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A damped Kuramoto–Sivashinsky equation describing the deviation of an inter-
face from its mean planar position during normal-incidence ion-sputtered erosion
of a semiconductor or metallic solid surface is derived and the magnitude of
the gradient in its source term is approximated so that it will be of a modified
Swift–Hohenberg form. Next, one-dimensional longitudinal and two-dimensional
rhombic planform nonlinear stability analyses of the zero deviation solution to
this equation are performed, the former being a special case of the latter. The
predicted theoretical morphological stability results of these analyses are then
shown to be in very good qualitative and quantitative agreement with relevant
experimental evidence involving the occurrence of smooth surfaces, ripples,
checkerboard arrays of pits, and uniform distributions of islands or holes once
the concept of lower- and higher-threshold rhombic patterns is introduced based
on the mean interfacial position.

1. Introduction and formulation of the problem

Consider the following nondimensional spatiotemporal model evolution equation
for h(x, y, t), a dimensionless deviation of a thin solid film surface from its mean
planar position, where t ≡ time and (x, y) ≡ a transverse laboratory Cartesian
coordinate system:

ht + 4∇2h+ 2∇4h+β[sinh(2h)−αh2
] = 0, α ∈ R, β > 0.

Here α and β are dimensionless combinations of experimental and material param-
eters. Then, consistent with our nonlinear stability analyses, retaining only terms
through third order in

sinh(2h)∼ (2h)+ 1
6(2h)3 = 2h+ 4

3 h3,
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that equation is reduced to its truncated form

ht + 4∇2h+ 2∇4h+β
(
2h−αh2

+
4
3 h3)
= 0.

Let us provide a phenomenological derivation of this model equation. Sputtering, the
removal of material from the surface of semiconductor or metallic solids through ion
bombardment, is an important thin-film processing technique (reviewed in [Makeev
et al. 2002]). The erosion rate for such surfaces can be characterized by the ion
flux, defined as the number of particles arriving per unit area per unit time, and
the sputtering yield, defined as the amount of material leaving the surface per unit
incident particle. In the sputtering process the incoming ions penetrate the solid and
transfer their kinetic energy to the substrate material by inducing a collision cascade
that allows some of the latter to gain sufficient energy to be removed from the surface
or sputtered. One might suspect that erosion of this sort would tend to erase every
possible interfacial feature and give rise to only a uniformly smooth morphology;
however, under certain circumstances, periodic patterns are actually etched on the
surface. That spontaneous self-organization is generated by the interplay of this
ion-sputtering roughening with the smoothing mechanism of surface diffusion. In
particular, these patterns consist of coherent ripples, checkerboard arrays of pits,
and periodic distributions of islands or holes when that ion bombardment is at
normal incidence. Specifically, nanoscale elevated islands (quantum dots) arranged
in close-packed distributions have been experimentally etched on the surface of the
semiconductor gallium antimonide [Facsko et al. 1999] or relatively uniform arrays
of holes (vacancies), on that of the metal platinum [Michely and Comsa 1991], both
by normal-incidence argon ion bombardment. Further, upon examination of the
experimental reference [Rusponi et al. 1999] one sees that the normal-incidence neon
ion-sputtered erosion patterns occurring on their silver metallic surfaces consisted
of either a square checkerboard of pits or a ripple structure of elongated ridges
and channels. Finally, in [Rusponi et al. 1997; 1998] which dealt with the argon
ion-sputtering of silver and copper surfaces, respectively, these authors also reported
coherent ripple formation after normal-incidence bombardment. Such a transition
to coherent ripples occurred from a smooth morphology as substrate temperature
decreased through a critical value [Rusponi et al. 1997].

In order to model this process, consider a thin solid film of dimensional thickness
H(r1, r2, τ ) undergoing normal-incidence ion-bombardment induced erosion, where
(r1, r2) represents a transverse laboratory Cartesian coordinate system and τ is time.
A number of theoretical models have been developed to study the evolution of
periodic roughening-type instabilities from coherent ripples to regular arrays of
islands or holes in such instances by numerical simulations. These models were
derived from conservation of mass at the interfacial solid surface and had as their
point of departure the general continuity equation [Makeev et al. 2002]
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Hτ+K∇4
2 H+ν1 Hr1r1+ν2 Hr2r2+D1 Hr1r1r1r1+D2 Hr2r2r2r2+D12 Hr1r1r2r2+J0Y0(H)

=
1
2(λ1 H 2

r1
+λ2 H 2

r2
)+Hr1(γ1+ξ1 Hr1r1+ξ2 Hr2r2)+�1 Hr1r1r1+�2 Hr1r2r2+η0.

Here K denotes the thermal surface diffusion coefficient, J0 the deterministic
component of the ion flux, Y0(H) the sputtering yield, η0 a noise term resulting
from the stochastic component of the ion flux, ∇2 ≡ (∂/∂r1, ∂/∂r2), ∇2

2 ≡∇2 ·∇2,
and ∇4

2 ≡ (∇
2
2 )

2, while, for the special case of normal-incidence ion bombardment
when the impact angle ϑ is 0,

γ1 = ξ1 = ξ2 =�1 =�2 = 0,

ν1 = ν2 = ν,

D1 = D2 =
1
2 D12 = D0,

λ1 = λ2 = λ0,

which converts this equation into its isotropic Kuramoto–Sivashinsky form [Ku-
ramoto 1978; Sivashinsky 1977]

Hτ + ν∇2
2 H + D∇4

2 H + J0Y0(H)= 1
2λ0|∇2 H |2+ η0,

where the effective surface diffusion coefficient satisfies D= K+D0 and |∇2 H |2=
H 2

r1
+ H 2

r2
.

Then, selecting `0 = (2D/ν)1/2 and τ0 = 8D/ν2 as scale factors for length and
time, respectively, introducing the dimensionless variables [Wollkind and Vislocky
1990]

(x, y)=
(r1, r2)

`0
, t =

τ

τ0
, h =

H − H0+wnτ

`0
, where wn = J0h0`

2
0,

adopting the sputtering yield relation, consistent with that of [Makeev and Barabási
1998],

Y0(H)= h0`
2
0

[
1+

(
h0

`0

)
sinh(2h)

]
=⇒ J0Y0(H)= wn

[
1+

(
h0

`0

)
sinh(2h)

]
= w0(h),

employing the magnitude of the gradient approximation [Siegmann and Rubenfeld
1975]

|∇2 H | ∼=
1H
1r
=
|H − (H0−wnτ)|

`0
= |h| =

√
h2,

so that its source term will ultimately be of a modified Swift–Hohenberg form
[1977] in order to simplify our subsequent analyses [Wollkind et al. 2008], and,
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after [Kahng et al. 2001], taking

η0 ≡ 0,

we obtain our original damped Kuramoto–Sivashinsky-type equation from this
isotropic form

ht + 4∇2h+ 2∇4h+β[sinh(2h)−αh2
] = 0,

where

α =
λ0`0

2wnh0
=

λ0

2J0`0h2
0
∈ R, β =

τ0wnh0

`2
0
= τ0 J0h2

0 =
8D J0h2

0

ν2 > 0.

Finally, retention of terms through third order in sinh(2h) again yields a modified
Swift–Hohenberg truncation of that equation (reviewed in [Cross and Hohenberg
1993])

ht + 4∇2h+ 2∇4h+β
(
2h−αh2

+
4
3 h3)
= 0.

Here h ≡ the nondimensional deviation of the interface from its dimensional mean
planar position given by H0−wnτ0t , where wn ≡ the normal velocity of erosion
and H0 ≡ the initial dimensional uniform thickness of the solid layer, h0 ≡ the
dimensional maximal interfacial deviation from that mean position, ν≡ the absolute
value of the coefficient of negative capillarity, ∇ ≡ (∂/∂x, ∂/∂y), ∇2

≡∇ ·∇, and
∇

4
≡ (∇2)2. We shall view α and β as the nondimensional versions of λ0, the

tilt-dependent coefficient of the erosion rate, and of D J0, respectively. Hence β,
which will serve as the bifurcation parameter for our analyses, is a measure of
this damping effect to that sputtering pattern formation process caused by the
interaction between these two smoothing mechanisms of effective surface diffusion
and deterministic ion bombardment. This is the spatiotemporal model evolution
equation we wish to analyze for the interfacial morphologies described earlier by
performing one-dimensional longitudinal and two-dimensional rhombic planform
weakly nonlinear stability analyses of the zero or planar interface solution to that
equation. Toward this end, we note that our evolution equation admits this trivial
solution h ≡ 0 which satisfies the far-field boundary condition

h remains bounded as x2
+ y2
→∞

implicitly and represents a planar layer of uniform dimensional thickness H =
H0 −wnτ . In order to compare these theoretical predictions with experimental
observations and numerical simulations, it will be necessary for us to introduce
the concept of lower- and higher-threshold rhombic patterns based upon the mean
position of the interface, which was a paradigm originally employed in [Cangelosi
et al. 2015] in relation to ecological Turing pattern formation based upon the
population density of mussels in young beds.
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2. Longitudinal planform weakly nonlinear stability analysis

We first perform a one-dimensional stability analysis of our evolution equation by
considering a longitudinal planform solution to it through third-order terms of the
form [Davis et al. 2018]

h(x, y, t)∼ A1(t) cos(qx)+ A2
1(t)[h20+ h22 cos(2qx)]

+ A3
1(t)[h31 cos(qx)+ h33 cos(3qx)],

where the amplitude function A1(t) satisfies the nonlinear Landau equation [1944]

d A1
dt
∼ σ A1− a1 A3

1,

q ≡ 2π/λ,with λ ≡ wavelength of the class of spatially periodic perturbations
under investigation, σ ≡ linear growth rate, and a1 ≡ longitudinal planform Landau
coefficient. Then substituting this solution into our evolution equation we obtain a
problem for each of the terms appearing in that expansion. In particular the linear
problem, proportional to A1(t) cos(qx), yields the secular equation [Schmidt and
Kolden 2020]

σ = 2[β0(q2)−β], with β0(q2)= q2(2− q2).

Thus the parabola β = β0(q2) serves as its marginal stability curve in the (q2, β)-
plane of Figure 1. As can be seen from that figure the maximum value of this
parabola occurs at its vertex (q2

c , βc), where q2
c = 1 and βc = β0(q2

c )= 1. Hence for
β > βc = 1 there exists no q2 associated with growing modes, while for 0<β < βc

there exists a band of such wavenumbers squared centered about q2
= q2

c . Therefore,
the trivial solution is linearly stable for β >1, neutrally stable for β=1, and unstable
for 0< β < 1. Given this linear stability behavior, we, as is usual in such analyses,
equate the q and σ in our expansion to q = qc = 1 and σ = σ0(β)= 2(1−β).

Continuing with our description of the results of this one-dimensional expansion,
the second-order problems can be solved in a straightforward manner to yield
[Schmidt and Kolden 2020]

h20(β;α)=
αβ

4(2−β)
, h22(β;α)=

αβ

4(10−β)
.

Although there are also two third-order problems we need only consider the one
proportional to A3

1(t) cos(x) containing the Landau coefficient a1 [Schmidt and
Kolden 2020]

a1(α)− 2σ0(β)h31(β;α)= β[1−α{2h20(β;α)+ h22(β;α)}]

for our Fredholm alternative method of solvability. Then employing our previous
results, taking the limit as β→ βc = 1 of this equation, and assuming the requisite
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Figure 1. Plot of the parabolic marginal stability curve β=β0(q2)

in the (q2, β)-plane denoting linear behavior.

continuity of h31 at β = βc, we obtain the solvability condition for the longitudinal
planform Landau coefficient

a1(α)= 1− 19
36α

2,

which then yields the solution

h31(β;α)=
1
4
−
α2

8

(
β + 2
2−β

+
1

18
9β + 10
10−β

)
.

The stability behavior of the Landau amplitude equation and thus the pattern-
formation aspect of our damped Kuramoto–Sivashinsky model is crucially dependent
upon the sign of a1(α). Hence in order to determine that behavior we must examine
this Landau coefficient as a function of α.

Toward that end, we plot a1(α) versus α in Figure 2. From this figure we see
that a1 has two zeroes at α = α1,2 such that

a1 > 0 for α1 < α < α2, a1 < 0 for α < α1 or α > α2,

where
α2,1 =±

6
√

19
=±1.376.

Given these formulae for σ0(β) and a1(α), we note that the Landau amplitude
function A1(t) undergoes a pitchfork bifurcation [Walgraef 1997] at β = βc = 1
when α1 < α < α2 from which it may be concluded that [Davis et al. 2018]:

(1) For β >βc= 1 and α1<α<α2 (σ0< 0, a1> 0), the planar or smooth interface
solution h ≡ 0 is stable to both infinitesimal and one-dimensional finite amplitude
disturbances. Since σ0 < 0, linear theory predicts stability of the undisturbed state
A1 ≡ 0 and our nonlinear effects enhance this stabilizing behavior.
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a1 = 1− 19
36α
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= a1(α)

Figure 2. Plot of the parabolic formula for the longitudinal plan-
form Landau coefficient a1 versus α.

(2) For 0<β<βc=1 and α1<α<α2 (σ0, a1>0), there exists a stable equilibrium
solution A2

e = σ0/a1. Since σ0 > 0, linear theory would predict instability, whereas
our nonlinear analysis shows the existence of this finite amplitude supercritically
stable equilibrium state. Specifically that stable equilibrium point corresponds to a
steady-state re-equilibrated spatially nonuniform pattern given by

lim
t→∞

h(x, y, t)= he(x)= δ cos
(

2πx
λc

)
+ O(δ2), −∞< x <∞,

where

δ = Ae+ h31(1;α)A3
e > 0, with h31(1;α)= 1

4 −
1
8α

2(3+ 19
162

)
,

which represents a periodic one-dimensional interfacial morphology consisting of
coherent stationary parallel ripples (it might seem more logical to use the term ridges
for such patterns but here we have adopted the standard terminology employed for
them), having a characteristic wavelength of

λc =
2π
qc
= 2π, λ∗c = `0λc = 2π`0 = 2π

(2D
ν

)1/2
,

in dimensionless and dimensional variables, respectively, the latter quantity being
generated by the competition between surface tension (ν) and effective surface
diffusion (D). These supercritical ripples are represented in the contour plot of
Figure 3, where the axes are being measured in units of λc, while consistent with
both experimental observation and numerical simulation, elevations (h > 0) from
the original mean position of the interface (h = 0) appear light and depressions
(h < 0), dark. In our rhombic planform analysis of the next section we shall label
such a protocol as a zero-threshold pattern.

When α < α1 or α > α2, this bifurcation is subcritical. The implications of such
subcriticality have recently been described in detail in [Davis et al. 2018]. In what
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Figure 3. Contour plot in the (x, y)-plane for coherent ripples
(critical point II of the rhombic planform stability analysis), where
the spatial variables are measured in units of λc. Here elevations
appear light and depressions, dark, in accordance with experimental
observation. This transition occurs at h = 0, which is a protocol that
will be labeled zero threshold for our rhombic planform stability
analysis. We shall show from this analysis that coherent ripples are
only stable where a protocol of the zero threshold type holds. Hence
this contour plot is the representation for critical point II as identified
in the (α, β)-plane of the morphological stability diagram of Figure 7.

follows we shall be concentrating on the behavior of our model in its supercritical
regime where α1 < α < α2.

3. Rhombic planform weakly nonlinear stability analysis

In order to refine these one-dimensional predictions we investigate two-dimensional
ion-sputtered erosion patterns by seeking a rhombic planform solution of our damped
Kuramoto–Sivashinsky type equation which, to lowest order, can be written as
[Wollkind et al. 1994]

h(x, y, t)∼ A1(t) cos(x)+ B1(t) cos(z), with z = x cos(ϕ)+ y sin(ϕ),

where A1(t), B1(t) satisfy the nonlinear system of amplitude equations

d A1

dt
∼ σ A1− A1(a1 A2

1+ b1 B2
1 )= F(A1, B1),

d B1

dt
∼ σ B1− B1(b1 A2

1+ a1 B2
1 )= G(A1, B1),

ϕ ∈
(
0, π2

]
≡ the rhombic angle, b1 ≡ rhombic planform Landau coefficient, and

each higher-order term in that expansion is of the form

hi jnk Ai
1(t)B

j
1 (t) cos(nx + kz).
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Then substituting this expansion into our damped Kuramoto–Sivashinsky-type
model equation, we obtain a sequence of problems, each of which is proportional to
one of these terms. Solving those problems, we find that [Schmidt and Kolden 2020]

hi0n0 = h0i0n = hin, σ = σ0(β)= 2(β − 1), a1 = a1(α)= 1− 19
36α

2,

as defined in Section 2, while

h111(±1)(β;α, ϕ)=
α

2
β

2−β + 4 cos(ϕ)[cos(ϕ)± 1]

and b1, in particular, satisfies

b1(α, ϕ)− 2σ0(β)h2101(β;α, ϕ)= β[2−α{2h2000+ h1111+ h111(−1)}(β;α, ϕ)].

Now taking the limit of this equation as β→1 and making use of our previous results,
we obtain the solvability condition for the rhombic planform Landau coefficient

b1(α, ϕ)= 2−
α2

2
3+ 16 cos4(ϕ)

[4 cos2(ϕ)− 1]2
.

Having developed these formulae for its growth rate and Landau coefficients, we
turn our attention to the rhombic planform amplitude equations which possess the
equivalence classes of critical points (A0, B0) such that F(A0, B0)=G(A0, B0)=0
with A0, B0 ≥ 0 given by

I: A0 = B0 = 0,

II: A2
0 =

σ

a1
, B0 = 0,

V: A0 = B0, with A2
0 =

σ

a1+b1
.

Here, since we are considering α1<α<α2, a1>0 and it is assumed that a1+b1>0
as well. Hence critical points II and V will only occur provided σ > 0 or 0<β < 1.
We now examine the orbital stability of these critical points where by orbital stability
of pattern formation is meant a family of solutions in the plane that may interchange
with each other but do not grow or decay into a solution type from a different
family [Kuske and Matkowsky 1994]. Such an interpretation in nonlinear stability
theory depends upon the symmetries inherent to the form of the particular planform
solution, these invariances also limiting each equivalence class of critical points to
a single member that must be considered explicitly when examining their stability.
We investigate that stability by first seeking a solution of our rhombic planform
amplitude equations of the form

A1(t)= A0+ εA(t)+ O(ε2), B1(t)= B0+ εB(t)+ O(ε2), with |ε| � 1,
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and, employing Taylor series of functions of two variables for F(A1, B1) and
G(A1, B1) about (A0, B0), show that the perturbation quantities A(t), B(t), upon
neglect of terms of O(ε2) and cancellation of the ε-factor, satisfy the linear homo-
geneous ordinary differential equation system

dA
dt
= c11A+ c12B,

dB
dt
= c21A+ c22B,

where
c11 =

∂F
∂A1

(A0, B0)= σ − 3a1 A2
0− b1 B2

0 ,

c12 =
∂F
∂B1

(A0, B0)= c21 =
∂G
∂A1

(A0, B0)=−2b1 A0 B0,

c22 =
∂G
∂B1

(A0, B0)= σ − 3a1 B2
0 − b1 A2

0.

Then letting [A,B](t)=[C1, C2]ept, where C2
1+C

2
2 6= 0, we obtain, after cancellation

of the ept -factor, the linear homogeneous system of algebraic equations for the
constants C1 and C2

(p− c11)C1− c12C2 = 0, −c21C1+ (p− c22)C2 = 0,

which, upon imposition of the vanishing of the determinant of the matrix of its
coefficients to guarantee the nontriviality property for these constants, yields the
following quadratic in p:

(p− c11)(p− c22)− c2
12 = 0.

Now, particularizing this quadratic to the specific (A0, B0)-values of the critical
points and noting that under these conditions it has the associated roots p1=c11+c12

and p2= c22−c12 since either c12=0 for I and II or c11= c22 for V, we conclude that

I: p1,2 = σ,

II: p1 =−2σ, p2 =
(a1− b1)σ

a1
,

V: p1 =−2σ, p2 =
2(b1− a1)σ

a1+ b1
.

Finally, requiring p1,2 < 0, we deduce the stability criteria:

I is stable for σ < 0,

II is stable for σ > 0, b1 > a1,

V is stable for σ > 0, a1 > b1.

Observe that since those criteria are mutually exclusive there can never be pairwise
bistability between these critical points. Also note that σ > 0 is both an existence
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condition and a stability criterion for critical points II and V (the II equivalence
class also contains A0 = 0, B2

0 = σ/a1).
Before examining the implications of those stability criteria, we make a mor-

phological interpretation of the potentially stable critical points relative to the ion-
sputtered erosion patterns under investigation. Then to lowest order the interfacial
deviation associated with these critical points is given by

lim
t→∞

h(x, y, t)= he(x, y)∼ A0 cos(x)+B0 cos(z), where z= x cos(ϕ)+y sin(ϕ).

Thus, critical points I and II correspond to the smooth planar surface and coherent
ripples, respectively, already discussed in the longitudinal planform analysis. To
make an analogous interpretation of critical point V, we consider this deviation
function with A0 = B0 > 0 and introduce the concept of lower, zero, and higher
threshold patterns based upon the mean position of the interface. To do so we must
first examine how what in fluid mechanics are called the mean motion terms [Segel
1966] from our nonlinear stability analysis have altered that interfacial position.
These homogeneous higher-order terms in he(x, y) for critical point V are given by

h2000 A2
0+ h0200 B2

0 with A0 = B0 or 2h20 B2
0

since

h2000 = h0200 = h20 =
αβ

4(2−β)
.

Then, adding these terms to the original dimensional mean position of the interface
and employing our previous results, we find that this mean position to second-order
now satisfies

Hm = H0−wnτ +
αβ`0 B2

0

2(2−β)
.

We next adopt the protocol that in our contour plots of critical point V the elevations,
which satisfy H > Hm , will appear light, and depressions, which satisfy H < Hm ,
dark, while H = Hm or h = 2h20 B2

0 represents the threshold value at which this
transition occurs. When h20 is less than, equal to, or greater than zero we shall
label such patterns as being of lower, zero, or higher threshold, respectively. Hence
to determine the proper threshold type we must examine the sign of h20. Rewriting
this quantity as h20 = γ /[4(2− β)], where γ = αβ = τ0λ0/(2`0) and recalling
that for stable rhombic patterns σ = σ0(β)= 2(1−β) > 0, we can conclude that
this behavior of h20 depends on the sign of λ0, which, being the tilt-dependent
coefficient of the erosion rate, is a real-valued parameter with the dimension of
velocity. Therefore our stable rhombic patterns will be of lower, zero, or higher
threshold type depending upon whether λ0 < 0, λ0 = 0, or λ0 > 0, respectively.
To make a physical interpretation of these results we note that to lowest order the
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ϕ = 1.150 (66◦)

V−: holes V0: rectangles V+: islands

Figure 4. Rhombic patterns in the (x, y)-plane relevant to g(x, z)
for ϕ = 1.150 (66◦) with threshold values from left to right of −1,
0, and 1, which are denoted by V−, V0, and V+, respectively, and
represent arrays of holes, rectangles, and islands. Here, the spatial
variables are being measured in units of λc with regions below that
threshold in each part appearing dark and regions above it, light.
Note that |g(x, z)| ≤ 2 and ϕ = 1.150 is a typical allowable angle
for α = 0.447 which corresponds to the value of that parameter
for the experiments of [Facsko et al. 1999]. Observe that for this
angle the V± patterns approximate the close-packed structure of
hexagonal arrays.

equilibrium erosion pattern associated with critical point V satisfies

he(x, y)∼ B0g(x, z) for z = x cos(ϕ)+ y sin(ϕ) and B0 > 0,
where

g(x, z)= cos
(

2πx
λc

)
+ cos

(
2π z
λc

)
.

The three parts of Figure 4 are threshold contour plots of g(x, z) for the typical
rhombic angle (see below) ϕ = 1.150 (66◦) with the threshold values of −1, 0,
and 1, respectively. Here, the spatial variables are being measured in units of λc

with regions exceeding that threshold in each part appearing light and regions less
than it, dark. Given their appearance in Figure 4 we shall identify these lower, zero,
and higher threshold-type rhombic arrays with erosion patterns of holes, rectangles,
and islands, respectively, denoting them by V−, V0, and V+ in what follows. We
repeat this process and obtain the threshold contour plots of g(x, z) for ϕ = π

2 (90◦)
or z = y which appear in Figure 5. From the checkerboard structure of these arrays
it is clear that this state should be identified with an ion-sputtered erosion pattern
of square planform.

Having completed these morphological identifications, we are ready to examine
the existence and stability of critical points II and V. Toward that end we determine
the signs of a1± b1 for α ∈ R and 0< ϕ ≤ π

2 . To illustrate this procedure, consider
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2ϕ = π
2 (90◦)

S−: pits S0: squares S+: mounds

Figure 5. Square patterns relevant to g(x, y) for ϕ = π
2 (90◦) with

threshold values from left to right of −1, 0, and 1, which are denoted
by S−, S0, and S+, respectively, and represent arrays of pits, squares,
and mounds. Here, the spatial variables are again being measured in
units of λc with regions below that threshold in each part appearing
dark and regions above it, light. In particular, contrast the appearance
of these patterns with the corresponding ones from Figure 4.
Sekimura et al. [1999] referred to S± collectively as “square spots”
in their lepidoptera wing pattern formation square-type planform
nonlinear stability analysis to distinguish them from hexagonal arrays
of spots. In hexagonal planform nonlinear stability analyses such
structures are often denoted by III± while its generalized cell which
is always unstable is denoted by IV; hence, our choice of the notation
V for the rhombic critical point [Wollkind and Dichone 2017].

the existence and stability of the square planform obtained by setting ϕ = π
2 for

critical point V. Given that

a1(α)+ b1
(
α, π2

)
= 3− 73

36α
2 > 0 whenever α2 < 108

73 ,

b1
(
α, π2

)
= 2− 3α2

2 < 1− 19
36α

2
= a1(α) whenever α2 > 36

35 ,

both are valid whenever 36
35 <α

2< 108
73 . Hence we can conclude that square rhombic

patterns would be stable versus ripples for

1.014= 6
√

35
< |α|<

√
108
73 = 1.216 provided σ > 0 or 0< β < 1.

Then we investigate this behavior for fixed values of α and, since our Landau
coefficients are symmetric in that parameter, we need only consider α ≥ 0. Observe
in this context that

b1(0, ϕ)= 2> 1= a1(0)

and thus, for α = 0 and 0 < β < 1, ripples are stable versus rhombic patterns.
We find that for 0< α <

√
108
73 there exist two ϕ-intervals (ϕm, ϕM) and (ϕ`, ϕr ),
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Figure 6. Plots of η versus ϕ for α = 0.1, α = 1.1, and α = 1.3.
Here the ϕ-intervals where−1<η<1 correspond to stable rhombic
patterns and appear in Table 1 for those α-values. Note that η has
been plotted for 0< ϕ < π to demonstrate the symmetry of that
function about ϕ = π

2 .

flanking ϕ = π
3 , in which a1(α)± b1(α, ϕ) > 0, or equivalently −1 < η(α, ϕ) =

b1(α, ϕ)/a1(α) < 1, where

0< ϕm(α) < ϕM(α) <
π
3 < ϕ`(α) < ϕr (α)≤

π
2 ,

and thus, rhombic patterns of these characteristic angles are stable versus ripples,
while for

√
108
73 < α <

6
√

19
only the (ϕm, ϕM) interval exists (see Figure 6). These

values are tabulated in Table 1. Note that although this limit exists such an occurrence
implies

lim
α→0

b1(α, ϕ) 6= b1(0, ϕ)

or b1(α, ϕ) has a jump discontinuity at α= 0, something conclusively demonstrated
for their rhombic-planform nonlinear stability analysis in [Cangelosi et al. 2015].
Note the refinement of our longitudinal planform stability results when 0< β < 1
provided by these rhombic planform predictions is that stable ripples (II) will only
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β
smooth (I)

S− V−

II

V+ S+

α1
α

α2

Figure 7. Morphological nonlinear stability diagram in the (α, β)-
plane for our damped Kuramoto–Sivashinsky type equation identi-
fying the predicted ion-sputtered erosion patterns. Here the regions
between the dotted lines indicate parameter ranges where stable rhom-
bic patterns (V±) of angle ϕ = π

2 or squares (S±) can occur while the
region of stable ripples associated with critical point II is identified
by an arrow. Observe that the other member of this equivalence class
denoted in the text by A0 = 0, B2

0 = σ/a1 gives rise to roots which
simply interchange the values of p1 and p2 for the member chosen to
represent that equivalence class and in so doing preserves our stability
criteria for this class while rotating its deviation function now satisfy-
ing he(z)∼ δ cos(2π z/λc) through an angle ϕ, when compared to the
contour plot of Figure 3, characteristic of the rotational invariances of
such orbital stabilities. Thus, given the isotropic nature of our model
evolution equation defined on an unbounded domain, there is no
preferred direction and hence both these families of stripes are equally
likely to occur [Sekimura et al. 1999] with arbitrary initial conditions
determining which of those orientations is actually selected [Segel
1966]; e.g., if ϕ = π

2 were selected the vertical stripes of Figure 3
would be replaced by horizontal ones instead.

occur for α = 0 or equivalently λ0 = 0, while, for 0 < α < α2 =
6
√

19
(λ0 > 0),

islands (V+) of the allowable characteristic angles are the only stable patterns and,
for − 6

√
19
= α1 < α < 0 (λ0 < 0), holes (V−) of these characteristic angles are the

only stable patterns. In addition, square patterns (S±) of rhombic angle ϕ = π
2 can
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α ϕm ϕM ϕ` ϕr

0.1 1.006 1.023 1.071 1.088
0.2 0.963 0.999 1.094 1.127
0.3 0.919 0.974 1.118 1.167
0.4 0.873 0.947 1.142 1.206
0.5 0.826 0.918 1.167 1.245
0.6 0.775 0.887 1.194 1.286
0.7 0.722 0.853 1.223 1.329
0.8 0.664 0.813 1.255 1.376
0.9 0.602 0.768 1.292 1.432
1.0 0.534 0.712 1.377 1.523
1.1 0.456 0.641 1.396 1.571
1.2 0.363 0.544 1.504 1.571
1.3 0.238 0.385 none none

Table 1. The ϕ-range for stable rhombic patterns of these charac-
teristic angles versus α.

only occur for 1.014= 6
√

35
< |α|<

√
108
73 = 1.216. Observe that for β > 1, both

our planforms predict that only the smooth planar surface (I) can occur. These
morphological nonlinear stability predictions are represented diagrammatically in
the (α, β)-plane of Figure 7.

4. Application to ion-sputtered erosion-pattern experimental evidence

We are now ready to compare our two-dimensional ion-sputtered erosion morpho-
logical stability predictions summarized in Figure 7 with the normal-incidence
experimental observations that were described in Section 1. We begin with the quan-
tum dot island semiconductor experiments of [Facsko et al. 1999]. To compare our
theoretical predictions with their results we first have to decide what values to assign
the material and experimental parameters appearing in our model equation since
some of the relevant quantities were unreported. Given that [Facsko et al. 1999] also
produced the same quantum dot island formation on germanium surfaces bombarded
with argon ions as they did on gallium antimonide ones, we use parameter values as
measured in [Chason et al. 1994] who investigated temperature-dependent erosion
during xenon ion sputtering of the group IV semiconductor germanium. Toward
that end, we take

ν = 2× 10−15 cm2

sec
,

D = 0.8× 10−27 cm4

sec
,

h0 = 0.1 nm (nm≡ 10−9 m),
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where these were appropriate values for normal-incidence ion sputtering at a sub-
strate temperature TS = 423 K. Then employing those values in the scale factors
for length and time, we find that

`0 = 8.94 nm, τ0 = 1.60× 103 sec.

Thus, from the definitions of β and wn , we see that β ∼= βc = 1 with β < 1
corresponds to

J0 ∼= 6.25× 1012 1
cm2sec

, wn ∼= 0.50 nm
sec
,

which are of the same order of magnitude for these quantities as those in the
experiments of [Chason et al. 1994; Facsko et al. 1999], respectively. Finally, we
take

2λ0 = 0.01 nm
sec
,

which is the value [Facsko et al. 2004] subsequently employed for this parameter
in the numerical simulation of their model ion-sputtering evolution equation. Now
recalling the relationship α = τ0λ0/(2`0β), we find for these selected values of τ0,
`0, λ0/2, and β that

α ∼= 0.447.

Upon examination of our rhombic planform morphological stability results con-
tained in Figure 7, we can conclude that such a value of 0 < α < α2 = 1.376 is
compatible with a prediction of quantum dot island (V+) formation when β∼=βc= 1
for β < 1. Further, given the selected value of `0, we obtain from the definition of
the pattern dimensional wavelength λ∗c that

λ∗c = 56.2 nm.

Since [Facsko et al. 1999] stated that λ∗c closely approximated the size of these
quantum dot islands as determined by average diameter d∗c , this compares quite
favorably with their measured experimental value of d∗c = 50 nm. Hence our
theoretical predictions are in both very good qualitative and quantitative agreement
with those quantum dot island experimental observations.

To investigate the origin and dynamics of such quantum dot island formation
under normal-incidence ion sputtering, Kahng et al. [2001] numerically integrated
a continuum evolution equation for the dimensional deviation of the interfacial
surface from its mean planar position H0−wnτ that is derivable from the isotropic
continuity equation with η0≡ 0 upon the implicit adoption of the constant sputtering
yield condition

J0Y0(H)≡ w0(0)= wn,
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instead of our sinh(2h)-dependent one. By necessity these simulations were per-
formed on a square spatial domain with periodic boundary conditions which are the
numerical analog of our far-field condition. We note in this context that it seems
reasonable as a first approximation for us to have considered our model equation
on an unbounded spatial domain since the characteristic transverse length scale of
the thin solid films was much greater than the wavelength of the patterns under
investigation in these experiments and consequently their actual lateral boundaries
did not significantly influence the patterns [Graham et al. 1994]. Specifically, Kahng
et al. [2001] performed their numerical simulations on this undamped Kuramoto–
Sivashinsky evolution equation for the idealized parameter values λ0 =±1 nm/sec,
obtaining a regular lattice of elevated islands when λ0 = 1 nm/sec and a similar
lattice of holes when λ0 =−1 nm/sec. Hence, they concluded that their predicted
morphologies for λ0 > 0 were reminiscent of the patterns reported in [Facsko et al.
1999]. We note that those for λ0 < 0 closely resembled the uniform distribution of
holes which resulted from argon ion-sputtering of platinum under normal incidence
in [Michely and Comsa 1991]. Therefore, in light of these theoretical, experimental,
and numerical outcomes, we conjecture that λ0 > 0 is to be expected for ion-
sputtering of semiconductor materials.

Next, we consider the morphological stability predictions of our model relevant to
these experimental observations of [Michely and Comsa 1991; Rusponi et al. 1997;
1998; 1999] involving the ion-sputtering of metals. Clearly, the lattice of vacancies
produced in [Michely and Comsa 1991] at a substrate temperature TS from 550 K to
625 K on a normal-incidence argon-ion sputtered platinum surface when compared
with the uniform array of holes (V−) predicted in our stability diagram of Figure 7
require α1 < α < 0 (λ0 < 0) and 0< β < 1. They referred to such depressions as
vacancy islands to distinguish them from normal islands. Our rhombic planform
stability analysis for ϕ = π

2 predicted that checkerboard arrays of mounds (S+)
or pits (S−) would require 0 < β < 1 and 1.014 = 6

√
35
< |α| <

√
108
73 = 1.216.

Now making the companion conjecture that λ0 ≤ 0 is to be expected for ion-
sputtering of metallic materials, this condition reduces to α1<−1.216<α<−1.014,
which is consistent with the square checkerboard of pits (S−) observed in [Rusponi
et al. 1999] on a neon ion-sputtered silver surface at normal incidence (note its
λ∗c = 55 nm!). Kahng et al. [2001] erroneously claimed that their λ0 < 0 simulations
were a theoretical confirmation of this result rather than that of [Michely and Comsa
1991]. Further, from Figure 7 for our rhombic planform morphological stability
analysis, we can conclude that the coherent ripples (II) produced by [Rusponi et al.
1997; 1998; 1999] under argon or neon ion-sputtering of silver or copper erosion
surfaces at normal incidence require α = 0, or equivalently λ0 = 0, since such
patterns are only stable at this value of that parameter and when 0< β < βc = 1.
Observe for β > βc = 1 and α = 0, the planar or smooth interface solution (I) is the
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only stable state. Hence there is an exchange of stabilities for α = 0 between these
two states at β = βc = 1. We employ this result to show that the predictions of our
model are compatible with the transition between those states that occurred in the
experiments of [Rusponi et al. 1997] upon decreasing the substrate temperature.
First recalling from its definition that β = 8J0h2

0 D/ν2 and then noting that the
thermal diffusion coefficient K satisfies a relationship of the form [Makeev and
Barabási 1997]

K = K0 exp
(
−

T0

TS

)
= K (TS),

where K0 and T0 are positive characteristic values, we derive the following substrate
temperature dependence of the effective surface diffusion coefficient:

D = K (TS)+ D0 = D(TS).

Thus, since the other quantities appearing in our formula for β are virtually invariant
over the substrate temperature range of interest, incorporation of this function into
that formula yields

β =
8J0h2

0 D(TS)

ν2 = β(TS).

Hence, because K (TS) increases exponentially with substrate temperature given
that

K ′(TS)=

(
T0

T 2
S

)
K (TS) > 0,

we deduce there exists a critical value of this temperature Tc, defined implicitly by

β(Tc)= βc = 1
such that

β > βc = 1 for TS > Tc and β < βc = 1 for TS < Tc,

which serves as a point of transition between the smooth and rippled morphologies
along the vertical line α = 0 of Figure 7 when substrate temperature is decreased
through it in accordance with the experimental evidence of [Rusponi et al. 1997].

Having demonstrated that given the proper identification of its parameter val-
ues our theoretical model predictions agree very well with relevant experimental
observation and numerical simulation, we discuss a general symmetry property of
the damped Kuramoto–Sivashinsky-type governing equation responsible for this
correlation. As pointed out in [Kahng et al. 2001] for their undamped Kuramoto–
Sivashinsky equation, the morphological reversal which occurred upon the change
in sign of α could be anticipated from its qualitative behavior. Specifically, our
equation is invariant under the simultaneous transformation h→−h and α→−α
by virtue of both sinh(−2h)=− sinh(2h) and (−h)2 = h2 which indicates that the
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change in sign of α did not affect its interfacial dynamics but merely turned island
patterns into mirror-imaged ones involving holes. This also indicates that such
patterns are intrinsically nonlinear since had linear terms alone been responsible for
their formation, the surface morphology would not have depended on the sign of α
[Kahng et al. 2001]. This being the case there was some merit for us to examine
further its other nonlinear effect, which provided the damping in our equation.

To do so we considered our sputtering yield constitutive relation with H =
h0+ H0−wnτ or equivalently h = h0/`0 in its normalized form

Y0(h0+ H0−wnτ)

h0`
2
0

= 1+
h0

`0
sinh

(
2h0

`0

)
.

Then employing the series for sinh through third-order, we obtained the representa-
tion

1+
h0

`0
sinh

(
2h0

`0

)
∼ 1+ 2

(
h0

`0

)2

+
4
3

(
h0

`0

)4

,

which is consistent with the asymptotic result of [Makeev and Barabási 1998]

C1+C2h2
0+ O(h4

0), where C1 = 1 and C2 > 0,

for that normalized yield. Hence, we initially introduced a general secondary yield
term in our constitutive relation of the form

r(h)= 2h+µ0h3
+ O(h5)

rather than the particular function sinh(2h) appearing there. Since that function
only contained odd powers of h and thus r(−h)=−r(h), our damped Kuramoto–
Sivashinsky-type equation would still exhibit the symmetry property discussed
above. Then our longitudinal and rhombic planform weakly nonlinear stability
analyses resulted in the Landau coefficients

a1(α;µ0)=
3µ0

4
−

19α2

36
, b1(α, ϕ;µ0)=

3µ0

2
−
α2

2
3+ 16 cos4(ϕ)

[4 cos2(ϕ)− 1]2
,

which, of course, reduced to their previously obtained formulae for µ0 =
4
3 . Given

that the transition between smooth and rippled morphologies with substrate temper-
ature observed in [Rusponi et al. 1997] was nonhysteretical, we moreover assumed
µ0 > 0 in order to eliminate the possibility of such metastability by guaranteeing

b1− a1 = a1 =
3
4µ0 > 0 for α = 0.

Finally, since Makeev and Barabási [1998] did not find any oscillatory behav-
ior for their normalized yield function, we adopted the specific odd nonperiodic
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secondary yield term

r(h)= sinh(2h) =⇒ µ0 =
4
3 ,

this selection having been made for the sake of definiteness as well as being
motivated by the form of that interfacial model equation analyzed in [Wollkind
and Vislocky 1990], which was also the rationale for our choice of scale factors
when nondimensionalizing the isotropic Kuramoto–Sivashinsky continuity equation.
We close this particular discussion by noting that the factor appearing before our
sputtering yield constitutive relation and the dimension of the specific value of J0

should more properly have been h0`
2
0 per ion and ion cm−2sec−1, respectively, but

since those quantities only appear in our formulation as their product wn = J0h0`
2
0,

in which case the ion designation cancels out, we did not explicitly indicate it for
ease of exposition.

We complete the comparison of our model to previous ones by describing in more
detail the damped Kuramoto–Sivashinsky evolution equation devised in [Facsko
et al. 2004] mentioned earlier in relation to λ0, the simulation of which could be used
to model their original normal-incidence argon ion-sputtering gallium antimonide
semiconductor quantum dot experiments. It differed from that of [Kahng et al. 2001]
only owing to the presence of a nonzero white noise term η0 and a linear damping
term equivalent in our dimensionless notation to 2βh, which had been introduced
ad hoc for the purpose of suppressing spatiotemporal chaos and interpreted as the
continuum effect of the mechanism of redeposition of the sputtered material on
the substrate surface. Facsko et al. [2004] asserted that in the case of a corrugated
morphology a considerable amount of the sputtered particles hits the surface and
is redeposited resulting in a net exchange of material from higher- to lower-lying
regions. This mechanism, which tends to decrease both h0, the maximum deviation
of the interface from its mean planar position, andwn , the normal velocity of erosion,
was first described in [Michely and Comsa 1991] but had been ignored heretofore in
modeling endeavors. Observe that the h0-dependence of our formula wn = J0h0`

2
0

for the normal velocity of erosion is consistent with this interpretation. Neither
that equation of [Facsko et al. 2004] nor the one employed in [Kahng et al. 2001]
were able to produce patterns when λ0 = 0 since the only nonlinear term for each
was proportional to this parameter and such nonlinearities are required for pattern
formation. Thus our model is unified in the sense that with λ0 = 0, or equivalently
α = 0, and 0 < β < 1, it also accounts for the formation of ripples at normal
incidence which those of [Kahng et al. 2001; Facsko et al. 2004] could not do.

Our results differ from those obtained in [Pansuwan et al. 2005] from their
analysis of a related model equation for solid surface erosion caused by normal-
incidence ion sputtering that did not include the simplifying approximation for the
magnitude of its gradient. That analysis basically employed the more complicated
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hexagonal planform method of weakly nonlinear stability theory (reviewed in
Chapter 17 of [Wollkind and Dichone 2017]) to study pattern formation in this
phenomenon and only used the easier to implement rhombic planform one to mediate
these results by determining the parameter range for stable square patterns instead of
generating all its pattern formation predictions as we do from our rhombic planform
analysis.The reason for this was that since the Cangelosi et al. [2015] paradigm for
lower- and higher-threshold patterns based upon the mean position of the interface
as we do here had yet to be developed, the predicted zero-threshold results of
their rhombic planform analysis could not be used to compare with experimental
and simulated patterns. Our goal being to employ the simplest reasonable model
and method of analysis that produce results in agreement with experimental data,
we chose to perform that threshold-dependent rhombic planform analysis on the
evolution equation derived in Section 1 rather than on the corresponding more
complex one of [Pansuwan et al. 2005]. Further since [Facsko et al. 2004] was
published simultaneously with [Pansuwan et al. 2005], the latter authors used the
existing stochastic model of [Cuerno et al. 1995] for solid surface erosion via
normal-incidence ion sputtering to estimate the value of λ0/2, which they took to
be equal to 0.01 nm/sec as opposed to our taking this as the value of 2λ0. Note that
for the value of this parameter employed in [Pansuwan et al. 2005] the experiments
of [Facsko et al. 1999] yielded α ∼= 1.788, which being greater than α2 would lie
outside our predicted range of 0< α < α2 = 1.376 for pattern formation.

In conclusion, this normal-incidence ion-sputtered erosion pattern-formation
problem of a semiconductor or metallic solid interfacial surface, involving a sin-
gle spatiotemporal partial-differential evolution equation, is compatible with the
ultimate goal of comprehensive applied mathematical modeling of developing
the simplest reasonable formulation which preserves the essential features of a
phenomenon and is still in agreement with relevant observational or experimental
data [Wollkind and Dichone 2017]. The basic theme of such modeling is that when
its theoretical predictions are compared with this data from the phenomenon under
investigation these predictions and that phenomenological data are self-consistent,
hence validating the model. Paradoxically, achieving this required us to add a
secondary yield term and introduce a gradient simplification in our model to make
it both unified and more tractable for analysis, respectively.
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