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Parameter estimation for nonlinear dynamic system models, repre-
sented by ordinary differential equations (ODEs), using noisy and
sparse data is a vital task in many fields. We propose a fast and
accurate method, MAGI (MAnifold-constrained Gaussian process In-
ference), for this task. MAGI uses a Gaussian process model over
time-series data, explicitly conditioned on the manifold constraint
that derivatives of the Gaussian process must satisfy the ODE sys-
tem. By doing so, we completely bypass the need for numerical inte-
gration and achieve substantial savings in computational time. MAGI
is also suitable for inference with unobserved system components,
which often occur in real experiments. MAGI is distinct from existing
approaches as we provide a principled statistical construction under
a Bayesian framework, which incorporates the ODE system through
the manifold constraint. We demonstrate the accuracy and speed of
MAGI using realistic examples based on physical experiments.

Parameter estimation | Ordinary differential equations | Posterior sam-

pling | Inverse problem

D ynamic systems, represented as a set of ordinary differ-
ential equations (ODEs), are commonly used to model
behaviors in scientific domains, such as gene regulation (1),
biological rhythms (2), spread of disease (3), ecology (4), etc.
We focus on models specified by a set of ODEs

_ da()

&(t) = 7 = f(x(t),0,t),

te[0,T7, 1]

where the vector x(t) contains the system outputs that evolve
over time ¢, and 0 is the vector of model parameters to be
estimated from experimental/observational data. When f is
nonlinear, solving x(t) given initial conditions x(0) and 6
generally requires a numerical integration method, such as
Runge-Kutta.

Historically, ODEs have mainly been used for conceptual
or theoretical understanding rather than data fitting as ex-
perimental data were limited. Advances in experimental and
data-collection techniques have increased the capacity to follow
dynamic systems closer to real-time. Such data will generally
be recorded at discrete times and subject to measurement
error. Thus, we assume that we observe y(7) = z(7) + €(7)
at a set of observation time points 7 with error € governed
by noise level o. Our focus here is inference of 6 given y(7),
with emphasis on nonlinear f where specialized methods that
exploit a linear structure, e.g. (5, 6), are not generally ap-
plicable. We shall present a coherent, statistically principled
framework for dynamic system inference with the help of Gaus-
sian processes (GPs). The key of our method is to restrict
the GPs on a manifold that satisfies the ODE system: thus
we name our method MAGI (MAnifold-constrained Gaussian

www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

process Inference). Placing a GP on x(t) facilitates inference
of @ without numerical integration, and our explicit manifold
constraint is the key novel idea that addresses the conceptual
incompatibility between the GP and the specification of the
ODE model, as we shall discuss shortly when overviewing our
method. We show that the resulting parameter inference is
computationally efficient, statistically principled, and effective
in a variety of practical scenarios. MAGI particularly works in
the cases when some system component(s) is/are unobserved.
To the best of our knowledge, none of the current available
software packages that do not use numerical integration can
analyze systems with unobserved component(s).

Overview of our method. Following the Bayesian paradigm,
we view the D-dimensional system x(t) to be a realization
of the stochastic process X(t) = (Xi(t),...,Xp(t)), and
the model parameters 6 a realization of the random vari-
able ®. In Bayesian statistics, the basis of inference is
the posterior distribution, obtained by combining the like-
lihood function with a chosen prior distribution on the un-
known parameters and stochastic processes. Specifically, we
impose a general prior distribution 7(-) on @ and indepen-
dent GP prior distributions on each component X4(t) so that
Xa(t) ~ GP(pa,Ka), t € [0,T], where Kq : RxR — R is a pos-
itive definite covariance kernel for the GP and pq : R — R is
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Fig. 1. Inference by MAGI for Hes1 partially observed asynchronous system on 2000 simulated datasets. The red curve is the truth. MAGI recovers the system well, without the
usage of any numerical solver: the green curve shows the median of the inferred trajectories among the 2000 simulated datasets, and a 95% interval from the 2.5% and 97.5%

of all inferred trajectories is shown via the blue dashed area.

sample observations
N — trueP

P component (Partially Observed)

— trueM

— trueH
* observed P
* observed M

M component (Partially Observed) ___H component (Unobserved)

—— median of all inferred trajectories = truth

the mean function. Then for any finite set of time points
T4, Xa(7q¢) has a multivariate Gaussian distribution with
mean vector pq(74) and covariance matrix Kq(7q, 74). De-
note the observations by y(7) = (y1(71),...,yp(7p)), where
7 = (71,T2,...,7p) is the collection of all observation time
points and each component X, can have its own set of observa-
tion times 74 = (74,1, ..., 7d,n,). If the d-th component is not
observed, then Ny =0, and 7y = 0. N = Ny +---+ Np is the
total number of observations. We note that for the remainder
of the paper, the notation ¢ shall refer to time generically,
while 7 shall refer specifically to the observation time points.
As an illustrative example, consider the dynamic system in
(1) that governs the oscillation of Hesl mRNA (M) and Hesl
protein (P) levels in cultured cells, where it is postulated that a
Hesl-interacting (H) factor contributes to a stable oscillation,
a manifestation of biological thythm (2). The ODEs of the
three-component system X = (P, M, H) are

—aPH + bM — cP
—dM + H%g ,

—aPH + Ly — gH

£(X,0,t) =

where 0 = (a,b,c,d, e, f, g) are the associated parameters. In
Fig 1 (left panel) we show noise-contaminated data generated
from the system, which closely mimics the experimental setup
described in (1): P and M are observed at 15-minute intervals
for 4 hours but H is never observed. In addition, P and
M observations are asynchronous: starting at time 0, every
15 minutes we observe P; starting at 7.5 minutes, every 15
minutes we observe M; P and M are never observed at the
same time. It can be seen that the mRNA and protein levels
exhibit the behavior of regulation via negative feedback.

The goal here is to infer the seven parameters of the system:
a,b govern the rate of protein synthesis in the presence of the
interacting factor; ¢, d, g are the rates of decomposition; and
e, f are inhibition rates. The unobserved H component poses a
challenge for most existing methods that do not use numerical
integration, but is capably handled by MAGI: the P and M
panels of Fig 1 show that our inferred trajectories provide
good fits to the observed data, and the H panel shows that
the dynamics of the entirely unobserved H component are
largely recovered as well. We emphasize that these trajectories
are inferred without any use of numerical solvers. We shall
return to the Hesl example in detail in the Results section.

Intuitively, the GP prior on X (¢) facilitates computation as
GP provides closed analytical forms for X (t) and X (t), which

2 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

95% interval from the 2.5 and 97.5 percentile of all inferred trajectories

could bypass the need for numerical integration. In particular,
with a GP prior on X (t), the conditional distribution of X ()
given X (t) is also a GP with its mean function and covariance
kernel completely specified. This GP specification for the
derivatives @& (t), however, is inherently incompatible with the
ODE model because Eq. (1) also completely specifies &(t)
given x(t) (via the function f). As a key novel contribution of
our method, MAGI addresses this conceptual incompatibility
by constraining the GP to satisfy the ODE model in Eq. (1).
To do so, we first define a random variable W quantifying
the difference between stochastic process X (¢) and the ODE
structure with a given value of the parameter 6:

W =

sup 1Xa(t) — £(X(1),0,8)a].  [2]

te[0,7],de{1,...,D}

W = 0 if and only if ODEs with parameter 0 are satisfied by
X (t). Therefore, ideally the posterior distribution for X (t)
and 0 given the observations y(7) and the ODE constraint,
W =0, is (informally)

Pe.x(t)w,y () (0, z()[W =0,Y (1) = y(7)). (3]

While Eq. (3) is the ideal posterior, in reality W is not generally
computable. In practice we approximate W by finite discretiza-
tion on the set I = (t1,t2,...,t,) such that 7 C I C [0,7]
and similarly define Wy as

Wi =

max

Xa(t) — £(X(t),0,1)a]. 4
tEI,de{l,.A.,D}‘ a(t) — £(X(2), 6,1)d] [4]

Note that Wy is the maximum of a finite set, and Wy — W
monotonically as I becomes dense in [0,7]. Therefore, the
practically computable posterior distribution is

Po,xm)w;,y (0, x(I)|Wr =0,Y (1) = y(1)),

which is the joint conditional distribution of 6 and X (I)
together. Thus, effectively, we simultaneously infer both the
parameters and the unobserved trajectory X (I) from the noisy
observations y(7).

Under Bayes’ rule, we have

pe.xn)w;.v () (0, 2(I)|Wr =0,Y(7) = y(7))
x P(® =0, X(I) = z(I), W = 0,Y (1) = y(7)),
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where the right hand side can be decomposed as
P@O®=0,X(I)=x(I),Wr =0,Y(T) = y(1))
=7ne(0) x P(X(I)=2(I)|® =0)

(1)
x P(Y(7) = y(7)|X(I) = 2(I),® = )

)
x P(Wy = 0|Y () = y(7), X(I) = =(I),© = 0).

(3)

The first term (1) can be simplified as P(X(I) = z(I)|© =
0) = P(X(I) = «(I)) due to the prior independence of X (I)
and O; it corresponds to the GP prior on X. The second term
(2) corresponds to the noisy observations. The third term (3)
can be simplified as

P(Wr =0[Y (1) = y(7), X(I) = z(I),® = )

= P(X(I) — f(2(I),0,tr) = 0Y (1) = y(1), X(I) = 2(I),© = 6)
= P(X(I) — £(=(I),6,tr) = 0| X (I) = =(I))

= P(X(I) = f(2(I),0,t1)|X (I) = &(I)),

which is the conditional density of X (I') given X (I) evaluated
at f(z(I),0,tr). All three terms are multivariate Gaussian:
the third term is Gaussian because X (I) given X (I) has a

multivariate Gaussian distribution as long as the kernel K is

twice differentiable.
Therefore, the practically computable posterior distribution
simplifies to

Pe.x(1)|\w;,y (r)(0:x(I)|Wr = 0,Y () = y(7)) (5]
D

O(W@(O)exp{ - %Z [
d=1

+ I|1og(2m) + log|Cal + llza(T) — pa(D1Z,-
d

(1)
. 2
+ |I|log(2m) + log | Kal + || €57 — iza(T) = ma{wa(D) = pa(D)}] -,
d

(3)

+ Nalog(2mo?) + lea(ma) ~ va(ra)| 2 | |
d

(2)

where ||v||4 = vTAw, |I| is the cardinality of I, fi’f is short

for the d-th component of f(x(I),0,tr), and the multivariate
Gaussian covariance matrix Cy and the matrix K4 can be
derived as follows for each component d:

C =K(I,I)
m ='KI,0HKI,I)™" (6]
K =K'(I,LI) -'K(I, HK(I,I)"*K/'(I, 1)

where 'K = ZK(s,t), K' = Z£K(s,t), and K" = %K(s,t).

In practice we choose the Matern kernel K(s,t) =
217u

¢1m (\/@é)')By (\/5#) where [ = |s — t|, T is the
Gamma function and B, is the modified Bessel function of
the second kind, and the degree of freedom v is set to be 2.01
to ensure that the kernel is twice differentiable. I has two
hyper-parameters ¢1 and ¢2. Their meaning and specification
are discussed in the Materials and Methods section.

With the posterior distribution specified in Eq. (5), we
use Hamiltonian Monte Carlo (HMC) (7) to obtain samples

Yang etal.

of X1 and the parameters together. At the completion of
HMC sampling, we take the posterior mean of X as the
inferred trajectory, and the posterior means of the sampled
parameters as the parameter estimates. Throughout the MAGI
computation, no numerical integration is ever needed.

Review of related work. The problem of dynamic system in-
ference has been studied in the literature, which we now
briefly review. We first note that a simple approach to
constructing the ‘ideal’ likelihood function is according to
p(y(t)|&(t, 0,x(0)),0), where &(t,0,x(0)) is the numerical so-
lution of the ODE obtained by numerical integration given 6
and the initial conditions. This approach suffers from a high
computational burden: numerical integration is required for
every 6 sampled in an optimization or Markov chain Monte
Carlo (MCMC) routine (8). Smoothing methods have been
useful for eliminating the dependence on numerical ODE so-
lutions, and an innovative penalized likelihood approach (9)
uses a B-spline basis for constructing estimated functions to
simultaneously satisfy the ODE system and fit the observed
data. While in principle the method in (9) can handle an
unobserved system component, substantive manual input is
required as we show in the Results, which contrasts with the
ready-made solution that MAGI provides.

As an alternative to the penalized likelihood approach,
GPs are a natural candidate for fulfilling the smoothing
role in a Bayesian paradigm due to their flexibility and an-
alytic tractability (10). The use of GPs to approximate the
dynamic system and facilitate computation has been pre-
viously studied by a number of authors (8, 11-15). The
basic idea is to specify a joint GP over y,x,# with hyper-
parameters ¢, and then provide a factorization of the joint
density p(y,x, &, 0, ¢,0) that is suitable for inference. The
main challenge is to find a coherent way to combine infor-
mation from two distinct sources: the approximation to the
system by the GP governed by hyperparameters ¢, and the
actual dynamic system equations governed by parameters 6.
In (8, 11), the factorization proposed is p(y,x, &, 0,¢,0) =
p(y|513, a)p(a':|m, 0, ¢)p($|¢)p(¢)p(0), where p(y"Bv U) comes
from the observation model and p(x|¢) comes from the
GP prior as in our approach. However, there are signif-
icant conceptual difficulties in specifying p(&|xz,0,¢): on
one hand, the distribution of @& is completely determined
by the GP given @, while on the other hand & is com-
pletely specified by the ODE system & = f(x,0,t); these
two are incompatible. Previous authors have attempted to
circumvent this incompatibility of the GP and ODE sys-
tem: (8, 11) use a product-of-experts heuristic by letting
p(x|xz, 0, ¢) x p(x|z, p)p(x|x, B), where the two distributions
in the product come from the GP and a noisy version of the
ODE, respectively. In (15), the authors arrive at the same
posterior as (8, 11) by assuming an alternative graphical model
that bypasses the product of experts heuristic; nonetheless,
the method requires working with an artificial noisy version of
the ODE. In (12), the authors start with a different factoriza-
tion: p(y,z,z,0,¢,0) = p(y|T, ¢, 0)p(x|x, O)p(x|P)p(¢)p(0),
where p(y|, ¢) and p(x|p) are given by the GP and p(z|x, 0)
is a Dirac delta distribution given by the ODE. However,
this factorization is incompatible with the observation model
p(y|z, o) as discussed in detail in (16). There is other related
work that uses GPs in an ad hoc partial fashion to aid inference.
In (13), GP regression is used to obtain the means of « and @
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for embedding within an Approximate Bayesian Computation
estimation procedure. In (14), GP smoothing is used during
an initial burn-in phase as a proxy for the likelihood, before
switching to the ‘ideal’ likelihood to obtain final MCMC sam-
ples. While empirical results from the aforementioned studies
are promising, a principled statistical framework for inference
that addresses the previously noted conceptual incompatibility
between the GP and ODE specifications is lacking. Our work
presents one such principled statistical framework through the
explicit manifold constraint. MAGI is therefore distinct from
recent GP-based approaches (11, 15) or any other Bayesian
analogs of (9).

In addition to the conceptual incompatibility, none of the
existing methods that do not use numerical integration offer a
practical solution for a system with unobserved component(s),
which highlights another unique and important contribution
of our approach.

Results

We apply MAGI to three systems. We begin with an illustra-
tion that demonstrates the effectiveness of MAGI in practical
problems with unobserved system component(s). Then, we
make comparisons with other current methods on two bench-
mark systems, which show that our proposed method provides
more accurate inference while having much faster runtime.

lllustration: Hes1 model. The Hesl model described in the
Introduction demonstrates inference on a system with an
unobserved component and asynchronous observation times.
This section continues the inference of this model. Ref (1)
studied the theoretical oscillation behavior using parameter
values a = 0.022, b = 0.3, ¢ = 0.031, d = 0.028; e = 0.5, f = 20,
g = 0.3, which leads to one oscillation cycle approximately
every 2 hours. Ref (1) also set the initial condition at the
lowest value of P when the system is in oscillation equilibrium
(1): P =1.439, M = 2.037, H = 17.904. The noise level in
our simulation is derived from (1) where the standard error
based on repeated measures are reported to be around 15%
of the P (protein) level and M (mRNA) level, so we set the
simulation noise to be multiplicative following a log-normal
distribution with standard deviation 0.15, and throughout
this example we assume the noise level o is known to be 0.15
from repeated measures reported in (1). The H component
is never observed. Owing to the multiplicative error on the
strictly positive system, we apply our method to the log-
transformed ODEs, so that the resulting error distributions
are Gaussian. To the best of our knowledge, MAGI is the
only one that provides a practical and complete solution for
handling unobserved component cases like this example.

We generate 2000 simulated datasets based on the above
setup for the Hesl system. The left-most panel in Fig 1
shows one example dataset. For each dataset, we use MAGI
to infer the trajectories and estimate the parameters. We
use the posterior mean of X; = (P, M, H); as the inferred
trajectories for the system components, which are generated by
MAGI without using any numerical solver. Fig 1 summarizes
the inferred trajectories across the 2000 simulated datasets,
showing the median of the inferred trajectories of X; together
with the 95% interval of the inferred trajectories represented
by the 2.5% and 97.5% percentiles. The posterior mean of
0 = (a,b,c,d, f, e, g) is our estimate of the parameters. Table 1

4 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

summarizes the parameter estimates across the 2000 simulated
datasets, by showing their means and standard deviations. Fig
1 shows that MAGI recovers the system well, including the
completely unobserved H component. Table 1 shows that
MAGTI also recovers the system parameters well, except for the
parameters that only appear in the equation for the unobserved
H component, which we will discuss shortly. Together, Fig 1
and Table 1 demonstrate that MAGI can recover the entire
system without any usage of a numerical solver, even in the
presence of unobserved component(s).

Metrics for assessing the quality of system recovery. To further as-
sess the quality of the parameter estimates and the system
recovery, we consider two metrics. First, as shown in Table
1, we examine the accuracy of the parameter estimates by
directly calculating the root mean squared error (RMSE) of
the parameter estimates to the true parameter value. We
call this measure the parameter RMSFE metric. Second, it is
possible that a system might be insensitive to some of the
parameters; in the extreme case, some parameters may not
be fully identifiable given only the observed data and com-
ponents. In these situations, it is possible that the system
trajectories implied by quite distinct parameter values are
similar to each other (or even close to the true trajectory).
We thus consider an additional trajectory RMSE metric to
account for possible parameter insensitivity, and measure how
well the system components are recovered given the param-
eter and initial condition estimates. The trajectory RMSE
is obtained by treating the numerical ODE solution based
on the true parameter value as the ground truth: first, the
numerical solver is used to reconstruct the trajectory based
on the estimates of the parameter and initial condition (from
a given method); then, we calculate the RMSE of this recon-
structed trajectory to the true trajectory at the observation
time points. We emphasize that the trajectory RMSE metric
is only for evaluation purpose to assess (and compare across
methods) how well a method recovers the trajectories of the
system components, and that throughout MAGI no numerical
solver is ever needed.

We summarize the trajectory RMSEs of MAGI in Table 2
for the Hesl system.

We compare MAGI with the benchmark provided by the
B-spline-based penalization approach of Ref (9). To the best
of our knowledge, among all the existing methods that do
not use numerical integration, Ref (9) is the only one with a
software package that can be manually adapted to handle an
unobserved component. We note, however, this package itself
is not ready-made for this problem: it requires substantial
manual input as it does not have default or built-in setup of
its hyper-parameters for the unobserved component. None of
the other benchmark methods, including Ref (11, 15), provide
software that is equipped to handle an unobserved component.
Table 1 compares our estimates against those given by Ref
(9) based on the parameter RMSE, which shows that the
parameter RMSEs for MAGI are substantially smaller than
(9). Fig 1 shows that the inferred trajectories from MAGI are
very close to the truth. On the contrary, the method in (9)
is not able to recover the unobserved component H nor the
associated parameter f and g; see Fig S1 in the SI for the plots.
Table 2 compares the trajectory RMSE of the two methods.
It is seen that the trajectory RMSE of MAGI is substantially
smaller than that of (9). Further implementation details and
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Finally, we note that MAGI recovers the unobserved com-
ponent H almost as well as the observed components of P
and M, as measured by the trajectory RMSEs. In compari-
son, for the result of (9) in Table 2, the trajectory RMSE of
the unobserved H component is orders of magnitude worse
than those of P and M. The numerical results thus illus-
trate the effectiveness of MAGI in borrowing information from
the observed components to infer the unobserved component,
which is made possible by explicitly conditioning on the ODE
structure. The self-regulating parameter g and inhibition rate
parameter f for the unobserved component appear to have
high inference variation across the simulated datasets despite
the small trajectory RMSEs. This suggests that the system
itself could be insensitive to f and g when the H component
is unobserved.

Table 1. Parameter inference in the Hes1 partially observed asyn-
chronous system based on 2000 simulation datasets. Average pa-
rameter estimates based on MAGI and Ref (9) across the 2000 simu-
lated datasets are reported together with the standard deviation. Pa-
rameter RMSEs are reported in the following column. The boldface
highlights the best method in terms of parameter RMSE for each pa-
rameter.

MAGI Ref (9)
6  Truth Estimate = RMSE Estimate RMSE
a 0.022 0.021 + 0.003 0.003 0.027 4+ 0.026 0.026
b 0.3 0.329 + 0.051 0.059 0.302 4+ 0.086 0.086
¢ 0.031 0.035 + 0.006 0.007 0.031 +0.010 0.010
d 0.028 0.029 + 0.002 0.003 0.028 + 0.003 0.003
e 0.5 0.552 + 0.074 0.090 0.498 + 0.088 0.088
f 20 13.759 + 3.026 6.936 | 604.9 £5084.8 5117.0
g 0.3 0.141 4+ 0.026 0.162 1.442 + 9.452 9.519

Table 2. Trajectory RMSEs of the individual components in the Hes1
system, comparing the average trajectory RMSEs of MAGI and Ref
(9) over the 2000 simulated datasets. The best trajectory RMSE for
each system component is shown in boldface.

Method P M H
MAGI 0.97 0.21 2.57
Ref(9) 1.30 0.40 59.47

Comparison with previous methods based on GPs. To further
assess MAGI, we compare with two methods: Adaptive Gra-
dient Matching (AGM) of Ref (11) and Fast Gaussian process
based Gradient Matching (FGPGM) of Ref (15), representing
the state-of-the-art of inference methods based on GPs. For
fair comparison, we use the same benchmark systems, scripts
and software provided by the authors for performance assess-
ment, and run the software using the settings recommended
by the authors. The benchmark systems include the FitzHugh-
Nagumo (FN) equations (17) and a protein transduction model
(18).

FN model. The FitzHugh-Nagumo (FN) equations are a classic
Ton channel model that describes spike potentials. The system
consists of X = (V, R), where V is the variable defining the
voltage of the neuron membrane potential and R is the recovery

Yang etal.

Fig. 2. Inferred trajectories by MAGI for each component of the FN system over 100
simulated datasets. The blue shaded area represents the 95% interval.

= ]

o 5 1 15 Bl

—_— truth
—e median of all inferred trajectories
95% interval from the 2.5 and 97.5 percentile of all inferred trajectories

variable from neuron currents, satisfying the ODE

V3
co(V—-—+R)
_E(V —a+bR)
where 8 = (a,b,c) are the associated parameters. As in

(11, 15), the true parameters are set to a = 0.2,b = 0.2,¢c = 3,
and we generate the true trajectories for this model using a
numerical solver with initial conditions V = -1, R = 1.

Table 3. Parameter inference in the FN model based on 100 simu-
lated datasets. For each method, average parameter estimates are
reported together with standard deviation; parameter RMSEs across
simulations are also reported. The boldface highlights the best
method in terms of parameter RMSE for each parameter.

MAGI FGPGM (15) AGM (11)
6 | Estimate RMSE | Estimate RMSE | Estimate RMSE
a | 0.19+0.02 0.02 0.22+0.04 0.05 0.30 £0.03 0.10
b | 0.354+0.09 0.17 0.32+0.13 0.18 0.36 +0.06 0.17
c | 289+0.06 0.13 285+ 0.15 0.21 2.04 £0.14 097

To compare MAGI with FGPGM of Ref (15) and AGM of
Ref (11), we simulated 100 datasets under the noise setting of
oy = or = 0.2 with 41 observations. The noise level is chosen
to be on similar magnitude with that of (15), and the noise
level is set to be the same across the two components as the
implementation of (11) can only handle equal-variance noise.
The number of repetitions (i.e., 100) is set to be the same
as (15) due to the high computing time of these alternative
methods.

The parameter estimation results from the three methods
are summarized in Table 3, where MAGI has the lowest pa-
rameter RMSEs among the three. Fig 2 shows the inferred
trajectories obtained by our method: MAGI recovers the sys-
tem well, and the 95% interval band is so narrow around the
truth that we can only see the band clearly after magnification
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(as shown in the figure inset). The SI provides visual compar-
ison of the inferred trajectories of different methods, where
MAGTI gives the most consistent results across the simulations.
Furthermore, to assess how well the methods recover the sys-
tem components, we calculated the trajectory RMSEs, and the
results are summarized in Table 4, where MAGI significantly
outperforms the others, reducing the trajectory RMSE over
the best alternative method for 60% in V and 25% in R. We
note that compared to the true parameter value, all three
methods show some bias in the parameter estimates, which is
partly due to the GP prior as discussed in (15), and MAGI
appears to have the smallest bias.

For computing cost, the average runtime of MAGI for this
system over the repetitions is 3 minutes, which is 145 times
faster than FGPGM (15) and 90 times faster than AGM (11)
on the same CPU (we follow the authors’ recommendation for
running their methods, see SI for details).

Table 4. Trajectory RMSEs of each component in the FN system,
comparing the average trajectory RMSE of the three methods over
100 simulated datasets. The best trajectory RMSE for each system
component is shown in boldface. MAGI reduces the RMSE for 60%
in component V and 25% in component R over the best alternative
method.

Method 14 R

MAGI 0.103  0.070
FGPGM (15)  0.257  0.094
AGM (11) 1.177  0.662

Protein transduction model. This protein transduction example is
based on systems biology where components .S and Sy represent
a signaling protein and its degraded form, respectively. In
the biochemical reaction S binds to protein R to form the
complex Sr, which enables the activation of R into Rpp. X =
(S, S4, R, Sr, Rpp) satisfies the ODE

—k1-S—ke-S-R+ks-Sr
ki-S
V-R
—k2-S-RAks-Sr+ % 38— |,
ko S-R—ks-Sr—ka-Sr

V-Rpp

£(X,0,t) =

where 0 = (ki, k2, ks, k4, V, Kp,) are the associated rate pa-
rameters.

We follow the same simulation setup as (11, 15), by tak-
ing t = {0,1,2,4,5,7,10, 15, 20, 30, 40, 50, 60, 80, 100} as the
observation times, X(0) = (1,0,1,0,0) as the initial values,
and 6 = (0.07,0.6,0.05,0.3,0.017,0.3) as the true parameter
values. Two scenarios for additive observation noise are consid-
ered: o = 0.001 (low noise) and o = 0.01 (high noise). Note
that the observation times are unequally spaced, with only a
sparse number of observations from ¢ = 20 to ¢ = 100. Further,
inference for this system has been noted to be challenging due
to the non-identifiability of the parameters, in particular K,
and V' (15). Therefore, the parameter RMSE is not meaningful
for this system, and we focus our comparison on the trajectory
RMSE.

We compare MAGI with FGPGM of Ref (15) and AGM of
Ref (11) on 100 simulated datasets for each noise setting (see
the SI for method and implementation details). We plot the
inferred trajectories of MAGI in the high noise setting in Fig 3,

6 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

which closely recover the system. The 95% interval band from
MAGI is quite narrow that for most of the inferred components
we need magnifications (as shown in the figure insets) to clearly
see the 95% band. We then calculated the trajectory RMSEs,
and the results are summarized in Table 5 for each system
component. In both noise settings, MAGI produces trajectory
RMSEs that are uniformly smaller than both FGPGM (15)
and AGM (11) for all system components. In the low noise
setting, the advantage of MAGI is especially apparent for
components S, R, Sr, and Rpp, with trajectory RMSEs less
than half of the closest comparison method. For the high noise
setting, MAGI reduces trajectory RMSE the most for Sy and
Rpp (~50%). AGM (11) struggles with this example at both
noise settings. To visually compare the trajectory RMSEs in
Table 5, plots of the corresponding reconstructed trajectories
by different methods at both noise settings are given in the SI.

The runtime of MAGI for this system averaged over the
repetitions is 18 minutes, which is 12 times faster than FGPGM
(15) and 18 times faster than AGM (11) on the same CPU (we
follow the authors’ recommendation for running their methods,
see SI for details).

Table 5. Trajectory RMSEs of the individual components in the pro-
tein transduction system, by comparing the average RMSEs of the
three methods over 100 simulated datasets. The method achieving
the best RMSE for each system component is shown in boldface.

Low noise case, o = 0.001

Method S Sq R Sk Rop
MAGI 0.0020 0.0013 0.0040 0.0017 0.0036
FGPGM (15) 0.0049 0.0016 0.0156 0.0036  0.0149
AGM (11) 0.0476  0.2881 0.3992 0.0826  0.2807
High noise case, o = 0.01
Method S Sq R Sr Rop
MAGI 0.0122 0.0043 0.0167 0.0135 0.0136
FGPGM (15) 0.0128  0.0089 0.0210 0.0136  0.0309
AGM (11) 0.0671  0.3125 0.4138 0.0980 0.2973
Discussion

We have presented a novel methodology for the inference of
dynamic systems, using manifold-constrained Gaussian pro-
cesses. A key feature that distinguishes our work from the
previous approaches is that it provides a principled statisti-
cal framework, firmly grounded on the Bayesian paradigm.
Our method also outperformed currently available GP-based
approaches in the accuracy of inference on benchmark exam-
ples. Furthermore, the computation time for our method is
much faster. Our method is robust and able to handle a vari-
ety of challenging systems, including unobserved components,
asynchronous observations, and parameter non-identifiability.

A robust software implementation is provided, with user
interfaces available for R, MATLAB, and Python, as described
in the SI. The user may specify custom ODE systems in
any of these languages for inference with our package, by
following the syntax in the examples that accompany this
article. In practice, inference with MAGI using our software
can be carried out with relatively few user interventions. The
setting of hyperparameters and initial values is fully automatic,
though may be overridden by the user.

The main setting that requires some tuning is the number
of discretization points in I. In our examples, this was deter-
mined by gradually increasing the denseness of the points with
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Fig. 3. Inferred trajectories by MAGI for each component of the protein transduction system in the high noise setting. The red line is the truth, and the green line is the median
inferred trajectory over 100 simulated datasets. The blue shaded area represents the 95% interval. The inset plots magnify the corresponding segment.
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short sampler runs, until the results become indistinguishable.
Note that further increasing the denseness of I has no ill effect,
apart from increasing the computational time. To illustrate
the effect of the denseness of I on MAGI inference results,
an empirical study is included in the SI “varying number of
discretization” section, where we examined the results of the
FN model with the discretization set I taken to be 41, 81,
161, and 321 equally spaced points, respectively. The results
confirm that our proposal of gradually increasing the dense-
ness of I works well. The inference results improve as we
increase I from 41 to 161 points, and at 161 points the results
are stabilized. If we further increase the discretization to 321
points, that doubles the compute time with only a slight gain
in accuracy compared to 161 points in terms of trajectory RM-
SEs. This empirical study also indicates that as Wr becomes
an increasingly dense approximation of W, an inference limit
would be expected. A theoretical study is a natural future
direction of investigation.

We also investigated the stability of MAGI when the ob-
servation time points are farther apart. This empirical study,
based on the FN model with 21 observations, is included in the
SI “FN model with fewer observations” section. The inferred
trajectories from the 21 observations are still close to the truth,
while the interval bands become wider, which is expected as
we have less information in this case. We also found that
the denseness of the discretization needs to be increased (to
321 time points in this case) to compensate for the sparser 21
observations™.

An inherent feature of the GP approximation is the ten-
dency to favor smoother curves. This limitation has been
previously acknowledged (11, 15). As a consequence, two
potential forms of bias can exist. First, estimates derived
from the posterior distributions of the parameters may have
some statistical bias. Second, the trajectories reconstructed
by a numerical solver based on the estimated parameters may
differ slightly from the inferred trajectories. MAGI, which is
built on a GP framework, does not entirely eliminate these
forms of bias. However, as seen in the benchmark systems, the
magnitude of our bias in both respects is significantly smaller
than the current state-of-the-art in (11, 15).

We considered the inference of dynamic systems specified by
ODEs in this article. Such deterministic ODE models are often
adequate to describe dynamics at the aggregate or population
level (19). However, when the goal is to describe the behavior

*This finding echos the classical understanding that stiff systems require denser discretization (ob-
servations farther apart make the system appear relatively more stiff).
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= truth

95% interval from the 2.5 and 97.5 percentile of all inferred trajectories

of individuals (e.g., individual molecules (20, 21)), models such
as stochastic differential equations (SDEs) and continuous-
time Markov processes, which explicitly incorporate intrinsic
(stochastic) noise, often become the model of choice. Extending
our method to the inference of SDEs and continuous-time
Markov models is a future direction we plan to investigate.
Finally, recent developments in deep learning have shown
connections between deep neural networks and GPs (22, 23).
It could thus also be interesting to explore the application of
neural networks to model the ODE system outputs (¢) in
conjunction with GPs.

Materials and Methods

For notational simplicity, we drop the dimension index d in this
section when the meaning is clear.

Algorithm overview. We begin by summarizing the computational
scheme of MAGI. Overall, we use Hamiltonian Monte Carlo (HMC)
(7) to obtain samples of Xy and the parameters from their joint
posterior distribution. Details of the HMC sampling are included in
the SI section ‘Hamiltonian Monte Carlo’. At each iteration of HMC,
X7 and the parameters’ are updated together with a joint gradient,
with leapfrog step sizes automatically tuned during the burn-in
period to achieve an acceptance rate between 60-90%. At the
completion of HMC sampling (and after discarding an appropriate
burn-in period for convergence), we take the posterior means of X
as the inferred trajectories, and the posterior means of the sampled
parameters as the parameter estimates. The techniques we use to
temper the posterior and speed up the computations are discussed
in the following ‘Prior tempering’ subsection and ‘Techniques for
computational efficiency’ in the SI.

Several steps are taken to initialize the HMC sampler. First, we
apply a GP fitting procedure to obtain values of ¢ and o for the
observed components; the computed values of the hyper-parameters
¢ are subsequently held fixed during the HMC sampling, while
the computed value of o is used as the starting value in the HMC
sampler. (If o is known, the GP fitting procedure is used to obtain
values of ¢ only.) Second, starting values of X for the observed
components are obtained by linearly interpolating between the
observation time points. Third, starting values for the remaining
quantities — 6 and (X, ¢) for any unobserved component(s) — are
obtained by optimization of the posterior as described below.

Setting hyper-parameters ¢ for observed components. The GP
prior X4(t) ~ GP(pa,Kq), t € [0,T], is on each component
Xq4(t) separately. The Gaussian process Matern kernel K(I) =

b1 % ( 21/%) v By (\/ 21/%) has two hyper-parameters that are

held fixed during sampling: ¢1 controls overall variance level of the

TThe parameters here refer to 8 and o. If the noise level o is known a priori, the parameters then
refer to 6 only.
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GP, while ¢2 controls the bandwidth for how much neighboring
points of the GP affect each other.

When the observation noise level o is unknown, values of
(¢1, 2, 0) are obtained jointly by maximizing GP fitting without
conditioning on any ODE information, namely:

(¢.5)

arg max p(, %[y, )
b0

= Mg IMaX Ty (01)7, (902)70 (0%)p(Yyy |6,0%) (7]

where Yro |, 0 ~ N(0,Ky + 0?). The index set Iy is the smallest
evenly spaced set such that all observation time points in this
component are in Io, i.e., 7 C Iy. The priors mg, (¢1) and 7y (02)
for the variance parameter ¢; and o are set to be flat. The prioc¥®
o, (¢p2) for the bandwidth parameter ¢2 is set to be a Gaussian
distribution: (a) the mean pg, is set to be half of the period
corresponding to the frequency that is the weighted average of all
the frequencies in the Fourier transform of y on I (the values of y on
Iy are linearly interpolated from the observations at 7), where the
weight on a given frequency is the squared modulus of the Fourier
transform with that frequency, and (b) the standard deviation is
set such that T is three standard deviations away from pg,. This
Gaussian prior on ¢2 serves to prevent it from being too extreme.
In the subsequent sampling of (8, X-,0?), the hyper-parameters
¢ are fixed at ¢ while & gives the starting value of ¢ in the HMC
sampler.

If o is known, then values of (¢1, ¢2) are obtained by maximizing

¢ = arg;naXp(MyIO ,0%) = arg max o, (¢1) 7@, (¢2)P(Yy, |D: 0%)

(8]
and held fixed at ¢ in the subsequent HMC sampling of (8, X).
The priors for ¢; and ¢2 are the same as previously defined.

Initialization of X ; for the observed components. To provide starting
values of X for the HMC sampler, we use the values of Y at the
observation time points and linearly interpolate the remaining points
in I.

Initialization of the parameter vector 6 when all system components
are observed. To provide starting values of 8 for the HMC sampler,
we optimize the posterior Eq. (5) as a function of @ alone, holding
X7 and o unchanged at their starting values, when there is no
unobserved component(s). The optimized 6 is then used as the
starting value for the HMC sampler in this case.

Settings in the presence of unobserved system components: setting
¢, initializing X1 for unobserved components, and initializing 6. Sep-
arate treatment is needed for the setting of ¢ and initialization of
(6, X1) for the unobserved component(s). We use an optimization
procedure that seeks to maximize the full posterior in Eq. (5) as a
function of 8 together with ¢ and the whole curve of X for unob-
served components, while holding the o, ¢ and X for the observed
components unchanged at their initial value discussed above. We
thereby set ¢ for the unobserved component, and the starting values
of @ and Xy for unobserved components at the optimized value.
In the subsequent sampling, the hyper-parameters are fixed at the
optimized ¢, while the HMC sampling starts at the 8 and the X
obtained by this optimization.

Prior tempering. After ¢ is set, we use a tempering scheme to control
the influence of the GP prior relative to the likelihood during HMC
sampling. Note that Eq. (5) can be written as

Pe,x (DY (r),w; (0, x(D)|y(T), Wr = 0)

9

ope,x (1)|w; (0, z(D)|[Wr = 0)py () x () (Y (T)|2(T)). 1)
As the cardinality of |I| increases with more discretization points, the
prior part pe, x (1)|w; (0, z(I)|Wr = 0) grows, while the likelihood
part py (r)|x(r)(Y(7)|z(7)) stays unchanged. Thus, to balance the
influence of the prior, we introduce a tempering hyper-parameter
with the corresponding posterior

8 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

549
pg,)xﬂwbyf (8, z1]0,yr)

xpe,x(1)|w; (0, 2(I)|Wr = 0)Ppy 1y x () (y(T)|x(I))

D
xmo®)exp { — 3 3 [Nalog(2mod) + @a(ra) = va(r)I
d=1

+ 3 (llea = a1,

+g7 = (D) = mateat) — w5 )] }

A useful setting that we recommend is 8 = D|I|/N, where D is
the number of system components, |I| is the number of discretization

time points, and N = 25:1 Ny is the total number of observations.
This setting aims to balance the likelihood contribution from the
observations with the total number of discretization points.

Data availability. All of the data used in the article are simulation
data. The details, including the models to generate the simulation
data, are described in Results and the SI. Our software package also
includes complete replication scripts for all the data and examples.
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