262

MAGI also recovers the system parameters well, except for the 263

parameters that only appear in the equation for the unobserved 264

H component, which we will discuss shortly. Together, Fig 1 265

and Table 1 demonstrate that MAGI can recover the entire 266

system without any usage of a numerical solver, even in the 267

presence of unobserved component(s). 268

Metrics for assessing the quality of system recovery. To further as- 269

sess the quality of the parameter estimates and the system 270

recovery, we consider two metrics. First, as shown in Table 271

1, we examine the accuracy of the parameter estimates by 272

directly calculating the root mean squared error (RMSE) of 273

the parameter estimates to the true parameter value. We 274

call this measure the parameter RMSE metric. Second, it is 275

possible that a system might be insensitive to some of the 276

parameters; in the extreme case, some parameters may not 277

be fully identifiable given only the observed data and com- 278

ponents. In these situations, it is possible that the system 279

trajectories implied by quite distinct parameter values are 280

similar to each other (or even close to the true trajectory). 281

We thus consider an additional trajectory RMSE metric to 282

account for possible parameter insensitivity, and measure how 283

well the system components are recovered given the param- 284

eter and initial condition estimates. The trajectory RMSE 285

is obtained by treating the numerical ODE solution based 286

on the true parameter value as the ground truth: first, the 287

numerical solver is used to reconstruct the trajectory based 288

on the estimates of the parameter and initial condition (from 289

a given method); then, we calculate the RMSE of this recon- 290

structed trajectory to the true trajectory at the observation 291

time points. We emphasize that the trajectory RMSE metric 292

is only for evaluation purpose to assess (and compare across 293

methods) how well a method recovers the trajectories of the 294

system components, and that throughout MAGI no numerical 295

solver is ever needed. 296

We summarize the trajectory RMSEs of MAGI in Table 2 297

for the Hes1 system. 298

We compare MAGI with the benchmark provided by the 299

B-spline-based penalization approach of Ref (9). To the best 300

of our knowledge, among all the existing methods that do 301

not use numerical integration, Ref (9) is the only one with a 302

software package that can be manually adapted to handle an 303

unobserved component. We note, however, this package itself 304

is not ready-made for this problem: it requires substantial 305

manual input as it does not have default or built-in setup of 306

its hyper-parameters for the unobserved component. None of 307

the other benchmark methods, including Ref (11, 15), provide 308

software that is equipped to handle an unobserved component. 309

Table 1 compares our estimates against those given by Ref 310

(9) based on the parameter RMSE, which shows that the 311

parameter RMSEs for MAGI are substantially smaller than 312

(9). Fig 1 shows that the inferred trajectories from MAGI are 313

very close to the truth. On the contrary, the method in (9) 314

is not able to recover the unobserved component H nor the 315

associated parameter f and g; see Fig S1 in the SI for the plots. 316

Table 2 compares the trajectory RMSE of the two methods. 317

It is seen that the trajectory RMSE of MAGI is substantially 318

smaller than that of (9). Further implementation details and 319
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comparison are provided in the SI.320

Finally, we note that MAGI recovers the unobserved com-321

ponent H almost as well as the observed components of P322

and M , as measured by the trajectory RMSEs. In compari-323

son, for the result of (9) in Table 2, the trajectory RMSE of324

the unobserved H component is orders of magnitude worse325

than those of P and M . The numerical results thus illus-326

trate the effectiveness of MAGI in borrowing information from327

the observed components to infer the unobserved component,328

which is made possible by explicitly conditioning on the ODE329

structure. The self-regulating parameter g and inhibition rate330

parameter f for the unobserved component appear to have331

high inference variation across the simulated datasets despite332

the small trajectory RMSEs. This suggests that the system333

itself could be insensitive to f and g when the H component334

is unobserved.335

Table 1. Parameter inference in the Hes1 partially observed asyn-
chronous system based on 2000 simulation datasets. Average pa-
rameter estimates based on MAGI and Ref (9) across the 2000 simu-
lated datasets are reported together with the standard deviation. Pa-
rameter RMSEs are reported in the following column. The boldface
highlights the best method in terms of parameter RMSE for each pa-
rameter.

MAGI Ref (9)
θ Truth Estimate RMSE Estimate RMSE
a 0.022 0.021 ± 0.003 0.003 0.027 ± 0.026 0.026
b 0.3 0.329 ± 0.051 0.059 0.302 ± 0.086 0.086
c 0.031 0.035 ± 0.006 0.007 0.031 ± 0.010 0.010
d 0.028 0.029 ± 0.002 0.003 0.028 ± 0.003 0.003
e 0.5 0.552 ± 0.074 0.090 0.498 ± 0.088 0.088
f 20 13.759 ± 3.026 6.936 604.9 ± 5084.8 5117.0
g 0.3 0.141 ± 0.026 0.162 1.442 ± 9.452 9.519

Table 2. Trajectory RMSEs of the individual components in the Hes1
system, comparing the average trajectory RMSEs of MAGI and Ref
(9) over the 2000 simulated datasets. The best trajectory RMSE for
each system component is shown in boldface.

Method P M H

MAGI 0.97 0.21 2.57
Ref (9) 1.30 0.40 59.47

Comparison with previous methods based on GPs. To further336

assess MAGI, we compare with two methods: Adaptive Gra-337

dient Matching (AGM) of Ref (11) and Fast Gaussian process338

based Gradient Matching (FGPGM) of Ref (15), representing339

the state-of-the-art of inference methods based on GPs. For340

fair comparison, we use the same benchmark systems, scripts341

and software provided by the authors for performance assess-342

ment, and run the software using the settings recommended343

by the authors. The benchmark systems include the FitzHugh-344

Nagumo (FN) equations (17) and a protein transduction model345

(18).346

FN model. The FitzHugh-Nagumo (FN) equations are a classic347

Ion channel model that describes spike potentials. The system348

consists of X = (V,R), where V is the variable defining the349

voltage of the neuron membrane potential and R is the recovery350

Fig. 2. Inferred trajectories by MAGI for each component of the FN system over 100
simulated datasets. The blue shaded area represents the 95% interval.
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variable from neuron currents, satisfying the ODE 351

f(X, θ, t) =

 c(V − V 3

3 +R)

−1
c

(V − a+ bR)

 352

where θ = (a, b, c) are the associated parameters. As in 353

(11, 15), the true parameters are set to a = 0.2, b = 0.2, c = 3, 354

and we generate the true trajectories for this model using a 355

numerical solver with initial conditions V = −1, R = 1. 356

Table 3. Parameter inference in the FN model based on 100 simu-
lated datasets. For each method, average parameter estimates are
reported together with standard deviation; parameter RMSEs across
simulations are also reported. The boldface highlights the best
method in terms of parameter RMSE for each parameter.

MAGI FGPGM (15) AGM (11)
θ Estimate RMSE Estimate RMSE Estimate RMSE
a 0.19 ± 0.02 0.02 0.22 ± 0.04 0.05 0.30 ± 0.03 0.10
b 0.35 ± 0.09 0.17 0.32 ± 0.13 0.18 0.36 ± 0.06 0.17
c 2.89 ± 0.06 0.13 2.85 ± 0.15 0.21 2.04 ± 0.14 0.97

To compare MAGI with FGPGM of Ref (15) and AGM of 357

Ref (11), we simulated 100 datasets under the noise setting of 358

σV = σR = 0.2 with 41 observations. The noise level is chosen 359

to be on similar magnitude with that of (15), and the noise 360

level is set to be the same across the two components as the 361

implementation of (11) can only handle equal-variance noise. 362

The number of repetitions (i.e., 100) is set to be the same 363

as (15) due to the high computing time of these alternative 364

methods. 365

The parameter estimation results from the three methods 366

are summarized in Table 3, where MAGI has the lowest pa- 367

rameter RMSEs among the three. Fig 2 shows the inferred 368

trajectories obtained by our method: MAGI recovers the sys- 369

tem well, and the 95% interval band is so narrow around the 370

truth that we can only see the band clearly after magnification 371

Yang et al. PNAS | February 21, 2021 | vol. XXX | no. XX | 5



DRAFT

(as shown in the figure inset). The SI provides visual compar-372

ison of the inferred trajectories of different methods, where373

MAGI gives the most consistent results across the simulations.374

Furthermore, to assess how well the methods recover the sys-375

tem components, we calculated the trajectory RMSEs, and the376

results are summarized in Table 4, where MAGI significantly377

outperforms the others, reducing the trajectory RMSE over378

the best alternative method for 60% in V and 25% in R. We379

note that compared to the true parameter value, all three380

methods show some bias in the parameter estimates, which is381

partly due to the GP prior as discussed in (15), and MAGI382

appears to have the smallest bias.383

For computing cost, the average runtime of MAGI for this384

system over the repetitions is 3 minutes, which is 145 times385

faster than FGPGM (15) and 90 times faster than AGM (11)386

on the same CPU (we follow the authors’ recommendation for387

running their methods, see SI for details).388

Table 4. Trajectory RMSEs of each component in the FN system,
comparing the average trajectory RMSE of the three methods over
100 simulated datasets. The best trajectory RMSE for each system
component is shown in boldface. MAGI reduces the RMSE for 60%
in component V and 25% in component R over the best alternative
method.

Method V R

MAGI 0.103 0.070
FGPGM (15) 0.257 0.094
AGM (11) 1.177 0.662

Protein transduction model. This protein transduction example is389

based on systems biology where components S and Sd represent390

a signaling protein and its degraded form, respectively. In391

the biochemical reaction S binds to protein R to form the392

complex SR, which enables the activation of R into Rpp. X =393

(S, Sd, R, SR, Rpp) satisfies the ODE394

f(X, θ, t) =


−k1 · S − k2 · S ·R+ k3 · SR

k1 · S
−k2 · S ·R+ k3 · SR + V ·Rpp

Km+Rpp
k2 · S ·R− k3 · SR − k4 · SR

k4 · SR − V ·Rpp
Km+Rpp

 ,395

where θ = (k1, k2, k3, k4, V,Km) are the associated rate pa-396

rameters.397

We follow the same simulation setup as (11, 15), by tak-398

ing t = {0, 1, 2, 4, 5, 7, 10, 15, 20, 30, 40, 50, 60, 80, 100} as the399

observation times, X(0) = (1, 0, 1, 0, 0) as the initial values,400

and θ = (0.07, 0.6, 0.05, 0.3, 0.017, 0.3) as the true parameter401

values. Two scenarios for additive observation noise are consid-402

ered: σ = 0.001 (low noise) and σ = 0.01 (high noise). Note403

that the observation times are unequally spaced, with only a404

sparse number of observations from t = 20 to t = 100. Further,405

inference for this system has been noted to be challenging due406

to the non-identifiability of the parameters, in particular Km407

and V (15). Therefore, the parameter RMSE is not meaningful408

for this system, and we focus our comparison on the trajectory409

RMSE.410

We compare MAGI with FGPGM of Ref (15) and AGM of411

Ref (11) on 100 simulated datasets for each noise setting (see412

the SI for method and implementation details). We plot the413

inferred trajectories of MAGI in the high noise setting in Fig 3,414

which closely recover the system. The 95% interval band from 415

MAGI is quite narrow that for most of the inferred components 416

we need magnifications (as shown in the figure insets) to clearly 417

see the 95% band. We then calculated the trajectory RMSEs, 418

and the results are summarized in Table 5 for each system 419

component. In both noise settings, MAGI produces trajectory 420

RMSEs that are uniformly smaller than both FGPGM (15) 421

and AGM (11) for all system components. In the low noise 422

setting, the advantage of MAGI is especially apparent for 423

components S, R, SR, and Rpp, with trajectory RMSEs less 424

than half of the closest comparison method. For the high noise 425

setting, MAGI reduces trajectory RMSE the most for Sd and 426

Rpp (∼50%). AGM (11) struggles with this example at both 427

noise settings. To visually compare the trajectory RMSEs in 428

Table 5, plots of the corresponding reconstructed trajectories 429

by different methods at both noise settings are given in the SI. 430

The runtime of MAGI for this system averaged over the 431

repetitions is 18 minutes, which is 12 times faster than FGPGM 432

(15) and 18 times faster than AGM (11) on the same CPU (we 433

follow the authors’ recommendation for running their methods, 434

see SI for details). 435

Table 5. Trajectory RMSEs of the individual components in the pro-
tein transduction system, by comparing the average RMSEs of the
three methods over 100 simulated datasets. The method achieving
the best RMSE for each system component is shown in boldface.

Low noise case, σ = 0.001
Method S Sd R SR Rpp

MAGI 0.0020 0.0013 0.0040 0.0017 0.0036
FGPGM (15) 0.0049 0.0016 0.0156 0.0036 0.0149
AGM (11) 0.0476 0.2881 0.3992 0.0826 0.2807

High noise case, σ = 0.01
Method S Sd R SR Rpp

MAGI 0.0122 0.0043 0.0167 0.0135 0.0136
FGPGM (15) 0.0128 0.0089 0.0210 0.0136 0.0309
AGM (11) 0.0671 0.3125 0.4138 0.0980 0.2973

Discussion 436

We have presented a novel methodology for the inference of 437

dynamic systems, using manifold-constrained Gaussian pro- 438

cesses. A key feature that distinguishes our work from the 439

previous approaches is that it provides a principled statisti- 440

cal framework, firmly grounded on the Bayesian paradigm. 441

Our method also outperformed currently available GP-based 442

approaches in the accuracy of inference on benchmark exam- 443

ples. Furthermore, the computation time for our method is 444

much faster. Our method is robust and able to handle a vari- 445

ety of challenging systems, including unobserved components, 446

asynchronous observations, and parameter non-identifiability. 447

A robust software implementation is provided, with user 448

interfaces available for R, MATLAB, and Python, as described 449

in the SI. The user may specify custom ODE systems in 450

any of these languages for inference with our package, by 451

following the syntax in the examples that accompany this 452

article. In practice, inference with MAGI using our software 453

can be carried out with relatively few user interventions. The 454

setting of hyperparameters and initial values is fully automatic, 455

though may be overridden by the user. 456

The main setting that requires some tuning is the number 457

of discretization points in I. In our examples, this was deter- 458

mined by gradually increasing the denseness of the points with 459
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Fig. 3. Inferred trajectories by MAGI for each component of the protein transduction system in the high noise setting. The red line is the truth, and the green line is the median
inferred trajectory over 100 simulated datasets. The blue shaded area represents the 95% interval. The inset plots magnify the corresponding segment.
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short sampler runs, until the results become indistinguishable.460

Note that further increasing the denseness of I has no ill effect,461

apart from increasing the computational time. To illustrate462

the effect of the denseness of I on MAGI inference results,463

an empirical study is included in the SI “varying number of464

discretization” section, where we examined the results of the465

FN model with the discretization set I taken to be 41, 81,466

161, and 321 equally spaced points, respectively. The results467

confirm that our proposal of gradually increasing the dense-468

ness of I works well. The inference results improve as we469

increase I from 41 to 161 points, and at 161 points the results470

are stabilized. If we further increase the discretization to 321471

points, that doubles the compute time with only a slight gain472

in accuracy compared to 161 points in terms of trajectory RM-473

SEs. This empirical study also indicates that as WI becomes474

an increasingly dense approximation of W , an inference limit475

would be expected. A theoretical study is a natural future476

direction of investigation.477

We also investigated the stability of MAGI when the ob-478

servation time points are farther apart. This empirical study,479

based on the FN model with 21 observations, is included in the480

SI “FN model with fewer observations” section. The inferred481

trajectories from the 21 observations are still close to the truth,482

while the interval bands become wider, which is expected as483

we have less information in this case. We also found that484

the denseness of the discretization needs to be increased (to485

321 time points in this case) to compensate for the sparser 21486

observations∗.487

An inherent feature of the GP approximation is the ten-488

dency to favor smoother curves. This limitation has been489

previously acknowledged (11, 15). As a consequence, two490

potential forms of bias can exist. First, estimates derived491

from the posterior distributions of the parameters may have492

some statistical bias. Second, the trajectories reconstructed493

by a numerical solver based on the estimated parameters may494

differ slightly from the inferred trajectories. MAGI, which is495

built on a GP framework, does not entirely eliminate these496

forms of bias. However, as seen in the benchmark systems, the497

magnitude of our bias in both respects is significantly smaller498

than the current state-of-the-art in (11, 15).499

We considered the inference of dynamic systems specified by500

ODEs in this article. Such deterministic ODE models are often501

adequate to describe dynamics at the aggregate or population502

level (19). However, when the goal is to describe the behavior503

∗This finding echos the classical understanding that stiff systems require denser discretization (ob-
servations farther apart make the system appear relatively more stiff).

of individuals (e.g., individual molecules (20, 21)), models such 504

as stochastic differential equations (SDEs) and continuous- 505

time Markov processes, which explicitly incorporate intrinsic 506

(stochastic) noise, often become the model of choice. Extending 507

our method to the inference of SDEs and continuous-time 508

Markov models is a future direction we plan to investigate. 509

Finally, recent developments in deep learning have shown 510

connections between deep neural networks and GPs (22, 23). 511

It could thus also be interesting to explore the application of 512

neural networks to model the ODE system outputs x(t) in 513

conjunction with GPs. 514

Materials and Methods 515

For notational simplicity, we drop the dimension index d in this 516

section when the meaning is clear. 517

Algorithm overview. We begin by summarizing the computational 518

scheme of MAGI. Overall, we use Hamiltonian Monte Carlo (HMC) 519

(7) to obtain samples of XI and the parameters from their joint 520

posterior distribution. Details of the HMC sampling are included in 521

the SI section ‘Hamiltonian Monte Carlo’. At each iteration of HMC, 522

XI and the parameters† are updated together with a joint gradient, 523

with leapfrog step sizes automatically tuned during the burn-in 524

period to achieve an acceptance rate between 60-90%. At the 525

completion of HMC sampling (and after discarding an appropriate 526

burn-in period for convergence), we take the posterior means of XI 527

as the inferred trajectories, and the posterior means of the sampled 528

parameters as the parameter estimates. The techniques we use to 529

temper the posterior and speed up the computations are discussed 530

in the following ‘Prior tempering’ subsection and ‘Techniques for 531

computational efficiency’ in the SI. 532

Several steps are taken to initialize the HMC sampler. First, we 533

apply a GP fitting procedure to obtain values of φ and σ for the 534

observed components; the computed values of the hyper-parameters 535

φ are subsequently held fixed during the HMC sampling, while 536

the computed value of σ is used as the starting value in the HMC 537

sampler. (If σ is known, the GP fitting procedure is used to obtain 538

values of φ only.) Second, starting values of XI for the observed 539

components are obtained by linearly interpolating between the 540

observation time points. Third, starting values for the remaining 541

quantities – θ and (XI ,φ) for any unobserved component(s) – are 542

obtained by optimization of the posterior as described below. 543

Setting hyper-parameters φ for observed components. The GP 544

prior Xd(t) ∼ GP(µd,Kd), t ∈ [0, T ], is on each component 545

Xd(t) separately. The Gaussian process Matern kernel K(l) = 546

φ1
21−ν

Γ(ν)

(√
2ν l

φ2

)ν
Bν
(√

2ν l
φ2

)
has two hyper-parameters that are 547

held fixed during sampling: φ1 controls overall variance level of the 548

†The parameters here refer to θ and σ. If the noise level σ is known a priori, the parameters then
refer to θ only.
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GP, while φ2 controls the bandwidth for how much neighboring 549

points of the GP affect each other.550

When the observation noise level σ is unknown, values of
(φ1, φ2, σ) are obtained jointly by maximizing GP fitting without
conditioning on any ODE information, namely:

(φ̃, σ̃) = arg max
φ,σ

p(φ, σ2|yI0
)

= arg max
φ,σ

πΦ1 (φ1)πΦ2 (φ2)πσ(σ2)p(yI0
|φ, σ2) [7]

where yI0
|φ, σ ∼ N (0,Kφ + σ2). The index set I0 is the smallest551

evenly spaced set such that all observation time points in this552

component are in I0, i.e., τ ⊆ I0. The priors πΦ1 (φ1) and πσ(σ2)553

for the variance parameter φ1 and σ are set to be flat. The prior554

πΦ2 (φ2) for the bandwidth parameter φ2 is set to be a Gaussian555

distribution: (a) the mean µΦ2 is set to be half of the period556

corresponding to the frequency that is the weighted average of all557

the frequencies in the Fourier transform of y on I0 (the values of y on558

I0 are linearly interpolated from the observations at τ ), where the559

weight on a given frequency is the squared modulus of the Fourier560

transform with that frequency, and (b) the standard deviation is561

set such that T is three standard deviations away from µΦ2 . This562

Gaussian prior on φ2 serves to prevent it from being too extreme.563

In the subsequent sampling of (θ,Xτ , σ2), the hyper-parameters564

φ are fixed at φ̃ while σ̃ gives the starting value of σ in the HMC565

sampler.566

If σ is known, then values of (φ1, φ2) are obtained by maximizing567

φ̃ = arg max
φ

p(φ|yI0
, σ2) = arg max

φ

πΦ1 (φ1)πΦ2 (φ2)p(yI0
|φ, σ2)

[8]568

and held fixed at φ̃ in the subsequent HMC sampling of (θ,Xτ ).569

The priors for φ1 and φ2 are the same as previously defined.570

Initialization ofXI for the observed components. To provide starting571

values of XI for the HMC sampler, we use the values of Yτ at the572

observation time points and linearly interpolate the remaining points573

in I.574

Initialization of the parameter vector θ when all system components575

are observed. To provide starting values of θ for the HMC sampler,576

we optimize the posterior Eq. (5) as a function of θ alone, holding577

XI and σ unchanged at their starting values, when there is no578

unobserved component(s). The optimized θ is then used as the579

starting value for the HMC sampler in this case.580

Settings in the presence of unobserved system components: setting581

φ, initializingXI for unobserved components, and initializing θ. Sep-582

arate treatment is needed for the setting of φ and initialization of583

(θ, XI) for the unobserved component(s). We use an optimization584

procedure that seeks to maximize the full posterior in Eq. (5) as a585

function of θ together with φ and the whole curve of XI for unob-586

served components, while holding the σ, φ and XI for the observed587

components unchanged at their initial value discussed above. We588

thereby set φ for the unobserved component, and the starting values589

of θ and XI for unobserved components at the optimized value.590

In the subsequent sampling, the hyper-parameters are fixed at the591

optimized φ, while the HMC sampling starts at the θ and the XI592

obtained by this optimization.593

Prior tempering. After φ is set, we use a tempering scheme to control
the influence of the GP prior relative to the likelihood during HMC
sampling. Note that Eq. (5) can be written as

pΘ,X(I)|Y (τ),WI (θ,x(I)|y(τ ),WI = 0)
∝pΘ,X(I)|WI (θ,x(I)|WI = 0)pY (τ)|X(τ)(y(τ )|x(τ )).

[9]

As the cardinality of |I| increases with more discretization points, the594

prior part pΘ,X(I)|WI (θ,x(I)|WI = 0) grows, while the likelihood595

part pY (τ)|X(τ)(y(τ )|x(τ )) stays unchanged. Thus, to balance the596

influence of the prior, we introduce a tempering hyper-parameter β597

with the corresponding posterior598

p
(β)
Θ,XI |WI ,Yτ

(θ,xI |0, yτ )

∝pΘ,X(I)|WI (θ,x(I)|WI = 0)1/βpY (τ)|X(I)(y(τ )|x(I))

∝πΘ(θ) exp
{
−

1
2

D∑
d=1

[
Nd log(2πσ2

d) + ‖(xd(τd)− yd(τd))‖2
σ−2
d

+
1
β

(
‖xd(I)− µd(I)‖2

C−1
d

+
∥∥fx,θ
d,I
− µ̇d(I)−md(xd(I)− µd(I))

∥∥2
K−1
d

)]}
A useful setting that we recommend is β = D|I|/N , where D is599

the number of system components, |I| is the number of discretization 600

time points, and N =
∑D

d=1 Nd is the total number of observations. 601

This setting aims to balance the likelihood contribution from the 602

observations with the total number of discretization points. 603

Data availability. All of the data used in the article are simulation 604

data. The details, including the models to generate the simulation 605

data, are described in Results and the SI. Our software package also 606

includes complete replication scripts for all the data and examples. 607
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