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KNOTRIS:
A Game Inspired

by Knot Theory

ALLISON HENRICH, ALEXANDRA |ONESCU,
BROOKE MATHEWS, ISAAC ORTEGA, AND KELEMUA TESFAYE

hen we began our CURM-
sponsored research for the
2019-2020 academic year,

we thought that we were

going to work on pure math
research (you know, making conjectures, proving
theorems, and such) in the area of knot theory.

For those who are surprised to hear that
knots are an object of study for mathematicians,
here’s a bit of background. Knots are typically
considered to be knotted circles that live in
three-dimensional space. Links are collections of
these circles. Two knots or links are equivalent
to each other if you can take one and bend,
stretch, or generally rearrange it to produce the
other. Cutting and regluing the knot or magically
passing the knot through itself are not allowed.
The simplest nontrivial knot is called the trefoil,
and the simplest nontrivial link is called the Hopf
link. Diagrams of these appear in figure 1.

We intended to study knot mosaics.
Lomonaco and Kauffman first introduced
knot mosaics in order to build a quantum
knot system (Quantum knots and mosaics,
Quantum Information Processing, 7 no. 2-3
[2008] 85-115). These objects attracted a
lot of interest in the math community, not
necessarily because of their applications in

Figure 1. Depictions of the trefoil knot (left)
and Hopf link (right).
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quantum knot theory, but because they’re
interesting combinatorial objects to play with
and ask questions about.

So, what is a knot mosaic? It’s a rectangular (or
more often, square) arrangement of tiles, created
from the 11 basic mosaic tiles in figure 2.

When we place tiles to form a knot mosaic, we
require them to be suitably connected, meaning
that each connection point on a tile matches
up with a connection point of a neighboring
tile. Figure 3 shows two suitably connected
mosaics: the image on the left depicts the trefoil
knot, and the one the right shows the Hopf link.
Figure 4 shows a mosaic that fails to be suitably
connected.

Recent research on knot mosaics has concerned
board sizes: given a specific knot, what is the
smallest n x n mosaic board on which that knot
can be represented (Lee, Ludwig, Paat, and Peiffer,
Knot mosaic tabulation, /nvolve 11 no. 1 [2017]
13-26)? For instance, figure 3 proves that the
trefoil knot can be represented on a 4 x 4 mosaic,
but the trefoil cannot be represented on a 3 x 3
mosaic because there is only room for one crossing
tile on a 3 x 3 mosaic if the exterior edges of the
mosaic aren’t allowed to have connection points.

While trying to formulate some new questions
about knot mosaics and consider strategies for

Figure 2. The 11 basic mosaic tiles.
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Figure 3. The trefoil knot and the Hopf link
on a 4 x4 mosaic board.
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finding their
answers, our
team took some
time to play.
We obtained

r‘ W a big bag of
| woodcut mosaic

Figure 4. A mosaic board that
is not suitably connected (due
to the red dead-ends).

J tiles made by

Lew Ludwig
for the UnKnot
Conference, and

we made some
of our own. For
J several weeks

in the fall, we
spent part of
our research
time physically playing with these tiles to build
intuition and brainstorm questions.

One day, as we talked about potential research
questions, playing

F
.

We dabbled in our pure math research and
associated programming projects for several
weeks after this idea came about, but quickly
it became clear to us that working to develop
Knotris should be our new goal.

How to Play Knotris
Our game begins on a 6-tile-wide by 13-tile-high
board with a single, suitably connected row of
mosaic tiles already in place at the bottom of the
board. Just as in Tetris, new tiles fall from the top
of the board one at a time. Each falling tile can be
rotated any multiple of 90 degrees and shifted left
or right as it falls; the player’s goal is to place this
tile on top of another tile in such a way that the
board remains suitably connected.

Once an internally suitably connected row
(i.e., a row whose tiles are all suitably connected
on their left and right boundaries) has been
completed and this row is suitably connected to
a completed row above it, the row gets cleared
from the board and points are added to the
player’s point total. (If a row is ever created so
that it is not internally suitably connected, it can
never be removed.)

Figure 5 illustrates two examples of game
play early in a game. On the left, the falling tile
cannot be placed anywhere to maintain a suitably
connected board. On the right, the tile is poised to
land in a spot that will allow the bottom row to be
cleared from the board. Notice that the next three
tiles the player can expect to see are previewed at
the top right of the screen.

idly with our tiles
and trying to
make collections
of tiles be suitably
connected, we
realized that this
simple act was
actually pretty fun.
“If we think putting
together tiles in a
suitably connected
way is fun, maybe
others would

too!” “What if we
created a game—
kind of like Tetris
(tetris.com)—that
uses knot mosaic
tiles instead of
tetrominoes?” And
that was how our
project was born.

Figure 5. Two examples of mid-game play. The left image will result in a
row that cannot be removed; the right image shows that the bottom row
will clear when the piece falls in place.
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A Knotris game
ends when a tile
touches the top of
the game board.

We only use 5 of
the 11 basic mosaic
tiles in Knotris
because we allow
rotation of tiles.
These tiles do not
come up randomly,
with equal
probability. We
determined through
our early play with
physical wooden
tiles that random
tile generation
would quickly lead
to a very lopsided
board, and games
would end quickly.

Tiles that can be especially difficult to place
are blanks (tiles that have no connection
points) and 4-connected tiles (those that have
connection points on all four sides). The tiles
with two connection points, which we call elbows
and lines, are more versatile. Owing to these
characteristics, we determined that the collection
of seven tiles shown in figure 6 should constitute
our basic game bag.

This seven-tile game bag—f{rom which the
probability of choosing a blank is 1/7 and the
probability of choosing each other tile type (i.e.,
elbows, lines, or 4-connected tiles) is equal to
2/7—forms the basic building block to construct
Knotris.

We combined three basic game bags to create
a larger, 21-tile game bag from which tiles are
chosen. The larger game bag is replenished and
reshuffled when it runs out during game play.
Combining game bags allows interesting (and
sometimes frustrating) things to happen, such as

Figure 6. The seven tiles in a game bag for
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Figure 7. Examples creating multipliers for tiles.

SCORE:
4200

three blank tiles appearing in a row.
We intentionally chose our seven-tile game
bag in relation to the six-tile width of the game
board. If the basic game bag were the same
size as the board width (or some multiple) and
if it were possible to use the bag to create an
internally suitably connected row, this row could
just be repeated (right side up or upside down) to
continue game play forever without much effort.
Considerations like these went into decisions about
both the basic game bag and the game board size.
So, how does scoring work? Each tile is initially
assigned a multiplier of 1, which can be increased
if the player arranges for a special configuration
to occur on the game board. When a row clears,
the player’s score increases by 100 times the sum
of the multipliers of the six tiles in the cleared
row. Typically, clearing a row simply adds 600 to a
player’s score, but sometimes a player can do better.
One way that a player can increase the
multipliers of the tiles is by creating a knot or a link,
L, on the game board. Once L has been completed,
each tile contributing to L has its multiplier
increased by one plus the number of crossings in L.
Consider, for instance, the two examples in
figure 7. On the left, seven tiles in the middle
create a knot (in the shape of a figure-8) with one
crossing. The multipliers of these seven tiles each
increase from 1 to 3—we add 1 for completing
the knot and an additional 1 for the crossing in
the knot. On the right, 11 tiles are used to create a
knot (which is just a circle, or the unknot). Because
the knot completes a closed loop and uses two
crossing tiles, we assign a multiplier of 4 to each of
our 11 tiles to both reward the completion of the
knot and add a crossing tile bonus.



Figure 8. A row with upper boundary
condition (1,0,0,0,1,1).
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A multiplier of a tile is also increased if the
tile is involved in a row that initially fails to
be suitably connected to the row above it but
ends up being cleared later in the game, in a
cascade of clearing rows. The idea of increasing
multipliers in this situation motivated us to
wonder if this phenomenon is even possible,
especially given the constraints of our tile bag.
It turns out that we can answer this question by

investigating the tiles and our game bag more
closely.

An Interesting Result

While developing Knotris, we've studied various
probabilities that inform game design and
strategy. One question we’ve asked is: given a
game board configuration with a flat top, such
as the starting configuration of the game, what
is the probability that the next six tiles can form
another complete, suitably connected row? This
probability depends on the boundary condition
dictated by the top row of the game board
configuration.

In figure 8, the tiles that are placed in the first,
fifth, and sixth spots should have connection
points along their bottom edges. This boundary
condition can be represented by the six-tuple
(1,0,0,0,1,1). It turns out that one of the easiest
boundary conditions to satisfy by any six of the
seven tiles in our basic game bag is (1,1,1,1,1,0);
many such rows are pictured in figure 9.

Our investigation of the boundary conditions
helped us find an answer to our question about
clearing multiple rows by placing a single tile.
Indeed, we can clear multiple rows; moreover, we
can clear arbitrarily many rows at once! Figure 9
demonstrates an attainable game board where
rows 0-7 will not clear before row 8 is placed.

While rows 0-7
are all internally
suitably
connected,
they fail to
ERY be suitably
8 ) connected along
D their upper

and lower
| ) boundaries.

In figure 9, the
upper boundary
conditions
for rows 0-7
are identical:
they are all
) 1,1,1,1,1,0).
Moreover, the
I\ 8th row has
lower boundary
condition
(1,1,1,1,1,0), so
once this row
is placed, all eight rows below it will clear in a
cascade! This configuration is also realizable
(according to our bag constraints), and the
strategy can be expanded to clear even more
rows!

When multiple rows are cleared at once, a
player can generate a much larger number of
points than clearing rows one at a time—all the
tiles in each row cleared during a cascade are
assigned a multiplier of n, where n represents
the total number of rows that have been cleared.
In the example above, all 48 of the tiles in rows
0-7 get assigned a multiplier of 8. So, this is a
highly desirable configuration.

Can you clear multiple rows at once? Try it by
playing Knotris at https://izook.github.io/knotris/.

Let us know what you think! @

Figure 9. A proof by
picture that we can, in
theory, clear as many rows
as we like at once.
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Allison Henrich, professor of mathematics

at Seattle University, won a grant from

the Center for Undergraduate Research in
Mathematics (CURM) to work on this yearlong
project with her dream team of Seattle
University undergraduates: Alex Ionescu,
Brooke Mathews, Isaac Ortega, and Kelemua
Tesfaye. Each student brought their unique
expertise (in game design, programming,
probability, and more!) to make this project’s
vision a reality.
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