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Abstract 17 

Storage is an important technology for low carbon and sustainable energy systems. As storage is 18 

integrated into grids through policies or market forces, it has an effect on the dispatch, 19 

economics, and retirement of other generators. While the complementary relationship between 20 

storage and renewables is well-known, the effect of storage additions is not necessarily focused 21 

only on new renewables. This work models the effects of economic operation of new energy 22 

storage on the generation, operating income, and retirement of other electricity generators. We 23 

consider system effects at three levels of increasing complexity. First, we evaluate the marginal 24 

effects of storage on generation sources based on historical electricity prices and the generation 25 

mix for the year 2016. In this case, storage is modeled as a price-taker, and its actions do not 26 

affect market prices or change which generators operate at the margin. Second, we use a dispatch 27 

model to study bulk storage with capacities up to 15% of average demand in New York 28 

Independent System Operator (NYISO), Midcontinent ISO (MISO), and California ISO 29 

(CAISO), allowing storage to shift dispatch patterns and affect the operation and income of 30 

existing generators. Third, we examine the mid- and long-term effects that storage has on the 31 

generation fleet by accounting for the retirement of power plants that lose sufficient annual 32 

revenue due to the additional storage. Results suggest that new storage increases coal generation 33 

and decreases natural gas generation in the West and Midwest, and increases natural gas 34 

generation and decreases coal generation in New England, and California. With bulk storage in 35 

the system, the operating income of all other generating units is reduced unless retirement is 36 

included. With retirements considered, the least flexible baseload units—coal and nuclear—gain 37 

the most operating income with storage in MISO and NYISO. In California, solar gains the most 38 

operating income as storage is added. In all cases, power plants operating with gas turbines using 39 

natural gas lose the most operating income as they are offset by storage during the discharge 40 

phase and retired in the long term. 41 
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1. Introduction and Literature Review 46 

As the costs of grid-scale electricity storage (‘storage’) decline, the technology is increasingly 47 

being used for power sector applications. Potential grid services in which storage might provide 48 

value include shifting energy generation surplus so as to better align it with demand, improving 49 

reliability by providing capacity to meet peak load, or increasing stability and flexibility through 50 

ancillary services, among others [1,2]. The flexibility provided by storage is also seen as a 51 

pathway for the adoption of higher levels of renewable electricity sources, thus facilitating 52 

decarbonization of the power sector [3–5]. Despite these opportunities, in many instances the 53 

potential compensation for providing this value to the grid provides insufficient revenue to 54 

compensate storage owners or developers [6,7]. As a result, policymakers in the U.S. have 55 

sought to encourage the development and deployment of storage, with at least 15 states enacting 56 

procurement mandates or financial incentives for storage [8–10]. 57 

 58 

Whether integrated by mandate or market forces, the system value that storage realizes—through 59 

the provision of grid services, investment deferment, emissions reductions, or other 60 

mechanisms—is highly dependent on the attributes of the storage, how it is operated, and the 61 

context of the system into which it is introduced [1,2,7,11,12]. For example, although storage 62 

may help to enable long-term decarbonization strategies, studies have found that adding storage 63 

to existing grid mixes can actually increase emissions [13,14]. The sign and magnitude of these 64 

effects are determined by the characteristics of the system and can change as the system evolves; 65 

for instance, several studies have found that storage increases emissions reductions in current 66 

grid mixes but reduces them for future fleet mixes with higher renewable penetrations [15,16]. 67 

As a result, it is important for policy makers to evaluate the current or potential future benefits 68 

that proposed storage projects or policies would bring.  69 

 70 

There are two important dimensions to consider when evaluating the system impact of storage in 71 

current or future systems. The first dimension is uncertainty about near-term conditions on the 72 

grid, such as near-future electricity prices, the need for ancillary services, or the amount of 73 

available wind and solar generation. Storage devices can be modeled with “perfect” knowledge 74 

about the entire modeled period so that they can optimally plan operation or with “imperfect” 75 

dynamic forecasts (using stochastic optimizations) that are updated as time progresses in the 76 

model [17]. The former is easier to program and provides an upper limit to the effects of storage 77 

while the latter is more realistic. A second dimension from which to consider storage impacts is 78 

related to its effect on market dispatch and prices. One approach is to model storage devices as 79 

“marginal” relative to other generating sources, and thus unable to significantly affect market-80 

clearing prices (i.e. storage as a price-taker). Such analysis is typically done when evaluating the 81 

profitability of small amounts of storage or assessing its near-term impacts at various locations, 82 

often using historical pricing data [13,18,19]. Alternatively, storage operations can be modeled 83 

so as to account for their impact on power plant dispatch and market-clearing prices. Throughout 84 

this document, we call such storage systems “bulk storage”, which here refers to a modeling 85 

approach that allows storage to affect the dispatch of other generators (as well as clearing prices 86 
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and income). Because storage benefits from energy arbitrage—buying electricity at low prices 87 

and selling at high prices—the economic operation of storage can displace peaking resources. 88 

These typically expensive peaking units set the wholesale electricity price in the hours of highest 89 

net demand, so the addition of bulk storage reduces peak prices. This price suppression tends to 90 

reduce profitability for all generators in the short term and may even force additional plant 91 

retirements in the mid- to long-term [20,21]. A reverse effect can occur in off-peak periods as 92 

storage charges, though the magnitude of that price effect is usually much smaller. 93 

 94 

While economic dispatch models should explicitly capture the various ways storage can affect 95 

market operations, they are more difficult to develop, can be computationally intensive, and 96 

cannot perfectly reproduce present-day observations. As a result, these studies have often been 97 

limited to one region of analysis. In contrast, models where storage effects are marginal fail to 98 

capture all of the possible effects of storage but are often based on realistic historical data and are 99 

typically easier to calculate for many locations. Hence, comparison between these two 100 

approaches, as we provide here, can offer informative triangulation between two imperfect 101 

methods. 102 

 103 

Since storage typically charges in off-peak hours and reduces ramping, it tends to increase 104 

generation from units that are less flexible and have traditionally been operated with little hour-105 

to-hour variation in output [15,22]. A study by Denholm et. al. showed that adding bulk energy 106 

storage increases the generation of base-load marginal power plants such as coal and combined 107 

cycle units by 0.6% while decreasing generation from combustion turbines by about 1.5% [7]. 108 

Similarly, Zamani et al. calculated the effects of storage as a price-maker on the Alberta grid 109 

system, concluding that generation from coal and natural gas combined cycle (NGCC) would 110 

increase but the revenues of all power plants would decrease due to a steep decrease in wholesale 111 

electricity prices [20]. However, these studies do not explore how results might vary across 112 

different regions with different grid mixes or compare results from different methods of analysis.  113 

 114 

Our work uses both a marginal and a more detailed treatment of large-scale storage (‘bulk 115 

storage’) in order to discern the effects of storage on the operating income and generation of 116 

renewables and other generating units. We explore these system effects using three models of 117 

increasing complexity. First, we assess the marginal effects of storage on the change in 118 

generation based on 2016 electricity prices and generation mixes across 22 eGRID regions of the 119 

U.S. Here, we capture the dynamics of actual grid operation but not any change in price or profit 120 

of the other generators; this approach is appropriate if the additional storage is of a marginally 121 

small capacity and the grid mix is similar to the year 2016. Second, in order evaluate the effect of 122 

bulk storage on the operating income of other generators, we employ a simulated dispatch model 123 

with bulk storage capacities (up to 15% of the average demand) for three important U.S. 124 

electricity grids (CAISO, MISO, NYISO). Here the effect on prevailing prices and dispatch is 125 

modeled directly, as storage affects the operational patterns of other generators as well as the 126 

market clearing prices. Finally, in order to understand mid- and long-term system impacts, we 127 

consider the potential for plant retirements due to eroded operating income from the entrance of 128 
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storage, which may in fact benefit plants that remain open. This strategy of increasing 129 

complexity in the modeling approaches is useful for comparative purposes but also reflects the 130 

shifting effects that storage may have over time as it moves from marginal deployments to a 131 

scale that forces retirement of existing peaking generators. To our knowledge, this is the first 132 

investigation that compares the impacts of energy storage on the grid at different levels of 133 

modeling complexity as well as different grid mixes.   134 

2. Methods 135 

In the first part of this work, we estimate the impact of storage on net generation using actual 136 

electricity prices and the probability of a particular type (technology) of generator operating as 137 

the marginal generator (‘marginal generator factors’) at a given time from 22 different eGRID 138 

regions. A linear programming model is used to optimize the storage operation using the clearing 139 

prices in a perfect information model, and the marginal generator factors provide information on 140 

the type of generators operating when storage charges and discharges. In the second part, we 141 

explore the same question using a different approach; here we employ a capacity 142 

expansion/dispatch model to calculate the change in operating income with and without storage 143 

(up to 15% of average demand) for three different regions: the Midcontinent Independent System 144 

Operator (MISO), the New York Independent System Operator (NYISO), and the California 145 

Independent System Operator (CAISO). We simulate bulk storage additions using an iterative 146 

optimization of storage within the dispatch model. Finally, in the third part we add retirement of 147 

revenue-losing generators after each addition of storage. In this case, the plants that lose the most 148 

revenue are retired while retaining the same amount of firm capacity. Each of these models and 149 

their assumptions are detailed in sections 3-5 below. 150 

3. Effect on generation: price-taker model 151 

3.1. Model formulation 152 

In this model, we treat storage as an energy arbitrage device used to move bulk energy from low 153 

price/demand periods to high price/demand periods, simulating energy arbitrage or peak demand 154 

management. Our treatment of storage applies to operations at utility scale in power networks, 155 

though distributed storage may behave in the same way if it is exposed to a rate structure or 156 

control scheme that motivates similar behavior. Given that a significant percentage (88%) of 157 

storage capacity in the US operates on arbitrage [23], provision of other grid services from 158 

storage, e.g. frequency regulation, is outside of the current scope. While storage can never 159 

actually have perfect information about future prices, several studies have identified a variety of 160 

algorithms that can attain 85% or more of the hypothetically perfect revenue and result in similar 161 

operational patterns [6,21,24–27].  162 

 163 

Storage systems are described by two primary parameters: round-trip efficiency and charge rate. 164 

Round trip efficiency is the ratio of energy output from storage against the quantity of energy 165 

required to charge it and is set to 80% as the base-case value for the analysis. Charge rate reflects 166 

how rapidly the storage system can charge and discharge energy, measured here in terms of the 167 
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minimum time needed for complete charge/discharge; we parameterize this using a value of 4 168 

hours, based on the average charge duration of the current energy storage projects in the U.S. 169 

[23]. We mainly discuss storage in power capacity (MW) terms in this work because we compare 170 

storage capacity to generation capacity in the third analytical approach, but power capacity of 171 

storage can be converted to energy capacity (MWh) by multiplying by charge duration (4 h). 172 

 173 

The formulation of storage operation as a price-taker, given perfect information, is a 174 

maximization problem as shown in Eq. 1. 175 

 176 

Objective function:  

 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = 𝑚𝑎𝑥(− ∑ 𝐶𝑡𝐸𝑡
8760
𝑡=1 )       Eq. 1 

Subject to:  

𝑆0 =
𝑆𝑚𝑎𝑥

4
      Eq. 2 

∀𝑡, 𝑆𝑡 = 𝑆𝑡−1 + 𝐸𝑡 × √𝜂  , 𝑖𝑓 𝐸𝑡 > 0  Eq. 3 

∀𝑡, 𝑆𝑡 = 𝑆𝑡−1 +
𝐸𝑡

√𝜂  
 , 𝑖𝑓 𝐸𝑡 < 0 

 Eq. 4 

 

∀𝑡, 0 ≤ 𝑆𝑡 ≤ 𝑆𝑚𝑎𝑥 Eq. 5 

∀𝑡, −𝑅 ≤
𝐸𝑡

ℎ𝑜𝑢𝑟
≤ +𝑅      Eq. 6 

Where, Ct – price of electricity in hour t ($/MWh), 

Et – electricity bought (positive) or sold (negative) by the storage (in 

MWh), 

So – initial state of charge of storage (in MWh) 

St – state of charge in hour t (in MWh)  

Smax – maximum state of charge of storage (in MWh)  

𝜂 – Round-trip efficiency of storage   

R – Max Charge/discharge rate (in MWh/h) 

t – hour in a year (1 to 8,760)  

 

 177 

Note that the revenue does not depend on capital cost, as this does not affect optimal operation. 178 

In the model, positive ‘Et’ indicates energy bought (charging) by the storage, and negative ‘Et’ 179 

indicates energy sold (discharging). The storage system is arbitrarily assumed to start with a 25% 180 

state of charge, given by ‘So’ (in MWh) as shown in equation Eq. 2. This is a typical value for 181 

state of charge carried over the midnight hour and has little effect on overall operation, which 182 

occurs over a full year from this point. St (in MWh), the state of charge in each hour, is always 183 

less than or equal to the maximum amount of charge attainable by the storage, given by ‘Smax’ in 184 

Eq. 2. The round-trip efficiency, ′𝜂′ , is equally divided between charge and discharge cycles in 185 

Eq. 3- Eq. 4 [13].  In any hour, energy in/out (‘Et’) ranges between the maximum 186 

charge/discharge rate, ‘R’ (% of MW/h) as shown in Eq. 6. 187 

 188 
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3.2. Marginal generator factors and pricing data 189 

 190 

We use pricing data from the relevant Independent System Operators (ISOs) across the 22 191 

eGRID regions of our analysis, taken from the relevant ISOs, and averaged out to hourly values 192 

in all cases. [28–34]. Additional detail on these data is provided in section 1 of the SI. 193 

To estimate which generators are used to charge (and are displaced by) storage with the price-194 

taker model, we use “Marginal Generator Factors” (MGFs), which represent the likelihood that a 195 

specific generation technology type is the marginal generator in a given hour.  For example, in 196 

MISO, during a typical summer day, a marginal increase in demand of 1 MWh at noon is 197 

approximately 60% likely to come from coal, and 40% likely come from a natural gas-based 198 

power plant. The likelihood of a generator operating on the margin at a given time depends upon 199 

the mix of generators in that region, the price of fuels, and demand at that time. Because the data 200 

inputs used to calculate these MGFs come from actual operation of generators, this method 201 

reflects the way that generators are actually dispatched rather than how they ought to be 202 

dispatched based upon modeled assumptions. 203 

 204 

To calculate MGFs for the various subregions in a given hour, we used data from the EPA’s 205 

Continuous Emissions Monitoring System (CEMS) from 2016. CEMS provides hourly 206 

emissions and generation data from all thermal generating units greater than 25 MW, as well as 207 

data on primary fuel input. From the CEMS data, we aggregate to the plant level and build a new 208 

dataset tracking the change in generation by power plant between one hour and the next. We then 209 

select plants in each hour with more than a 5 MW increase or decrease in generation between 210 

any two adjacent hours—these plants are said to be “on the margin” for that given hour. The 5 211 

MW cutoff is chosen because we are searching for the plants that are changing output in 212 

response to market or demand changes: we want to filter trivial or incidental shifts in power 213 

output. For example, a 400 MW capacity thermal generator might have a measured output of 398 214 

MW in one hour and 399 MW the next hour, but both of these are effectively “maximum 215 

capacity” and the shift of 1 MW doesn’t suggest that the plant is responding to market 216 

conditions. The 5 MW cutoff was selected to be small relative to the size of power plants 217 

(minimum of 25 MW in this dataset) but large enough to filter incidental shifts in output.  218 

Using this subset of marginal plants, we then aggregate plants by fuel type to determine the net 219 

amount of generation increase/decrease for each fuel as shown in Eq. 7. Because we do not know 220 

in advance whether storage will charge (and increase output from marginal generators) or 221 

discharge (and decrease generator output), marginal factors of each fuel (‘f’) between one hour 222 

and the next (‘∆t’) are calculated from the absolute values of change in generation by fuel (Eq. 223 

8). 224 

 225 

 226 



 7 

 𝑛𝑒𝑡 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑓,∆𝑡

=  ∑ 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑝,𝑓,∆𝑡

𝑝

− ∑ 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑝,𝑓,∆𝑡

𝑝

  

Eq. 7 

 
𝑀𝐺𝐹𝑓,∆𝑡 =

|𝑛𝑒𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑓,∆𝑡|

∑ |𝑛𝑒𝑡 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛|𝑓
  ∀ 𝐿𝑀𝑃 ≥ 0, 

Eq. 8 

  

𝑀𝐺𝐹𝑓,∆𝑡 = 100% 𝑟𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒𝑠 ∀ 𝐿𝑀𝑃 < 0 

 

Where: f – fuel type 

∆t – change in one hour and next hour 

p – individual power plant 

net marginal generation – net generation on margin (MWh) 

increase – Power plants increasing generation (MWh) 

decrease – Power plants decreasing generation (MWh) 

LMP – Locational Marginal Prices 

 

 227 

This aggregation provides us with the total change in generation in each hour (in MW) as well as 228 

the percentage of that change coming from coal, natural gas, biomass, and oil in each hour 229 

(MGFs). 230 

 231 

There are some limitations with this data collection method. First, this data does not capture 232 

changes in generation from non-fossil generation, such as nuclear or renewable sources.  In order 233 

to account for changes from renewables, we assume that they are on margin only when the 234 

electricity prices are zero or negative (Eq. 8). In general, renewables are less likely to be on the 235 

margin in present-day systems. For example, renewables were on the margin in California for 236 

2% of the total hours in 2016 [31]. While we don’t explicitly model operating constraints or 237 

physical system limitations, because MGFs are based on observed data of how generators 238 

actually change their output in response to changes in demand, they should be a good reflection 239 

of real-life operational limitations such as transmission, ramping, or must-run status. 240 

3.3. Estimating net change in generation  241 

Under arbitrage operation, storage charges when the prices are low and discharges when the 242 

prices are high. An 8 MW (24 MWh) storage capacity with a round trip efficiency of 80% is 243 

assumed for the price-taking model (though scale of storage is not relevant under this price-taker 244 

model as long as it is sufficiently small that is doesn’t affect the market). 245 

 246 

Fuel type used/displaced when the storage charges and discharges is determined from the MGFs 247 

of the fuel types at a given hour. Based on the MGFs and the storage operation, we determine the 248 

fuel mix of the marginal generators during storage charge and discharge periods, per unit of 249 

energy delivered from the storage. Total energy delivered from the storage is the summation of 250 

total discharge from the storage (‘E’) (Eq. 9). Because of the roundtrip efficiency losses, energy 251 

used by the storage is always greater than the energy delivered from the storage. For example, 252 
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for a roundtrip efficiency of 80%, storage requires 1.25MWh of energy to deliver 1MWh of 253 

energy. Net energy used for each fuel type per unit of energy delivered from the storage (‘NFf’) 254 

is estimated from the sum of fraction of fuel used during the charge phase (‘Px>1’) and the 255 

fraction of fuel used during the discharge phase (‘Px<1’) per unit of energy delivered from the 256 

storage as shown in Eq. 10. This is to account for generation types (coal, for example) that are 257 

both used to charge storage and offset by storage during discharge. 258 

 259 

 260 

 𝐸 =  − ∑ 𝑃𝑡

𝑡

  Eq. 9 

 
𝑁𝐹𝑓 = ∑

∑ 𝑀𝐹𝑓,∆𝑡 ∗ 𝑃𝑡 𝑡

𝐸
  

Eq. 10 

   

Where: f – fuel type 

t – hour 

P – Energy delivered by storage in a given hour t (MWh/h) 

P >1 for storage charge and P<1 for storage discharge 

E – Total energy delivered from storage (MWh) 

MF – Fraction of fuel type used per MWh delivered energy  

NF – Net fraction of fuel type used per MWh delivered energy 

 

 261 

4. Net change in short-term operating income 262 

Small capacities of storage are price takers and do not have a significant effect on electricity 263 

prices or operating income/operation of the other generators. This no longer holds as larger 264 

amounts of storage (bulk storage) are added to a system, so we use a dispatch model to 265 

understand the effect of bulk storage capacity additions to the system.  266 

4.1. Economic dispatch model  267 

We combine an economic dispatch model and arbitrage operation of the storage to estimate the 268 

operating income to all generators before adding storage up to 15% of mean demand. This level 269 

was chosen to represent an ambitious but plausible level of mid-term storage deployment. 270 

Additionally, we observed that after approximately 15%, the additional energy needs of storage 271 

required additional generation capacity. Scaling storage to mean demand in a system was chosen 272 

to make results comparable across electricity systems of different sizes. This results in maximum 273 

storage capacities of approximately 3,000MW (12,000MWh) in MISO, 2,500 MW (10,000 274 

MWh) in CAISO, and 2,000 MW (8,000 MWh) in NYISO. 275 

 276 

An economic dispatch model determines the lowest-cost operation of generating facilities that 277 

can reliably meet a given demand within the generators’ ramping constraints [35] and simulates 278 

the market clearing prices for electricity. These electricity prices are used in an optimization 279 

model to determine the schedule for storage operation, considering the effects of bulk storage on 280 
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electricity prices. The model is based on prior work integrating storage into an economic 281 

dispatch model [36]. 282 

 283 

The economic dispatch model is the first block of our framework (Fig. 1) used to generate 284 

electricity clearing prices, which are used as an input to model the operation of the storage.  We 285 

assume an economic dispatch of generators, where generating facilities place bids based on their 286 

marginal costs. After placing bids, ISOs dispatch power plants sequentially from lowest to 287 

highest bid, within the ramp rate constraints of each generator, until electricity demand is fully 288 

met. This enables determination of hourly market clearing prices. The clearing price is the bid 289 

price at which the last unit of electricity is supplied to meet the total demand.  290 

  291 
Fig. 1 Flowchart of the framework to evaluate the net operating income per unit capacity of the power plants after 292 

adding bulk storage. The model produces a "no-storage" time series of prices, simulates storage operation, then 293 
calculates the net operating income per unit capacity ($/MW) of the power plants with and without energy storage. 294 

For simulating bulk storage operation, we use an iterative dispatch optimization, considering the effect of storage on 295 
prices. 296 

 297 

The dispatch model includes ramping constraints but does not include transmission constraints.  298 

The reference electricity demand is taken from market data available from NYISO, CAISO, and 299 

MISO for 2016 [29,32,37]. The fleet of power plants for electricity generation are taken from 300 

EPA's eGRID database [38] and the marginal cost (assumed as bid price) of operation for each 301 

power plant is calculated based on the power plant’s heat rate [38], subsequent fuel costs (Table 302 

1), and variable O&M costs (Table 2) [39].  303 

 304 

The Marginal Cost (‘MC’) given in $/MWh is the summation of the fuel cost incurred per MWh 305 

and the variable O&M costs per MWh as shown in Eq. 11. The Heat Rate (‘HR’) for each power 306 

plant—expressed in Btu/kWh and based on data from eGRID [38]— is used to estimate the fuel 307 
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cost incurred to generate one unit of energy in MWh. Variable O&M costs for each power plant 308 

are considered based on the generator type and the primary fuel used for the generation of 309 

electricity (Table 2). A summary of data sources used in the economic dispatch model are 310 

provided in Table S2 of the SI.  311 

 312 

 313 

 𝑀𝐶 ($/𝑀𝑊ℎ) = 𝐻𝑅 ∗
𝑃𝑟𝑖𝑐𝑒

1000
+ 𝑂&𝑀  Eq. 11 

Where, MC – marginal cost of operation of a power plant ($/MWh),  

𝐻𝑅 – heat rate (in Btu/kWh),  

Price – national average spot price of fuel (in $/MMBtu), and 

O&M – variable operations and maintenance cost of the power plant 

(in $/MWh).  

 

 

Table 1 and Table 2 show fuels costs and variable O&M costs, respectively, used in the 314 

modeling.  315 

 316 

Table 1. Average fuel costs used for electricity production during the year 2016. Four major types of fuels used for 317 
electricity production are considered. The normalized average price of coal includes the different qualities of coal 318 
used for electricity production. The original value of crude oil as per the reference is given in $/barrel and converted 319 
to MMBtu with the conversion: 1barrel = 5.55MMBtu for crude oil. Constant 2016-$ are used. 320 

Fuel Type Cost Units 

Natural Gas 2.6 [40] $/MMBtu 

Coal 2 [40] $/MMBtu 

Uranium 1.4 [41] $/MWh 

Crude Oil 7.99 [42] $/MMBtu 

 321 

Table 2. Variable O&M costs of technologies considered in this study [39]. All values are expressed in constant 322 
2016-$. The variable O&M cost of wind and solar power plants is taken as zero. 323 

Technology Variable O&M Costs (2016 

$/MWh) 

Conventional Hydropower 2.62 

Coal power plants with steam turbines 6.96 

Combined Cycle power plants (Gas/Oil) 1.96 

Conventional Combustion Turbine (Gas/Oil) 3.43 

Gas Turbine 3.43 

Nuclear 2.26 

 324 

Using marginal cost as the bid price of power plants, the economic dispatch model is run with an 325 

objective of producing electricity at a minimum operating cost using linear optimization (Eq. 326 

12).  Marginal cost of operation (‘MC’) of power plants for these scenarios is calculated as 327 
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shown in Eq. 11. The generators run with ramping constraints, shown in Eq. 15-Eq. 16 , and the 328 

constraint that total generation meets total demand (‘L’) (Eq. 14) in each hour (‘t’). The ramping 329 

constraints are expressed in percentage of rated power a generator can ramp up (‘RU’) or down 330 

(‘RD’) in a given hour (% of MW/h). The dispatch model is run for every hour in a year. 331 

Ramping constraints for current hour ‘t’ depend upon the electricity generated by the power plant 332 

in the previous hour ‘(t-1)’ as shown in equations Eq. 15 - Eq. 16. Ramping rates of different 333 

types of turbines are shown in Table 3. Maximum electricity generated by a power plant in an 334 

hour ‘t’ does not exceed the name plate capacity of the power plant (‘PP’), shown in equation 335 

(Eq. 17).  336 

 337 

Objective function:  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝑡 = ∑ 𝑀𝐶𝑡𝑝 ∗ 𝑒𝑡𝑝  

𝑝

=  ∑(𝐻𝑅 ∗
𝑃𝑟𝑖𝑐𝑒

1000
+ 𝑂&𝑀)𝑡𝑝 ∗ 𝑒𝑡𝑝  

𝑝

 
Eq. 12 

Subject to: Eq. 13 

∑ 𝑒𝑡𝑝 

𝑝

≥ 𝐿𝑡 ,    Eq. 14 

𝑒𝑡𝑝 ≥ 𝑒(𝑡−1)𝑝 −
𝑅𝐷𝑝

100
∗ 𝑃𝑝,    

Eq. 15 

𝑒𝑡𝑝 ≤ 𝑒(𝑡−1)𝑝 +
𝑅𝑈𝑝

100
∗ 𝑃𝑝, 

Eq. 16 

𝑒𝑡𝑝 ≤ 𝑃𝑝, Eq. 17 

𝑒𝑡𝑝 > 0   Eq. 18 

𝑝 ≤ 𝑛 Eq. 19 

𝑡 ≤ 8760 Eq. 20 

Where, Subscript p – Power plant, 

Subscript t – Time (in hours), 

Ct – cost of electricity generation at hour t (in $),    

MCtp – marginal cost of operation of power plant p at hour t ($/MWh) 

etp – electricity generated by power plant at hour t (MWh) 

Lt – load demand at tth hour (in MWh), and  

n – total number of power plants available for dispatch 

RDp – Ramp down rate of power plant p (% of MW/h) 

RUp – Ramp up rate of power plant p (% of MW/h) 

Pp – Nameplate capacity of power plant p (MW) 

𝐻𝑅 – heat rate (in Btu/kWh),  

Price – average spot price of fuel (in $/MMBtu), and 

O&M – variable operations and maintenance cost of the power plant 

(in $/MWh).  
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Table 3. Ramping rates of the electricity generators used in the power plants [43–45]. The units are percentage 338 
change of rated capacity achievable between one hour and the next.  339 

Generator Type Ramping Rate (% of rated 

capacity achieved/hour) 

Gas Turbine/Combustion Turbine (Natural Gas) 100% 

Combined Cycle (Primary Fuel- Natural Gas, Secondary 

Fuel-Coal) 

30% 

Steam Turbine (Coal) 15% 

Nuclear 50% 

 340 

The model does not consider the imports/exports of electricity from regions outside of CAISO, 341 

MISO and NYISO. Hourly variations and the resultant power output (etp) of wind and solar 342 

plants for a given location are taken from Eastern Wind Integration dataset [46], and Eastern 343 

Solar Integration Dataset [47] respectively.  344 

 345 

The operating income for each power plant is estimated (‘Of,p’) based on the clearing price (‘I’) 346 

the plant receives from the energy delivered (‘PP’) at the given time (‘t’), its fixed operating cost 347 

(‘FC’), and variable operating cost estimated through marginal cost (‘MC’) of delivering energy 348 

(‘PP’) at the given time. (Eq. 21) 349 

 350 

 𝑂𝑓,𝑝 = ∑ 𝐼𝑡 ∗ 𝑃𝑝,𝑓,𝑡

𝑡

−   𝐹𝐶𝑝,𝑓 ∗ 𝑃𝑝,𝑓 + ∑ 𝑀𝐶𝑝,𝑓,𝑡 ∗ 𝑃𝑝,𝑓,𝑡

𝑡

 
Eq. 21 

Where: f – fuel type 

t – hour 

p – power plant  

HR – heat rate (Btu/kWh) 

Price – average spot price of fuel ($/MMBtu) 

O&M – variable operations and maintenance cost ($/MWh) 

P – Nominal operating capacity (MW) 

I – Clearing price of the electricity ($/MWh) 

O – Operating Income ($) 

 

4.2. Energy storage operation  351 

Operation of bulk energy storage will influence the market clearing prices and requires a 352 

different treatment. We use a self-learning optimization technique, developed in prior work [36], 353 

to model the effects of bulk storage. In this approach, the hourly electricity prices from a no-354 

storage optimization are used to calculate how storage would respond to those price signals. 355 

Then this storage operation is added to the hourly demand to get an adjusted demand pattern, 356 

which is used to produce a new time series of hourly prices, which are themselves used to find a 357 

new storage dispatch.  This process is continued, and the moving average of the hourly storage 358 

charge/discharge at the end of each iteration is tracked until the solution converges. The storage 359 

operation converges/remains consistent after about 20 iterations, which we use as the number of 360 



 13 

iterations for estimating an optimized solution that maximizes revenue while including the effect 361 

that storage has on prices.  362 

 363 

4.3. Net change in operating income per unit capacity 364 

To decide which power plants would retire in the third portion of the research, we use a metric 365 

for change in operating revenue. The model estimates the net change in operating income at the 366 

power plant level before and after adding storage as show in Eq. 22. This is then normalized to 367 

the size of the power plant and averaged over all plants of that type in order to calculate the net 368 

operating income (‘Of’) per unit capacity of the given fuel type as shown in Eq. 23. 369 

 370 

 ∆𝑂𝑓,𝑝 = 𝑂𝑓,𝑝,𝑛𝑠 −   𝑂𝑓,𝑝,,𝑠 Eq. 22 

 
𝑁𝑓 =

∑ ∆𝑂𝑓,𝑝𝑝

∑ 𝑃𝑝,𝑓𝑝,𝑓
  

Eq. 23 

Where: f – fuel type 

O – Operating Income ($) 

ns – no storage 

s – after adding storage 

Pp,f – Nameplate capacity of power plant p of fuel type f (MW) 

 

  371 

 372 

5. Net change in mid- to long-term operating income including the effect of plant 373 

retirements 374 

Bulk storage alters both the dispatch stack and the wholesale electricity prices in the market, 375 

changing both the dispatch of other generators and the clearing prices that they earn. A decline in 376 

revenues because of decreased capacity factor or decreased electricity prices (or both) could 377 

force retirements of existing generating plants [20,21]. The third approach we use includes 378 

retirement of plants with large decreases in operating incomes as a result of adding bulk storage.  379 

 380 

The algorithm for identifying which capacity to retire is the following: The individual power plants 381 

losing the most operating income are retired until total retired capacity is equal to net storage 382 

capacity additions in the system. This reflects an assumption that there is a fixed need for reserve 383 

capacity in the power plant fleet and that storage capacity directly replaces the equivalent amount 384 

of generation. In the real world, any retirement decisions from the power plants are accepted by 385 

the ISOs only after ensuring that there is adequate reserve capacity to replace the existing retiring 386 

power plants [48,49], and we assume that a 1:1 replacement of storage for thermal capacity would 387 

meet that restriction. This process is continued until storage capacity reaches 15% of demand. 388 

Retirement of plants is continuous rather than per-plant to prevent “lumpy” changes in overall 389 

system capacity. For example, if 30 MW of retirement is called for but the next plant has capacity 390 

of 50 MW, the model retires 30 of the 50 MW and leaves 20 MW in operation.  The plants that 391 
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are retired are those that have the largest losses, in $/MW of capacity, between the no-storage case 392 

and the current quantity of storage.  We chose to use change in operating revenues rather than an 393 

estimate of overall profitability because many generators, especially the peaker plants that compete 394 

with storage, earn a large share of their revenue from capacity markets or other ancillary services 395 

that are difficult to accurately calculate. Our method essentially assumes that currently operating 396 

plants are similarly profitable and that those which lose the most revenue relative to the status quo 397 

are those most likely to retire and that capacity prices will stay the same after 1:1 replacement by 398 

storage. One interesting outcome from this set of assumptions is that plants that are currently idle 399 

for essentially the entire year (spare capacity) do not lose any revenue after adding storage and are 400 

thus not retired. Whether this is realistic depends on which generators storage would replace: it is 401 

logical to suggest that storage would replace the least-used generators first, though a 402 

counterargument is that currently unused but operational generators are those best suited to provide 403 

spare standby capacity to the system and would continue that service even as some storage is 404 

introduced.  405 

 406 

None of the three approaches in this work allow for new generation capacity to be built.  There are 407 

three reasons for this. First, we want to understand the effect of storage additions in isolation from 408 

other factors, such as an evolving grid mix. Second, the rate at which new generation is introduced 409 

is uncertain and heavily policy driven. While it is evident that additions of wind and solar 410 

generation should be expected in the future, the rate and total extent are hard to predict. Finally, 411 

considering a full capacity expansion model to understand how new renewables and storage may 412 

grow in the future is a question that has been studied in the literature, so new insights are not 413 

expected if we included that feature. 414 

6. Results 415 

The results section is organized as follows. First, we present the marginal effects of storage on 416 

generating units, to determine which generators are used more/less when marginal storage 417 

quantities are added. Second, we describe the effects of storage on the operating income of 418 

generating units, assuming no retirements occur. Third, we demonstrate the effects of storage on 419 

the operating income of the generating units, assuming there are retirements of power plants with 420 

largest loss in revenue due to entry of storage. As described earlier, these three sets of results 421 

move from more empirically grounded analysis of small current-day storage additions to more 422 

prospective estimates of bulk storage effects in the future. 423 

 424 

6.1.1.  Impact on generation from storage operating as a price-taker 425 

This section discusses the type of fuels used and displaced when storage capacity is added across 426 

the 22 eGRID regions in the U.S. In all cases, the energy used for charging is always greater than 427 

the energy displaced because of the round-trip efficiency losses of the storage. Fig. 2  illustrates 428 

the fuel types during the charge and discharge phase for a sample eGRID region (CAMX, 429 

covering California), and shows the net fuels used for delivering 1 MWh of energy from energy 430 

storage.  431 
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 432 

 433 
Fig. 2 Energy and net energy of the fuel utilized (MWh) per unit of energy from storage (MWh). Colors of the bars 434 

indicate the fuel mix during charge and discharge. The left figure indicates the energy consumed (1.25 MWh, 435 
positive side of axis) and displaced (1.0 MWh, negative side of axis) per MWh of energy from storage. The negative 436 
y-axis values indicate that storage displaces mostly natural gas and a little coal during discharge. The positive y-axis 437 

indicates that the energy mix used to charge storage is similar: natural gas and a little coal. The figure on the right 438 
shows the difference between positive and negative values on the left, indicating the net type of fuel used to deliver 439 
one MWh from storage (Note the change in y-axis between figures). Overall, a marginal storage unit in CAMX uses 440 

0.28MWh of natural gas generation and displaces 0.04 MWh of coal energy to time-shift 1 MWh of energy.  441 

 442 

Comparing across eGRID regions, results can be broadly divided into the West (covering 443 

California, Arizona and the other western states), the East (covering most of the eastern coast of 444 

the U.S.), and the Midwest, broadly-defined (Fig. 3).  Results show that storage operation in 445 

most of the West (except California) and in the Midwest consumes both coal-based energy and 446 

natural gas during the charge phase and displaces a combination of both during the discharge 447 

phase. However, in net, more coal-based energy is used to charge, displacing energy from natural 448 

gas generators. In most of the West and the Midwest, storage operation has an average net 449 

consumption of 0.3 MWh of coal-based energy and displaces 0.1 MWh of natural gas-based 450 

energy per MWh of energy time-shifted by storage. On the other hand, on the east coast, a mix of 451 

coal and natural gas-based energy is used during the charge phase and storage displaces a mix of 452 

coal, natural gas and oil. While results vary by eGRID region, on average the east coast sees a 453 

net consumption of 0.1 MWh of natural gas and 0.02 MWh of coal and 0.0062 MWh of 454 

renewables per MWh of energy delivered from storage. Amongst all the regions, California 455 
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(CAMX) and New England (NEWE) have a net displacement of coal during the operation of 456 

storage. The high availability of renewables, hydro and natural gas during off-peak hours 457 

combined with environmental regulation and low natural gas prices pushes the usage of tiny 458 

amounts of coal (~10-20MWh) into the evening time in the peak-hours when the storage is most 459 

likely to discharge and displace these plants [37].  460 

 461 

 462 
Fig. 3. Fuel type of net energy used (MWh) per MWh of energy transferred by storage for US eGRID regions. The 463 
figures in the left column indicate the net energy consumed (positive) and displaced (negative) per MWh of energy 464 
from storage. Colors of the bars indicate the fuel type. The right side shows eGRID regions for which the values are 465 
plotted. In the center of the US, storage tends to use more coal and sometimes displace natural gas, while results are 466 

mixed in the West and East. 467 

 468 

6.1.2.  Effect of storage operation on operating income of other generators without 469 

retirements 470 

The analysis above assumes a quantity of storage that is too small to shift generation dispatch 471 

and market prices, but these factors become increasingly relevant as non-marginal amounts of 472 

storage are introduced into electricity systems. Fig. 4 illustrates the change in annual operating 473 

income per unit of generating capacity when different levels of storage are added to the CAISO, 474 

MISO and NYISO regions. These results are based on bulk storage additions without any plant 475 

retirements. 476 
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 477 

In CAISO, as storage is added from 0-2,500 MW (15% of the average load of 10,000 MW), 478 

operating income of most generating units decrease. Operating income decreases the most for 479 

natural gas combined cycle, geothermal, and nuclear, which are reduced by around $6,000/MW 480 

annually with 2,500 MW storage capacity. At this storage capacity on the grid, gas turbines have 481 

an annual loss of $2,600/MW, followed by hydro at $1,800/MW, and wind at $370/MW. Solar 482 

sees a small decrease in annual operating income of $28/MW. While storage is a net consumer of 483 

energy, its effects on generator income tends to be negative because new storage brings down 484 

peak prices more than it increases off-peak prices. This effect is the same in the other two studied 485 

electricity systems. 486 

 487 

In NYISO, as storage is added from 0 to 2,000 MW (15% of the average load of 8,000 MW), 488 

operating income of all generating units decrease, including for all types of renewables in the 489 

grid. Natural gas combined cycle power plants see the largest decrease in annual operating 490 

income of $2,000/MW at 2,000 MW storage capacity. Coal and nuclear follow this closely and 491 

lose $1,700/MW annually. Amongst the renewables, biomass loses by $660/MW, hydro by 492 

$530/MW, solar $480/MW, and wind $320/MW annually. Gas turbines in NYISO lose 493 

$1000/MW, a smaller amount than what is observed in CAISO.   494 

 495 

Similar to NYISO, the operating income of all types of generating units decreases in MISO as 496 

storage is added from 0 to 3,000 MW (15% of average load of 12,000 MW), without considering 497 

retirements. At 3,000 MW of storage capacity on the grid, the largest decrease in annual 498 

operating income is for coal at $150/MW, followed by nuclear at $140/MW, gas combined cycle 499 

at $95/MW, solar at $52/MW, hydro at $41/MW, wind at $34/MW, and gas turbines at $14/MW. 500 

These price shifts are much smaller in magnitude than in CAISO or NYISO because MISO has a 501 

large percentage of coal in the generation mix (>70%), which stabilizes prices with or without 502 

storage. The flatter prices in MISO also mean that storage is cycled less, which further reduces 503 

effects on other generators: annual charged energy to storage is much lower in MISO (624 504 

GWh), than in CAISO (2,555 GWh), or in NYISO (3,200 GWh). Further notes on the 505 

comparison of total storage energy is provided in the SI, Section S3. 506 

 507 
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 508 
Fig. 4: Change in net annual operating income per unit capacity ($/MW) before and after adding storage capacity in 509 

Midcontinent Independent System Operator (MISO), California ISO, and New York ISO (NYISO) without any 510 
retirements. X-axis represents the storage capacity in MW, Y-axis represents the change in operating income per 511 

unit capacity in $/MW after adding storage, and the colors represent generation technologies.  512 

 513 

 514 

6.1.3.  Effect of storage operation on operating revenue of other generators with 515 

retirements 516 

In the results above, introducing storage tends to reduce operating income to all types of 517 

generation, which is explained by the fact that we are adding resources without removing 518 

anything from the system. In reality, this would eventually prompt retirements, which may 519 

improve income for the remaining generators. We develop a simple model for this dynamic, 520 

where we maintain total generation plus storage capacity and retire the power plants that lose the 521 

most operating income as storage is added. Plants are retired until total retired capacity is equal 522 

to net storage capacity added into the system to maintain the same total “firm” (thermal + hydro 523 

+ storage) capacity.  524 

 525 

Fig. 5 shows which generators are retired as storage is added. Most of the retired capacity in 526 

CAISO are natural gas turbines, followed by combined cycle, and a small percentage of biomass, 527 

coal, and oil. In MISO, the retired generators are a mix of gas combined cycle, coal, and a small 528 

percentage of biomass plants. In NYISO, the retired capacity is a mix of gas combined cycle, 529 

gas-based steam turbines, gas turbines, oil, and biomass. Also, it is interesting to note that most 530 

of the retired plants in CAISO were built after 2000 (gas turbines primarily), and in MISO and 531 
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NYISO between 1980-2000. The histograms of the built years of the retired power plants in 532 

different regions is given the SI, section S4.  533 

 534 

 535 
Fig. 5: Generation type of the retired power plants as storage is added.  X-axis represents the total added storage 536 

capacity in MW and Y-axis represents the percentage of capacity retired at that level of storage deployment (with 537 
total retirements equally the amount of storage added). Bar colors represent the fuel/technology type. Each row of 538 

plots represents the ISO region: California ISO (CAISO), Midcontinent ISO (MISO), and New York ISO (NYISO). 539 

 540 

As with the results without retirement, the change in operating income per unit capacity is 541 

estimated before and after adding storage in CAISO, MISO and NYISO regions (Fig. 6). But 542 

now, net operating income is additionally affected by economic retirement of the power plants in 543 

Figure 5. Retirements improve revenues for the remaining plants but also produce shifts in 544 

marginal electricity price and create more noise in the per-capacity operating income as storage 545 

levels increase.  546 

 547 

In CAISO, as we add storage from 0-2,500 MW (10,000 MWh) and retire revenue-losing plants, 548 

the annual operating income of solar increases the most, by $800/MW at 2,000 MW of storage 549 

capacity on the grid. The annual operating income of all other generating technologies decreases 550 

or stays approximately flat. The operating income of gas combined cycle units and gas turbines 551 

decrease by around $800/MW, nuclear and geothermal decrease by around $300/MW, hydro by 552 

$30/MW, and wind by $123/MW. The operating income of solar increases because of the 553 

increase in electricity clearing prices during the charge phase of the storage, which occurs during 554 

the mid-day solar peak on some days.  555 

 556 

In MISO, as the storage is increased from 0-3,000 MW (12,000 MWh), the largest increase in 557 

annual operating income as storage is added is observed for nuclear by $235/MW, followed by 558 

coal at $180/MW. At 3,000 MW storage capacity, the annual operating income of wind increases 559 

by $82/MW, hydro by $71/MW, and solar by $47/MW. The annual operating income of natural 560 

gas combined cycle increases by $13/MW.   561 
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 562 

Similar to MISO, NYISO sees an increase in annual operating income of coal and nuclear as 563 

storage is added from 0-2,000 MW (8,000 MWh) into the grid by $2,000/MW. This is followed 564 

by wind at $680/MW, hydro at $580/MW, solar by $330/MW, gas combined cycle at $280/MW, 565 

and biomass and gas turbine at $90/MW.  566 

  567 

 568 
Fig. 6: Change in net annual operating income per unit capacity ($/MW) before and after adding storage, 569 

considering retirement of power plants and bulk storage additions in Midcontinent Independent System Operator 570 
(MISO), New York ISO (NYISO), and California ISO (CAISO). X-axis represents the storage capacity in MW, Y-571 

axis represents the net annual operating income after adding storage, and the colors represent generation 572 
technologies.  573 

6.1.4.  Comparing results across the three modeling approaches 574 

 575 

Fig 7 compares the average net generating impacts per MWh of storage discharge for each of the 576 

three approaches: price-taker, bulk storage additions without retirements, and bulk storage 577 

additions with retirements. The figure demonstrates that, depending on the region, estimates 578 

from the price-taker model can bear close resemblance to those generated with a bulk storage 579 

affecting prices approach; as an example, the net energy effects of storage in NYISO are 580 

consistent in magnitude and fuel mix across three modeling approaches.  581 

 582 

Although the estimates of the breakdown of fuels typically used to charge storage are similar 583 

across models for CAISO, accounting for retirements yields more generation from natural gas to 584 

charge storage and more displacement of coal and biomass. MISO exhibits the most variation 585 

across modeling approaches; although coal is used to charge storage in each of the three models, 586 

the bulk storage without retirements yields more significant changes to net generation from coal 587 

and natural gas. These results illustrate that bulk storage affecting prices generally produces 588 

findings similar in direction to those of the marginal storage model, albeit with differences by 589 

region. It is notable that the change in generation is linear for both the price-taker model and bulk 590 

storage additions without retirements. However, the change in generation of different fuels for 591 
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the bulk storage with retirements scenario depends upon the incremental storage additions and 592 

retirements at each stage, further illustrated in SI Fig S2.  593 

 594 
 595 

Fig 7: Comparison of estimates of the annual net energy by fuel type per MWh of energy from storage using three 596 
modeling approaches: storage as a price-taker, bulk storage without retirements, and bulk storage with retirements. 597 

The colors indicate the technology type used/displaced by 1,000 MW of storage.  598 

7. Discussion 599 

Prior work has established that, depending on the grid mix and the operating strategy of the 600 

storage, storage tends to slightly increase prices during off-peak periods and decrease the 601 

revenues of most generating units, especially plants that operate during the peak demand hours 602 

[20,21,26,50]. The contribution of this work is to quantify the type of generators and the fuels 603 

used and displaced by new storage across the U.S. Furthermore, we employ a mix of price-taker 604 

and bulk storage modeling approaches in different grids to understand the implications of 605 

different modeling strategies on our estimation of the impacts of storage operations. Using this 606 

hybrid approach, we are able to characterize marginal impacts on operations for the entire U.S. 607 

and more detailed, large-scale impacts on operation and operating income for three grid mixes, 608 

which range from coal-heavy to more dependent on renewables. 609 

 610 

The results show that the change in generation from energy storage is largely dependent upon the 611 

grid mix when the capacities are small and marginal. Although most regions tend to displace 612 

natural gas and increase generation from a mix of natural gas and coal, the magnitude of these 613 
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shifts vary. Large non-marginal capacities of bulk storage alter the electricity prices, thus 614 

affecting not only the plants during the peak demand hours, but also renewables that depend on 615 

these prices for profit. Without retirements, the operating income of essentially all units go down 616 

(except solar in California, which breaks even) as bulk storage capacities are deployed onto the 617 

grid, with natural gas being the most affected.  618 

 619 

However, when market balance is considered through retirement of less profitable units from the 620 

energy markets, the highest increase in operating income from adding storage is observed for the 621 

base-load units supplying energy in the grid when storage charges. Therefore, in NYISO and 622 

MISO, less flexible units that have continual output (coal and nuclear) benefit the most from 623 

additional storage, followed by wind, solar, and hydro. However, in California, with about 20% 624 

generation from solar, solar benefits the most. The operating income of all other fuels is heavily 625 

dependent on the fuels that set the market clearing prices. In CAISO’s case, the operating income 626 

of all the other fuels decreases along with the decrease in operating income of the price-setting 627 

natural gas power plants.  628 

 629 

The operating income of gas combined cycle units depends upon both the time of the day they 630 

are most commonly used and the retirements. In a coal-dominated grid such as MISO, with 15% 631 

natural gas combined cycle capacity, storage offsets gas combined cycle during discharge and 632 

also retires these plants, driving their operating income down. In gas-dominated grid such as 633 

NYISO with 25% combined cycle capacity, NGCC is used both during the charge and discharge 634 

phase of the storage. Thus, the net operating income is positive after retirements and storage 635 

additions. Overall, storage adds flexibility to the system, benefitting both base-load generators 636 

and non-dispatchable generators. In all cases, gas turbines always lose operating income after 637 

adding storage. Finally, our comparison of net generating impacts across bulk storage additions 638 

and price-taker models suggests that results from these approaches are generally similar in 639 

direction, but scale and consistency across the approaches varies by region. Furthermore, in some 640 

cases, not accounting for retirements can lead to substantial changes in magnitude of net 641 

generation impacts relative to the other approaches.  642 

 643 

The results from this study could help regulators to determine whether storage operations are a 644 

net social benefit or a net social cost in various regions of the U.S. and to understand the likely 645 

effects of broader adoption of storage. The hybrid price-taker and bulk storage approach provides 646 

results that are useful both for planners considering small amounts of storage or policy makers 647 

considering futures with deeper integration of storage. In addition, the results from the model 648 

including retirements provide a clear demonstration of the importance of accounting for market 649 

exit when evaluating the mid- to long-term effects on generator profitability for bulk storage.  650 

 651 
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8. Conclusion 652 

Because storage is likely to play a pivotal role as an enabling technology in decarbonization of 653 

the power sector, there are a number of policy efforts to increase storage on the grid today. 654 

Energy storage is often mentioned as a necessary or enabling element for greater shares of wind 655 

and solar generation, but this work demonstrates that the effect of storage on other generators is 656 

relevant and complex.  Wind and solar may benefit from new storage, especially in the presence 657 

of retirements, but other technologies may enjoy an even greater economic boost. While the 658 

analysis in this work did not add new wind or solar to electricity grids (as is expected in the 659 

future), these results should give pause to anyone that believes the benefits of additional storage 660 

are enjoyed solely or primarily by renewable energy technologies. Our findings demonstrate that 661 

additional storage may help or harm renewables but may also increase generation and 662 

profitability from fossil generation given the existing grid mix, thus potentially increasing the 663 

challenge of deploying low-carbon sources. This work quantifies some of these effects so that 664 

policy makers might account for them when designing storage policies to ensure that they help 665 

further renewable energy generation and low-carbon grids of the future. 666 
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