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Conservation identities of farmers in the Maumee River watershed, derived from farmer surveys, were embedded
into a SWAT watershed model. This was done to improve the representation of the heterogeneity among farmers
in the decision-making process related to the adoption of conservation practices. Modeled farm operations,
created with near field-level Hydrologic Response Units (HRUs) within the SWAT model, were assigned a
modeled primary operator. Modeled primary operators held unique conservation identities driven by their
spatial location within the watershed. Five pathways of targeting the adoption of subsurface placement of
phosphorus and buffer strips to HRUs within the watershed were assessed. Targeting pathways included tar-
geting by HRU-level phosphorus losses, conservation identity of model operators, a hybrid approach combining
HRU-level phosphorus losses and conservation identity of the model primary operator managing the HRU, and a
proxy measure for random placement throughout the watershed. Targeting the placement of subsurface phos-
phorus application to all agricultural HRUs resulted in the greatest reduction in total phosphorus losses (32%)
versus buffer strips (23%). For both conservation practices, targeting by HRU-level total phosphorus losses
resulted in the most efficient rate of phosphorus reduction as measured by the ratio of phosphorus reduction to
conservation practice adoption rates. The hybrid targeting approach closely resembled targeting by phosphorus
losses, indicating near optimal results can be obtained even when constraining adoption by farmer character-
istics. These results indicate that by developing management strategies based on a combination of field-level
information and human-operator characteristics, a more efficient use of limited resources can be used while
achieving near-maximal environmental benefits as compared to managing environmental outcomes solely based
on field-level information.

1. Introduction has on nutrient loading to the Laurentian Great Lakes and, in particular,

to Lake Erie, which has been affected by HABs of increasing severity

Agriculture is a significant source of pollution impairing rivers, lakes,
and oceans across the world (Deknock et al., 2019). This non-point
source pollution can result in numerous environmental challenges
including Harmful Algal Blooms (HABs; Paerl et al., 2018) and hypoxic
dead zones (Porter et al., 2015) that cause socioeconomic problems
globally (McCrackin et al., 2017). The Laurentian Great Lakes are no
exception to these environmental and socioeconomic challenges (Wolf
and Klaiber, 2017; Scavia et al., 2017). To lessen the impact agriculture

since the early 2000s (Stumpf et al., 2016), current policies primarily
promote the voluntary adoption of conservation practices (CPs; Holland
et al., 2020; Kerr et al., 2016). This approach to watershed management
ensures that human decision-makers are instrumental in the adoption
and utilization of CPs to improve downstream water quality. However,
research conducted on the watershed-scale effectiveness of CPs on
reducing nutrient losses does not usually consider these human-actors
and their heterogeneous beliefs and attitudes towards conservation
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(Evenson et al., 2021; Scavia et al., 2017).

Watershed models are a commonly used tool to assess the impact of
agricultural management practices on nutrient runoff at larger scales
than an individual agricultural field (Miller et al., 2020; Liu et al., 2017).
In the Maumee River watershed (MRW), the largest Lake Erie watershed
and the primary driver of HABs in Lake Erie (Stumpf et al., 2016;
Maccoux et al., 2016), watershed models have evaluated the nutrient
reduction benefits of individual and bundled-practice CPs (Martin et al.,
2021; Scavia et al., 2017; Kalcic et al., 2016). Watershed models have
been used to highlight how targeting CPs to fields that contribute the
greatest amount of nutrients to the watershed outlet can be effective in
reducing the impact of agriculture on nutrient and sediment loading
(Martin et al., 2021; Parajuli et al., 2008). While this approach high-
lights variability in biophysical vulnerability, it does not account for the
presence of heterogeneous decision-makers across agricultural land-
scapes. Targeting these hotspots, or critical source areas, in watershed
models is generally a function of landscape characteristics such as slope
and soil types, with decisions about what and where to implement
management practices determined by the modeling team (Martin et al.,
2021; Xu et al., 2019; Scavia et al., 2017). Because landowners and farm
operators who manage these hotspots are not equally likely to actually
implement the necessary practices in the designated locations, these
models might over predict the impact of targeting strategies. This lim-
itation suggests that rather than targeting CPs in watershed models
solely based on the landscape characteristics, modeling teams could
target either (1) By decision-maker characteristics, such as their attitude
towards CPs, age, or gross income, or (2) Through a combination of
landscape and decision-maker characteristics to simulate, more accu-
rately, the probable spatial adoption of CPs in a watershed.

Many factors influence agricultural producers’ beliefs, attitudes, and
actions regarding their field-level management decisions (Liu et al.,
2018; Ulrich-Schad et al., 2017) leading to heterogeneous decisions
made among farmers in a specific region, even when operating in similar
economic, political, and ecological contexts (Karali et al., 2013;
Chouinard et al., 2008). Farmers in the MRW are no exception to this
(Burnett et al., 2018; Zhang et al. 2016). A non-exhaustive list of factors
that influence decisions made by farmers in the MRW regarding their
land management include a farmer’s age, education, experience
farming, and conservation identity (Burnett et al., 2018; Liu et al., 2018;
Burton, 2014). Conservation identity is a strong indicator of a farmer’s
willingness to adopt CPs in the present or in the future, and, has been
found to be the most predictive characteristics of future adoption for
numerous CPs in the MRW (Burnett et al., 2018; Zhang et al., 2016).
Farmers who hold greater conservation identities are more likely to
adopt CPs than farmers with lower conservation identities. Grounded in
identity theory, which indicates that person identities reflect in-
dividuals’ understanding of themselves as having particular traits and
qualities (McGuire et al., 2013), conservation identity is a function of the
“good farmer” identity. Rather than an understanding or perception of
their individual role or a CP’s role in limiting nutrient loss, conservation
identity aims to capture how farmers perceive and understand their own
role as a farmer and what it means to be a “good farmer.” Because
identities of farmers are not necessarily linked to the physical charac-
teristics of the fields they manage, targeting CP adoption to this farmer
characteristic is a more realistic way of assigning CPs than solely
focusing on land characteristics.

The Soil and Water Assessment Tool (SWAT), a common watershed
model used in agricultural settings, generally ignores socio-economic
factors in its modeling framework (Cools et al., 2011). Integrated
modeling frameworks that bridge socio-economic factors and watershed
models (Zomorodian et al., 2018; Liu et al., 2015; Yang et al., 2007),
have been applied in watersheds around the world (Yazdi and Moridi;
2017; Daloglu et al., 2014; Cools et al., 2011) including in the MRW (Liu
et al., 2020; Wilson et al., 2018). Although integrated modeling allows
socio-economic characteristics to be accounted for in watershed models
when using SWAT, these models must be externally linked, which leads
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to a series approach to model integration (Francesconi et al., 2016). In
this series approach, socio-economic models are first developed and
results from these models are then used to drive inputs for scenario
simulations in SWAT.

The goals of this work are to describe an approach to embed the
characteristics of human-operators into a calibrated SWAT model and
evaluate the potential impact of incorporating characteristics of human-
actors in CP targeting simulations. The three objectives of this work are
(1) Create modeled farm operations, (2) Assign conservation identities
based on a farmer survey to decision-makers of the modeled farm op-
erations, and (3) Compare targeting CP placement based on a combi-
nation of field-level phosphorus losses and human-operator
conservation identities to solely targeting by field-level phosphorus
losses.

2. Methods
2.1. Study area

The MRW (Fig. 1) is the largest contributor of phosphorus to Lake
Erie (Maccoux et al., 2016). Row crop agriculture dominates the
watershed landscape, with approximately 80% of the land use in
row-crop agriculture (Ohio EPA, 2010).

2.2. SWAT model

The Soil and Water Assessment Tool (SWAT, revision 635; modified
according to Kalcic et al. (2016)) is a process-based hydrological model
that simulates hydrologic and nutrient fluxes within watersheds (Arnold
et al., 1998). SWAT has been used in watersheds across the world
including within the Great Lakes basins (Martin et al., 2021; Scavia
et al., 2017; Muenich et al., 2016). Within the MRW, SWAT has been
identified as the most appropriate watershed model among various
watershed-modeling frameworks (Gebremarium et al., 2014). A recently
developed and validated version of SWAT was used to simulate
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Fig. 1. The MRW is approximately 17,000 km? in size and spans portions of
Indiana, Michigan, and Ohio.
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hydrology and nutrient dynamics within the MRW (Apostel et al., 2021;
Kast et al., 2021). This SWAT model was satisfactorily calibrated to
nutrient and hydrology parameters between 2005 and 2015 at the USGS
gauge #04193500, Table 1. Daily water quality and stream flow data
used in calibration and validation were obtained from the National
Center for Water Quality Research at Heidelberg University (ncwgr.org).
Although the model was calibrated and validated at the single gauge,
simulation results were compared to Edge-of-Field data of fields located
upstream within the watershed. These comparisons showed the model
was able to capture the range of water quality results upstream of the
watershed outlet (Apostel et al., 2021).

The SWAT model used in this study consists of 24,256 Hydrologic
Response Units (HRUs), the smallest spatial discretization in the
modeling framework. The mean size of agricultural HRUs (84% of HRUs
in the model) is 70.9 ha (175.3 acres), comparable to that of the average
farm-field size in Ohio (72.4 ha), Indiana (106.8 ha), and Michigan
(82.9 ha; USDA, 2017). For further information of model development,
including near field-scale HRU delineation and model calibration and
validation see Apostel et al. (2021).

2.3. Creating modeled farm operations and assigning conservation
identities to modeled primary operators

2.3.1. Modeled farm operations

Modeled farm operations (MFOs), approximating farm boundaries of
farming operations found within the watershed, were created by
aggregating agricultural HRUs. HRUs included in each MFO were con-
strained by the county and model subbasin in which the HRUs were
located thus allowing non-adjacent HRUs to be included in a MFO. Each
MFO included between one and five HRUs, depending on the size of the
operation. Modeled farm operation sizes were stratified within each
county according to the percentage of farms in the county between 1 and
179 acres, 180 and 499 acres, 500 and 999 acres, and 1000 or more
acres, according to the 2017 Agricultural Census (USDA, 2017; Sup-
plementary Material Table S1).

2.3.2. Assigning conservation identities to modeled primary operators
Each MFO was assigned a modeled primary operator (MPO) who
represented the operation’s decision-maker on farm management
practices. A survey of farmers within the watershed was used to derive
characteristics of farmers in the region (Burnett et al., 2018; Zhang et al.,
2016). Conservation identity was measured through seven survey items
each on a 5-point Likert scale (Supplementary Material Table S5). Re-
spondents were asked to rate the importance of each item on their
personal definition of a good farmer from O (not at all important) to 4
(very important; Burnett et al., 2018; McGuire et al., 2015; Arbuckle
et al., 2013). The average score given to the seven survey items by the
respondent was calculated to be the respondent’s conservation identity.
Survey respondents’ conservation identities were grouped by zip code
and aggregated to the county level. The maximum, mean, median, and
standard deviation of conservation identities among survey respondents
were calculated for each county. County-level distributions of

Table 1
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conservation identities derived from this process were used to guide
assignments of conservation identities to MPOs.

The existing CP use on each MFO per county in the calibrated SWAT
model was estimated. Included in this calculation was the use of a cover
crop, a grassed waterway, incorporation of nutrients after application,
subsurface placement of nutrients, and continuous no-tillage on each
HRU within a MFO. A standardized metric of CP adoption was created
by dividing the number of CPs present on a MFO by the number of HRUs
within the MFO. After standardized metrics of CP adoption were
calculated for each model farm operation, model farm operations and
their corresponding CP adoption metric value were segregated by
county. Within each county, MFOs were ranked from the greatest
standardized CP adoption metric to the least. Rankings of standardized
CP adoption metrics among the MFOs were used to assign conservation
identities of MPOs. Three-levels of conservation identities (weak, mod-
erate, and high) were assigned based on this standardized CP adoption
metric and county-level results of conservation identities from the
farmer survey (Supplementary Material Tables S2-S4). The qualitative
descriptors for the three levels of conservation identities were derived
from Burnett et al. (2018). To translate these qualitative categorizations
into quantitative values, it was assumed that measured values were
equally distributed within each level and constrained by the possible
ranges of conservation identities from the farmer survey. Weak conser-
vation identities were assigned a random value between 0.00 and 1.33.
Moderate conservation identities were assigned a random value be-
tween 1.34 and 2.66. High conservation identities were assigned a value
between 2.67 and 4.00. This was completed to link equivalent results of
the farmer survey directly to the farmer conservation identities applied
to MFOs (i.e., a MFO with an operator holding a conservation identity of
2.5 would be equivalent to a farmer respondent with a conservation
identity score of 2.5).

2.4. Targeting CPs to fields

Five alternative targeting approaches were used to apportion two
separate CPs, (1) Subsurface placement of inorganic phosphorus

Table 2
Targeting pathways used to apportion subsurface placement (Subsurface P) of
inorganic phosphorus fertilizer and buffer strips within the watershed.

Targeting Pathway Description

Greatest Phosphorus Loading Rate HRUs The agricultural HRUs with the greatest
P runoff were targeted to receive the CP
The agricultural HRUs with the least P
runoff were targeted to receive the CP
The agricultural HRUs managed by the
modeled primary operators with the
greatest Conservation Identity were
targeted to receive the CP

The agricultural HRUs with the largest
aggregate rank order value were
targeted to receive the CP

Least Phosphorus Loading Rate HRUs

Greatest Modeled Primary Operator
Conservation Identity HRUs

Greatest Phosphorus Loading Rate HRUs
Managed by Modeled Primary
Operators with the Greatest
Conservation Identities

Monthly and daily calibration and validation statistics for the Maumee River SWAT model. All entries met the minimum criteria for ‘Satisfactory’ performance except

monthly and daily sediment PBIAS validation (Apostel et al., 2021).

Statistic ~ Metric for Satisfactory Daily Calibration Monthly Calibration Daily Validation Monthly Validation
Performance (2005-2015) (2005-2015) (2000-2004) (2000-2004)
Flow NSE >0.5 0.87 0.95 0.82 0.86
PBIAS < +15% -0.83 —0.88 —10.03 -10.11
Total Phosphorus NSE >0.35 0.58 0.52 0.46 0.44
PBIAS < +30% -3.76 -3.23 —18.53 —-18.35
Dissolved Reactive NSE >0.35 0.62 0.67 0.63 0.73
Phosphorus PBIAS < +30% 2.03 1.51 -9.89 —10.22
Sediment NSE >0.45 0.65 0.75 0.58 0.70
PBIAS < +20% 1.62 2.06 —27.21 —26.09
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fertilizer (Subsurface P) and (2) Buffer strips, throughout the watershed
(Table 2 and Fig. 2). In each scenario, subsurface placement of inorganic
phosphorus fertilizer was simulated by placing 99% of the fertilizer mass
below the top 1 cm of soil. Buffer strips were sized at 2% of the field
drainage area with 50% being concentrated flow and 25% being fully
channelized.

The first targeting approach selected HRUs estimated to have the
greatest total phosphorus (TP) loading rates in the baseline calibrated
SWAT model, sometimes referred to as “critical source areas” (Evenson
et al,, 2021; Supplementary Material Fig. S1).The second targeting
approach selected HRUs with the least TP loading rates. In these two
approaches, agricultural HRUs were rank-ordered from largest to
smallest TP discharge rates (Supplementary Material Fig. S2). Rank or-
ders with ties were used when two or more HRUs had similar TP
discharge rates. The third targeting approach selected HRUs in MFOs
with MPOs that were estimated to have the greatest conservation
identities (Supplementary Material Fig. S3). For this targeting approach,
conservation identities of MPOs were rank ordered from largest to
smallest. Rank orders with ties were used when two or more HRUs
managed by MPOs had similar conservation identities. The fourth tar-
geting approach selected HRUs with the greatest TP loading rates that
were managed by MPOs with the greatest conservation identities
(Supplementary Material Fig. S4). For this targeting approach, each
HRU rank order from the first and third targeting approaches were
summed. Eleven scenarios that represented increasing adoption rates for
each CP were run for each of these targeting approaches. CP adoption
ranged from the baseline calibrated model adoption rate to 100%
adoption on agricultural HRUs (Supplementary Material Table S6). A
one-to-one line was created for each CP from the adoption endpoints,
Baseline Adoption and 100% Adoption. This one-to-one line was
regarded as a proxy measure of randomly selecting HRUs to receive the
CP, a fifth targeting approach. Unlike the previous four targeting ap-
proaches, this scenario assumes that results would lie on the one-to-one
line between the Baseline Adoption and 100% Adoption scenarios and
was not run directly in the SWAT model. This proxy measure repre-
sented the average results of thousands of simulations in which different
sets of HRUs were randomly selected to receive the CP and was created
in place of simulating a random assignment pathway.

Conservation
practices with
altered
adoption rates

Subsurface
Nutrient
Placement

Buffer -

Strips .

Maumee River
Watershed SWAT
Model (Apostel et

al., 2021)
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3. Results

3.1. Modeled farm operations and modeled primary operator
conservation identities

Across the watershed, 17,297 MFOs were created from the 24,256
HRUs in the SWAT model (Supplementary Material Tables S1 and S4).
Putnam County, Ohio had the largest number of MFOs while Whitley
County, Indiana had the smallest, Table 3. The percentage of MFOs
smaller than 180 acres and greater than 1000 acres varied by county
with Williams County, Ohio having the largest number of MFOs less than
180 acres and Van Wert County, Ohio having the greatest number of
MFOs larger than 1000 acres, Supplementary Material Table S1.

Modeled primary operators in Lucas County, Ohio had the highest
average conservation identity while MPOs in Henry County, Ohio had
the lowest average conservation identity (Supplementary Material
Table S3). Based on the conservation identity categorization presented
in Section 2.3, a majority of the MPOs across the watershed were
assigned a strong conservation identity (77.8%) while 21.0% and 1.2%
of MPOs were assigned moderate and weak conservation identities,
respectively (Supplementary Material Table S2).

3.2. Targeting the adoption of subsurface phosphorus applications and
buffer strips

Increasing the adoption of Subsurface P to 100% of agricultural
HRUs from its adoption rate in the calibrated baseline (8.7%) led to a
31% reduction in March-July TP loads and a 48% reduction in March-
July Dissolved Reactive Phosphorus (DRP) loads (Fig. 3). Increasing
the adoption of buffer strips to 100% of agricultural HRUs from its
adoption rate in the calibrated baseline (31%) led to a 23% reduction in
March-July TP loads and a 19% reduction in March-July DRP loads
(Fig. 4).

Targeting the adoption of both CPs to the HRUs with the greatest TP
loading rates resulted in the highest efficiency (phosphorus reduction/
rate of CP adoption) in achieving phosphorus reductions. As expected,
the lowest phosphorus reduction efficiencies were obtained when tar-
geting the adoption of the CPs to the HRUs with the least TP loading
rates. Targeting both CPs to the HRUs with the greatest MPO conser-
vation identities resulted in similar phosphorus reduction efficiencies as

Targeting by Greatest
Phosphorus Loading
Rate HRUs

Targeting by Least
Phosphorus Loading
Rate HRUs

March-July Total
Phosphorus and

Dissolved Reactive
/ Phosphorus Discharge,
2005-2015 (Figures 3

and 4)

Targeting by Greatest
Modeled Primary
Operator
Conservation Identity
HRUs

Targeting by Greatest
Phosphorus Loading
Rate HRUs Managed
by Modeled Primary
Operators with the
Greatest Conservation
Identities

Fig. 2. Conceptual schematic of simulation process.
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Fig. 3. Reductions of (a) Total phosphorus and (b) Dissolved
reactive phosphorus resulting from the adoption of Subsurface
P by various targeting pathways. The most efficient phos-
phorus reduction rates result from the Greatest P Loss pathway,
which is likely unattainable because of limited information and
farmer participation. Similar phosphorus reduction efficiencies
result from targeting the placement of Subsurface P by a
combination of field-level information as well as farmer in-
formation, which is a more attainable management option. The
maximum difference between the Greatest P Loss and Least P
Loss targeting pathways is at 54.5% adoption of the CP indi-

cating the adoption rate with the greatest uncertainty related
to the effectiveness of the CP on reducing P loads from the
watershed model.

Fig. 4. Reductions of (a) Total phosphorus and (b) Dissolved
reactive phosphorus resulting from the adoption of buffer strips
by various targeting pathways. Similarly to Subsurface P,
achieving phosphorus reduction rates as indicated by the
Greatest P Loss pathway may be unattainable and that target-
ing the placement of buffer strips by a combination of field-
level information as well as farmer information achieves
similar phosphorus reduction efficiencies. The maximum dif-

ference between the Greatest P Loss and Least P Loss targeting
pathways is at 65.5% adoption of the CP, indicating the
) adoption rate with greatest uncertainty related to the effec-

tiveness of the CP on reducing P loads in the watershed model.

J.B. Kast et al.
0%
a) total phosphorus
-10% [
o/
° -20%
£
g 30%
o VT
oM
g _40% 1 1 1 1 1 1 1 1 1 J
i 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
o
©
3
B 0%
14 b) dissolved reactive phosphorus
=
3
0/ |-
o) -20% Targeting Pathway
o
High P Loss
Cons. Id.
-40% [ High P Loss + Cons. Id.
Low P Loss
= == :Random
-60% 1 1 1 1 1 1 1 1 1 ]
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percent of Agricultural HRUs with Practice
0%
a) total phosphorus
-5% I
-10%
-15%
o -20%
£
2 250
@ -25% -
o
£ -30% 1 1 1 1 1
§ 30% 40% 50% 60% 70% 80% 90% 100%
S
°
=
=
& 0%
= b) dissolved reactive phosphorus
8 5%t
o
a
-10%
Targeting Pathway
180 | High P Loss
15% Cons. Id
High P Loss + Cons. Id
-20% - - Low P Loss
= == :«Random
_250/0 | 1 1 1 1 J
30% 40% 50% 60% 70% 80% 90% 100%

Percent of Agricultural HRUs with Practice

randomly selecting HRUs to receive the CPs. Targeting both CPs by
combining consideration of HRUs with large phosphorus losses and
MPOs with high conservation identities resulted in the second highest
efficiency in achieving phosphorus reductions (Figs. 3 and 4). The two
most efficient approaches produced the greatest gains in TP and DRP
load reduction from the initial increases from baseline adoption. In ef-
fect, for the scenario targeting CPs based on high runoff potential, each
1% increase in adoption of Subsurface P from the baseline (8.7%) to
18.5% adoption levels resulted in a decrease of TP loads by 1%. When
conservation identities were considered alongside high runoff potential,
each 1% increase in adoption of Subsurface P decreased TP loads by

0.77% as adoption rose from 8.7 to 18.2% of agricultural land area. This
was expected because initially these practices were applied to fields with
the greatest losses and thus where they would realize the greatest re-
ductions. Similar trends were observed for DRP reductions for Subsur-
face P and for both TP and DRP reductions for buffer strips although the
magnitudes of the decreasing phosphorus loading rates differed (Figs. 3
and 4).
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3.3. Impacts of watershed-scale CP adoption efficacy in reducing
phosphorus losses

3.3.1. Targeting adoption to HRUs with the greatest total phosphorus
loading rates compared to other simulated targeting pathways

Since adoption rates of 54.5% for Subsurface P and 65.5% of buffer
strips, respectively, resulted in the greatest difference in phosphorus
reductions between targeting pathways, this adoption level was used to
compare differences due to targeting options (Figs. 3 and 4). Targeting
by the least phosphorus loading rates, as compared to targeting by the
greatest phosphorus loading rates, resulted in approximately between
10 and 20% more TP and DRP discharged from the watershed. Targeting
by the greatest phosphorus loading rates HRUs managed by MPOs with
the greatest conservation identities resulted in approximately between
0.5 and 1.5% more TP and DRP discharged from the watershed, as
compared to targeting by the greatest phosphorus loading rate HRUs
(Fig. 5).

3.3.2. Targeting adoption to HRUs with high total phosphorus loading rates
and to high total phosphorus loading rate HRUs managed by modeled
primary operators with high conservation identities compared to simulated
targeting pathways

The adoption rate of Subsurface P across the watershed with the
largest difference in phosphorus reduction between targeting HRUs with
the greatest TP losses to those with the greatest TP losses managed by
MPOs with the greatest conservation identities (28% adoption of Sub-
surface P) resulted in TP and DRP losses differing by 2.7% and 1.9%,
respectively (Fig. 6). The adoption rate of buffer strips across the
watershed with the largest difference in phosphorus reduction between
targeting HRUs with the greatest TP losses to those with the greatest TP
losses managed by MPOs with the greatest conservation identities (48%
adoption of buffer strips) resulted in TP and DRP losses differing by 2.8%
and 1.5%, respectively (Fig. 6).

4. Discussion

4.1. Integrating farmer-actors in watershed modeling of agricultural
systems

Developing MPOs using results from stakeholder surveys and directly
embedding them into a watershed model is a novel approach for

Difference between
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integrated modeling analyses. In particular, the approach developed and
used in this study is unique for evaluating the efficacy of CP adoption in
agriculturally dominated watersheds. This approach allowed for repre-
senting over 17,000 unique MPOs. This large number of unique actors,
or decision-makers, contrasts with the limited number of actors repre-
sented in agent-based models (ABMs) that have been integrated with
watershed models. Ng. et al. (2011) integrated an ABM with a SWAT
model of the Salt Creek watershed in Central Illinois; however, only 50
farmers were represented in the ABM due to the long computational
time needed to run the model. In Ohio’s Sandusky Watershed, Daloglu
etal. (2014) grouped the farmer agents into four farmer types that drove
parameters influencing their adoption decisions in the ABM. Although
this work developed methods to allow for a large number of unique
actors a limitation is that these actors could not interact or learn from
one another, a benefit common to ABMs of socio-ecological systems
(Lippe et al., 2019; Daloglu et al., 2014; Ng et al., 2011).

While an ABM has not been integrated with a model of the MRW,
prior research has coupled economic and farmer behavioral attitudes
with watershed models. Liu et al. (2020), focused on coupling a
behavioral-economic model with a SWAT model of the MRW to assess
how increases in cost-share payments for CP adoption and fertilizer
taxes would affect nutrient losses within the watershed by way of
increasing CP adoption. Martin et al. (2021) ran scenarios in SWAT
models of the MRW guided by results from a survey of farmers in the
watershed. Wilson et al. (2018), integrated results from a farmer survey
taken within the MRW to a SWAT model of the MRW to assess how
changes in farmer efficacies regarding cover crops and subsurface
placement of nutrients reduce phosphorus discharge at various adoption
levels of filter strips. This work improves upon these prior efforts in the
MRW to develop a watershed model that includes socio-behavioral in-
formation of farmers in the watershed while also providing a basis to
further simulate how socio-behavioral characteristics of farmers in the
watershed can affect CP adoption and resulting changes in nutrient
discharges, through the addition of MFOs and MPOs.

4.2. Adoption rates of subsurface P and buffer strips and phosphorus
discharges

Increasing the adoption of Subsurface P to 100% resulted in 1.3-
times and 2.1-times greater TP and DRP reductions from the water-
shed than by increasing the adoption of buffer strips across the

Difference between
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HRUs and Greatest P
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HRUs and Greatest
Modeled Primary
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Fig. 5. Percent difference in March-July TP and DRP loads discharged from the watershed through various targeting methods for subsurface placement and buffer
strips at adoption rates resulting in maximum differences between the targeting methods (54.5% for subsurface placement and 65.5% for buffer strips). Results from

the Greatest Phosphorus Loading Rate HRUs are used as the basis for comparisons.
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watershed to 100%. Comparing DRP and TP, at 100% adoption of
Subsurface P, DRP loss reductions were 1.5 times greater than TP loss
reduction. In contrast, DRP loss reduction were 1.2 times less than TP
loss reduction at 100% adoption of buffer strip indicating that buffer
strips are more effective at reducing TP losses than DRP losses. This
result agrees with Roberts et al. (2012) which found that buffer strips
affected TP losses more than DRP losses in a variety of locations. Within
the MRW, numerous watershed modeling studies have found that
placing fertilizer nutrients in the subsurface is the most effective single
in-field or edge-of-field practice in reducing nutrient runoff from the
watershed at 100% adoption rates (Martin et al., 2021; Scavia et al.,
2017). Results from this study confirm this result and show that across a
spectrum of adoption rates, subsurface placement of P is more effective
at reducing phosphorus discharge than buffer strips. Although subsur-
face placement of P was the more effective practice at reducing phos-
phorus discharge from the watershed, buffer strips provide additional
environmental benefits that may be of interest to landowners and op-
erators. These additional benefits include reducing soil erosion,
providing greater soil moisture contents, and stabilizing ditch and river
channels (Cole et al., 2020; Kavian et al., 2018; Borin et al., 2010).

4.3. Effectiveness of targeting CP adoption pathways

As expected, targeting Subsurface P and buffer strips to HRUs with
the greatest TP loading rates resulted in greater decreases in TP and DRP
discharges from the watershed than randomly applying the CPs across
the watershed (Martin et al., 2021; Scavia et al., 2017) and was the most
efficient pathway in reducing nutrient losses. Although this pathway
was the most efficient pathway in reducing TP and DRP across the
watershed, limitations such as a lack of knowledge of the locations of
these highest P loss fields in the environment affect the practicality of
this approach to watershed management. Targeting the adoption of CPs
to HRUs managed by MPOs with high conservation identities and
through random selection had similar phosphorus reduction efficiencies.
One explanation for these similar phosphorus reduction efficiencies is
the little relation between farmers’ conservation identity and runoff
from their fields. Although farmers’ psychological characteristics related
to their identity as a farmer affects the practices used on their farms

(Burnett et al., 2018; Zhang et al., 2016) they cannot greatly influence
the physical features of their landscape (e.g., slope or soil type).
Although these two targeting methods showed similar effectiveness in
reducing TP and DRP losses, targeting by conservation identity resulted
in slightly more advantageous outcomes. This may be due to model
development, the linking of conservation identities to model farm op-
erations, and the systematic selection of HRUs with greater amounts of
CPs present through the targeting method than through the random
adoption process.

4.4. Designing CP adoption programs to improve water quality

Although targeting the adoption of CPs across the watershed by the
TP losses from individual fields (HRUs) resulted in the most efficient
pathway of reducing TP and DRP losses, economic, social, and political
challenges exist in prioritizing these fields to receive CPs. One challenge
in targeting CPs to these high phosphorus loss fields is identifying their
locations. Although a variety of factors affect phosphorus runoff from
agricultural fields such as fertilizer application methods and precipita-
tion (Endale et al., 2019; Hanrahan et al., 2019), field-level character-
istics are important in governing nutrient flow dynamics. For example,
fields with high soil test phosphorus values have been found to
contribute more phosphorus downstream than fields with low soil test
phosphorus values (Duncan et al., 2017) indicating they are potential
critical source areas of nutrient losses. This field-level data is generally
proprietary information, which can lead to a lack of publicly available
knowledge of where these high soil-test phosphorus fields are in the
landscape. Because federal CP adoption programs are generally
designed on a first-come, first-serve basis (Talberth et al., 2015), farmers
with fields with the greatest risk of phosphorus loss may not have the
chance or may decide to not enroll in a program.

Economic and social-psychological factors contribute to a farmer’s
willingness to participate in voluntary CP adoption programs (Yeboah
etal., 2015; Reimer and Prokopy, 2014). These factors also contribute to
the willingness of farmers within the MRW to adopt various CPs to
reduce phosphorus discharged to Lake Erie. In this setting, farmers with
higher conservation identities are more likely to adopt various CPs
(Burnett et al., 2018; Zhang et al., 2016). Thus, within the MRW, TP and



J.B. Kast et al.

DRP loss reductions due to increasing CP adoption rates likely more
closely resemble TP and DRP reduction pathways as indicated when
targeting by MPO conservation identities than the most efficient
pathway of targeting by high P loss HRUs in the future (Figs. 3 and 4).
This likely implies that in agriculturally dominated watersheds more
efficient nutrient reduction pathways exist as the amount of phosphorus
a field discharges is not the sole factor in a farmer determining whether
to adopt a CP to reduce the nutrient discharge. However, if CP adoption
programs, whether at the federal, state, or local level, focus on recruiting
farmers that have high phosphorus loss fields and who have a strong or
high conservation identities similar efficiencies in nutrient reductions
can be achieved as by targeting CPs only to the greatest phosphorus loss
fields (Figs. 3 and 4). An example of this approach to watershed man-
agement at the federal level is the Western Lake Erie Basin Initiative of
the United States Department of Agriculture’s Natural Resources Con-
servation Service (USDA-NRCS). Through this initiative, the
USDA-NRCS screens applicants for funding through NRCS Environ-
mental Quality Incentives Program (EQIP) with the applicants whose
land is fully within the watershed and is vulnerable to nutrient discharge
(i.e., higher soil test phosphorus values) being given higher ranking for
funding (NRCS, 2016a, 2016b).

4.5. Future work

Although conservation identity has been shown to be a strong pre-
dictor of future CP adoption (Burnett et al, 2018) other
socio-psychological, demographic, and economic conditions have been
found to affect conservation decisions made by farmers (Prokopy et al.,
2019; Liu et al., 2018). Using farmer surveys of the MRW, demographic
factors such as age and gender and socio-psychological factors such as
perceived conservation practice effectiveness at reducing nutrient losses
can be linked with MPO conservation identities at the county-level to
add further heterogeneity. With these more complete MPOs, an
agent-based model can be developed to allow these heterogeneous
MPOs to interact and learn from each other. Further, economic analyses
on the cost-effectiveness of programs aimed to capture CP adoption
trends presented in the targeting pathways can be completed. These
economic analyses will provide policy insight for CP adoption programs
that are most cost-effective in terms of their ability to reduce phosphorus
losses from a watershed.

5. Conclusion

With limited financial resources, it is critical to develop programs
that distribute support for CP adoption in ways that generate greater
returns in terms of improved water quality. Agricultural CP programs
that recruit farmers using dual criteria- targeting the highest phosphorus
loading fields as well as those who are most willing to participate in CP
programs- can nearly achieve the same phosphorus discharge reduction
as programs that focus primarily on placing CPs on fields with the
greatest phosphorus loss. An approach that accounts for behavioral
factors in responses to program incentives is likely much more realistic
than believing that all farmers are equally likely to implement conser-
vation practices on their fields. In the MRW, as in other watersheds,
locations of these high phosphorus discharge fields (or high conserva-
tion identity farmers) are not always known; however, effective
outreach and programming can counteract this gap in knowledge by
focusing on farmers who manage fields with higher soil phosphorus
values and who hold favorable dispositions towards adopting CPs. This
approach is particularly important in efficiently achieving downstream
water quality improvement in schemes that rely on the voluntary
adoption of CPs, as is the case in the MRW and throughout much of the
world.
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