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Allison Henrich, Alexandra Ionescu,  
Brooke Mathews, Isaac Ortega, and Kelemua Tesfaye

hen we began our CURM-
sponsored research for the 
2019–2020 academic year, 
we thought that we were 
going to work on pure math 

research (you know, making conjectures, proving 
theorems, and such) in the area of knot theory. 

For those who are surprised to hear that 
knots are an object of study for mathematicians, 
here’s a bit of background. Knots are typically 
considered to be knotted circles that live in 
three-dimensional space. Links are collections of 
these circles. Two knots or links are equivalent 
to each other if you can take one and bend, 
stretch, or generally rearrange it to produce the 
other. Cutting and regluing the knot or magically 
passing the knot through itself are not allowed. 
The simplest nontrivial knot is called the trefoil, 
and the simplest nontrivial link is called the Hopf 
link. Diagrams of these appear in figure 1.

We intended to study knot mosaics. 
Lomonaco and Kauffman first introduced 
knot mosaics in order to build a quantum 
knot system (Quantum knots and mosaics, 
Quantum Information Processing, 7 no. 2-3 
[2008] 85–115). These objects attracted a 
lot of interest in the math community, not 
necessarily because of their applications in 

quantum knot theory, but because they’re 
interesting combinatorial objects to play with 
and ask questions about. 

So, what is a knot mosaic? It’s a rectangular (or 
more often, square) arrangement of tiles, created 
from the 11 basic mosaic tiles in figure 2.

When we place tiles to form a knot mosaic, we 
require them to be suitably connected, meaning 
that each connection point on a tile matches 
up with a connection point of a neighboring 
tile. Figure 3 shows two suitably connected 
mosaics: the image on the left depicts the trefoil 
knot, and the one the right shows the Hopf link. 
Figure 4 shows a mosaic that fails to be suitably 
connected.

Recent research on knot mosaics has concerned 
board sizes: given a specific knot, what is the 
smallest n × n mosaic board on which that knot 
can be represented (Lee, Ludwig, Paat, and Peiffer, 
Knot mosaic tabulation, Involve 11 no. 1 [2017] 
13–26)? For instance, figure 3 proves that the 
trefoil knot can be represented on a 4 × 4 mosaic, 
but the trefoil cannot be represented on a 3 × 3 
mosaic because there is only room for one crossing 
tile on a 3 × 3 mosaic if the exterior edges of the 
mosaic aren’t allowed to have connection points. 

While trying to formulate some new questions 
about knot mosaics and consider strategies for 

KNOTRIS: 
A Game Inspired  
by Knot Theory

Figure 2. The 11 basic mosaic tiles.

Figure 1. Depictions of the trefoil knot (left) 
and Hopf link (right).
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finding their 
answers, our 
team took some 
time to play. 
We obtained 
a big bag of 
woodcut mosaic 
tiles made by 
Lew Ludwig 
for the UnKnot 
Conference, and 
we made some 
of our own. For 
several weeks 
in the fall, we 
spent part of 
our research 

time physically playing with these tiles to build 
intuition and brainstorm questions.

One day, as we talked about potential research 
questions, playing 
idly with our tiles 
and trying to 
make collections 
of tiles be suitably 
connected, we 
realized that this 
simple act was 
actually pretty fun. 
“If we think putting 
together tiles in a 
suitably connected 
way is fun, maybe 
others would 
too!” “What if we 
created a game—
kind of like Tetris 
(tetris.com)—that 
uses knot mosaic 
tiles instead of 
tetrominoes?” And 
that was how our 
project was born. 

We dabbled in our pure math research and 
associated programming projects for several 
weeks after this idea came about, but quickly 
it became clear to us that working to develop 
Knotris should be our new goal.

How to Play Knotris
Our game begins on a 6-tile-wide by 13-tile-high 
board with a single, suitably connected row of 
mosaic tiles already in place at the bottom of the 
board. Just as in Tetris, new tiles fall from the top 
of the board one at a time. Each falling tile can be 
rotated any multiple of 90 degrees and shifted left 
or right as it falls; the player’s goal is to place this 
tile on top of another tile in such a way that the 
board remains suitably connected. 

Once an internally suitably connected row 
(i.e., a row whose tiles are all suitably connected 
on their left and right boundaries) has been 
completed and this row is suitably connected to 
a completed row above it, the row gets cleared 
from the board and points are added to the 
player’s point total. (If a row is ever created so 
that it is not internally suitably connected, it can 
never be removed.)

Figure 5 illustrates two examples of game 
play early in a game. On the left, the falling tile 
cannot be placed anywhere to maintain a suitably 
connected board. On the right, the tile is poised to 
land in a spot that will allow the bottom row to be 
cleared from the board. Notice that the next three 
tiles the player can expect to see are previewed at 
the top right of the screen.

Figure 3. The trefoil knot and the Hopf link 
on a 4 × 4 mosaic board.

Figure 5. Two examples of mid-game play. The left image will result in a 
row that cannot be removed; the right image shows that the bottom row 
will clear when the piece falls in place.

Figure 4. A mosaic board that 
is not suitably connected (due 
to the red dead-ends).
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A Knotris game 
ends when a tile 
touches the top of 
the game board. 

We only use 5 of 
the 11 basic mosaic 
tiles in Knotris 
because we allow 
rotation of tiles. 
These tiles do not 
come up randomly, 
with equal 
probability. We 
determined through 
our early play with 
physical wooden 
tiles that random 
tile generation 
would quickly lead 
to a very lopsided 
board, and games 
would end quickly.

Tiles that can be especially difficult to place 
are blanks (tiles that have no connection 
points) and 4-connected tiles (those that have 
connection points on all four sides). The tiles 
with two connection points, which we call elbows 
and lines, are more versatile. Owing to these 
characteristics, we determined that the collection 
of seven tiles shown in figure 6 should constitute 
our basic game bag. 

This seven-tile game bag—from which the 
probability of choosing a blank is 1/7 and the 
probability of choosing each other tile type (i.e., 
elbows, lines, or 4-connected tiles) is equal to 
2/7—forms the basic building block to construct 
Knotris. 

We combined three basic game bags to create 
a larger, 21-tile game bag from which tiles are 
chosen. The larger game bag is replenished and 
reshuffled when it runs out during game play. 
Combining game bags allows interesting (and 
sometimes frustrating) things to happen, such as 

three blank tiles appearing in a row.
We intentionally chose our seven-tile game 

bag in relation to the six-tile width of the game 
board. If the basic game bag were the same 
size as the board width (or some multiple) and 
if it were possible to use the bag to create an 
internally suitably connected row, this row could 
just be repeated (right side up or upside down) to 
continue game play forever without much effort. 
Considerations like these went into decisions about 
both the basic game bag and the game board size.

So, how does scoring work? Each tile is initially 
assigned a multiplier of 1, which can be increased 
if the player arranges for a special configuration 
to occur on the game board. When a row clears, 
the player’s score increases by 100 times the sum 
of the multipliers of the six tiles in the cleared 
row. Typically, clearing a row simply adds 600 to a 
player’s score, but sometimes a player can do better.

One way that a player can increase the 
multipliers of the tiles is by creating a knot or a link, 
L, on the game board. Once L has been completed, 
each tile contributing to L has its multiplier 
increased by one plus the number of crossings in L.

Consider, for instance, the two examples in 
figure 7. On the left, seven tiles in the middle 
create a knot (in the shape of a figure-8) with one 
crossing. The multipliers of these seven tiles each 
increase from 1 to 3—we add 1 for completing 
the knot and an additional 1 for the crossing in 
the knot. On the right, 11 tiles are used to create a 
knot (which is just a circle, or the unknot). Because 
the knot completes a closed loop and uses two 
crossing tiles, we assign a multiplier of 4 to each of 
our 11 tiles to both reward the completion of the 
knot and add a crossing tile bonus.

Figure 7. Examples creating multipliers for tiles.

Figure 6. The seven tiles in a game bag for 
Knotris.
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Figure 8. A row with upper boundary 
condition (1,0,0,0,1,1).

Figure 9. A proof by 
picture that we can, in 
theory, clear as many rows 
as we like at once.

While rows 0–7 
are all internally 
suitably 
connected, 
they fail to 
be suitably 
connected along 
their upper 
and lower 
boundaries. 

In figure 9, the 
upper boundary 
conditions 
for rows 0–7 
are identical: 
they are all 
(1,1,1,1,1,0). 
Moreover, the 
8th row has 
lower boundary 
condition 
(1,1,1,1,1,0), so 
once this row 

is placed, all eight rows below it will clear in a 
cascade! This configuration is also realizable 
(according to our bag constraints), and the 
strategy can be expanded to clear even more 
rows!

When multiple rows are cleared at once, a 
player can generate a much larger number of 
points than clearing rows one at a time—all the 
tiles in each row cleared during a cascade are 
assigned a multiplier of n, where n represents 
the total number of rows that have been cleared. 
In the example above, all 48 of the tiles in rows 
0–7 get assigned a multiplier of 8. So, this is a 
highly desirable configuration.

Can you clear multiple rows at once? Try it by 
playing Knotris at https://izook.github.io/knotris/.

Let us know what you think!  

Allison Henrich, professor of mathematics 
at Seattle University, won a grant from 
the Center for Undergraduate Research in 
Mathematics (CURM) to work on this yearlong 
project with her dream team of Seattle 
University undergraduates: Alex Ionescu, 
Brooke Mathews, Isaac Ortega, and Kelemua 
Tesfaye. Each student brought their unique 
expertise (in game design, programming, 
probability, and more!) to make this project’s 
vision a reality.
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A multiplier of a tile is also increased if the 
tile is involved in a row that initially fails to 
be suitably connected to the row above it but 
ends up being cleared later in the game, in a 
cascade of clearing rows. The idea of increasing 
multipliers in this situation motivated us to 
wonder if this phenomenon is even possible, 
especially given the constraints of our tile bag. 
It turns out that we can answer this question by 
investigating the tiles and our game bag more 
closely. 

An Interesting Result
While developing Knotris, we’ve studied various 
probabilities that inform game design and 
strategy. One question we’ve asked is: given a 
game board configuration with a flat top, such 
as the starting configuration of the game, what 
is the probability that the next six tiles can form 
another complete, suitably connected row? This 
probability depends on the boundary condition 
dictated by the top row of the game board 
configuration. 

In figure 8, the tiles that are placed in the first, 
fifth, and sixth spots should have connection 
points along their bottom edges. This boundary 
condition can be represented by the six-tuple 
(1,0,0,0,1,1). It turns out that one of the easiest 
boundary conditions to satisfy by any six of the 
seven tiles in our basic game bag is (1,1,1,1,1,0); 
many such rows are pictured in figure 9.

Our investigation of the boundary conditions 
helped us find an answer to our question about 
clearing multiple rows by placing a single tile. 
Indeed, we can clear multiple rows; moreover, we 
can clear arbitrarily many rows at once! Figure 9 
demonstrates an attainable game board where 
rows 0–7 will not clear before row 8 is placed. 


