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Abstract

Aim: Although clinicians primarily diagnose dementia based on a combination of metrics such as medical
history and formal neuropsychological tests, recent work using linguistic analysis of narrative speech to
identify dementia has shown promising results. We aim to build upon research by Thomas JA & Burkardt HA
et al. (J Alzheimers Dis. 2020;76:905-22) and Alhanai et al. (arXiv:1710.07551v1. 2020) on the Framingham
Heart Study (FHS) Cognitive Aging Cohort by 1) demonstrating the predictive capability of linguistic
analysis in differentiating cognitively normal from cognitively impaired participants and 2) comparing the
performance of the original linguistic features with the performance of expanded features.

Methods: Data were derived from a subset of the FHS Cognitive Aging Cohort. We analyzed a sub-selection
of 98 participants, which provided 127 unique audio files and clinical observations (n = 127, female = 47%,
cognitively impaired = 43%). We built on previous work which extracted original linguistic features from
transcribed audio files by extracting expanded features. We used both feature sets to train logistic regression
classifiers to distinguish cognitively normal from cognitively impaired participants and compared the
predictive power of the original and expanded linguistic feature sets, and participants’ Mini-Mental State
Examination (MMSE) scores.

Results: Based on the area under the receiver-operator characteristic curve (AUC) of the models, both the
original (AUC = 0.882) and expanded (AUC = 0.883) feature sets outperformed MMSE (AUC = 0.870) in
classifying cognitively impaired and cognitively normal participants. Although the original and expanded
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feature sets had similar AUC, the expanded feature set showed better positive and negative predictive value
[expanded: positive predictive value (PPV) = 0.738, negative predictive value (NPV) = 0.889; original: PPV =
0.701, NPV = 0.869].

Conclusions: Linguistic analysis has been shown to be a potentially powerful tool for clinical use in classifying
cognitive impairment. This study expands the work of several others, but further studies into the plausibility
of speech analysis in clinical use are vital to ensure the validity of speech analysis for clinical classification of
cognitive impairment.
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Introduction

Dementia is a syndrome that involves loss of cognitive function including memory, comprehension, and
orientation, to a degree that impacts independent functioning. Dementia poses a significant burden both
socially and economically. According to the World Health Organization, dementia affects around 50 million
people worldwide, with nearly 10 million new cases per year [1]. The most common cause of dementia is
Alzheimer’s disease (AD). AD is the sixth leading cause of death in the United States and the fifth leading
cause of death among Americans age 65 and older [2]. The burden of dementia reaches further than just
diagnosed patients. An estimated 16 million caregivers, often family members and friends, provide informal
unpaid care for people with dementia, providing an estimated 18.6 billion hours of care valued at nearly
$244 billion [3]. Early and accurate detection of cognitive decline can help promote optimal management of
the disease, reducing the risk of accidents and injuries, as well as improving the experience of families and
caregivers [4]. Thus, there is a need for simple, accessible, and noninvasive methods to determine cognitive
status and the risk of developing dementia [5].

There is no single test for dementia. Clinicians diagnose dementia based on medical history, physical
examination, laboratory tests, and formal assessments of changes in cognition, daily functioning, and
behaviors [5]. Neuropsychological evaluations can be particularly useful diagnostic tools, capturing cognitive
function in multiple domains, including language, attention, executive functioning, and memory abilities, but
are often time-consuming and expensive. Some cognitive screening measures, such as the Mini-Mental State
Examination (MMSE) and Montreal Cognitive Assessment (MoCA), are commonly used in clinical settings,
such as outpatient primary care or memory disorder clinics, to assist providers with the evaluation of
cognitive functioning, but are more imprecise in diagnostic accuracy.

The rise of ubiquitous sensing applications and digital health in the last decade has led to increased
interest and opportunities for developing novel metrics for assessing dementia-based disorders. Existing
research datasets offer opportunities to identify and validate these novel measures as potential digital
biomarkers [6], but many do not integrate sensing technologies with traditional diagnostic data [e.g.,
demographic, neuroimaging, electronic health records (EHR), etc.]. In addition, neurocognitive research data
in longitudinal studies is rarely collected at regular intervals. However, ubiquitous sensing technologies can
address this limitation by enabling real-time capture of data with insights into cognition and behavior [6].
The integration of health data from each of these sources may enable the application of big data methods in
diagnosing and treating dementia and facilitate improved early-stage detection [5, 7]. Of particular interest
is the use of speech analysis technologies, notably psycholinguistic measurements, to measure changes in
cognition and functional behavior to diagnose cognitive aging-related disorders. Discussion of speech analysis
technologies has traditionally included both language and vocal speech analysis, though both language and
speech are studied individually under the context of psychology [8].

Previous work demonstrated the utility of speech features in predicting the presence of dementia.
Yancheva et al. [9] predicted MMSE scores using lexico-syntactic, acoustic, and semantic features from speech
samples in DementiaBank, a shared database of pathological speech from healthy and dementia-inflicted
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participants. Members of their research team expanded upon this by successfully using linguistic and audio
features extracted from the Boston Cookie Theft task [10] to distinguish between controls and participants
diagnosed with “possible” or “probable” AD [11]. Similarly, Alhanai et al. [12] used speech and language
features to determine the presence of cognitive impairment using data from the Framingham Heart
Study (FHS). Alhanai et al. [12] reported that linguistic and audio features had similar or better predictive
power than well-documented demographic risk factors of dementia (e.g., age and sex).

A recent analysis by Thomas et al. [13] extensively characterized the utility of speech features in
predicting binary cognitive status (control vs. impaired) in a subset of the FHS Cognitive Aging Cohort,
extending work by Alhanai et al. [12]. The results of the analysis notably showed an area under the AUC of
0.908 for an ElasticNet model trained on linguistic features, and improved performance (0.943) when the
model incorporated demographic variables and acoustic features. Standalone acoustic features performed
worse than demographic and linguistic features individually in predicting cognitive status. However, acoustic
feature performance was confounded by a high signal-to-noise ratio in the recorded audio files, as noted in the
analysis. This previous work agrees with existing evidence characterizing linguistic deficits and demographic
covariates, notably education, as key factors in cognitive impairment [14-17].

In current clinical practice, memory disorder clinicians do not record speech data during
neuropsychological examinations. With optimistic signals from prospective studies, there is a growing
incentive to record and digitize cognitive examination speech data. Speech data collection is cost-effective
and accessible and incurs a minimal clinical burden on clinicians and patients [18]. Speech biomarker
technologies may also be incorporated into clinical decision support tools alongside existing diagnostic tools
(e.g., blood tests, imaging).

Before speech biomarkers for cognitive assessment can be applied in clinical settings, much work must be
done to identify and clinically validate the value of speech biomarkers, both in parallel to and in conjunction
with existing diagnostic methods. To do so, we must understand how well existing methods predict cognitive
status, and what further benefits speech biomarkers can provide. Speech biomarkers present an accessible,
low-cost, and rapid mechanism for screening and testing compared to neuropsychological testing, which
requires highly trained specialists and substantial time and cost investments. In order to characterize
phenotypes and eventually biomarkers from speech features, biological data, such as blood, cerebrospinal
fluid volume, and brain imaging data must be included. This work thus makes a critical contribution beyond
existing work, which has focused on the connection between speech features and cognitive phenotypes, and
the steps required to develop speech biomarkers. As voice recording becomes ubiquitous, the data available
to strengthen these findings will grow substantially in the near future.

In this work, we provide in-depth contextual analysis of linguistic features in detecting cognitive
impairment and examine how to improve their clinical viability. First, based on the optimistic performance
of language in predicting cognitive status from our research team’s previous work, we pursue a deeper dive
into the primary dimensions of language, including syntactic, semantic, and lexical information, to expand
the feature set reported by Thomas et al. [13]. We perform an error analysis to gauge deficits of the models
in predicting cognitive status in key demographic groups. Similar to our team’s previous work, we provide
additional neuropsychological context of feature performance by identifying correlations between both
the original and expanded linguistic feature sets and performance on neuropsychological tests (NPTs). We
specifically use language-based NPTs which include the logical memory, paired association, Boston Naming,
and verbal fluency tests. In comparing linguistic features to performance on NPTs, we can understand how
well different dimensions of language reflect cognitive deficits in those with dementia. Finally, we discuss
considerations and requirements to ensure high-quality speech data collection that can support the eventual
integration of speech biomarkers into clinical practice.

Material and methods
Data
This study uses a subset of 141 unique participants from the FHS Cognitive Aging Cohort. The FHS is an

extensive observational study capturing longitudinal, transgenerational cohort data in the US since 1948. The
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FHS has conducted incident studies of dementia since 1976 and first began collecting digital voice recordings
of assessments in 2005. One central objective is to capture age-related cognitive changes across the entire
adult lifespan [13]. The study obtains anthropomorphic, lifestyle, organ function [19], genetic [20], and other
health-related phenotypic [21] data. For this study, we used a subset of these data including demographics,
NPT, and speech recordings of NPTs that required a spoken response.

Neuropsychological test data

The NPT data includes multiple standardized tests that assess premorbid functioning (Wide Range
Achievement Test [22]), attention (WAIS Digit Span), processing speed and executive functioning [ Trail Making
Test (TMT) A and B [23]], verbal and language abilities [Boston Naming Test (BNT) [24]; Wechsler Adult
Intelligence Scale (WAIS) Similarities [25]; Controlled Oral Word Association Test, letter naming (‘FAS’), and
animal naming [22]], visuoperceptual skills [Hooper Visual Organization Test (HVOT), [26]], verbal learning
and memory [Weschler Memory Scale (WMS) Logical Memory; Verbal Paired Associates [25]], visual learning
and memory (WMS Visual Reproduction [27]), and motor speed (Finger Tapping Test [28]). Full details about
the testing protocol can be found in Au et al. [29]. It is important to note that our analysis focuses mainly
on speech measures, and not all NPTs involve spoken responses; however, all available neuropsychological
measures were included in analyses to provide extended cognitive context.

Alongside the domain specific NPT, FHS also included the MMSE, a widely used cognitive screening
measure which includes tasks of orientation, attention, language, visuospatial skills,and memory abilities [30].
The MMSE was measured on average 2.7 * 0.1 years from the time of the NPT. We selected the MMSE score
that was closest to the time of the NPT test (e.g., average MMSE-NPT administration time difference was
1.8 + 0.3 years). The MMSE provides a reference to measure the validity of speech analysis to screen for
cognitive impairment [11]. The MMSE is scored with a cutoff for “normal” or “abnormal” relative to the
participant’s education level [31]. The FHS uses this screening measure to determine whether changes in
cognitive function warrant further follow-up [31] to assess for possible onset of dementia. Although some
researchers have evaluated specific items on the MMSE to determine domain-specific cognitive deficits, the
MMSE is not diagnostic and does not differentiate subtypes of dementia, if any [31]. Details about the MMSE
general procedures can be found in Kurlowicz et al. [31].

Original speech analysis data

Speech recordings were obtained simply by recording the entire 60-minute NPT session during the study.
Each NPT speech recording originally included both interviewer and participant audio along with electronic
copies of the transcripts. As part of our previously published work [13], we utilized the transcripts provided
by FHS, isolated participant dialogue, and split transcripts by cognitive assessment task. We then extracted
linguistic features from the transcripts of the Logical Memory-Delayed Recall test. Linguistic features identify
information contributing to the language content of the speech data. To increase the accuracy of part-of-
speech (POS) tagging, punctuation was removed from the transcripts before computing tags. With the
transcripts of each audio file, we extracted POS tags using the Natural Language Toolkit (NLTK) [32] and
SpaCy [industrial-strength Natural Language Processing (NLP) with Python and Cython, Explosion] [33].
Additional information on the extraction of linguistic features can be found in the “Acoustic and Linguistic
Feature Extraction” section of Thomas et al. [13]. We utilized a subset of data curated and described in this
prior work in this study. Here, we build upon this work by extracting additional features from the same
transcripts as described in section Speech preprocessing.

We also included two additional features previously extracted from prior work in Thomas et al. [13]
in this analysis: pronoun-proper noun ratio and proportion of conjunctions. Previous research has shown
these correlate with story recall scores and cognitive status. For example, patients diagnosed with semantic
dementia produce fewer nouns, often replacing them with pronouns [34], resulting in higher pronoun-noun
ratios. Similarly, patients with AD struggle to use nouns appropriately during short discourses, also leading
to greater pronoun usage [35]. Furthermore, studies have shown that some forms of AD result in a decreased
use of conjunctions [36]. Kempler et al. [35] suggest that speech comprehension, including pronoun and
conjunction use, can be attributed to attention and working memory deficits.
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Diagnostic classification

AFHS dementia diagnosis adjudication panel consisting of atleast one neuropsychologistand one neurologist
determined the participants’ cognitive status, applying the Diagnostic and Statistical Manual of Mental
Disorders (DSM-1V) criteria [37] for dementia and National Institute of Neurological and Communicative
Disorders and Stroke and the Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA) [38,
39] for AD. The panel used all available information for each study participant, which may include NPT and
neurology exams, FHS study and external medical records, and interviews with participants’ caregivers.
Posthumously, the FHS review panel determines cognitive status at the time of death using the totality of
participants’ medical and when applicable and available, nursing home records [40]. While FHS did not
routinely conduct Clinical Rating Scale assessments (a key tool used to measure psychiatric symptoms), it
used a comparable rating system ranging from cognitively unimpaired to severe dementia. The FHS dementia
diagnosis adjudication panel assigned the following numeric values for the possible findings: 0 = control
(tested as normal) or not tested, deemed normal; 0.5 = cognitively impaired, not demented; 1-1.5 = mild
dementia; 2-2.5 = moderate dementia; 3 = severe dementia.

In some cases, individual participants may have participated in multiple NPT. For our analysis, each

assessment for participants with multiple assessments was treated as a unique observation, due to the variable
changes in data availability and cognitive status over time of participants with more than one assessment.

Demographics
We calculated summary statistics for the demographics of age, sex, and education and then split the subjects
into ‘non-present’ (control + normal cognition) and ‘present’ [mild cognitive impairment (MCI) + dementia at
any level]. We performed a t-test to evaluate differences in age between the present and non-present groups.
We also used Chi-square tests to evaluate the differences in sex and education between the present and non-
present groups.

Speech preprocessing

Part of this work was aimed to expand the linguistic feature set previously explored, and compare the two
feature sets in terms of predictive power [13]. Following previous work performing similar computerized
voice analyses, we extended the feature vectorizations on the Logical Memory (delayed recall) transcript
from the collected audio data. We extracted new extended features characterizing syntactic, semantic, and
lexical information from the provided transcripts from Logical Memory (delayed recall) audio files. A subset
of featurized data processed by Thomas (Table 2 of [13]) was also used as the original linguistic feature set to
compare with the following expanded linguistic feature set.

Expanded syntactic features

Syntactic features may reflect speech complexity. Boschi et al. [34] observed that patients afflicted with
Lewy body dementia produce syntactically simpler sentences, characterizing demented speech with reduced
sentence length, clauses, verb phrases, and coordinate sentences. Reduced syntactic complexity reflects
impairment in discourse organization associated with right frontotemporal disease [30]. Work from Fraser
etal. [11] and Orimaye et al. [41] showed notably strong predictive power in the syntactic analysis of speech
from the DementiaBank clinical dataset, a highly used corpus of patients with possible or probable AD
diagnoses and controls with available narrative voice samples to obtain various speech features. Both works
used NLTK’s Stanford parser to extract syntactic features from participant speech such as sentence length,
clause tags, and parse tree depth. In line with these works, we extract features regarding the mean length
of sentences, clauses, and phrase types, and parser tree depths. Similar to Fraser et al. [11] and Orimaye
et al. [41], the Stanford parser from NLTK (version 3.4) was used to extract raw counts of phrase and clause
level tags specified in Penn Treebank II [42]. Additionally, we extracted parse trees from each sentence in the
transcripts to calculate average and maximum tree depth.

Expanded semantic features

Semantic features identify information contributing to the logic and meaning of speech, forming the
expressivity of language [43].Jarrold et al. [44] characterize the speech of individuals with dementia as having
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smaller vocabularies for different semantic concepts than the speech of healthy people, reflecting difficulties
in semantic processing and word-finding capabilities. For each transcript, individual words were categorized
into semantic groups using Pennebaker et al’s [45] Linguistic Inquiry and Word Count (LIWC) 2015 English
Dictionary. In addition to the number of unique words in each category, the number of non-empty categories
was calculated, capturing both the breadth and frequency of semantic categories in each participant’s speech.
Compared to individuals with normal cognition, cognitively impaired individuals use fewer words to describe
the same concepts, which reduces the breadth of semantic categories used in their speech. Previous works
have shown LIWC semantic categorization to be a powerful identifier of cognitive impairment [44, 46].

Expanded lexical features

Lexical features reflect the breadth of vocabulary. When asked to describe pictures, patients with dementia
provide shorter, less informative oral and written descriptions [47] compared to healthy individuals, indicating
word-finding difficulties that often result in muteness in patients with dementia [48]. Orimaye et al. [41] and
Fraser et al. [11] also reported strong performance of lexical features in predicting the presence of dementia
We featurized the lexical information using a subset of the features in Orimaye et al. [41] (unique word count,
word count, and character length). From each transcript, we calculated features regarding the number of
unique words, the number of times each unique word is used, and the mean word length. For each feature,
we repeated feature extraction on a version of the transcript on which lemmatization and stemming had been
completed and stop words had been removed. Lemmatization and stemming effectively standardize different

» o«

versions of the same words. For example, “run”, “ran” and “running” are all considered the same word after
n « ”n

lemmatization and stemming. Stop words, such as “is”, “the”, “a”, were not directly relevant to performance on
the task, and were removed to eliminate the bias of signal in our predictive models.

Predictive models of speech data for dementia and cognitive decline

Features from the audio samples were used to train binary classification models of cognitive impairment.

Binary classification

We utilized statistical models to predict binary cognitive impairment status (impaired/unimpaired). We
applied Logistic Regression from the scikit-learn Python package (version 0.20.3) to estimate binary cognitive
status. We tested different Lasso (L1) and ridge (L2) regularization penalties as well as varying regularization
parameters (A) to prevent overfitting without a sizable loss in performance. Penalty weights of 102, 10, 1,
10-1, 10-2, 10-3, and 10-4 were tested for A. Each model was trained utilizing leave-one-out cross validation.
We then selected the highest performing regularization term and A to use for each model when comparing
their performance.

Related predictive features were grouped together into feature sets. Feature sets are as follows: NPT,
MMSE, Baseline Linguistic, Syntactic, Semantic, and Lexical. The Baseline Linguistic feature set consists of
the linguistic features used in our prior work [13]. Speech-based feature sets (Baseline Linguistic, Syntactic,
Semantic, and Linguistic) were also paired with MMSE features and modeled to evaluate the performance of
each speech-based feature set in tandem with MMSE screening. It’s important to note that NPT and MMSE
are used in diagnosing dementia by FHS and therefore results have to be interpreted with caution due to
issues of circular reasoning. However, the NPT feature set is still included as a comparative performance
measure of traditional cognitive assessment methods. Features are normalized across individual feature
sets using standard scaling from -1 to 1. The combination of MMSE and speech-based features is utilized to
demonstrate the value of a data collection paradigm that may be amenable to general practice settings, prior
to neuropsychological testing and diagnosis for earlier detection of cognitive impairment.

Model performance measurement

Classification performance is assessed in terms of several metrics. To evaluate binary classification
performance, we use AUC, which characterizes predictive performance for both classes, unlike some other
measures, e.g., accuracy. Additionally, we used confusion matrix summaries, including sensitivity, specificity,
positive predictive value (PPV), and negative predictive value (NPV). In the case of cognitive impairment,
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it is optimal to maximize NPV without significantly reducing the PPV. This reduces the likelihood of a
false negative result, which is important because undiagnosed dementia may result in a greater risk of
hospitalization due to falling, fainting, and trauma [3]. Early diagnosis of dementia allows patients to benefit
from treatments sooner and allows them and their loved ones to plan and develop support systems. However,
it is also important to preserve a reasonable false positive rate (FPR), as an incorrect diagnosis of cognitive
impairment or dementia can inflict emotional trauma and cause undue burdens such as medical costs or the
withdrawal of their right to operate a motor vehicle. In practice, however, these risks appear to be minor in
comparison to those associated with a false negative result. The decision threshold for classification was
chosen to maximize the sum of sensitivity and specificity.

Error analysis

Previous studies have demonstrated the limitations of using MMSE to screen different demographic groups.
These include impacts of age, education, sex, and race on performance on the MMSE [14, 15, 17, 49, 50].
Age and education in particular have been previously shown to have a significant influence on cognitive
status [15, 16]. This may have potential confounding effects that cause incorrect predictions. To account
for this in our study, we performed a Mann-Whitney U test to examine the effect of age and a Kruskal-Wallis
test to examine the effect of education on both the male and female groups. Additionally, the false negative
rate (FNR) and FPR were assessed across all demographic groups.

We also evaluate the performance of the proposed expanded linguistic model in terms of true positive
rate (TPR) for sub-classifications of cognitive impairment, including MCI and dementia (mild and moderate).
As we use a binary classification model, we seek to validate that the model is not solely driven by the dementia
subgroup of the cognitive impairment class.

Neuropsychological specificity

In addition to characterizing the performance of our linguistic features in predicting cognitive status, we also
sought to characterize the relationship between our linguistic features and language-dependent NPTs. Though
sets of features predict cognitive status with high performance, such features should also reflect the general
performance of linguistic deficits as measured by NPTs. Language-dependent NPTs characterize language
function in conjunction with other dimensions of cognitive function such as verbal learning, memory, and
executive function. The NPTs of interest include Logical Memory Immediate Recall, Logical Memory Delayed
Recall, Logical Memory-Delayed Recognition, Paired Associate Learning Immediate Recall, Paired Associate
Learning Delayed Recall, BNTcorrect of 30 item, Letter Fluency (“FAS”), and Category Naming (animals).

To assess univariate effects, we adopt the same methodology from our previous work. We applied Lasso
regression on the dataset and selected features with the largest coefficients, and subsequently calculated
Pearson correlations between the selected features and NPT scores. To examine multivariate effects, we
perform multivariate ElasticNet regression, taking into consideration cognitive status and combinations of
linguistic features to fit NPT data. Cognitive status is incorporated as a binary variable of presence vs. non-
presence. Multivariate performance is characterized by the R2 score value. We then interpret the identified
coefficients to assess individual predictor effects in the multivariate context.

Results

Demographics

Of the subset of 141 participants, 43 participants were excluded due to missing data for demographics, MMSE
results, cognitive status, or speech recording/transcripts. This yielded a final subcohort of 98 participants for
our analysis. Our study consisted of 127 observations from 98 participants. Participants without presence of
cognitive impairment (n = 72, female = 46%, age = 72.2 * 2.3) were significantly younger (t-statistic = -3.378;
P <0.001), more educated (Chi-square statistic=28.646; P < 0.001), and more commonly male sex (Chi-square
statistic = 7.831; P = 0.005) than participants with cognitive impairment (n = 55, female = 51%, age = 83.4 +
1.9). Relevant demographic information for the 127 participant observations is provided in Table 1.

Explor Med. 2021;2:232-52 | https://doi.org/10.37349/emed.2021.00044 Page 238


https://doi.org/10.37349/emed.2021.00044

Table 1. Distribution of samples across different demographic groups

Demographic Total Cognitively normal Cognitively impaired P-value
Total Control Normal Total MCI Mild Moderate
(Tested cognition (Not dementia dementia
as tested, deemed
normal) normal)
Size, n 127 72 60 13 55 12 26 17 NA
Education College College College  Some college High College  High High <0.001
group (Mode) graduate graduate graduate (61%) school graduate school school
(35%) (38%) (47%) graduate  (58%) graduate graduate
(35%) (46%) (35%)
Sex (M/F) 67/60 41/32 36/24 5/8 27/28 8/4 11/15 8/9 0.005
Age (SD) 805+16 722+23 77.8+26 80.0+4.9 83.4+19 81.1+53 838+25 846+35 <0.001

SD: standard deviation

Model performance

Based on the model performance, both NPT and MMSE classify cognitive status well in isolation. NPT overall
performs the bestin terms of AUC (0.929) and NPV (0.938). MMSE has the highest PPV (0.900) and still shows
a NPV of 0.872. Again, this is expected because the MMSE is also included in the FHS consensus diagnosis
process. We provide a summary of the results of the model across each of the different sets of data in Table 2.

Table 2. Model performances for classification of presence of any cognitive impairment among different feature sets (MCI and
dementia are grouped together). Thresholds balance out the TPR and FPR

Feature set Penalty A AUC Specificity Sensitivity PPV NPV Number of
Features
NPT L1 10 0.929 0.836 0.927 0.81 0.938 23
MMSE L1 1 0.870 0.932 0.818 0.900 0.872 18
Baseline Linguistic L2 10 0.882 0.726 0.855 0.701 0.869 374
Baseline Linguistic + MMSE L1 1 0.913 0.863 0.873 0.828 0.900 392
Expanded Linguistic L2 100 0.883 0.767 0.873 0.738 0.889 163
Expanded Linguistic + MMSE L1 10 0.915 0.863 0.891 0.831 0.913 181
Expanded Syntactic L2 10 0.821 0.808 0.764 0.75 0.819 31
Expanded Semantic L2 100 0.870 0.795 0.836 0.754 0.866 126
Expanded Lexical L1 10 0.844 1.000 0.618 1.000 0.777 6

In comparison to cognitive examination methods, both the original and expanded linguistic features
individually outperform MMSE in terms of AUC and NPV but do not outperform NPT on any metric. However,
combining both sets of linguistic features with MMSE data yields an improvement over each individual feature
set and has a performance approaching that of the NPT data (Original Linguistic + MMSE: AUC = 0.913, NPV =
0.900; Expanded Linguistic + MMSE: AUC = 0.915, NPV = 0.913; NPT: AUC = 0.929, NPV = 0.938).

Although the baseline linguistic feature set outperforms the newly extracted feature sets (Syntactic,
Semantic, and Lexical) individually, the expanded linguistic feature set outperforms the original linguistic
feature set on all key metrics of performance. The baseline and expanded linguistic features predict cognitive
status with AUC of 0.882 and 0.883, respectively. However, the expanded linguistic features appear to better
characterize cognitive status deficits.

Error analysis

According to the Kruskal-Wallis test, distribution of age for the four education groups was not shown to be
significantly different [H= 3.833, P = 0.28]. Thus, we infer that age does not have a confounding effect on
education status.

Per Figure 1, both the baseline and expanded linguistic feature sets had improved FPRs with more
educated participants. As such, the baseline and expanded linguistic feature sets were less likely to label a
cognitively normal participant as impaired when the participant was more educated.
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Figure 1. FNR and FPR of the MMSE, Baseline Linguistic, Expanded Linguistic, Expanded Syntactic, Expanded Semantic, and
Expanded Lexical feature sets among education groups. Note: Lack of a bar denotes a rate of 0. Education group encoding is as
follows: 0—High School, did not graduate; 1—High School; 2—Some College; 3—College Graduate. Education group 0 only had
one observation of non-presence, so the only possible FPRs in this group is 1.0 and 0.0

In comparison with cognitive examination methods, MMSE was less likely to give a false positive label
than both the baseline and expanded linguistic feature sets for participants who have less than a college
education (some high schools, high school graduates, and some colleges). However, the expanded linguistic
feature set had a lower FPR than both MMSE and the baseline linguistic feature set for participants who have

graduated college.

The expanded linguistic feature set had lower rates of false positives than participants with at least some
college education than the baseline linguistic feature set. However, for participants with at most a high school
education, the baseline linguistic feature set had an FPR lower than or identical to the expanded linguistic
feature set.

Per Figure 1, MMSE was less likely to give a false negative prediction than both the baseline and expanded
linguistic feature sets for participants who did not graduate high school. As such, MMSE was least likely to
label a cognitively impaired participant as normal for participants who did not graduate high school. For
participants with a high school diploma or greater, MMSE had an identical or greater FPR than that of the
expanded linguistic feature set.

Per Figure 2, MMSE had the lowest FPRs for participants less than 91 years old, but had the greatest FPR
for participants 91 years old or older. In fact, MMSE gave no false positive predictions for any participant
75 years old and younger, whilst also being the sole feature set to give a false positive label for participants
ages 91 and older. The baseline and expanded linguistic feature sets both tended to have lower FNRs as
participants aged.

According to the Mann-Whitney test, distribution of age between males and females was not shown to
be significantly different (U = 1883.5, P = 0.23). Thus we infer that age does not have a confounding effect on
sex within our dataset.
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Figure 2. FNR and FPR of the MMSE, Linguistic, Syntactic, Semantic, and Lexical feature sets among age groups. Note: Lack
of a bar denotes a proportion error of 0

Per Figure 3, MMSE and the baseline linguistic feature set had lower FPRs on male participants than on
female participants while the expanded linguistic feature set had a lower FPR on female participants than on
the male participants.
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Figure 3. FNR and FPR of the MMSE, Linguistic, Syntactic, Semantic, and Lexical feature sets between males and females.
Note: For interpretability, we only included the individual feature sets as well as the best-performing combination of feature sets

Between the baseline and expanded linguistic feature sets, the baseline linguistic feature set had a lower
FPR among males while the expanded linguistic feature had a lower FPR among females. However, MMSE had
the lowest FPR in both groups. In both male and female participants, MMSE was the least likely to give a false
positive label.

MMSE as well as the baseline and expanded linguistic feature sets all had lower FNR on female participants
than they did on the male participants. All three models had identical FNR on the female demographic while
the baseline linguistic feature set had greater FNR on the male demographic in relation to MMSE and the
expanded linguistic feature set, which had identical FNR.

The results of subgroup analysis of the cognitive impairment groups per the expanded linguistic feature
binary classification give TPR of 0.75 (9 of 12 correctly classified) for the MCI group, and 0.77 (33 of 43
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correctly classified) for the dementia group. The TPR of the cognitive impairment class is 0.76 (42 of 55
correctly classified).

Neuropsychological specificity

Univariate correlations between top lasso weighted features of both the original and expanded feature sets
are shown in Figure 4 and Figure 5 respectively. Features in the expanded linguistic feature set are more well-
correlated with the series of Logical Memory NPTs (Delayed Recalled, Immediate Recall, and Recognition)
followed by the series of Paired Associate Learning NPTs (Immediate and Delayed). The expanded linguistic
feature set had weak alignment with all included versions of the Boston Naming and Letter and Category
Fluency NPTs. Notably, we did not analyze circumlocutions or perseverations.

Despite having low alignment with the Verbal Fluency NPTs, the expanded linguistic feature set was

generally more aligned with the individual language-based NPTs than the baseline linguistic feature set. With
the exception of the Boston Naming Test, the expanded linguistic feature set had correlations stronger or on

par with the correlations of the baseline linguistic feature set for all language-based NPTs.

Count of cardinal numbers - NLTK 0.1 -0.072 0.022 -0.052 -0.13 -0.077 0017 0.03 1.00
Count of Singular Nouns -0.18 -0.2 -0.1  -0.088 -0.22 -0.24 0.034 -0.075 '0_75
Count of Singular Proper Nouns -0.21 -0.23 -0.12 -0.16 -0.26 -0.27 0.031 -0.14
Number of Repeats -0.28 -0.27 -0.17 -0.21 -0.33 -0.29 -0.0014 -0.15 050
Number of Spaces -0.12 -0.11 -0.091 -0.077 -0.13 -0.12 -0.0083 -0.13
Count of cardinal numbers - Spacy ~ -0.2 -0.2 -0.031 -0.156 -022 -0.2 -0.052 | -0.19 -0.25
Count of Numerals ~ -0.2 -0.2 -0.031 -0.15 -022 -0.2 -0.052 -0.19
Count of Punctuation -0.26 -0.28 -0.15 -0.15 -0.24 -0.28 0.075 -0.17 -0.00
Number of verbs  -0.29 -0.3 -0.21 -0.2 -0.33 -0.35 -0.019 -0.17
Character count -0.22 -0.23 -0.13 -0.12 -0.24 -0.27 0.034 -0.11 --0.25
Count of Conjunctions 0.16 012 0.14 026 0.17 016 028 0.36
Count of words not in SpaCy foom -0.2  -0.22 -0.12 -0.11 -0.19 -0.22 -0.017 -0.065 —0.50
Count of wordshape "xx" -0.31 -0.31 -0.19 -0.23 -0.35 -0.34 -0.013 -0.17
Count of wordshape "xxx" -0.18 -0.18 -0.087 -0.13 -0.26 -0.25 0.016 -0.087 —0.75
Count of wordshape "xxxx" -0.18 -0.18 -0.083 -0.091 -0.22 -0.22 0.061 -0.057 ~1.00
(ol o e o o d\\‘\oﬁ\ \e?‘a@\\ ed?‘eoa\\ N e ‘?\“e(\o\l \43‘((\09
N\ \oY _e e \oY Y el o
\((\((\e o \!66 \((\((\e .0% © \@ Ga\eg
W W e R o

Figure 4. Pearson correlations between the top 15 most contributing features from the original linguistic feature set and the

language-based NPTs. LM: Logical Memory; PAL: Paired Associate Learning; BNT: Boston Naming Test
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Figure 5. Pearson correlations between the top 15 most contributing features from the expanded linguistic feature set and the
language-based NPTs
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The baseline linguistic feature set most commonly had the strongest performance in predicting
participant scores on language-based NPTs, as shown in Table 3. The expanded linguistic feature set had
stronger performance on the Logical Memory NPTs while the baseline linguistic feature set had better
predictive performance on the Paired Associate, Verbal Fluency, and 30 Item BNT NPTs.

Table 3. R2 scores of the feature sets in predicting participant performance on language-based NPTs

Exam Feature set
Original Expanded Syntactic Semantic Lexical
linguistic linguistic
Logical Memory Immediate Recall 0.468 0.579 0.479 0.556 0.552
Logical Memory Delayed Recall 0.489 0.66 0.543 0.616 0.634
Logical Memory Recognition 0.167 0.296 0.221 0.266 0.282
Paired Associate Learning Immediate Recall 0.318 0.309 0.264 0.281 0.308
Paired Associate Learning Delayed Recall 0.282 0.25 0.232 0.24 0.25
BNT correct without cues for 30 item 0.181 0.144 0.096 0.115 0.094
Letter Fluency 0.413 0.305 0.231 0.284 0.145
Category Naming 0.37 0.324 0.328 0.306 0.331
Discussion

Previous works lay a foundation for the measurement of cognitive decline via speech markers. Further
validation of speech indicators to be used in the clinical setting is needed. By tapping into the existing clinical
diagnostic framework (e.g.,, NPTs, MMSE), we can provide context as to which linguistics features are most
well suited to predict cognitive status-through their comparison to what is currently used in clinical practice-
and understand the value of speech markers.

Considerations for clinical use

There are distinct clinical opportunities presented by the results of this analysis. The combination of the
extended feature set paired with the MMSE (AUC = 0.915, NPV = 0.913) shows marginally lower performance
in predicting the presence of cognitive impairment than the NPT (AUC = 0.929, NPV = 0.938). This suggests
potential value for incorporating speech recordings for the general practice settings. Given the improved
performance with the additional linguistic features, the decomposition oflanguage into syntactic, semantic,and
lexical behavior may be a better representation of linguistic behavior in cognitive decline. The incorporation
of speech technology into general practice may allow for earlier detection of cognitive impairment, and
provide richer information for clinicians and researchers alike to understand disease progression and to
improve treatments for dementia patients. However, the generalizability of these results must be verified on
larger representative datasets before serious consideration in the clinical setting. Although the performance
of language features here did not exceed that of traditional NPT, this was expected and does not diminish
from the primary value of using voice features coming from the lower cost, immediate availability, ease of
access from a patients’ home, standardization, and removal of the provider availability bottleneck. For these
reasons, voice features do not necessarily need to outperform NPT to provide significant clinical value given
the factors listed above. Where voice may be most beneficial is in clinical scenarios where NPT and screening
tools are difficult to access or limited by time availability. We often see very long wait times for NPT and
digital tools could also be used to triage and further screen patients before sitting down for full NPT in order
to help reduce the burden on neuropsychologists.

Speech analysis can also begin by filling gaps in current practice that are difficult to address with
screening tools such as MMSE and full NPT. In populations challenging to reach with traditional measures,
such as remote and minority populations, voice analysis could be a means of providing access to testing.
Voice analysis also provides the ability to screen and test far more individuals per provider by removing
the bottleneck of provider time required. During the global pandemic we face, voice analysis also presents
an avenue for remote testing, alleviating the burden of limited in person access. Our voice analysis here
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outperformed MMSE in those with higher education; this may be another gap where voice analysis could
provide better results than traditional screening tools.

Before novel markers can be considered for clinical use, they must demonstrate effective predictive value
that outweighs the cost of data collection. As mentioned, collection of speech recordings is fairly cost effective.
Availability of a single microphone or appropriate recording device is sufficient for data collection for many
exams. However, there may be additional cost factors. In order to acquire linguistic information, transcription
is required. Transcription costs can range from as low as $0.50 an hour [automated speech recognition (ASR)
Speech-to-Text) to up to ~ $30 an hour (Manual Transcription).

Statistical modeling

The demographic reporting of participants in Table 1 demonstrates relatively even distribution of participant
age, sex, and education level across the cognitive categories. The resulting model performance shown in
Table 2 demonstrates high performance for NPT features alone, as expected, given the extensive testing
and long validation track record. The sensitivity of models trained on NPT features in detecting cognitive
impairment was higher compared to that of other models, which is not surprising given the thoroughness
of NPT. However, the specificity of NPT was lower compared to other models. This was also unsurprising,
considering that NPT assesses performance on specific cognitive tasks rather than daily functioning. Given
the heterogeneity of cognition, assessments conducted periodically fail to capture the full range of cognitive
capabilities that are underlying daily functional behaviors. For this reason, NPT may provide an erroneous
result. For example, if a participant did not sleep well the previous night, their NPT scores may be affected
even if their cognition is intact. This is reflected in the PPV for NPT as well. Speech based features may also
be sensitive to similar effects including sleeplessness, fatigue, and time-of-day at the time of recording from
which features are calculated.

The better specificity of MMSE compared to NPT alone was expected given the MMSE is a screening
tool specifically designed to detect a general state of cognitive impairment and dementia. NPT, on the other
hand, is a comprehensive set of cognitive assessments that measures domain-specific skills. The brevity of
the MMSE improves accessibility at the cost of sensitivity. This is characterized by the ceiling effect of the
MMSE on characterizing performance around the normal cognitive range [51]. It is important to reiterate
that the performance of MMSE and NPTs should be interpreted with caution, as both are designed and used
as tools to assess cognitive status with levels of sensitivity and specificity in mind. The use of MMSE and NPT
use in predicting cognitive status is circular in nature, as both are in part used for diagnosis.

The expanded linguistic features perform marginally better than the baseline linguistic features on
both AUC and NPV performance. This may be due to the inclusion of features representative of the structure
and meaning of language which is more representative of language deficits in dementia. Specifically, the
baseline feature set focused on the presence and frequency of parts of speech, whereas the expanded feature
set includes features related to semantic clusterings, which demonstrate the richness of vocabulary. The
expanded features also include measures of sentence length, structure, and word frequency, which mirror
the complexity of language, revealing loss of diversity of vocabulary due to cognitive decline.

Similarly, adding MMSE provided a modest improvement in classification accuracy. When inspecting
the performance of linguistic features as separately grouped by semantic, lexical, and syntactic features,
the semantic feature set appears to perform best overall, with better sensitivity. This is also as expected,
given dementia is expected to affect the ability to use word meaning accurately. Syntactic and lexical
features provided high performance individually and each set of features demonstrated small but consistent
improvements with the addition of MMSE.

NPT was not combined with linguistic features or other features due to the potential circularity issues
between their use in diagnosis and their use in analysis. Since the diagnoses are based on clinical material
available including NPT, using NPT as a separate feature would be inherently biased. Despite the potential
circularity issues, MMSE was included with the expanded and original linguistic features to show the
potential value of utilizing speech analysis in a general practice setting. Neuropsychological examinations are
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not conducted during general visits, thus showing the effective performance of pairing speech recording data
with MMSE could show the value of conducting speech recordings during general visits, and could enable
earlier detection of cognitive decline.

We also looked at the role of demographics in our error analysis. Specifically, higher levels of education
tended to cause higher FNR s, while less education tended to cause higher FPRs. This was expected given
the known influence of education on cognitive decline later in life. More educated participants, even if
experiencing neurodegeneration, are likely to maintain function longer than those with less education. This
is consistent with previous findings in literature and the understanding that education is a protective factor
for the development of cognitive impairment [52]. Those with higher education likely are able to maintain
higher performance on standard tests even while neurodegenerative burden builds in the brain. Those with
less education likely struggle more with cognitive testing even without any neurodegenerative burden, due
to cognitive tests inherently being reflective, to some degree, on past education. This makes cognitive testing
somewhat biased with higher sensitivity in those with less education. This reflects the need to consider how
cognitive tests would need to be different to accommodate those with lower education.

Age also displayed a significant impact on the error rates with lower ages causing more false negatives.
Given several cognitive domains naturally decline modestly with age, this likely leads to missing cases of
cognitive impairment at younger ages while symptoms are mild. Interestingly, increasing age did not appear
to significantly increase the FPR but did lower the FNR e. This may be due to an increasing proportion of
impaired individuals at older ages, where we know linguistic features are sensitive to detecting language
changes. Sex also did not appear to play a significant role in the error rates.

It is important to recognize that the subset of participants in the study is not a cross-sectional random
sample of the aging population. The subset of participants in the study is an older population and contains
few individuals who have not completed high school education. Analysis of predictive models with larger
cohort groups may show more realistic FPRs and FNR s for those demographic subgroups.

Subgroup analysis of the cognitive impairment class in the binary classification model fitted on
our expanded linguistic features shows marginal difference between the MCI and dementia subgroups,
suggesting that the classification performance of the cognitive impairment class is driven by neither the MCI
nor dementia group. The effect of worsening dementia on language capacities may still drive performance of
models, thus metrics such as TPR of subgroups of cognitive impairment should be studied in larger datasets,
to establish generalizability of models driven by linguistic features to effectively predict cognitive impairment
in subgroups.

Neuropsychological specificity

As identified in a previous review on language deficits in neurodegenerative disorders [34], several
components of language including lexical, semantic, and syntactic processing show impairment in these
disorders. The extraction of the original set of linguistic features relied primarily on POS tagging, general
lexical content, and structure features to characterize language, capturing lexico-syntactic information in
language. Extending the dataset with features tailored to capture lexical, semantic, and syntactic information
showed improvement in univariate correlations with respect to Logical Memory Recall and Paired Associate
Learning tasks. Improvement is observed in the multivariate regression with respect to the Logical Memory
Recall tasks, but not the Paired Associate Learning tasks (see Figure 4, 5 and Table 3). There is no empirical
gain in performance for the Boston Naming Test tasks and Verbal Fluency Tasks with expanded features. This
could be influenced by the nature of the tasks. BNT relies on accurate naming of presented visual stimuli, and
the features used here likely are not sensitive to changes in cognition causing stimuli to be named incorrectly.
The category naming task requires individuals to verbalize words of particular conceptual categories, such
as animal or vegetable naming. The letter fluency task [Controlled Word Association Test (COWAT)] prompts
individuals with phonemic categories, such as naming words that start with “F”, “A”, or “S”. The linguistic
features extracted for this analysis do not take into consideration the restriction of linguistic content of the
verbal fluency task, and are better applied to general tasks which elicit more naturalistic responses. Further
analysis of the verbal fluency task is required, through the lens of existing methods such as semantic network
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analysis [53]. Audio features and other contextual audio data such as prosody, pauses, filler vocalizations
(e.g., “uhh”) also provide valuable information which was not included in this analysis.

Though predictive power of the extended linguistic featureset (AUC = 0.883, NPV = 0.869) does not
improve significantly over the predictive power of the original linguistic featureset (AUC = 0.882, NPV =
0.839), the improvement in neurological specificity of the expanded features in some language-based NPTs
suggests a better characterization of language-based phenotypes of cognitive impairment. Further analysis
and verification with neuroimaging biomarkers will allow us to better assess the neurological validity of
language features. The key is to balance the validation using NPT, which is a proxy for cognitive function,
with real world outcomes such as driving ability, falls, medication management, etc. Speech features have
the potential to characterize real world function, which is the ultimate goal of any cognitive test. It will be
important in future work to use these outcomes in the validation of digital biomarkers in addition to proxies
such as NPT. Notably, NPT alone is able to predict cognitive status with very few false negatives. Depending
on the functional domain which may be impaired, speech features will have variable performance depending
on their focus (e.g., syntax, semantics, lexical). It will be useful to build predictive models of functional decline
using targeted features.

Limitations

The current work has a number of limitations in common with our prior work [13]. Audio quality was a
limitation in our study: because many of the legacy recordings from the FHS cohort are of insufficient quality
to achieve high accuracy transcription using automated services, recordings must be manually transcribed,
which is prohibitively expensive and time consuming. As a result, our sample size was significantly limited,
representing a small fraction of the entire dataset. The issue of quality from automated transcription is one
that persists even for prospectively ascertained recordings, and is an overall limitation in the field of speech
analysis at this time.

[tis well documented that the prevalence of dementia as well as the performance of MMSE as a screening
tool for dementia varies by ethnicity [54, 55]. FHS participants are largely Caucasian and thus results may not
be generalizable to the more ethnically and racially diverse U.S. population.

In our cohort, there were significant and variable lengths of time between MMSE and NPT, making direct
comparison difficult due to possible changes in participant cognitive function. Participants diagnosed with
severe dementia lacked MMSE data and were consequently removed, limiting the range of comparison.

As in our previous work, we used a binary approach, rather than a multiclass approach, to characterize
the power of speech in predicting cognitive status. The binary approach addresses the contemporary
limitation of data availability for this study. As outlined in Thomas et al. [13], this approach may be flawed
because a participant who is mildly cognitively impaired may still have the mental capacity to “speak around”
their impairment, and speak in a different manner than both cognitively normal and demented participants.
However, we demonstrated that the binary approach still shows potential power to accurately predict binary
cognitive status. Additionally, although cognitive impairment is sometimes a precursor to dementia, this is
not always the case. It is well documented that MCI is an unstable diagnosis with significant percentages
of participants reverting back to normal [56]. Therefore, it may not be appropriate to include participants
with diagnosis of MCI in the same class as dementia. Orimaye et al. [41] suggest that creating a third class
for cognitively impaired, but not demented, participants may be a stronger approach. However, due to the
sample size limitation, adjusting our approach accordingly was not feasible for this work.

Similarly, the cognitively normal group may not have been appropriately constructed, as it contains
participants presumed to be normal but not all were reviewed by the diagnostic panel to confirm this
assumption. Another limitation is that the transcripts we utilized for featurization may not be fully
representative of a persons’ natural speech. Because we utilized transcripts from the Logical Memory
(Delayed Recall) task, the performance of the Expanded and baseline linguistic feature sets may be specific
to the utilized NPT transcript. It is possible the performance of speech analysis in predicting cognitive
impairment may deteriorate when performing speech analysis on regular natural speech. Thomas et al. [13]
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give details on this limitation. A use case of NPT-specific speech analysis in conjunction with NPTs may be
considered. However, participant NPTs are used in determining dementia diagnosis by FHS and are therefore
a confounding variable in the diagnosis of dementia and cognitive impairment.

An important consideration for introducing novel methods like speech analysis is the repeatability of
such methods. Repeatability studies have been utilized to establish the validity of our existing measurement
paradigms such as traditional NPTs and MMSE. Due to the limited sample size and limited re-testing, we
did not pursue repeatability testing directly in this dataset. One benefit of the study design we pursued to
train the model is the use of data from a repeatable test with a standardizable prompt. These constraints the
variability of linguistic responses and may enforce repeatability.

Arecentstudy on repeatability of speech and language based features in dementia diagnosis encapsulates
similar dimensions of analysis on language features (syntactic, lexical, and semantic) and demonstrates
that there are features that do repeat well, evidenced by high intraclass correlations within subjects [57].
Repeatability studies are still scarce in automated speech and language analyses, and different analyses often
identify different feature sets of interest. However, with scaled up-sample sizes and more re-testing, we can
pursue repeatability analysis of features.

Though omitted from the study, acoustic analysis of speech has a key advantage over linguistic analysis
in its cost. As data sample size scales up, it will be important to further explore the predictive power of
acoustic information and how the combination of acoustic and linguistic information as speech biomarkers
can show improvement in predictive value. A recent analysis on acoustic information shows such promising
predictive value of acoustic information on a larger subset (4,849 participants) of the FHS Cognitive Aging
Cohort [59]. When considering speech biomarkers, the cost of transcription should be factored into the cost-
benefit analysis as it pertains to clinical value.

Future work

Future work toward establishing digital speech biomarkers for cognitive decline requires incorporation of
biological and anatomical data. If normalized data can be obtained, we would analyze speech data alongside
brain magnetic resonance imaging (MRI) data to search for patterns and to validate any speech-anatomy
correlations. Most interesting perhaps would be an analysis on the larger FHS cohort with inclusion of imaging
biomarkers. The FHS dataset represents a major avenue to answer questions regarding the existence and
utility of speech biomarkers. Other works have documented the association between MRI, blood data, and
dementia [58]. Further, and perhaps most importantly, it is critical to expand analysis to include ethnically and
culturally diverse populations to make every effort to eliminate inequity in future biomarker development.
We would also like to explore the utility of speech features in detecting specific dementia subtypes which may
provide avenues to capture phenotypic differences detectable through voice features.

In conclusion, in this study, we built on the previous linguistic analysis performed by Thomas et al. [13], by
incorporating additional context including neurocognitive examination data and additional lexical, semantic,
and syntactic features. By identifying key dimensions of speech affected by dementia based language deficits,
we were able to show improved performance in predicting cognitive status over the features in the previous
analysis. The expanded linguistic feature set also showed stronger correlation with both Logical Memory
Recall and Paired Associative Learning tasks, showing better specificity in characterizing cognitive deficits.

Our analysis focuses on a small subset (~ 2%) of the entire FHS Cognitive Aging Cohort which consists
of 9,000+ participants. As the available corpus of cognitive aging data expands, normative evaluation of
novel markers becomes more important. Our inclusion of neurocognitive examination data into cognitive
status prediction provides the context by which the predictive power of such novel markers can be evaluated.
Future analysis will include larger datasets and naturalistic speech to explore the utility of speech as a proxy
for formal NPT and detection of functional impairment.

This work demonstrated the potential of speech features to help close gaps in neuropsychological
assessment and diagnosis. This includes in areas where MMSE, or other screening tools, fall short, such as
in those with lower education or less access to healthcare providers. In these scenarios, speech may be a
supplement or even substitute for traditional screening tools.
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