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Abstract—This article presents a novel time synchroniza-
tion attack (TSA) model for the Global Positioning System
(GPS) based on clock data behavior changes in a higher-order
derivative domain. Further, TSA rejection and mitigation
based on sparse domain (TSARM-S) is presented. TSAs affect
stationary GPS receivers in applications where precise tim-
ing is required, such as cellular communications, financial
transactions, and monitoring of the electric power grid. In the
present work, higher-order derivatives of the clock bias and
clock drift are monitored to reveal TSAs that show up as
sparse spike-like events. The smoothness of the attack relates
to the derivative order where the sparsity is observed. The
proposed method jointly estimates a dynamic solution for
GPS timing and rejects clock behavior changes based on such sparse events. An evaluation procedure is presented
for two testbeds, namely a commercial receiver and a software-defined radio (SDR). Further, the proposed method is
evaluated against real spoofing scenarios available online in the Texas Spoofing Test Battery (TEXBAT). Combined
synthetic and real-data results show an average RMS clock bias error of 12.08 m for the SDR platform, and 45.74 m
for the commercial device. Furthermore, the technique is evaluated against state-of-the-art mitigation techniques and in
a spoofing-plus-multipath scenario for robustness. Finally, TSARM-S can be potentially optimized and implemented in
commercial devices via a firmware upgrade.

Index Terms— Global Positioning System (GPS), higher-order derivative, sparsity, spoofing detection, time
synchronization attacks (TSAs).

I. INTRODUCTION

T
HE convergence of radionavigation systems, such as the

Global Positioning System (GPS), with diverse domain

applications, such as emergency response, air traffic con-

trol, financial transactions, and smart power grids, manifests

their thriving popularity and availability [1]. However, due

to its open accessibility for civilian use, GPS coarse acqui-

sition (C/A) codes are subject to malicious cyber-physical

attacks [2].

GPS cyber-physical attacks have been categorized into jam-

ming and spoofing. While jamming completely blocks authen-

tic signals via high powered noise, spoofing exploits smart

counterfeit signals to deceive and hijack a target receiver [3].

Once hijacked, the spoofer can inflict an erroneous position,
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velocity, and time (PVT) solution. Specifically, a Time Syn-

chronization Attack (TSA) is a spoofing attack that alters the

target receiver’s clock offset. One particular example relates to

Smart Grids, where a TSA can disrupt their operation. Smart

Grids are electric power networks that provide readings from

modern sensors for monitoring, control, and optimization of

the network. These sensors are called Phasor Measurement

Units (PMUs) and deliver precisely synchronized readings of

voltages and currents across the network using GPS time [4].

An imprecise clock offset estimated by a PMU due to a cyber-

physical attack could cause stability control failures and power

outages [5], [6]. Under a successful TSA, Smart Grids become

vulnerable to transmission line faults, voltage instability, and

missed event locations [7].

Authors in [2] categorize spoofing attacks based on their

complexity, i.e., simplistic, intermediate, and advanced. The

simplistic attack relies on retransmission of a delayed GPS

signal with augmented power to inflict time delays. Inter-

mediate attack uses a receiver-spoofer device that is placed

near the target receiver to retransmit smart GPS-like signals

in a more covert fashion. Advanced spoofing uses several

spoofer devices orchestrating a more elaborate synchronized

attack. The intermediate attack is demonstrated as the most
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cost-effective in terms of implementation and can effortlessly

synthesize a TSA. Additionally, cost-accessible software-

defined radio (SDR) spoofers have successfully carried out

attacks in such receivers as in [8] and [9]. The accessibility

of SDR further rises awareness to harden receivers’ abili-

ties against spoofing attacks since conventional off-the-shelf

receivers typically lack intermediate-to-advanced spoofing mit-

igation techniques [2].

Monitoring and detection of spoofing attacks is a well-

researched topic; see e.g., [10]. However, much work is still

to be done on spoofing rejection and mitigation. Existing

techniques often offer detection of spoofing or jamming, but

lack an actual correction countermeasure. A countermeasure

should be able to detect and correct the attack while main-

taining normal operation of the receiver with authentic PVT

outputs. In particular, mitigation strategies can be organized

in four categories [2]: (1) Advanced signal-processing-based

techniques for standard single-antenna GNSS receiver that rely

on power and automatic gain control (AGC) [11], complex

correlation function outputs [12], conventional tracking loop

[9], or vector-tracking loops (VTL) [13], [14]; (2) encryption-

based defenses relying on encrypted GNSS signal keys that

share a unique relationship between civilian open-access and

military signals for spoofing detection [15]; (3) drift mon-

itoring techniques that rely on unusual behavior changes

in receiver position or clock based on receiver observables

[16], [17], positioning filter metrics [18], and sparse techniques

[19]–[21]; and (4) signal-geometry-based defenses which rely

on multi-antenna systems for angle-of-arrival spoofer detection

and mitigation [22], [23]. Further, receiver measurements

and observables have been used in machine learning for

spoofer detection. The authors in [24] train a support vec-

tor machine (SVM) with receiver autocorrelation outputs for

spoofer peak classification. Similarly, the authors in [25] use a

cross-correlation function of numerous observables as inputs

for SVM classification. Additional discussions on spoofing

countermeasures can be found in [2], [3], and [10].

This article complements the aforementioned spoof-

ing detection and correction countermeasures. Specifically,

the proposed optimization problem determines if an attack

has occurred, and solves for the correct timing. Additionally,

it introduces a cost-effective technique that can be imple-

mented by means of an inexpensive firmware upgrade to a

GPS receiver. The proposed method relies on a dynamic model

of the clock bias and clock drift for a stationary receiver. It

specifically falls in the drift monitoring mitigation category

according to the previously mentioned categorization [2].

Moreover, we focus on a single-antenna single-receiver archi-

tecture as opposed to complex multi-receiver architectures

[13], [26], [27]. Finally, this work addresses TSA detection and

rejection so that reliable timing can be provided to diverse GPS

time related applications. For additional discussion on relevant

time-dependent applications and how these can be affected by

a TSA, the reader is directed to [1], [5], [6], and [7].

A. Related Work

The related work presented herein primarily features sparse-

domain detectors. Such formulations rely on optimization

problems that include `1-penalty terms [28]. The premise is

that the `1 penalty provides a sparse vector (that is, a vector

with few nonzero entries) indicating the anomalies. However,

the related literature differs in the domain in which sparsity is

revealed, resulting in different types of interference or attacks

that can be identified. The present work leverages sparsity

in higher-order derivatives of the attack, which has not been

exploited before. The differences with the prior art and the

advantages of the proposed approach are explained in the

sequel.

Different from previous works that detect and miti-

gate integrity anomalies in select parallel receiver channels

[17], [20], [21], this work mitigates TSAs even in the absence

of integrity anomalies, whereby the smart spoofer manipulates

all the channels synchronously. The work in [17] relies on

advanced receiver autonomous integrity monitoring (RAIM)

techniques to detect anomalies per channel, and for every

PVT computation. In fact, most RAIM-based techniques rely

on anomaly checking per iteration, which entails expensive

computations.

In terms of dynamic modeling, the work in [18] monitors

the Kalman Filter innovations for potential spoofer attacks,

thus relying on simple metrics computed from sequential data

averaged over a sliding window. The TSA model in this work

is similar to the one in [19] in that both use a two-state

model for the clock. However, the model in [19] is not general

enough to include the smoothest of the attacks; in [19], only

Type I and Type II attacks are defined. The work in [19]

jointly computes a dynamic PVT solution and accumulates

variation metrics, which are then accrued to gather the correc-

tion. It relies on small spoofer alterations accumulated over

time thus requiring a correction stage. On the other hand,

the proposed method jointly computes the PVT solution while

observing higher-order derivatives, where the clock behavior

change is detected as a sparse (i.e., spike-like) event. If a sparse

event is detected, the proposed method rejects the atypical

behavior from the authentic clock data output. The optimiza-

tion problem in the present work is also different from [19]

in that it penalizes the `1-norm of the second-derivative of

the attack on clock drift. As demonstrated in the article, this

penalty turns out to be sufficient to capture smooth attacks.

In addition, the proposed method includes an additional outlier

variable that can also capture inconsistent spoofers. Thus,

the method automatically rejects both unexpected behavior

changes and anomalies in measurement integrity, as discussed

in Section III-A.

Different from the proposed method, sparse methods have

also been applied on the pseudorange residuals after PVT

computation to detect anomalies in the measurements [20].

Similarly, the work in [21] follows multi-frequency observ-

ables for enhanced outlier detection. An important assumption

in such sparse estimation is that a small number of the

visible satellites are corrupted, which entails sparsity in the

measurement residual domain. While [20] uses sparse process-

ing for outlier detection as an indication of integrity failure,

the present work exploits sparsity in the overall receiver

behavior change for all visible satellites. In other words, the

proposed technique relies on sequential data observations,
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as opposed to snapshot monitoring, and is applicable when all

visible satellites are simultaneously and consistently spoofed.

Finally, many state-of-the-art techniques based on sparse

estimation focus on multipath (MP) detection and mitigation

[20], [21]. While MP is similar to spoofing attacks, some

differences are worth noting: (a) MP effects appear arbitrarily

while spoofing is more consistent over time; (b) MP generally

affects some satellite and are channel-specific, while smart

spoofing attacks affect all channels concurrently and synchro-

nously; and (c) spoofing attacks are two orders of magnitude

more hazardous in terms of PVT deviations, e.g., a meaningful

TSA may inflict 8000 m, or equivalently, 26.67 µs bias error

in the PMU clock [29].

B. Contributions

Previous works have attempted to classify TSAs based on

how smoothly (or abruptly) the spoofer attack is induced onto

the receiver clock offset [30]; however, such terms necessitate

a precise mathematical definition. In this work, we define the

smoothness of the attack based on the order of the derivative

in which the attack appears to be sparse. The sparsity in the

clock bias derivatives of various orders are further leveraged

to detect the attack as a sparse spike-like event. Based on

the sparse derivative order, we categorize the attacks by their

order, e.g., a third order attack.

The TSAs previously reported in the literature can be

detected using the third order attack model of this article.

In particular, the authors in [19] defined Type I and II attack

models, which are subsumed by the more general framework

in the present article and can be identified using the proposed

technique while achieving better mitigation results. This work

develops a mitigation framework for up to third order attacks,

which is sufficient for most realistic TSAs detailed in the

literature, but the proposed framework readily extends to

higher orders. Similarly, the proposed technique can detect

experimentally demonstrated spoofing attacks reported in [31],

as will be seen in Section VI-B. In the following, the technique

of this article is referred to as TSA rejection and mitigation

based on sparse-domain (TSARM-S).

The contributions of this article are as follows:

1) Novel modeling of TSAs based on behavioral change

analysis in clock data derivative domains of various

orders is introduced by observing the derivative order

in which sparsity shows up. The model allows for

the attack to preserve its measurement integrity, which

renders it undetected by traditional RAIM techniques.

2) Based on 1), we propose a dynamic model that jointly

estimates the clock bias and drift, and rejects a potential

TSA by transforming state variables into a higher-

order sparse-domain where the TSA is detected and

rejected. By transforming into a higher-order derivative,

an unmodeled clock behavior appears as a spike-like

event, thus leveraging sparse-based detection.

3) The proposed model identifies and rejects the spoofing

signatures in the clock data directly without the need of

a correction stage, i.e., the output vector is split into the

estimated authentic clock data and the spoofer attack.

Additionally, the proposed method captures measure-

ment integrity discrepancies from inconsistent spoofers.

4) The method is tested using real data corresponding

to raw measurement outputs from two platforms: an

in-house SDR at UTSA [32], and a Google Nexus

9 Tablet. Specifically, synthetic attacks are applied to

real data recordings, and in addition, two real-data sce-

narios from The Texas Spoofing Test Battery (TEXBAT)

are replayed over-the-air (OTA). Furthermore, a compar-

ison with a spoofing plus MP scenario is evaluated.

The article is organized as follows. Section II introduces

the GPS dynamic model. Section III presents the novel

TSA modeling. Section IV presents the proposed spoofing

mitigation technique, TSARM-S. A testing methodology is

described in Section V. Section VI presents simulation results

and discussion. Finally, Section VII concludes the article and

points to future work.

II. GPS PVT DYNAMIC MODEL

In this section, we briefly describe the radionavigation

method used in GPS. To resolve the user’s position, the GPS

receiver uses satellite ranging signals which also contain

satellite orbit parameters such as Ephemeris data to estimate

the satellites’ positions during location estimation [33]. The

satellites serve as beacons for trilateration using satellite-

to-user ranges measured by the receiver. Without loss of

generality, the user (GPS receiver) position can be represented

in 3D Earth-centered Earth-fixed (ECEF) coordinates as pu =

[xu, yu, zu]T (in m). Similarly, the position of the n-th satellite

for n = 1, 2, . . . , N during each satellite transmit time tn is

represented as pn = [xn (tn) , yn (tn) , zn (tn)]T (also in m).

Further, we denote the signal receive time at the receiver as tR .

The true range between user and the satellite can be defined as

dn = kpn − puk2, where k·k2 denotes the `2-norm. However,

the range is not known and can be expressed as the difference

of the transmit and receive time as dn = c
�

tG PS
R − tG PS

n

�

,

where tG PS
n and tG PS

R are the accurate transmit and receive

times, respectively. By introducing an offset in the measured

user time of reception modeling the receiver clock inaccuracy

as tR = tG PS
R + bu , and likewise for the satellite transmit time

as tn = tG PS
n + bn , the receiver computes biased ranges called

pseudoranges given by ρn = c (tR − tn), where c is the speed

of light. One can rewrite the pseudorange equation by using

the previous two definitions of dn as:

ρn = kpn − puk2 + c (bu − bn) + �ρn (1)

where pn is the satellite position at transmit time, pu is the user

position at receive time, bu and bn are the user and satellite

clock offsets (in s), respectively, and �ρn models combined

errors due to atmospheric delays, thermal noise, etc. (in m).

The pseudoranges, satellite locations, and satellite clock offsets

are known or computed by the receiver, while (pu, bu) are

estimated using (1).

Similarly, the receiver can measure the Doppler frequency

shift (residual) that is formed on top of the carrier frequency

due to the relative difference between the satellite velocity, vn ,

and the user velocity, vu , also expressed in 3D ECEF coordi-

nates. This estimated Doppler residual is related to the rate at
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which the pseudorange measurement varies over time, denoted

as ρ̇n (in m/s). The pseudorange rate is then represented as:

ρ̇n = (vn − vu)T pn − pu

kpn − puk
+ c

�

ḃu − ḃn

�

+ �ρ̇n (2)

where vn is the satellite velocity obtained from the navigation

message, vu is the user velocity, ḃu and ḃn are the user

and satellite clock drifts (in s/s), and �ρ̇n is the modeled

noise. Similarly to (1), the unknowns to be estimated from (2)

are
�

vu, ḃu

�

.

For a conventional low-dynamics receiver, the PVT solution

aims to solve for user position, velocity, and the receiver’s

clock bias and clock drift. This totals 8 unknown vari-

ables which are typically computed via Weighted Least

Squares (WLS) in a snapshot manner [34], or dynamically

by means of an Extended Kalman filter (EKF). The dynamic

state equation of an 8-state EKF amounts to a random walk

model as follows [35, Ch. 9]:

xk =

⎛

⎜
⎜
⎝

8 0 0 0

0 8 0 0

0 0 8 0

0 0 0 8

⎞

⎟
⎟
⎠


 �� 

Fk

xk−1 + wk (3)

where x ≡
�

xu ẋu yu ẏu zu żu cbu cḃu

�T
is the state vector,

cbu and cḃu are the user clock bias (in m) and clock drift

(in m/s), pu = [xu, yu, zu]T is the user location where the

components are in meters (m), vu = [ẋu, ẏu, żu]T denotes

user velocity in m/s, wk is the process noise, and 8 is a state-

transition matrix for the discrete time instant k corresponding

to each position-velocity pair as follows:

8 =

�

1 1t

0 1

�

(4)

where 1t is the discretization time interval for each measure-

ment. The measurements given by equations (1) and (2) for

pseudoranges and pseudorange rates are used as inputs to the

8-state EKF based on (3) for the dynamic PVT solution. Note

that (1) and (2) model different observables from different

circuitry sources measured by the receiver, which are respec-

tively extracted from code-phases and Doppler residuals [33];

however, they are used jointly for the navigation computation.

III. NOVEL TSA MODELING

In this section, we present a novel model for TSAs that

covers a wide range of attacks. The proposed concept inter-

prets smooth attacks as the receiver’s clock dynamic behavior

change. The change is detected by inspecting higher order

derivatives of the estimated clock data sequence. It is demon-

strated that the TSA manifests itself as a sparse event such as

a combination of few spikes at one of the derivative clock

signals. The smoother the attack, the higher the order of

the derivative is required to detect the sparse indication of

behavior change. Thus, the TSAs are systematized based on

such higher-order clock signal derivative domains. We begin

by listing some self-consistent spoofer requirements [2].

A. Measurement Integrity Checks

In this subsection, we define two measurement integrity

checks associated with the previously defined dynamic model.

We assume these integrity checks are incorporated by the

spoofer attacks to avoid detection using straightforward

techniques.

The attack on pseudoranges and pseudorange rates is

modeled as follows:

ρn,s [k] = ρn [k] + sρ [k]

ρ̇n,s [k] = ρ̇n [k] + sρ̇ [k] (5)

where ρn,s and ρ̇n,s are the spoofed pseudorange (in m) and

pseudorange rate (in m/s) measurements for the n-th satellite,

and sρ and sρ̇ are the spoofing alterations on pseudoranges and

pseudorange rates, respectively. TSAs attempt to steer the user

clock bias and clock drift without altering the user position

and velocity. To achieve this, the spoofer alterations sρ and

sρ̇ must be the same in magnitude for all visible satellites.

In this case, although the spoofer alterations are the attacks

on pseudoranges and pseudorange rates, these attacks will be

reflected on the clock bias and drift of the target receiver,

respectively [19], [31]. This type of spoofer is categorized

as an intermediate attack following [2] and is considered

throughout this work. The aforementioned attacks are also

not visible to rudimentary schemes that check measurement

integrity, such as RAIM [36].

As stated in Section II, the measurement observables,

ρn and ρ̇n , come from different circuitry parts of the receiver;

nonetheless, such measurements should have an integrity due

to their physical interpretation. Thus, the first test to determine

if measurement integrity is maintained between the pseudor-

anges and pseudorange rates is defined as follows:

ρ̇n [k] ≈
ρn [k] − ρn [k − 1]

1t
(6)

Note that the derivative relationship in (6) also holds for the

spoofed measurements in (5), namely ρn,s and ρ̇n,s , as well

as the spoofer alterations, sρ and sρ̇ . In fact, this derivative

based relationship between the spoofer alterations is assumed

as part of a smartly devised attack referenced in this work.

Similarly, because TSAs reflect on the clock bias and clock

drift after the PVT computation, the second integrity check is

defined as follows:

c ˆ̇bu [k] ≈
cb̂u [k] − cb̂u [k − 1]

1t
(7)

where b̂u and ˆ̇bu are the estimated clock bias and drift

produced by WLS.

By considering that (6) and (7) are both satisfied for a

smart self-consistent TSA, the alterations sρ and sρ̇ are directly

reflected in the clock bias and clock drift WLS outputs. Thus,

without the loss of generality, the spoofer is assumed to

perpetrate a TSA with two integrity considerations:

1) The alterations on pseudoranges and pseudorange rates

are applied on all visible channels, simultaneously, and

each with the same magnitude across all the channels

(otherwise it’s understood as pseudorange and pseudo-

range rate having the same magnitude). This inflicts
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a deviation on the clock bias and clock drift while

avoiding per-channel RAIM detection schemes.

2) The spoofing attack is performed while maintaining

measurement integrity checks given by (6) and (7).

To summarize, failure of the attack to satisfy (6) or (7)

would be the basis for quick and straightforward detection.

The next section focuses on the characteristics of smart attacks

that will enable their rejection and mitigation, even when

(6) and (7) are satisfied.

B. Higher-Order Attacks

We define higher-order derivatives of the attack on the

pseudorange, sρ [k], to categorize the attacks according to

the order in which the attack appears as sparse. Table I lists

higher order user clock modeling for TSAs. Such categories

are derived from a classical physical interpretation of an object

displacement over time, where the clock bias corresponds to

the position (in m), the clock drift is velocity (in m/s), etc. This

should not be confused with GPS dynamic clock modeling

such as in [37] and [38]; rather, we use such definitions to

facilitate attack detection.

We define the following equations related to sρ [k] for

velocity, acceleration, and jerk attacks, respectively:

sρ̇ [k] =
sρ [k] − sρ [k − 1]

1t

sρ̈ [k] =
sρ̇ [k] − sρ̇ [k − 1]

1t

sρ [k] =
sρ̈ [k] − sρ̈ [k − 1]

1t
(8)

Further, the following categories are defined: a) first order

attack, b) second order attack, and c) third order attack.

A first order attack occurs when the sequence sρ̇ [k] is sparse;

a second order attack occurs when sρ̈ [k] is sparse, but not

sρ̇ [k]; a third order attack occurs when sρ [k] is sparse, but not

sρ̈ [k]. The attack appears increasingly smooth as the order of

the attack is higher, e.g., a third order attack is smoother than

a second order attack. These categories do not define how the

spoofer attack is devised, rather they define the order where

the sparse event occurs and enable detection and rejection of

the attack, as will be developed in Section IV.

Fig. 1 shows examples of first, second, and third order

attacks from top to bottom. The first order attack (top) appears

as a step function attack on the clock bias with its derivative

being a sparse-peak at the clock drift. The second order attack

appears as a peak on the clock acceleration, a step on the clock

drift, and a (smooth) ramp on the clock bias. An even smoother

clock bias is seen on the third order attack, where the sparse

peak appears on the clock jerk. Finally, it can be seen that the

highest order attack encompasses lower-order attacks, e.g., the

first order attack is also sparse on the third order. This can be

useful in terms of detection.

Several attacks reported in literature are defined as

Type I and II attacks [16], [19]. However, the proposed TSA

modeling amounts to a broader framework that incorporates

previous definitions. It can be seen in Fig. 1 that Type I

attack is in fact a first order attack, and Type II attack is

a third order attack. However, the second order attack is not

Fig. 1. TSA modeling for higher order derivative for (a) a first order
attack , (b) a second order attack , and (c) a third order attack .

previously defined. Table II shows the relationship between

these previous definitions and the new TSA models.

In this analysis, the higher the order where the sparse

spike-like events appear, the subtler the attack on the clock

bias becomes. Hence, while the significance of the attack

smoothness has been noted in the literature [30], a systematic

definition of smoothness is formulated in the present work.

It is also mentioned in the literature that the smoothness of
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TABLE I

HIGHER ORDER USER CLOCK MODELING FOR TSAs

TABLE II

TSA MODELING COMPARISON WITH PREVIOUS ATTACK TYPES [19]

the attack on the clock bias is relevant for phase measurement

units (PMUs) in smart grids [5], [6]. Finally, the TSA analysis

can be readily extended to even higher orders, e.g., clock snap

(fourth order) and crackle (fifth order). Based on the existing

literature, the third order model (clock jerk) covers enough

intermediate spoofing attacks for practical purposes.

IV. TSA REJECTION VIA A SPARSE TECHNIQUE

This section introduces a joint dynamic model and

`1-minimization problem which incorporates TSA models up

to a third-order derivative (clock jerk). The dynamic model

of Section IV-A introduces the spoofing attack in the mea-

surement equations. Additionally, the optimization formulated

in Section IV-B penalizes the outlier based on sparse-domain

TSA models previously discussed in Section III-B.

A. Dynamic Model on User Clock

The dynamic model presented here pertains to a stationary

receiver and assumes that the user position pu is known and

the user velocity vu is zero [16], [19]. Thus, the model is

simplified to estimate only the user clock bias and clock drift

as follows:
�

cbu [k]

cḃu [k]

�


 �� 

xk

=

�

1 1t

0 1

�


 �� 

Fk

�

cbu [k − 1]

cḃu [k − 1]

�


 �� 

xk−1

+

�

cwb [k]

cwḃ [k]

�


 �� 

wk

(9)

where x ≡
�

cbu cḃu

�T
is the 2-state vector, Fk is the state

transition matrix, and wk is the process noise vector considered

as white Gaussian noise with covariance matrix Qk related to

the crystal oscillator of the user receiver [34].

The spoofer alterations are introduced in the state vector

to capture the state estimate along with a potential attack.

Specifically, we define sk =
�

csb [k] , csḃ [k]
�T

as the spoofer

alteration vector, where sb and sḃ are the attacks on the

clock bias and clock drift, respectively. Based on assumptions

from Section III-B, it holds that sρ ≡ csb and sρ̇ ≡ csḃ.

Additionally, we define ρ [k] =
�

ρ1,s [k] , . . . , ρN,s [k]
�T

, and

ρ̇ [k] =
�

ρ̇1,s [k] , . . . , ρ̇N,s [k]
�T

, as the pseudorange and

pseudorange rate measurement vectors, respectively. We then

write the measurement equation by combining (1), (2), and (5)

as (10), show at the bottom of the next page, where ck

is a known sequence that relates to the known user posi-

tion and velocity (which is zero), satellite position, veloc-

ity and clock corrections, �k is the zero mean Gaussian

measurement noise with covariance matrix Rk = diag�

σ 2
ρ1

[k] , . . . , σ 2
ρN

[k] , σ 2
ρ̇1

[k] , . . . , σ 2
ρ̇N

[k]
�

, and σ 2
ρn

and σ 2
ρ̇n

are the noise variances of respectively the pseudorange and

pseudorange rate for the n-th satellite [34]. Equations (9)

and (10) can be written as:

xk = Fkxk−1 + wk

zk = Hkxk + Hksk + �k (11)

where zk = yk − ck is called the measurement residual.

B. TSARM-S Problem Formulation

TSARM-S focuses on sparse-like behavior changes occur-

ring on a higher-order derivative. To achieve this, we intro-

duce an outlier detection scheme in the measurement model

and define an `1-minimization problem based on (11) [28].

By leveraging the defined TSA model in Section III-B, specif-

ically up to the clock jerk smoothness level of detection,

we define the minimization problem as follows. Let x =

[x1, . . . , xK ]T and s = [s1, . . . , sK ]T be the optimization

variables by respectively collecting the vectors xk and sk for

time instants k = 1, . . . , K . Thus, we present the problem in

compact form as follows:

�

x̂, ŝ
�

= argmin
x,s

�

1

2

K
�

k=1

kzk − Hkxk − Hkskk
2

R−1
k

+
1

2

K
�

k=1

kxk − Fkxk−1k
2

Q−1
k

+ λ
�
�D2s0

�
�

1

�

(12)

where kxk2
M = xT Mx, x̂ =

�

x̂0, . . . , x̂K

�T
are the estimated

states, ŝ =
�

ŝ1, . . . , ŝK

�T
are the estimated spoofer alterations,

s0 =
�

csḃ [1] , . . . , csḃ [k]
�T

is a sub-vector of s which only

contains the alterations on the clock drift, λ is a tuning

parameter, and D2 is a K × K second order total variation

matrix applied to K spoofer alterations of the clock drift csḃ

in s0 and is defined as follows [39]:

D2 =

⎛

⎜
⎜
⎜
⎝

−2 1 0 . . . 0

1 −2 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 1 −2 1

⎞

⎟
⎟
⎟
⎠

(13)

The first term in (12) comes from the measurement equation

which contains the state and attack estimates. At the same

time, the second term defines the EKF random walk model,

and finally the third term promotes sparsity on the jerk of the

attack by applying a second order total variation matrix on

the attack velocity. If an attack is present, that is, if sparse

peaks are found on the third-order derivative (or clock jerk),

the minimization rejects the clock alterations from the state

vector x̂, and places them in vector ŝ instead. In other words,

there is no need for a correction stage, as rejection occurs
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automatically, given the proper tuning of λ to promote sparsity.

The sparsity is promoted by penalizing the `1-norm of the

clock jerk of the attack when adjusting λ. In other words,

the higher the λ, the more sparse the
�
�D2s0

�
�

1
term will appear,

thus increasing the sensitivity in detection and rejection of

non-modeled behavior changes in the sparse-domain. This is

achieved altogether while estimating the user clock dynamic

model. Finally, the value of λ must be tuned for each receiver,

as it indirectly depends on the hardware that produces the

measurements and related covariances.

Additionally, the first and second term jointly constrain the

measurement integrity in the user clock bias and clock drift,

corresponding to equations (6) and (7). If the measurement

integrity does not hold for the dynamical model in (12), i.e.

the second term, the outlier (alteration) variables in the first

term, sb and sḃ, absorb such erratic behaviors. This means

that the proposed model is able to capture the attack as

either a measurement integrity failure, or as a sparse event

regardless of the TSA. Therefore, the functionality of the

proposed method is three-fold:

1) A dynamic model of the user clock data based on the

first and second term of (12);

2) An attack detection and automatic capturing based on

the first and third term of (12), and based on the

third order TSA modeling from Section III-B, and the

promoted sparsity; and

3) A measurement integrity detection that is absorbed by

the alteration variables sb and sḃ.

Finally, the optimization problem in (12) is a quadratic

program which can be solved with off-the-shelf solvers such as

CVX [40]. Additionally, numerical optimization methods for

such quadratic programs can run on the receiver’s CPU and

memory [41]. The next section presents the testing methodol-

ogy and numerical results achieved from (12).

V. TESTING METHODOLOGY ON TSAS

This section presents a testing methodology to evaluate

the rejection and mitigation of TSAs with the TSARM-S

technique. The Android Location Team from Google recently

made available GNSS raw measurements to study high

accuracy positioning techniques relevant to mass market

applications [42]. They provide an Android application GNSS

Logger along with MATLAB post-processing scripts to obtain

pseudoranges and pseudorange rates from select Android

devices. This provides an opportunity for commercial device

testing on well-known spoofing testbeds such as TEX-

BAT [31]. Also, increasing in popularity are real-time SDR

solutions [32], which provide access to the receiver chain from

baseband to the navigation domain.

A. Testbed Setup

In this work, we present a study on the effects of previously

discussed TSAs (see Section III-B) on an integrated testbed

at the University of Texas at San Antonio’s (UTSA) Software

Communication & Navigation Systems (SCNS) Lab.

This study includes two main platforms for spoof-

ing research along with real spoofing TEXBAT scenarios:

(a) a commercial-grade Android-based Google Nexus 9 tablet

with an embedded GPS chipset, providing raw measure-

ments and MATLAB post-processing scripts from [42]; and

(b) an in-house real-time LabVIEW-based single-frequency

GPS L1 SDR receiver previously reported in [32], which

provides raw measurements in a similar fashion. The inte-

grated testbed for both receivers (a) and (b) can be seen in

Fig. 2. Three TEXBAT static scenarios are explored, namely

spoofing scenarios 2 and 3, and a clean static scenario for

comparison purposes [31]. TEXBAT scenario 2 implements

an overpowered time push attack that deals a 600 m offset on

the clock bias. Similarly, scenario 3 deals a 600 m attack but

in a power-matched manner. For this work, both attacks are

considered TSAs. For further descriptions of these scenarios,

the reader is directed to [31].

We assess the testbed in two steps: first, we inject syn-

thetic first, second and third order TSAs on pseudoranges

and pseudorange rates for the TEXBAT clean static sce-

nario; and second, we process TEXBAT scenarios 2 and 3

as real spoofing attacks. The synthetic simulations provide

worst-case scenarios where the attacks occur with negligible

losses in carrier and code alignment, i.e., a perfect spoofing

attack. Inversely, the real spoofing attacks from TEXBAT

scenarios 2 and 3 provide a more realistic setup.

�

ρ [k]

ρ̇ [k]

�


 �� 

yk

=

�

1N×1 0N×1

0N×1 1N×1

�


 �� 

Hk

�

cbu [k]

cḃu [k]

�


 �� 

xk

+

�

1N×1 0N×1

0N×1 1N×1

�


 �� 

Hk

�

csb [k]

csḃ [k]

�


 �� 

sk

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

kp1 [k] − pu [k]k2 − cb1 [k]
...

kpN [k] − pu [k]k2 − cbN [k]

(v1 [k] − vu [k])T ·
p1 [k] − pu [k]

kp1 [k] − pu [k]k2

− cḃ1 [k]

...

(vN [k] − vu [k])T ·
pN [k] − pu [k]

kpN [k] − pu [k]k2

− cḃN [k]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠


 �� 

ck

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

�ρ1

...

�ρN

�ρ̇1

...

�ρ̇N

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠


 �� 

�k

(10)
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Fig. 2. Testbed for TEXBAT testing on TSARM-S with (a) record-and-replay on Google Nexus 9, and (b) baseband offline processing on a GPS
SDR receiver.

TABLE III

TEXBAT SCENARIOS AND SYNTHETIC ATTACKS PARAMETERS

TEXBAT binary files are available at UT Austin Radion-

avigation Laboratory website [43]. For testbed (a), since the

Nexus is a commercial receiver, we replay the TEXBAT

recordings over-the-air (OTA) by using the following NI equip-

ment: A host PC with a LabVIEW-based record-and-replay

software, an NI PXIe-1075 Chassis with a PXIe 5673 RF

Signal Generator via PCIe interface, and a VERT 900 antenna.

For OTA transmissions, the SCNS Lab is equipped with a

custom-made RF shielding area explicitly designed for GPS

research. It uses 50 dB attenuation curtains at the L1 band to

follow FCC regulations. The specifications of the TEXBAT

recordings are set to 25-MHz sampling rate with INT16

in-phase and quadrature interleaved baseband samples, ade-

quate for the NI equipment. The Nexus is properly shielded

as to receive OTA replayed recordings. For (b), the binary files

from TEXBAT are replayed in offline mode directly into the

SDR receiver, thus avoiding OTA transmission effects.

B. Synthetic Simulations

The synthetic attack simulations are implemented on the

clean static scenario. Table III shows the recording length and

specific GPS time used, along with synthetic attack parame-

ters. The GPS time is used to synchronize between different

TEXBAT scenarios. Also, all final attack bias magnitudes

sufficiently surpass the distance of 600 m or 2 µs in time, for

Fig. 3. An injected synthetic third order attack on pseudoranges and
pseudorange rates.

a complete channel capture [30]. Fig. 3 shows the synthetic

third order attack injected to the pseudoranges and pseudor-

ange rates of the clean static scenario adhering to the measure-

ment integrity checks described in Section III-A. This shape

is chosen to assimilate TEXBAT scenario 2, as will be seen in

Section VI-B [31]. As for the synthetic first and second order

attacks, see Fig. 1 shapes along with start and stop times listed

in Table III.

C. Offline MATLAB Evaluations

For evaluation, we implement TSARM-S in MATLAB

environment in offline mode, i.e., in a snapshot manner, after

obtaining a window of K raw measurements from testbeds

(a) and (b) (see Fig. 2). Both the Nexus and the SDR

provide the raw measurements for the recordings that are

used, as per Fig. 2. To solve the quadratic program in (12),

the MATLAB-based convex optimization solver CVX [40] is

used. Specifically, we implement the optimization problem

in a non-recursive manner, i.e., using all K measurements.

We implement the EKF in a similar mode for comparison

purposes. In regards to the variances in matrix Rk , the Nexus

post-processing scripts provide such values [42], and the SDR

has its own implementation based on receiver characteris-

tics [34], [35, Ch. 9]. To model the clock state covariance

matrix Qk , the Allan variance coefficients for a temperature-

controlled crystal oscillator (TCXO) are used [35, Ch. 9]. The

output of the conventional EKF is used to obtain the ground
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TABLE IV

SUMMARY OF EVALUATED SCENARIOS

truth from the TEXBAT clean static scenario for comparison

against synthetic attacks and TEXBAT scenarios 2 and 3.

Regarding the λ parameter, Nexus simulations used values

between 0.05 and 0.2, and the SDR utilized values between

250 and 1000. The tuning of this parameter can be achieved

via cross-validation [40]. Overall, one attempts to find the best

λ value that minimizes the multi-objective function in (12),

while maintaining a good sensitivity in the detection.

D. Performance Metric

As for the performance metric, our numerical test clock data

outputs are compared against the ground truth values via the

root mean square error (RMSE) for all scenarios. Let K denote

the total length of observation time. The RMSE is defined as

RM SE =

�

1

K

�K−1

k=0

�

cb̂u [k] − cbu,GT [k]
�2

(14)

where cbu,GT is the ground truth clock bias, and cb̂u is the

estimated clock bias for each method.

E. Scenarios

A total of nine scenarios are evaluated, as seen in Table IV.

In the ensuing Section VI, only illustrative scenarios are

shown to demonstrate the TSARM-S method on a commercial

receiver, while the SDR testbed is used to further validate the

results. The Nexus did not post-process scenario 3 properly,

because this attack requires additional tuning and RAIM

bypass, which was only possible on the SDR, as will be

discussed in Section VI-C. Additionally, a comparison of

TSARM-S against state-of-the-art techniques for the clean

static scenario corrupted by a first order attack and MP is

discussed in Sections VI-D and VI-E.

VI. SIMULATION RESULTS

A. Synthetic Simulation Results

This subsection presents results for synthetic attacks on

the Nexus testbed. The Nexus results are shown initially

to demonstrate the TSARM-S capabilities on commercial

receivers, and both Nexus and SDR results are shown in the

next subsection for validation.

1) Synthetic First Order Attack on Nexus 9: Fig. 4 shows the

results for the TEXBAT clean static scenario with the first

order synthetic attack. Fig. 4(a) shows the clock bias and clock

drift for the clean, attacked, and corrected outputs of the EKF

and TSARM-S, respectively. The clock bias is corrected to a

20.17 m RMSE while the drift error is maintained at less than

1 m/s. Fig. 4(b) shows the estimated spoofer alteration values,

Fig. 4. Synthetic first order attack evaluation on Nexus 9. Clean,
attacked, and corrected clock bias and clock drift plots on (a), and
estimated spoofer alteration plots on (b).

sρ and sρ̇ , obtained directly from the simulations. The attack

is properly captured in the outlier vector and the sparse peaks

are seen in the clock jerk.
2) Synthetic Second Order Attack on Nexus 9: Fig. 5 shows

the results for the second order attack on the Nexus device.

The characteristic ramp attack on the clean vs. attacked clock

bias is smoother than the step attack, nonetheless, a total

bias attack of almost 1000 m is seen in second 229 (see

Fig 5(a) zoom-in plot). The corrected bias shows an offset

of 99 m bias at the same second. And the corrected clock

drift is within 1 m/s. Further λ tuning and proper clock

modeling could improve this output, however the RMSE is

quite an acceptable 42.47 m bias error from the ground

truth. Also, the estimated spoofer alterations in Fig. 5(b) show

clear ramp and step shapes detected for the clock bias and

drift, respectively, and the clock jerk shows evident detection

spikes.

3) Synthetic Third Order Attack on Nexus 9: The synthetic

third order attack results on Nexus is seen in Fig 6. Out of

all three, this is the subtlest and hardest to detect. In fact, it
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Fig. 5. Synthetic second order attack evaluation on Nexus 9. Clean,
attacked, and corrected clock bias and clock drift plots on (a), and
estimated spoofer alteration plots on (b).

assimilates TEXBAT scenario 2 [31]. Nonetheless, Fig. 6(b)

displays the clock jerk spikes that are reflected on the esti-

mated spoofer bias and drift alterations. The RMSE of the

corrected bias is 93.38 m, and the corrected clock drift is

within 1 m/s of the ground truth as opposed to the injected

5 m/s attack.

B. Real Scenario Results

This subsection presents results for TEXBAT scenario 2 on

both Nexus and SDR testbeds, and for scenario 3 on the SDR.

1) TEXBAT Scenario 2 on Nexus 9: Fig. 7 shows the results

for the real TEXBAT scenario 2 attack and mitigation with

TSARM-S on the Nexus. An impressive 26.72 m RMSE is

achieved even with OTA replay effects. The spikes depicted

in the jerk plot in Fig. 7(b) distinctly correspond to the

trapezoidal shape of the attacked clock drift. This is clearly

a third order attack. The estimated clock drift is very similar

to the one seen on the attacked clock drift plot in Fig. 7(a),

and the 600 m clock bias attack reported in [31] is accurately

estimated. The corrected clock bias and drift are maintained

very closely to the clean version.

Fig. 6. Synthetic third order attack evaluation on Nexus 9. Clean,
attacked, and corrected clock bias and clock drift plots on (a), and
estimated spoofer alteration plots on (b).

2) TEXBAT Scenario 2 on SDR: The SDR evaluation results

for the real TEXBAT scenario 2 are seen in Fig. 8. The

performance is similar to the one of Nexus with a slightly

higher RMSE of 31.83 m. The spikes are quite visible nonethe-

less, as seen in Fig. 8(b). A small deviation on the corrected

clock bias of around 50 m is seen at the end of Fig. 8(a).

Further λ tuning might improve such errors, as discussed in

Section IV-B. The trapezoidal shape on the attacked clock drift

is also seen in Fig. 8(a) as well as in the estimated spoofer

clock drift in Fig 8(b).

3) TEXBAT Scenario 3 on SDR: Fig. 9 shows evaluation

results for TEXBAT scenario 3 from the SDR. The attack on

the clock bias of 600 m is clearly detected in the estimated

spoofer alterations plot of Fig. 9(b). However, no significant

spikes are seen in the clock jerk output. Nonetheless, the TSA

was successfully detected and rejected based on a lack of

measurement integrity for an all-channel simultaneous attack

(it turns out that the scenario 3 attacks do not satisfy (6) and (7)

for all channels). The proposed method achieved an RMSE

of 15.92 m as a small ramp residual of 30 m on the corrected

clock bias is seen in Fig. 9(a).
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Fig. 7. TEXBAT scenario 2 attack evaluation on Nexus 9. Clean,
attacked, and corrected clock bias and clock drift plots on (a), and
estimated spoofer alteration plots on (b).

TABLE V

RMS ERROR RESULTS FOR SYNTHETIC AND REAL SCENARIOS (IN m)

C. Analysis and Discussion

Table V shows the RMSE comparison summary between

EKF and TSARM-S for all 9 scenarios. Overall, the SDR

achieved an average 12.08 m clock bias RMSE, or roughly

40 ns time offset, outperforming the Nexus 9 featuring an

average of 45.74 m RMSE, or 152 ns, for all tested scenarios.

The SDR shows improved detection due to its stable clock bias

and drift outputs and high configurability. The clock model

for the SDR matches its true Allan parameters better than

the model adopted for the Nexus. Additionally, the Nexus

Fig. 8. TEXBAT scenario 2 attack evaluation on SDR. Clean, attacked,
and corrected clock bias and clock drift plots on (a), and estimated
spoofer alteration plots on (b).

OTA transmission adds further wireless channel effects. Proper

clock modeling (availability of Allan parameters) improves

detection by handling the expected oscillator noise output, thus

allowing more accurate behavior change detection in the clock

jerk, as seen in the TSARM-S spoofer alteration outputs.

1) TEXBAT Scenario 3 Measurement Integrity: As seen in

Fig. 9, TEXBAT scenario 3 lacks measurement integrity (see

Section III-A). The clock drift does not follow the derivative

of the clock bias. This can be seen as the attack on the

clock bias reaches 600 m, while the drift remains unaltered in

Fig. 9(a). Because the spoofer alterations are unconstrained in

(12), the outlier variable captures these integrity discrepancies

and successfully mitigates the attack on the clock bias. Thus,

scenario 3 attack was successfully rejected due to a lack of

measurement integrity and not because of a sparse event.

Also, the OTA experiments for this scenario with the Nexus

testbed were unsuccessful: the device dropped channels during

OTA replay and failed to attain a PVT solution after the attack

had started around second 100. We hypothesize that the Nexus

has simple self-integrity checks such as RAIM. In light of this

evidence, the SDR was tuned to post-process scenario 3 in
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Fig. 9. TEXBAT scenario 3 attack evaluation on SDR. Clean, attacked,
and corrected clock bias and clock drift plots on (a), and estimated
spoofer alteration plots on (b).

offline mode with deactivated features such as RAIM and other

channel dropping mechanisms. Therefore, we conclude that a

smart spoofer attack must maintain measurement integrity to

successfully bypass rudimentary commercial device tests.

D. Comparison With State-of-the-Art Techniques

In the following, TSARM-S is compared against a state-of-

the-art TSA rejection technique, namely, a Robust Estimator

(RE) [16]. Similarly, a multipath sparse estimation (MPSE)

technique is evaluated due to its similarity in terms of sparse

detection [20]. The Nexus testbed along with a synthetic

first order attack is evaluated (see Table III and Fig. 1).

In this experiment, the RE and MPSE techniques are evaluated

similar to TSARM-S, i.e., in a snapshot, non-recursive, post-

processing manner along with a static scenario where the user

position and velocities are known and not estimated. Thus,

we focus on TSA detection and correction. The real-time

implementation aspects of TSARM-S are left for future work,

as mentioned in Section VII.

Fig. 10 shows the corrected clock bias (top) and drift

(bottom) outputs from MPSE, RE, and TSARM-S against their

Fig. 10. Synthetic first order attack evaluation on Nexus 9 and
comparison with state-of-the-art techniques. Top and bottom plots show
clean and corrected clock bias and clock drift, respectively.

Fig. 11. Synthetic first order attack plus multipath evaluation on
Nexus 9 and comparison against state-of-the-art MPSE technique. Top
and bottom plots show clean and corrected clock bias and clock drift,
respectively.

clean versions. The MPSE assumes an MP setting, i.e., that

only a few pseudorange and pseudorange rate measurements

are affected. Since the TSA affects all measurements alike,

the method is not effective in detecting the simulated first

order attack. The RMSE for the MPSE is 1149.92 m. The RE

achieves clock bias RMSE of 407.62 m. It is worth noting the

RE’s primary application is to reject TSAs that affect PMUs

and therefore induce a clock bias error of 8000 m; thus a

1500 m attack is considered small.

E. Application to a Spoofing Plus Multipath Scenario

To further validate that TSARM-S provides an accurate

clock bias and drift under diverse settings, a scenario with

both a TSA and MP is explored. Also, we compare with

MPSE [20]. The TSA and MP scenario is evaluated on the

Nexus testbed as a first order attack along with synthetic

MP alterations as in [20]. Specifically, the MP is simulated
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similarly to a step attack with pseudorange alterations of 80 m

and pseudorange rates of -24 m/s on two satellites. This MP is

injected at similar times as the first order attack. Fig. 11 shows

the clean and attacked clock bias and drift outputs of the EKF.

The MP is barely noticeable in the bias since the TSA inflicts

a 1500 m alteration, however the drift shows a step of around

9 m/s. Also, note that the MP model from [20] does not follow

measurement integrity as given in Section III-A. In reference

to the bottom two plots of Fig. 11, TSARM-S achieves an

RMSE of 45.39 m, while MPSE achieves 1151.23 m RMSE.

The bias seems unaffected by the MPSE as expected from

TSA characteristics, however the drift appears to be corrected.

Nonetheless, TSARM-S corrects the TSA within an acceptable

error. It is worth emphasizing that TSARM-S is not intended

for multipath mitigation, however this simulation numerically

demonstrates that a reasonably accurate clock bias estimate

can be produced, even if some multipath outliers are present.

VII. CONCLUSION AND FUTURE WORK

This work presented a novel modeling of GPS TSAs based

on higher-order sparse-domains where the attack appears as a

spike while a behavior change can be detected on the user

clock. Further, it proposed a TSA rejection and mitigation

technique based on a joint dynamic model and a higher order

total variation operator. A test methodology was applied to

first order, second order, and third order spoofing attacks

as described in the TSA modeling. Also, real-data TEXBAT

scenarios were evaluated. These attacks were successfully cor-

rected in a commercial receiver and a GPS SDR receiver [32].

In both testbeds, TSARM-S rejected smart spoofing attacks

and achieved an average RMSE of 12.08 m for the SDR

testbed, and 45.74 m for the Nexus. Both results translate to an

RMSE of roughly 40 ns and 153 ns, respectively. TSARM-S

was also evaluated against state-of-the-art spoofing mitigation

techniques and MP techniques. Numerical simulations demon-

strated that TSARM-S achieves reasonably accurate clock bias

estimates under TSA and MP scenarios.

The proposed method is computationally feasible and can

be implemented as an inexpensive firmware upgrade for com-

mercial receivers. TSARM-S proved that a proper dynamic

clock bias and drift model can achieve TSA rejection tasks

by sensing behavior changes in higher-order sparse domains

as well as measurement integrity gaps. Finally, due to the

proposed systematic TSA modeling, simple adjustments to the

dynamic model in (12) can potentially detect more complex

(and smoother) attacks at domains of even higher order.

As future work, further improvement of the clock model

(via the Allan coefficients) on the target device such as the

Nexus 9 is planned to improve the sensitivity with respect

to the attack detection and mitigation. Also, further tuning

of the λ parameter for different scenarios is expected. Other

aspects include investigation of the impact of noise, where

certain limitations to the proposed algorithm can be expected,

as the studied scenarios were evaluated in representative

nominal conditions. Finally, because the proposed method

uses a window of K measurements in a snapshot manner, a

real-time implementation, i.e. by means of a sliding window,

is anticipated.
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