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A B S T R A C T   

Conservation identities of farmers in the Maumee River watershed, derived from farmer surveys, were embedded 
into a SWAT watershed model. This was done to improve the representation of the heterogeneity among farmers 
in the decision-making process related to the adoption of conservation practices. Modeled farm operations, 
created with near field-level Hydrologic Response Units (HRUs) within the SWAT model, were assigned a 
modeled primary operator. Modeled primary operators held unique conservation identities driven by their 
spatial location within the watershed. Five pathways of targeting the adoption of subsurface placement of 
phosphorus and buffer strips to HRUs within the watershed were assessed. Targeting pathways included tar
geting by HRU-level phosphorus losses, conservation identity of model operators, a hybrid approach combining 
HRU-level phosphorus losses and conservation identity of the model primary operator managing the HRU, and a 
proxy measure for random placement throughout the watershed. Targeting the placement of subsurface phos
phorus application to all agricultural HRUs resulted in the greatest reduction in total phosphorus losses (32%) 
versus buffer strips (23%). For both conservation practices, targeting by HRU-level total phosphorus losses 
resulted in the most efficient rate of phosphorus reduction as measured by the ratio of phosphorus reduction to 
conservation practice adoption rates. The hybrid targeting approach closely resembled targeting by phosphorus 
losses, indicating near optimal results can be obtained even when constraining adoption by farmer character
istics. These results indicate that by developing management strategies based on a combination of field-level 
information and human-operator characteristics, a more efficient use of limited resources can be used while 
achieving near-maximal environmental benefits as compared to managing environmental outcomes solely based 
on field-level information.   

1. Introduction 

Agriculture is a significant source of pollution impairing rivers, lakes, 
and oceans across the world (Deknock et al., 2019). This non-point 
source pollution can result in numerous environmental challenges 
including Harmful Algal Blooms (HABs; Paerl et al., 2018) and hypoxic 
dead zones (Porter et al., 2015) that cause socioeconomic problems 
globally (McCrackin et al., 2017). The Laurentian Great Lakes are no 
exception to these environmental and socioeconomic challenges (Wolf 
and Klaiber, 2017; Scavia et al., 2017). To lessen the impact agriculture 

has on nutrient loading to the Laurentian Great Lakes and, in particular, 
to Lake Erie, which has been affected by HABs of increasing severity 
since the early 2000s (Stumpf et al., 2016), current policies primarily 
promote the voluntary adoption of conservation practices (CPs; Holland 
et al., 2020; Kerr et al., 2016). This approach to watershed management 
ensures that human decision-makers are instrumental in the adoption 
and utilization of CPs to improve downstream water quality. However, 
research conducted on the watershed-scale effectiveness of CPs on 
reducing nutrient losses does not usually consider these human-actors 
and their heterogeneous beliefs and attitudes towards conservation 
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(Evenson et al., 2021; Scavia et al., 2017). 
Watershed models are a commonly used tool to assess the impact of 

agricultural management practices on nutrient runoff at larger scales 
than an individual agricultural field (Miller et al., 2020; Liu et al., 2017). 
In the Maumee River watershed (MRW), the largest Lake Erie watershed 
and the primary driver of HABs in Lake Erie (Stumpf et al., 2016; 
Maccoux et al., 2016), watershed models have evaluated the nutrient 
reduction benefits of individual and bundled-practice CPs (Martin et al., 
2021; Scavia et al., 2017; Kalcic et al., 2016). Watershed models have 
been used to highlight how targeting CPs to fields that contribute the 
greatest amount of nutrients to the watershed outlet can be effective in 
reducing the impact of agriculture on nutrient and sediment loading 
(Martin et al., 2021; Parajuli et al., 2008). While this approach high
lights variability in biophysical vulnerability, it does not account for the 
presence of heterogeneous decision-makers across agricultural land
scapes. Targeting these hotspots, or critical source areas, in watershed 
models is generally a function of landscape characteristics such as slope 
and soil types, with decisions about what and where to implement 
management practices determined by the modeling team (Martin et al., 
2021; Xu et al., 2019; Scavia et al., 2017). Because landowners and farm 
operators who manage these hotspots are not equally likely to actually 
implement the necessary practices in the designated locations, these 
models might over predict the impact of targeting strategies. This lim
itation suggests that rather than targeting CPs in watershed models 
solely based on the landscape characteristics, modeling teams could 
target either (1) By decision-maker characteristics, such as their attitude 
towards CPs, age, or gross income, or (2) Through a combination of 
landscape and decision-maker characteristics to simulate, more accu
rately, the probable spatial adoption of CPs in a watershed. 

Many factors influence agricultural producers’ beliefs, attitudes, and 
actions regarding their field-level management decisions (Liu et al., 
2018; Ulrich-Schad et al., 2017) leading to heterogeneous decisions 
made among farmers in a specific region, even when operating in similar 
economic, political, and ecological contexts (Karali et al., 2013; 
Chouinard et al., 2008). Farmers in the MRW are no exception to this 
(Burnett et al., 2018; Zhang et al. 2016). A non-exhaustive list of factors 
that influence decisions made by farmers in the MRW regarding their 
land management include a farmer’s age, education, experience 
farming, and conservation identity (Burnett et al., 2018; Liu et al., 2018; 
Burton, 2014). Conservation identity is a strong indicator of a farmer’s 
willingness to adopt CPs in the present or in the future, and, has been 
found to be the most predictive characteristics of future adoption for 
numerous CPs in the MRW (Burnett et al., 2018; Zhang et al., 2016). 
Farmers who hold greater conservation identities are more likely to 
adopt CPs than farmers with lower conservation identities. Grounded in 
identity theory, which indicates that person identities reflect in
dividuals’ understanding of themselves as having particular traits and 
qualities (McGuire et al., 2013), conservation identity is a function of the 
“good farmer” identity. Rather than an understanding or perception of 
their individual role or a CP’s role in limiting nutrient loss, conservation 
identity aims to capture how farmers perceive and understand their own 
role as a farmer and what it means to be a “good farmer.” Because 
identities of farmers are not necessarily linked to the physical charac
teristics of the fields they manage, targeting CP adoption to this farmer 
characteristic is a more realistic way of assigning CPs than solely 
focusing on land characteristics. 

The Soil and Water Assessment Tool (SWAT), a common watershed 
model used in agricultural settings, generally ignores socio-economic 
factors in its modeling framework (Cools et al., 2011). Integrated 
modeling frameworks that bridge socio-economic factors and watershed 
models (Zomorodian et al., 2018; Liu et al., 2015; Yang et al., 2007), 
have been applied in watersheds around the world (Yazdi and Moridi; 
2017; Daloğlu et al., 2014; Cools et al., 2011) including in the MRW (Liu 
et al., 2020; Wilson et al., 2018). Although integrated modeling allows 
socio-economic characteristics to be accounted for in watershed models 
when using SWAT, these models must be externally linked, which leads 

to a series approach to model integration (Francesconi et al., 2016). In 
this series approach, socio-economic models are first developed and 
results from these models are then used to drive inputs for scenario 
simulations in SWAT. 

The goals of this work are to describe an approach to embed the 
characteristics of human-operators into a calibrated SWAT model and 
evaluate the potential impact of incorporating characteristics of human- 
actors in CP targeting simulations. The three objectives of this work are 
(1) Create modeled farm operations, (2) Assign conservation identities 
based on a farmer survey to decision-makers of the modeled farm op
erations, and (3) Compare targeting CP placement based on a combi
nation of field-level phosphorus losses and human-operator 
conservation identities to solely targeting by field-level phosphorus 
losses. 

2. Methods 

2.1. Study area 

The MRW (Fig. 1) is the largest contributor of phosphorus to Lake 
Erie (Maccoux et al., 2016). Row crop agriculture dominates the 
watershed landscape, with approximately 80% of the land use in 
row-crop agriculture (Ohio EPA, 2010). 

2.2. SWAT model 

The Soil and Water Assessment Tool (SWAT, revision 635; modified 
according to Kalcic et al. (2016)) is a process-based hydrological model 
that simulates hydrologic and nutrient fluxes within watersheds (Arnold 
et al., 1998). SWAT has been used in watersheds across the world 
including within the Great Lakes basins (Martin et al., 2021; Scavia 
et al., 2017; Muenich et al., 2016). Within the MRW, SWAT has been 
identified as the most appropriate watershed model among various 
watershed-modeling frameworks (Gebremarium et al., 2014). A recently 
developed and validated version of SWAT was used to simulate 

Fig. 1. The MRW is approximately 17, 000 km2 in size and spans portions of 
Indiana, Michigan, and Ohio. 
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hydrology and nutrient dynamics within the MRW (Apostel et al., 2021; 
Kast et al., 2021). This SWAT model was satisfactorily calibrated to 
nutrient and hydrology parameters between 2005 and 2015 at the USGS 
gauge #04193500, Table 1. Daily water quality and stream flow data 
used in calibration and validation were obtained from the National 
Center for Water Quality Research at Heidelberg University (ncwqr.org). 
Although the model was calibrated and validated at the single gauge, 
simulation results were compared to Edge-of-Field data of fields located 
upstream within the watershed. These comparisons showed the model 
was able to capture the range of water quality results upstream of the 
watershed outlet (Apostel et al., 2021). 

The SWAT model used in this study consists of 24,256 Hydrologic 
Response Units (HRUs), the smallest spatial discretization in the 
modeling framework. The mean size of agricultural HRUs (84% of HRUs 
in the model) is 70.9 ha (175.3 acres), comparable to that of the average 
farm-field size in Ohio (72.4 ha), Indiana (106.8 ha), and Michigan 
(82.9 ha; USDA, 2017). For further information of model development, 
including near field-scale HRU delineation and model calibration and 
validation see Apostel et al. (2021). 

2.3. Creating modeled farm operations and assigning conservation 
identities to modeled primary operators 

2.3.1. Modeled farm operations 
Modeled farm operations (MFOs), approximating farm boundaries of 

farming operations found within the watershed, were created by 
aggregating agricultural HRUs. HRUs included in each MFO were con
strained by the county and model subbasin in which the HRUs were 
located thus allowing non-adjacent HRUs to be included in a MFO. Each 
MFO included between one and five HRUs, depending on the size of the 
operation. Modeled farm operation sizes were stratified within each 
county according to the percentage of farms in the county between 1 and 
179 acres, 180 and 499 acres, 500 and 999 acres, and 1000 or more 
acres, according to the 2017 Agricultural Census (USDA, 2017; Sup
plementary Material Table S1). 

2.3.2. Assigning conservation identities to modeled primary operators 
Each MFO was assigned a modeled primary operator (MPO) who 

represented the operation’s decision-maker on farm management 
practices. A survey of farmers within the watershed was used to derive 
characteristics of farmers in the region (Burnett et al., 2018; Zhang et al., 
2016). Conservation identity was measured through seven survey items 
each on a 5-point Likert scale (Supplementary Material Table S5). Re
spondents were asked to rate the importance of each item on their 
personal definition of a good farmer from 0 (not at all important) to 4 
(very important; Burnett et al., 2018; McGuire et al., 2015; Arbuckle 
et al., 2013). The average score given to the seven survey items by the 
respondent was calculated to be the respondent’s conservation identity. 
Survey respondents’ conservation identities were grouped by zip code 
and aggregated to the county level. The maximum, mean, median, and 
standard deviation of conservation identities among survey respondents 
were calculated for each county. County-level distributions of 

conservation identities derived from this process were used to guide 
assignments of conservation identities to MPOs. 

The existing CP use on each MFO per county in the calibrated SWAT 
model was estimated. Included in this calculation was the use of a cover 
crop, a grassed waterway, incorporation of nutrients after application, 
subsurface placement of nutrients, and continuous no-tillage on each 
HRU within a MFO. A standardized metric of CP adoption was created 
by dividing the number of CPs present on a MFO by the number of HRUs 
within the MFO. After standardized metrics of CP adoption were 
calculated for each model farm operation, model farm operations and 
their corresponding CP adoption metric value were segregated by 
county. Within each county, MFOs were ranked from the greatest 
standardized CP adoption metric to the least. Rankings of standardized 
CP adoption metrics among the MFOs were used to assign conservation 
identities of MPOs. Three-levels of conservation identities (weak, mod
erate, and high) were assigned based on this standardized CP adoption 
metric and county-level results of conservation identities from the 
farmer survey (Supplementary Material Tables S2–S4). The qualitative 
descriptors for the three levels of conservation identities were derived 
from Burnett et al. (2018). To translate these qualitative categorizations 
into quantitative values, it was assumed that measured values were 
equally distributed within each level and constrained by the possible 
ranges of conservation identities from the farmer survey. Weak conser
vation identities were assigned a random value between 0.00 and 1.33. 
Moderate conservation identities were assigned a random value be
tween 1.34 and 2.66. High conservation identities were assigned a value 
between 2.67 and 4.00. This was completed to link equivalent results of 
the farmer survey directly to the farmer conservation identities applied 
to MFOs (i.e., a MFO with an operator holding a conservation identity of 
2.5 would be equivalent to a farmer respondent with a conservation 
identity score of 2.5). 

2.4. Targeting CPs to fields 

Five alternative targeting approaches were used to apportion two 
separate CPs, (1) Subsurface placement of inorganic phosphorus 

Table 1 
Monthly and daily calibration and validation statistics for the Maumee River SWAT model. All entries met the minimum criteria for ‘Satisfactory’ performance except 
monthly and daily sediment PBIAS validation (Apostel et al., 2021).   

Statistic Metric for Satisfactory 
Performance 

Daily Calibration 
(2005–2015) 

Monthly Calibration 
(2005–2015) 

Daily Validation 
(2000–2004) 

Monthly Validation 
(2000–2004) 

Flow NSE >0.5 0.87 0.95 0.82 0.86 
PBIAS < ±15% −0.83 −0.88 −10.03 −10.11 

Total Phosphorus NSE >0.35 0.58 0.52 0.46 0.44 
PBIAS < ±30% −3.76 −3.23 −18.53 −18.35 

Dissolved Reactive 
Phosphorus 

NSE >0.35 0.62 0.67 0.63 0.73 
PBIAS < ±30% 2.03 1.51 −9.89 −10.22 

Sediment NSE >0.45 0.65 0.75 0.58 0.70 
PBIAS < ±20% 1.62 2.06 −27.21 −26.09  

Table 2 
Targeting pathways used to apportion subsurface placement (Subsurface P) of 
inorganic phosphorus fertilizer and buffer strips within the watershed.  

Targeting Pathway Description 

Greatest Phosphorus Loading Rate HRUs The agricultural HRUs with the greatest 
P runoff were targeted to receive the CP 

Least Phosphorus Loading Rate HRUs The agricultural HRUs with the least P 
runoff were targeted to receive the CP 

Greatest Modeled Primary Operator 
Conservation Identity HRUs 

The agricultural HRUs managed by the 
modeled primary operators with the 
greatest Conservation Identity were 
targeted to receive the CP 

Greatest Phosphorus Loading Rate HRUs 
Managed by Modeled Primary 
Operators with the Greatest 
Conservation Identities 

The agricultural HRUs with the largest 
aggregate rank order value were 
targeted to receive the CP  
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fertilizer (Subsurface P) and (2) Buffer strips, throughout the watershed 
(Table 2 and Fig. 2). In each scenario, subsurface placement of inorganic 
phosphorus fertilizer was simulated by placing 99% of the fertilizer mass 
below the top 1 cm of soil. Buffer strips were sized at 2% of the field 
drainage area with 50% being concentrated flow and 25% being fully 
channelized. 

The first targeting approach selected HRUs estimated to have the 
greatest total phosphorus (TP) loading rates in the baseline calibrated 
SWAT model, sometimes referred to as “critical source areas” (Evenson 
et al., 2021; Supplementary Material Fig. S1).The second targeting 
approach selected HRUs with the least TP loading rates. In these two 
approaches, agricultural HRUs were rank-ordered from largest to 
smallest TP discharge rates (Supplementary Material Fig. S2). Rank or
ders with ties were used when two or more HRUs had similar TP 
discharge rates. The third targeting approach selected HRUs in MFOs 
with MPOs that were estimated to have the greatest conservation 
identities (Supplementary Material Fig. S3). For this targeting approach, 
conservation identities of MPOs were rank ordered from largest to 
smallest. Rank orders with ties were used when two or more HRUs 
managed by MPOs had similar conservation identities. The fourth tar
geting approach selected HRUs with the greatest TP loading rates that 
were managed by MPOs with the greatest conservation identities 
(Supplementary Material Fig. S4). For this targeting approach, each 
HRU rank order from the first and third targeting approaches were 
summed. Eleven scenarios that represented increasing adoption rates for 
each CP were run for each of these targeting approaches. CP adoption 
ranged from the baseline calibrated model adoption rate to 100% 
adoption on agricultural HRUs (Supplementary Material Table S6). A 
one-to-one line was created for each CP from the adoption endpoints, 
Baseline Adoption and 100% Adoption. This one-to-one line was 
regarded as a proxy measure of randomly selecting HRUs to receive the 
CP, a fifth targeting approach. Unlike the previous four targeting ap
proaches, this scenario assumes that results would lie on the one-to-one 
line between the Baseline Adoption and 100% Adoption scenarios and 
was not run directly in the SWAT model. This proxy measure repre
sented the average results of thousands of simulations in which different 
sets of HRUs were randomly selected to receive the CP and was created 
in place of simulating a random assignment pathway. 

3. Results 

3.1. Modeled farm operations and modeled primary operator 
conservation identities 

Across the watershed, 17,297 MFOs were created from the 24,256 
HRUs in the SWAT model (Supplementary Material Tables S1 and S4). 
Putnam County, Ohio had the largest number of MFOs while Whitley 
County, Indiana had the smallest, Table 3. The percentage of MFOs 
smaller than 180 acres and greater than 1000 acres varied by county 
with Williams County, Ohio having the largest number of MFOs less than 
180 acres and Van Wert County, Ohio having the greatest number of 
MFOs larger than 1000 acres, Supplementary Material Table S1. 

Modeled primary operators in Lucas County, Ohio had the highest 
average conservation identity while MPOs in Henry County, Ohio had 
the lowest average conservation identity (Supplementary Material 
Table S3). Based on the conservation identity categorization presented 
in Section 2.3, a majority of the MPOs across the watershed were 
assigned a strong conservation identity (77.8%) while 21.0% and 1.2% 
of MPOs were assigned moderate and weak conservation identities, 
respectively (Supplementary Material Table S2). 

3.2. Targeting the adoption of subsurface phosphorus applications and 
buffer strips 

Increasing the adoption of Subsurface P to 100% of agricultural 
HRUs from its adoption rate in the calibrated baseline (8.7%) led to a 
31% reduction in March-July TP loads and a 48% reduction in March- 
July Dissolved Reactive Phosphorus (DRP) loads (Fig. 3). Increasing 
the adoption of buffer strips to 100% of agricultural HRUs from its 
adoption rate in the calibrated baseline (31%) led to a 23% reduction in 
March-July TP loads and a 19% reduction in March-July DRP loads 
(Fig. 4). 

Targeting the adoption of both CPs to the HRUs with the greatest TP 
loading rates resulted in the highest efficiency (phosphorus reduction/ 
rate of CP adoption) in achieving phosphorus reductions. As expected, 
the lowest phosphorus reduction efficiencies were obtained when tar
geting the adoption of the CPs to the HRUs with the least TP loading 
rates. Targeting both CPs to the HRUs with the greatest MPO conser
vation identities resulted in similar phosphorus reduction efficiencies as 

Fig. 2. Conceptual schematic of simulation process.  
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randomly selecting HRUs to receive the CPs. Targeting both CPs by 
combining consideration of HRUs with large phosphorus losses and 
MPOs with high conservation identities resulted in the second highest 
efficiency in achieving phosphorus reductions (Figs. 3 and 4). The two 
most efficient approaches produced the greatest gains in TP and DRP 
load reduction from the initial increases from baseline adoption. In ef
fect, for the scenario targeting CPs based on high runoff potential, each 
1% increase in adoption of Subsurface P from the baseline (8.7%) to 
18.5% adoption levels resulted in a decrease of TP loads by 1%. When 
conservation identities were considered alongside high runoff potential, 
each 1% increase in adoption of Subsurface P decreased TP loads by 

0.77% as adoption rose from 8.7 to 18.2% of agricultural land area. This 
was expected because initially these practices were applied to fields with 
the greatest losses and thus where they would realize the greatest re
ductions. Similar trends were observed for DRP reductions for Subsur
face P and for both TP and DRP reductions for buffer strips although the 
magnitudes of the decreasing phosphorus loading rates differed (Figs. 3 
and 4). 

Fig. 3. Reductions of (a) Total phosphorus and (b) Dissolved 
reactive phosphorus resulting from the adoption of Subsurface 
P by various targeting pathways. The most efficient phos
phorus reduction rates result from the Greatest P Loss pathway, 
which is likely unattainable because of limited information and 
farmer participation. Similar phosphorus reduction efficiencies 
result from targeting the placement of Subsurface P by a 
combination of field-level information as well as farmer in
formation, which is a more attainable management option. The 
maximum difference between the Greatest P Loss and Least P 
Loss targeting pathways is at 54.5% adoption of the CP indi
cating the adoption rate with the greatest uncertainty related 
to the effectiveness of the CP on reducing P loads from the 
watershed model.   

Fig. 4. Reductions of (a) Total phosphorus and (b) Dissolved 
reactive phosphorus resulting from the adoption of buffer strips 
by various targeting pathways. Similarly to Subsurface P, 
achieving phosphorus reduction rates as indicated by the 
Greatest P Loss pathway may be unattainable and that target
ing the placement of buffer strips by a combination of field- 
level information as well as farmer information achieves 
similar phosphorus reduction efficiencies. The maximum dif
ference between the Greatest P Loss and Least P Loss targeting 
pathways is at 65.5% adoption of the CP, indicating the 
adoption rate with greatest uncertainty related to the effec
tiveness of the CP on reducing P loads in the watershed model.   
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3.3. Impacts of watershed-scale CP adoption efficacy in reducing 
phosphorus losses 

3.3.1. Targeting adoption to HRUs with the greatest total phosphorus 
loading rates compared to other simulated targeting pathways 

Since adoption rates of 54.5% for Subsurface P and 65.5% of buffer 
strips, respectively, resulted in the greatest difference in phosphorus 
reductions between targeting pathways, this adoption level was used to 
compare differences due to targeting options (Figs. 3 and 4). Targeting 
by the least phosphorus loading rates, as compared to targeting by the 
greatest phosphorus loading rates, resulted in approximately between 
10 and 20% more TP and DRP discharged from the watershed. Targeting 
by the greatest phosphorus loading rates HRUs managed by MPOs with 
the greatest conservation identities resulted in approximately between 
0.5 and 1.5% more TP and DRP discharged from the watershed, as 
compared to targeting by the greatest phosphorus loading rate HRUs 
(Fig. 5). 

3.3.2. Targeting adoption to HRUs with high total phosphorus loading rates 
and to high total phosphorus loading rate HRUs managed by modeled 
primary operators with high conservation identities compared to simulated 
targeting pathways 

The adoption rate of Subsurface P across the watershed with the 
largest difference in phosphorus reduction between targeting HRUs with 
the greatest TP losses to those with the greatest TP losses managed by 
MPOs with the greatest conservation identities (28% adoption of Sub
surface P) resulted in TP and DRP losses differing by 2.7% and 1.9%, 
respectively (Fig. 6). The adoption rate of buffer strips across the 
watershed with the largest difference in phosphorus reduction between 
targeting HRUs with the greatest TP losses to those with the greatest TP 
losses managed by MPOs with the greatest conservation identities (48% 
adoption of buffer strips) resulted in TP and DRP losses differing by 2.8% 
and 1.5%, respectively (Fig. 6). 

4. Discussion 

4.1. Integrating farmer-actors in watershed modeling of agricultural 
systems 

Developing MPOs using results from stakeholder surveys and directly 
embedding them into a watershed model is a novel approach for 

integrated modeling analyses. In particular, the approach developed and 
used in this study is unique for evaluating the efficacy of CP adoption in 
agriculturally dominated watersheds. This approach allowed for repre
senting over 17,000 unique MPOs. This large number of unique actors, 
or decision-makers, contrasts with the limited number of actors repre
sented in agent-based models (ABMs) that have been integrated with 
watershed models. Ng. et al. (2011) integrated an ABM with a SWAT 
model of the Salt Creek watershed in Central Illinois; however, only 50 
farmers were represented in the ABM due to the long computational 
time needed to run the model. In Ohio’s Sandusky Watershed, Daloğlu 
et al. (2014) grouped the farmer agents into four farmer types that drove 
parameters influencing their adoption decisions in the ABM. Although 
this work developed methods to allow for a large number of unique 
actors a limitation is that these actors could not interact or learn from 
one another, a benefit common to ABMs of socio-ecological systems 
(Lippe et al., 2019; Daloğlu et al., 2014; Ng et al., 2011). 

While an ABM has not been integrated with a model of the MRW, 
prior research has coupled economic and farmer behavioral attitudes 
with watershed models. Liu et al. (2020), focused on coupling a 
behavioral-economic model with a SWAT model of the MRW to assess 
how increases in cost-share payments for CP adoption and fertilizer 
taxes would affect nutrient losses within the watershed by way of 
increasing CP adoption. Martin et al. (2021) ran scenarios in SWAT 
models of the MRW guided by results from a survey of farmers in the 
watershed. Wilson et al. (2018), integrated results from a farmer survey 
taken within the MRW to a SWAT model of the MRW to assess how 
changes in farmer efficacies regarding cover crops and subsurface 
placement of nutrients reduce phosphorus discharge at various adoption 
levels of filter strips. This work improves upon these prior efforts in the 
MRW to develop a watershed model that includes socio-behavioral in
formation of farmers in the watershed while also providing a basis to 
further simulate how socio-behavioral characteristics of farmers in the 
watershed can affect CP adoption and resulting changes in nutrient 
discharges, through the addition of MFOs and MPOs. 

4.2. Adoption rates of subsurface P and buffer strips and phosphorus 
discharges 

Increasing the adoption of Subsurface P to 100% resulted in 1.3- 
times and 2.1-times greater TP and DRP reductions from the water
shed than by increasing the adoption of buffer strips across the 

Fig. 5. Percent difference in March-July TP and DRP loads discharged from the watershed through various targeting methods for subsurface placement and buffer 
strips at adoption rates resulting in maximum differences between the targeting methods (54.5% for subsurface placement and 65.5% for buffer strips). Results from 
the Greatest Phosphorus Loading Rate HRUs are used as the basis for comparisons. 
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watershed to 100%. Comparing DRP and TP, at 100% adoption of 
Subsurface P, DRP loss reductions were 1.5 times greater than TP loss 
reduction. In contrast, DRP loss reduction were 1.2 times less than TP 
loss reduction at 100% adoption of buffer strip indicating that buffer 
strips are more effective at reducing TP losses than DRP losses. This 
result agrees with Roberts et al. (2012) which found that buffer strips 
affected TP losses more than DRP losses in a variety of locations. Within 
the MRW, numerous watershed modeling studies have found that 
placing fertilizer nutrients in the subsurface is the most effective single 
in-field or edge-of-field practice in reducing nutrient runoff from the 
watershed at 100% adoption rates (Martin et al., 2021; Scavia et al., 
2017). Results from this study confirm this result and show that across a 
spectrum of adoption rates, subsurface placement of P is more effective 
at reducing phosphorus discharge than buffer strips. Although subsur
face placement of P was the more effective practice at reducing phos
phorus discharge from the watershed, buffer strips provide additional 
environmental benefits that may be of interest to landowners and op
erators. These additional benefits include reducing soil erosion, 
providing greater soil moisture contents, and stabilizing ditch and river 
channels (Cole et al., 2020; Kavian et al., 2018; Borin et al., 2010). 

4.3. Effectiveness of targeting CP adoption pathways 

As expected, targeting Subsurface P and buffer strips to HRUs with 
the greatest TP loading rates resulted in greater decreases in TP and DRP 
discharges from the watershed than randomly applying the CPs across 
the watershed (Martin et al., 2021; Scavia et al., 2017) and was the most 
efficient pathway in reducing nutrient losses. Although this pathway 
was the most efficient pathway in reducing TP and DRP across the 
watershed, limitations such as a lack of knowledge of the locations of 
these highest P loss fields in the environment affect the practicality of 
this approach to watershed management. Targeting the adoption of CPs 
to HRUs managed by MPOs with high conservation identities and 
through random selection had similar phosphorus reduction efficiencies. 
One explanation for these similar phosphorus reduction efficiencies is 
the little relation between farmers’ conservation identity and runoff 
from their fields. Although farmers’ psychological characteristics related 
to their identity as a farmer affects the practices used on their farms 

(Burnett et al., 2018; Zhang et al., 2016) they cannot greatly influence 
the physical features of their landscape (e.g., slope or soil type). 
Although these two targeting methods showed similar effectiveness in 
reducing TP and DRP losses, targeting by conservation identity resulted 
in slightly more advantageous outcomes. This may be due to model 
development, the linking of conservation identities to model farm op
erations, and the systematic selection of HRUs with greater amounts of 
CPs present through the targeting method than through the random 
adoption process. 

4.4. Designing CP adoption programs to improve water quality 

Although targeting the adoption of CPs across the watershed by the 
TP losses from individual fields (HRUs) resulted in the most efficient 
pathway of reducing TP and DRP losses, economic, social, and political 
challenges exist in prioritizing these fields to receive CPs. One challenge 
in targeting CPs to these high phosphorus loss fields is identifying their 
locations. Although a variety of factors affect phosphorus runoff from 
agricultural fields such as fertilizer application methods and precipita
tion (Endale et al., 2019; Hanrahan et al., 2019), field-level character
istics are important in governing nutrient flow dynamics. For example, 
fields with high soil test phosphorus values have been found to 
contribute more phosphorus downstream than fields with low soil test 
phosphorus values (Duncan et al., 2017) indicating they are potential 
critical source areas of nutrient losses. This field-level data is generally 
proprietary information, which can lead to a lack of publicly available 
knowledge of where these high soil-test phosphorus fields are in the 
landscape. Because federal CP adoption programs are generally 
designed on a first-come, first-serve basis (Talberth et al., 2015), farmers 
with fields with the greatest risk of phosphorus loss may not have the 
chance or may decide to not enroll in a program. 

Economic and social-psychological factors contribute to a farmer’s 
willingness to participate in voluntary CP adoption programs (Yeboah 
et al., 2015; Reimer and Prokopy, 2014). These factors also contribute to 
the willingness of farmers within the MRW to adopt various CPs to 
reduce phosphorus discharged to Lake Erie. In this setting, farmers with 
higher conservation identities are more likely to adopt various CPs 
(Burnett et al., 2018; Zhang et al., 2016). Thus, within the MRW, TP and 

Fig. 6. Differences in TP and DRP losses between targeting HRUs with the greatest TP losses and the HRUs with the greatest TP losses managed by modeled primary 
operators with the greatest conservation identities for (a) Subsurface P and (b) Buffer strips across the spectrum of BMP adoption rates starting at the baseline level 
adoption and ending at 100% adoption. 
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DRP loss reductions due to increasing CP adoption rates likely more 
closely resemble TP and DRP reduction pathways as indicated when 
targeting by MPO conservation identities than the most efficient 
pathway of targeting by high P loss HRUs in the future (Figs. 3 and 4). 
This likely implies that in agriculturally dominated watersheds more 
efficient nutrient reduction pathways exist as the amount of phosphorus 
a field discharges is not the sole factor in a farmer determining whether 
to adopt a CP to reduce the nutrient discharge. However, if CP adoption 
programs, whether at the federal, state, or local level, focus on recruiting 
farmers that have high phosphorus loss fields and who have a strong or 
high conservation identities similar efficiencies in nutrient reductions 
can be achieved as by targeting CPs only to the greatest phosphorus loss 
fields (Figs. 3 and 4). An example of this approach to watershed man
agement at the federal level is the Western Lake Erie Basin Initiative of 
the United States Department of Agriculture’s Natural Resources Con
servation Service (USDA-NRCS). Through this initiative, the 
USDA-NRCS screens applicants for funding through NRCS Environ
mental Quality Incentives Program (EQIP) with the applicants whose 
land is fully within the watershed and is vulnerable to nutrient discharge 
(i.e., higher soil test phosphorus values) being given higher ranking for 
funding (NRCS, 2016a, 2016b). 

4.5. Future work 

Although conservation identity has been shown to be a strong pre
dictor of future CP adoption (Burnett et al., 2018) other 
socio-psychological, demographic, and economic conditions have been 
found to affect conservation decisions made by farmers (Prokopy et al., 
2019; Liu et al., 2018). Using farmer surveys of the MRW, demographic 
factors such as age and gender and socio-psychological factors such as 
perceived conservation practice effectiveness at reducing nutrient losses 
can be linked with MPO conservation identities at the county-level to 
add further heterogeneity. With these more complete MPOs, an 
agent-based model can be developed to allow these heterogeneous 
MPOs to interact and learn from each other. Further, economic analyses 
on the cost-effectiveness of programs aimed to capture CP adoption 
trends presented in the targeting pathways can be completed. These 
economic analyses will provide policy insight for CP adoption programs 
that are most cost-effective in terms of their ability to reduce phosphorus 
losses from a watershed. 

5. Conclusion 

With limited financial resources, it is critical to develop programs 
that distribute support for CP adoption in ways that generate greater 
returns in terms of improved water quality. Agricultural CP programs 
that recruit farmers using dual criteria- targeting the highest phosphorus 
loading fields as well as those who are most willing to participate in CP 
programs- can nearly achieve the same phosphorus discharge reduction 
as programs that focus primarily on placing CPs on fields with the 
greatest phosphorus loss. An approach that accounts for behavioral 
factors in responses to program incentives is likely much more realistic 
than believing that all farmers are equally likely to implement conser
vation practices on their fields. In the MRW, as in other watersheds, 
locations of these high phosphorus discharge fields (or high conserva
tion identity farmers) are not always known; however, effective 
outreach and programming can counteract this gap in knowledge by 
focusing on farmers who manage fields with higher soil phosphorus 
values and who hold favorable dispositions towards adopting CPs. This 
approach is particularly important in efficiently achieving downstream 
water quality improvement in schemes that rely on the voluntary 
adoption of CPs, as is the case in the MRW and throughout much of the 
world. 
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Ulrich-Schad, J.D., Garciá De Jalón, S., Babin, N., Pape, A., Prokopy, L.S., 2017. 
Measuring and understanding agricultural producers’ adoption of nutrient best 
management practices. J. Soil Water Conserv. 72, 506–518. https://doi.org/ 
10.2489/jswc.72.5.506 https://doi.org/.  

USDA, 2017. National Agriculture Statistics Survey. 
Wilson, R.S., Schlea, D.A., Boles, C.M.W., Redder, T.M., 2018. Using models of farmer 

behavior to inform eutrophication policy in the Great Lakes. Water Res. https://doi. 
org/10.1016/j.watres.2018.03.065 https://doi.org/.  

Wolf, D., Klaiber, H.A., 2017. Bloom and bust: toxic algae’s impact on nearby property 
values. Ecol. Econ. 135, 209–221. https://doi.org/10.1016/j.ecolecon.2016.12.007 
https://doi.org/.  

Xu, Y., Bosch, D.J., Wagena, M.B., Collick, A.S., Easton, Z.M., 2019. Meeting water 
quality goals by spatial targeting of best management practices under climate 
change. Environ. Manag. 63, 173–184. https://doi.org/10.1007/s00267-018-01133- 
8 https://doi.org/.  

Yang, W., Rousseau, A.N., Boxall, P., 2007. An integrated economic-hydrologic modeling 
framework for the watershed evaluation of beneficial management practices. J. Soil 
Water Conserv. 62, 423–432. 

Yazdi, J., Moridi, A., 2017. Interactive reservoir-watershed modeling framework for 
integrated water quality management. Water Resour. Manag. 31, 2105–2125. 
https://doi.org/10.1007/s11269-017-1627-4 https://doi.org/.  

Yeboah, F.K., Lupi, F., Kaplowitz, M.D., 2015. Agricultural landowners’ willingness to 
participate in a filter strip program for watershed protection. Land Use Policy 49, 
75–85 https://doi.org/10.1016/j.landusepol.2015.07.016.  

Zhang, W., Wilson, R.S., Burnett, E., Irwin, E.G., Martin, J.F., 2016. What motivates 
farmers to apply phosphorus at the “right” time? Survey evidence from the Western 
Lake Erie Basin. J. Great Lakes Res. 42, 1343–1356. https://doi.org/10.1016/j. 
jglr.2016.08.007 https://doi.org/.  

Zomorodian, M., Lai, S.H., Homayounfar, M., Ibrahim, S., Fatemi, S.E., El-Shafie, A., 
2018. The state-of-the-art system dynamics application in integrated water resources 
modeling. J. Environ. Manage. 227, 294–304. https://doi.org/10.1016/j. 
jenvman.2018.08.097 https://doi.org/.  

J.B. Kast et al.                                                                                                                                                                                                                                   

https://doi.org/10.1007/s10705-019-09981-4
http://refhub.elsevier.com/S0043-1354(21)00573-X/sbref0017
http://refhub.elsevier.com/S0043-1354(21)00573-X/sbref0017
http://refhub.elsevier.com/S0043-1354(21)00573-X/sbref0018
http://refhub.elsevier.com/S0043-1354(21)00573-X/sbref0018
http://refhub.elsevier.com/S0043-1354(21)00573-X/sbref0018
http://refhub.elsevier.com/S0043-1354(21)00573-X/sbref0018
http://refhub.elsevier.com/S0043-1354(21)00573-X/sbref0019
http://refhub.elsevier.com/S0043-1354(21)00573-X/sbref0019
http://refhub.elsevier.com/S0043-1354(21)00573-X/sbref0019
https://doi.org/10.1016/j.jenvman.2020.111803
https://doi.org/10.1016/j.jenvman.2020.111803
https://doi.org/10.1002/ldr.3051
https://doi.org/10.1016/j.jglr.2016.10.001
https://doi.org/10.1007/s10707-018-00337-8
https://doi.org/10.1007/s10707-018-00337-8
https://10.3368/wple.96.4.510
https://10.3368/wple.96.4.510
https://doi.org/10.1016/j.jenvman.2015.02.046
https://doi.org/10.3390/su10020432
https://doi.org/10.3390/su10020432
https://doi.org/10.1016/j.scitotenv.2017.05.212
https://doi.org/10.1016/j.scitotenv.2017.05.212
https://doi.org/10.1016/j.jglr.2016.08.005
https://doi.org/10.1016/j.jglr.2016.08.005
https://doi.org/10.1016/j.jenvman.2020.111710
https://doi.org/10.1016/j.jenvman.2020.111710
https://doi.org/10.1002/lno.10441
https://doi.org/10.1007/s10460-012-9381-y
http://refhub.elsevier.com/S0043-1354(21)00573-X/sbref0031a
http://refhub.elsevier.com/S0043-1354(21)00573-X/sbref0031a
https://doi.org/10.1111/1752-1688.12807
https://doi.org/10.1111/1752-1688.12807
https://doi.org/10.1021/acs.est.6b01421
https://doi.org/10.1021/acs.est.6b01421
https://doi.org/10.1029/2011WR010399
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/null/?cid=nrcs144p2_031032
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/null/?cid=nrcs144p2_031032
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/null/?cid=nrcs144p2_031032
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/null/?cid=nrcs144p2_031032
https://doi.org/10.1021/acs.est.7b05950
https://doi.org/10.1016/j.agwat.2008.05.006
https://doi.org/10.2489/jswc.74.5.520
https://doi.org/10.2489/jswc.70.3.63A
https://doi.org/10.2489/jswc.70.3.63A
https://doi.org/10.1007/s00267-013-0184-8
https://doi.org/10.2134/jeq2010.0543
http://refhub.elsevier.com/S0043-1354(21)00573-X/sbref0045
http://refhub.elsevier.com/S0043-1354(21)00573-X/sbref0045
http://refhub.elsevier.com/S0043-1354(21)00573-X/sbref0045
http://refhub.elsevier.com/S0043-1354(21)00573-X/sbref0045
http://refhub.elsevier.com/S0043-1354(21)00573-X/sbref0046
http://refhub.elsevier.com/S0043-1354(21)00573-X/sbref0046
http://refhub.elsevier.com/S0043-1354(21)00573-X/sbref0046
https://doi.org/10.1016/j.ecolecon.2015.07.033
https://doi.org/10.1016/j.ecolecon.2015.07.033
https://doi.org/10.2489/jswc.72.5.506
https://doi.org/10.2489/jswc.72.5.506
https://doi.org/10.1016/j.watres.2018.03.065
https://doi.org/10.1016/j.watres.2018.03.065
https://doi.org/10.1016/j.ecolecon.2016.12.007
https://doi.org/10.1007/s00267-018-01133-8
https://doi.org/10.1007/s00267-018-01133-8
http://refhub.elsevier.com/S0043-1354(21)00573-X/sbref0053
http://refhub.elsevier.com/S0043-1354(21)00573-X/sbref0053
http://refhub.elsevier.com/S0043-1354(21)00573-X/sbref0053
https://doi.org/10.1007/s11269-017-1627-4
http://refhub.elsevier.com/S0043-1354(21)00573-X/sbref0055
http://refhub.elsevier.com/S0043-1354(21)00573-X/sbref0055
http://refhub.elsevier.com/S0043-1354(21)00573-X/sbref0055
https://doi.org/10.1016/j.jglr.2016.08.007
https://doi.org/10.1016/j.jglr.2016.08.007
https://doi.org/10.1016/j.jenvman.2018.08.097
https://doi.org/10.1016/j.jenvman.2018.08.097

	Evaluating the efficacy of targeting options for conservation practice adoption on watershed-scale phosphorus reductions
	1 Introduction
	2 Methods
	2.1 Study area
	2.2 SWAT model
	2.3 Creating modeled farm operations and assigning conservation identities to modeled primary operators
	2.3.1 Modeled farm operations
	2.3.2 Assigning conservation identities to modeled primary operators

	2.4 Targeting CPs to fields

	3 Results
	3.1 Modeled farm operations and modeled primary operator conservation identities
	3.2 Targeting the adoption of subsurface phosphorus applications and buffer strips
	3.3 Impacts of watershed-scale CP adoption efficacy in reducing phosphorus losses
	3.3.1 Targeting adoption to HRUs with the greatest total phosphorus loading rates compared to other simulated targeting pat ...
	3.3.2 Targeting adoption to HRUs with high total phosphorus loading rates and to high total phosphorus loading rate HRUs ma ...


	4 Discussion
	4.1 Integrating farmer-actors in watershed modeling of agricultural systems
	4.2 Adoption rates of subsurface P and buffer strips and phosphorus discharges
	4.3 Effectiveness of targeting CP adoption pathways
	4.4 Designing CP adoption programs to improve water quality
	4.5 Future work

	5 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	Supplementary materials
	References


