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Abstract

An m-psuedo progression is an increasing list of numbers for which there are at most m dis-
tinct differences between consecutive terms. This object generalizes the notion of an arithmetic
progression. In this paper, we give two counts for the number of k-term m-pseudo progres-
sions in {1, 2, . . . , n}. We also provide computer-generated tables of values which agree with
both counts and graphs that display the growth rates of these functions. Finally, we present a
generating function which counts k-term progressions in {1, 2, . . . , n} whose differences are all
distinct, and we discuss further directions in Ramsey theory.

1 Introduction and Motivation
Arithmetic progressions have been well-studied. Their existence within partitions of Z is a central
theme of Ramsey theory. The existence of long arithmetic progressions within the primes was
famously solved by Green and Tao [5]. Landman and Robertson recently asked how the theory
changes when instead of searching for arithmetic progressions, one searches for a specific general-
ization of an arithmetic progression, called an m-pseudo progression; in Section 6 we provide more
details on this connection (see also [6]). Motivated by this question, we sought to better under-
stand m-psuedo progressions by counting them. In this paper we provide two explicit methods and
formulas to count these objects, which we now define.

1.1 Defining m-Pseudo Progressions
A k-term arithmetic progression is a list of numbers, a1, a2, . . . , ak, for which there exists some
d ∈ Z+ where ai+1− ai = d for all i. We now generalize this definition to include progressions with
a greater number of differences between consecutive terms.

Definition 1.1. A (k-term) m-pseudo progression is a list

a1, a2, . . . , ak

of increasing integers from Z+ for which there exists a set {d1, d2, . . . , dm}, where ai+1 − ai ∈
{d1, d2 . . . , dm} for all i. If the m is not specified, it is simply called a progression.

For a given progression and any difference di, we denote ||di|| for the number of times di appears
as a difference in the progression.
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Notice that if m = 1, we get the definition of an arithmetic progression. Furthermore, every
m-pseudo progression is an `-pseudo progression for ` ≥ m, because the definition of an `-pseudo
progression requires at most ` differences.

The list 2, 5, 8, 13, 16, 21, 24 is a 7-term 2-pseudo progression since there are at most two common
differences:

5− 2 = 3

8− 5 = 3

13− 8 = 5

16− 13 = 3

21− 16 = 5

24− 21 = 3.

Therefore, by letting {d1, d2} = {3, 5}, it is indeed true that ai+1 − ai ∈ {d1, d2} for all i.
In this paper, we provide two separate counts of how many k-term m-pseudo progressions there

are in {1, 2, . . . , n}, and we discuss in detail some special cases.
We note that there are other generalizations of arithmetic progressions. Psuedo progressions

are in fact a generalization of what are called generalized arithmetic progressions, sometimes also
called d-dimensional arithmetic progressions or quasi-progressions, (see for example [2, 3]), which
are increasing sequences a1, a2, . . . , ak for which there is some d such that ai+1− ai ∈ {1, . . . , d} for
all i. These progressions demand that all the differences are “close” to each other, while a pseudo
progression simply restricts the number of such differences.

2 Counting 2-Pseudo Progressions

2.1 Arithmetic Progressions
We begin with a discussion of the solved problem of counting arithmetic progressions, which we
first formally provide. It is beneficial to see this approach, as two of our main theorems generalize
the ideas highlighted in this proof.

Theorem 2.1. There are

F1 = n ·
⌊

n

k − 1

⌋
− (k − 1) ·

(
b n
k−1c+ 1

2

)
k-term arithmetic progressions in {1, 2, . . . , n}.

Proof. Fix a d ∈ Z+. Notice that if you know that a k-term arithmetic progression has common
difference d, and you know the first element, then you have determined the entire progression. The
possible arithmetic progressions with a common difference of d are

1, 1 + d, 1 + 2d, . . . , 1 + (k − 1)d

2, 2 + d, 2 + 2d, . . . , 2 + (k − 1)d

...
n− (k − 1) · d, n− (k − 1) · d + d, n− (k − 1) · d + 2d, . . . , n
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That is, there are n− (k − 1) · d such progressions in {1, 2, . . . , n}.
Notice that the largest possible d is bn/(k − 1)c, and as for any integer m > bn/(k − 1)c, the

first possible arithmetic progression is

1, 1 + m, 1 + 2m, . . . , 1 + (k − 1)m,

making its last element 1 + (k − 1)m > n. Adding up the number of progressions for all possible d

and using the combinatorial identity
∑L

d=1 d =
(
L+1

2

)
, it follows that

b n
k−1 c∑
d=1

(n− (k − 1) · d) = n ·
⌊

n

k − 1

⌋
− (k − 1) ·

b n
k−1c∑
d=1

d

= n ·
⌊

n

k − 1

⌋
− (k − 1) ·

(
b n
k−1c+ 1

2

)
.

Remark 2.2. There are a few elements of this proof which will be important later. First, the
maximum common difference of a k-term arithmetic progression in {1, 2, . . . , n} is bn−1

k−1 c. Second,
the number of k-term arithmetic progressions in {1, 2, . . . , n} with common difference d is n−d(k−1).
Both of these will be generalized in this paper.

2.2 2-Pseudo Progressions
In this section, we provide two counts for the number of k-term 2-pseudo progressions in {1, 2, . . . , n}.
First, some notation.

Notation 2.3. Suppose
a1, a2, . . . , ak

is a k-term 2-pseudo progression. We will use a and b to refer to possible differences of this
progression; that is, ai+1 − ai ∈ {a, b} for all i. Recall, we will use ||a|| to refer to the number of
differences of size a and ||b|| to refer to the number of differences of size b.

For instance, in Example 1.1 we have a = 3 with ||a|| = 4, and b = 5 with ||b|| = 2.
We will also wish to refer to different orderings of the differences a and b. For example, in

Example 1.1 the differences are in the order 3, 3, 5, 3, 5, 3. We call this a difference pattern.

Definition 2.4. Given an m-pseudo progression

a1, a2, . . . , ak,

the list
a2 − a1, a3 − a2, . . . , ak − ak−1

is called the progression’s difference pattern.

Lemma 2.5. Fix a set of differences {d1, d2, . . . , dm} and numbers ||d1||, ||d2||, . . . , ||dm||. The
number of k-term m-pseudo progressions in {1, 2, . . . , n} with a fixed difference pattern is indepen-
dent of the difference pattern you choose.
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Proof. Fix a set of differences {d1, d2, . . . , dm} and their multiplicities ||d1||, ||d2||, . . . , ||dm||, as
given in the lemma. Next, fix two difference patterns D1 and D2 using the di from this set. Let
S be the collection of all k-term m-pseudo progressions in {1, 2, . . . , n} with difference pattern D1,
and let T be the collection of all k-term m-pseudo progressions with difference pattern D2. We will
show a bijection between the elements in S and T .

Given an arbitrary s ∈ S, say s starts at p0. Note that there is only one progression starting at
s whose difference pattern matches D1. Let f be the function that maps s to the progression t ∈ T
which starts at p0, which is likewise unique since its difference pattern is again specified. Moreover,
both s and t must end at p0 + d1||d1||+ d2||d2||+ · · · + dm||dm||, so if one is in {1, 2, . . . , n}, then
the other is too. Because a starting point uniquely determines the progression, f is invertible and
hence a bijection. This shows there are the same number of elements in S and T , completing the
proof.

Once you have fixed your set of differences and their multiplicities, it will not be difficult to
determine how many difference patterns match those criteria. Thus, Lemma 2.5 will be beneficial
in that it allows one to focus on a special class of difference patterns, such as ones in which all
instances of one of the differences occur before any instance of the second difference. The following
lemma pushes this further, by fixing the multiplicities but relaxing the differences themselves.

Lemma 2.6. Fix some s0, t0 ∈ {0, 1, 2, . . . } where s0 + t0 = k − 1, and consider any two lists,
L1 and L2, each consisting of s0 copies of the variable a and t0 copies of the variable b, in some
order. Let D1 be the collection of all k-term 2-pseudo progressions in {1, 2, . . . , n} whose difference
pattern matches L1 (note that a and b can differ between progressions within D1, provided the order
of the differences matches L1), and let D2 be the collection of all k-term 2-pseudo progressions in
{1, 2, . . . , n} whose difference pattern matches L2 (for appropriate substitutions of a and b). Then,
|D1| = |D2|.

Proof. Consider a k-term 2-pseudo progression P1 from D1, and suppose this progression starts at
i. Then, there exist a and b for which the progression makes s0 jumps of size a and t0 jumps of
size b (in the order matching L1), and the last term of the progression is, therefore, i + s0a + t0b.
Since all the progressions in D2 also have s0 copies of one difference and t0 copies of a second, and
the differences are allowed to be anything, if you simply reorder the differences in P1 to match the
ordering of L2, you get a new 2-pseudo progression P2 which begins at i and ends at i + s0a + t0b
and which is now in D2.

That is, by permuting the order of which you make your jumps of size a and b, you necessarily
get a new progression from the same beginning point to the same ending point. So if one of these
progressions is in {1, 2, . . . , n}, then the other is too. And since this procedure is clearly invertible,
we have a bijection between D1 and D2.

2.3 Recursive Count
In this section we present our first count of 2-pseudo progressions. By Lemma 2.6, the number
of m-pseudo progressions is independent on the difference pattern. Therefore, we define a simple
difference pattern for which the progressions will be simpler to count, and then later scale up this
count to include all m-pseudo progressions.
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Definition 2.7. Call a 2-pseudo progression s-t-simple if its difference pattern is of the form

a, a, . . . , a︸ ︷︷ ︸
s terms

, b, b, . . . , b︸ ︷︷ ︸
t terms

,

where s, t, a and b are positive integers, and let S(n, s, t) be the number of s-t-simple 2-pseudo
progressions in {1, 2, . . . , n}.

Note that if a = b, then the 2-pseudo progression is in fact an arithmetic progression and is
s-t-simple whenever s + t = k − 1, where k is the length of the progression.

To better visualize the general case, suppose we wanted to create a 4-3-simple 2-pseudo progres-
sion that started at i = 5 ∈ {1, 2, . . . , n} and where a = 2 and b = 6. Since our 2-pseudo progression
is of the form a, a, a, a, b, b, b, it would look like the following:

5 7 9 11 13 19 25 31

i i + sa i + sa + tb

Here, i + sa = 13 and i + sa + tb = 31. It is also important to note that given any k-term
2-pseudo progression, s+ t = k−1. This is because s and t count the number of differences between
terms, so the total number of those differences will always be one less than the number of terms in
the progression. For instance, in the example above we have k = 8, s = 4 and t = 3, so we see that
4 + 3 = 8− 1. In general, we see that s and t are dependent on k.

Proposition 2.8.

S(n, s, t) =

bn−1−t
s c∑

a=1

n−sa−t∑
i=1

⌊
n− (i + sa)

t

⌋
.

Proof. Given an s-t-simple 2-pseudo progression, let us assume that the progression starts at i ∈
{1, 2, . . . , n}. Since the first s common differences are of size a, the (s + 1)st term of the pseudo
progression will be i+sa. After i+sa, the terms in the 2-pseudo progression have the characteristic
that aj+1 − aj = b and since the pseudo progression proceeds with t common differences of size b,
the 2-pseudo progression will end at i + sa + tb.

Since s and t are dependent on k, instead of fixing a k we choose to fix s and t, and consider the
cases for which i, a, and b vary. Without loss of generality, by using the inequality i + sa + tb ≤ n

we can see that b ≤ n− (i + sa)

t
. We know that b must be a positive integer, and so by using the

floor function we have
1 ≤ b ≤

⌊
n− (i + sa)

t

⌋
.

Therefore, given any valid selection of a and i, the above gives the possible values of b. That is,

S(n, s, t) =
∑
a

∑
i

⌊
n− (i + sa)

t

⌋
,

where the sums are over all the valid values of a and of i. Thus, our focus turns to determining
these valid values. We begin with the range of i. We know that i + sa + tb ≤ n, and so we have
that i ≤ n− sa− tb. And since i is at its greatest when b is at its smallest (when b = 1), we have

1 ≤ i ≤ n− sa− t.
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Finally, for a fixed i, consider the valid values of a. In order to find the greatest possible value
that a can be, note that a is at its greatest when both b is at its smallest (when b = 1) and the
sequence starts at the earliest index (when i = 1). Thus, by again using the inequality i+sa+tb ≤ n

we have that a ≤ n− i− tb

s
. And in the case that b = 1 and i = 1, we have

1 ≤ a ≤
⌊
n− 1− t

s

⌋
.

From this, we obtain our final count,

S(n, s, t) =

bn−1−t
s c∑

a=1

n−sa−t∑
i=1

⌊
n− (i + sa)

t

⌋
,

which completes the proof.

Note, though, that there are many other progressions with s common differences of size a and
t common differences of size b. For example,

a, a, . . . , a︸ ︷︷ ︸
s−2 terms

, b, b, . . . , b︸ ︷︷ ︸
t−2 terms

, a, b, b, a.

We now count these other forms.

Corollary 2.9. Let F be a list of s copies of a and t copies of b, in some order. Let D be the
collection of difference patterns which, for some substitution of a and b, match F . Then, the number
of 2-pseudo progressions in {1, 2, . . . , n} with a difference pattern in D is equal to S(n, s, t).

Proof. This follows immediately from Lemma 2.6.

Definition 2.10. Let Fm(n, k) be the number of m-pseudo progressions. When the context is
clear, we will write simply Fm.

Note that F1(n, k) is the number of k-term arithmetic progressions in {1, 2, . . . , n}, which we
counted in Section 2.1.

Theorem 2.11. Fix n and k. Let a1, a2, . . . , ak be a 2-pseudo progression where ai+1− ai ∈ {a, b}
for all i. Let s be defined as the number of elements such that ai+1 − ai = a and t be defined as the
number of elements such that aj+1 − aj = b. Then,

F2 = F1 +
1

2

(
k − 1
k−1

2

)[
S

(
n,

k − 1

2
,
k − 1

2

)
− F1

]
+

b k−2
2 c∑

s=1

(
s + t

s

)
[S(n, s, t)− F1] .

Proof. Recall that s is the number copies of a and t is the number of copies of b, while a and b can
be any integers. Since one of these integers will occur at least as many times as the other, we may
assume without loss of generality that s ≤ t. First, assume s < t.

By Proposition 2.8, S(n, s, t) counts the number of progressions of the form

a, a, . . . , a︸ ︷︷ ︸
s terms

, b, b, . . . , b︸ ︷︷ ︸
t terms

.
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By Corollary 2.9, we know that given any form with s copies of a and t copies of b, there are
S(n, s, t) progressions of that form. Moreover, one can see that there are

(
s+t
s

)
such forms—the

s + t terms in the form are each either an a or a b, and is determined by choosing which s of these
terms are an a. Now, S(n, s, t) includes all the arithmetic progressions (in the case where a = b).
Therefore,

S(n, s, t)− F1

counts the number of progressions of any fixed form containing s copies and a and t copies of b,
which contains exactly two distinct common differences. There are then(

s + t

s

)
[S(n, s, t)− F1]

2-pseudo progressions, excluding the arithmetic progressions. Note that s+ t = k−1, and so in our
current case where s < t (i.e., s ≤ t − 1), we know that 2s + 1 ≤ k − 1, implying that s ≤

⌊
k−2

2

⌋
.

And so, in the case where s < t, the total number of 2-psuedo progressions which are not arithmetic
progressions is

b k−2
2 c∑

s=1

(
s + t

s

)
[S(n, s, t)− F1] .

Therefore, among all the cases in which s < t, the total number of 2-pseudo progressions is

F1 +

b k−2
2 c∑

s=1

(
s + t

s

)
[S(n, s, t)− F1] .

The last case to consider is when s = t; note that this is only possible if k is odd. And since
s + t = k − 1, we have s = t = k−1

2 . Just like above, given any form using k−1
2 copies of a and k−1

2

copies of b, there are S(n, k−1
2 , k−1

2 ) progressions of this form. And so there are

S

(
n,

k − 1

2
,
k − 1

2

)
− F1

progressions that have exactly two distinct common differences. The only difference is in the next
step. Note that if we simply multiply by

(
s+t
s

)
, we will be over-counting by a factor of 2. Indeed,

since s = t, any progression comes about in two ways: once when the copies of a are counted by s
and the copies of b are counted by t, and once when the copies of a are counted by t and the copies
of b are counted by s. Thus, the count in the s = t case is

1

2

(
k − 1
k−1

2

)[
S

(
n,

k − 1

2
,
k − 1

2

)
− F1

]
.

Note that the binomial here evaluates to 0 in the event that k is even, and so including this term
in the even case is consistent. This gives us our final answer:

F2 = F1 +
1

2

(
k − 1
k−1

2

)[
S

(
n,

k − 1

2
,
k − 1

2

)
− F1

]
+

b k−2
2 c∑

s=1

(
s + t

s

)
[S(n, s, t)− F1] .
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Since there are F`(n, k) sequences where you are allowed up to ` differences, and F`−1(n, k)
sequences where you are allowed up to `− 1 differences, there are

F`(n, k)− F`−1(n, k)

with exactly ` differences.
If we let F̃`(n, k) denote the number of `-pseudo progressions with exactly ` distinct differences,

and S̃(n, s, t) likewise to be the number of s-t-simple progressions with exactly two differences, then
S̃(n, s, t) = S(n, s, t)− F1(n, k) and the Theorem 2.11 has the reduced form

F̃2(n, k) =
1

2

(
k − 1
k−1

2

)
S̃

(
n,

k − 1

2
,
k − 1

2

)
+

b k−2
2 c∑

s=1

(
s + t

s

)
S̃(n, s, t).

Moreover, the above two equations imply

F2(n, k)− F1(n, k) =
1

2

(
k − 1
k−1

2

)
S̃

(
n,

k − 1

2
,
k − 1

2

)
+

b k−2
2 c∑

s=1

(
s + t

s

)
S̃(n, s, t),

which is another form of Theorem 2.11.

2.4 Iterative Count
As in the previous sections, we use a and b to denote the two differences in a 2-pseudo progression.
In this section, we will insist that a < b, which in particular prohibits a = b. We will often refer to
a k-term 2-pseudo progression in {1, 2, . . . , n} as just a ‘progression’ if the context is clear.

Remark 2.12. Recall, for a k-term 2-pseudo progression,

||a||+ ||b|| = k − 1.

That is, the total number of differences of size a and b is equal to the total number of differences in
the progression, k− 1. If we are considering k-term progressions, then we only need to know either
||a|| or ||b|| and the other will follow.

First, given a fixed number of two differences, we determine the maximum value these differences
can be.

Lemma 2.13. For a k-term 2-pseudo progression with a fixed number of differences, say ||a|| and
||b|| (without the sizes of the differences a and b being determined), the largest possible value for a
is,

amax =

⌊
(n− 1)− ||b||

k − 1

⌋
.

Proof. We begin by noting that similar to Remark 2.2, the maximum possible difference between
the first and last terms of a 2-pseudo progression is n− 1. Since we are assuming a < b, if we want
to find the largest possible value for a, we can assume a = b − 1. Thus, we must distribute the
difference of n − 1 into k − 1 groups (||a|| groups of size a, and ||b|| groups of size a + 1). To do
this, we subtract ||b|| from n− 1 in order to account for the ||b|| groups of one larger value than a.
The maximum possible value for the difference a is the result in the lemma.
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Similarly, with a fixed difference of size a and number of differences, say ||a|| and ||b||, we can
determine the maximum value of the difference b in a k-term 2-pseudo progression in {1, 2, . . . , n}.

Lemma 2.14. Suppose a k-term 2-pseudo progression has difference a and some number of differ-
ences, say ||a|| and ||b||. Then, the maximum possible value for b is

b̄a =

0 ||b|| = 0,⌊
(n−1)−a·||a||

||b||

⌋
||b|| 6= 0.

Proof. Similar to our argument in Lemma 2.13, the largest possible value between the first and
final terms of a progression in {1, 2, . . . , n} is n − 1. Thus, to determine the maximum possible b
that can create a progression, we must divide n − 1 into k − 1 groups (||a|| groups of size a and
||b|| groups of size b). In order to account for the ||a|| differences of size a, we must subtract off
the product a · ||a||, and divide the remaining (n− 1)− a · ||a|| into ||b|| groups. Thus, we have our
resulting maximum above. The equality is also guaranteed, since a 2-pseudo progression with these
metrics which begins at 1 will end at 1 + a · ||a||+ b̄a · ||b|| ≤ n.

Proposition 2.15. Given a fixed a, b, ||a|| and ||b||, the number of k-term 2-pseudo progressions
in a set {1, 2, . . . , n} with a fixed difference pattern is

n− a · ||a|| − b · ||b||.

Proof. Fix the integers n, k, a, b, ||a|| and ||b||, and a difference pattern. Similar to the argument
in the proof of Theorem 2.1, we proceed by first considering a progression with inital term 1. Since
our differences are of size a and b and there are ||a|| a′s, and ||b|| b′s, we have that the final term
in the progression will be 1 + a · ||a|| + b · ||b||. In general, if a progression with these parameters
has initial term p0, then the final term will be p0 + a · ||a||+ b · ||b||. Such a progression is valid in
{1, 2, . . . , n} if this final term p0 + a · ||a||+ b · ||b|| ≤ n. Such will be the case when

p0 ≤ n− a · ||a|| − b · ||b||.

Thus, the total number of valid 2-pseudo progressions with these parameters is equal to the
largest p0 such that the above inequality is true. And so the result of the proposition follows.

Proposition 2.16. The total number of k-term 2-pseudo progressions in {1, 2, . . . , n} can be
counted using the following formula:

F1 +
k−1∑
||a||=1

amax∑
a=1

b̄a∑
b=a+1

[(
k − 1

||a||

)
(n− a · ||a|| − b · ||b||)

]
.

Proof. A formula for F1 is given in Theorem 2.1, and it counts the number of arithmetic progressions
in {1, 2, . . . , n}; we now turn to count the number of 2-pseudo progressions which contain two
distinct differences.

As a consequence of Proposition 2.15, the total number of k-term 2-pseudo progressions in
{1, 2, . . . , n} with a given difference pattern and fixed values of a, b, ||a||, ||b|| ∈ Z+ is given by
(n − a · ||a|| − b · ||b||). Furthermore, by Lemma 2.5, this value does not depend on the difference
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pattern chosen. Thus, given a fixed a, b, and ||a|| (which implies the value of ||b||), we count the
total number of progressions with these parameters by scaling the count in Proposition 2.15 by the
total number of difference patterns that could occur with ||a|| a′s and ||b|| b′s. In particular, there
are

(
k−1
||a||
)
such ways, by choosing which of the total k − 1 skips to place the ||a|| skips of size a.

Now we must determine all possible values of a and b that are possible. We assume 0 < a < b,
so we have a = 1 being the smallest possible value for a. Thus, b = a + 1 is the smallest possible
value for b given a value for a. This gives us the bounds for the inner two sums.

Finally, we iterate this process through all possible positive values of ||a|| and ||b||, by summing
up all valid progressions for each value of ||a||, with 1 ≤ ||a|| ≤ k − 1. Since ||a|| + ||b|| = k − 1,
iterating through all possible values of ||a|| will indeed iterate all valid positive pairs of ||a|| and
||b||.

3 Counting m-Pseudo Progressions
We now generalize Lemma 2.6, which will be used to generalize Corollary 2.9

Lemma 3.1. Fix some d0, d1, . . . , dm ∈ {0, 1, 2, . . . } where
∑m

i=1 di = k− 1, and consider any two
lists, L1 and L2, each consisting of ||di|| copies of the variable di for each i, in some order. Let
D1 be the collection of all k-term m-pseudo progressions in {1, 2, . . . , n} whose difference pattern
matches L1 (for appropriate substitutions of d1, d2, . . . , dm), and let D2 be the collection of all k-
term m-pseudo progressions in {1, 2, . . . , n} whose difference pattern matches L2 (for appropriate
substitutions of d1, d2, . . . , dm). Then, |D1| = |D2|.

Proof. We will show a bijective correspondence between k-term m-pseudo progressions with the
same number of differences, ||di|| for all i, regardless of the ordering of the differences. Let S
and T be the set of m-pseudo progressions with distinct difference patterns containing differences
d1, d2, . . . , dm such that the number of differences ||di|| is the same in each difference pattern for all
i.

Given an arbitrary s ∈ S, if s starts at, say, p0, then it will end at p0 + d1 · ||d1||+ d2 · ||d2||+
· · ·+ dm · ||dm||. Let f be the function that maps s to the m-pseudo progression t ∈ T starting at
p0. Note that this is well-defined, as pairing the starting term of an m-pseudo progression with that
progression’s difference pattern uniquely determines the progression. Any t ∈ T is the image of the
m-pseudo progression in S starting at the initial term of t. Therefore, the number of progressions
with a fixed difference pattern is independent of the ordering of the differences in the difference
pattern.

3.1 Recursive Count
In this section we generalize the ideas of Section 2.3 to count k-term m-pseudo progressions in
{1, 2, . . . , n}.

Definition 3.2. A progression to be s1,s2,. . . ,sm-simple if it is of the form

a1, a1, . . . , a1︸ ︷︷ ︸
s1 terms

, a2, a2, . . . , a2︸ ︷︷ ︸
s2 terms

, . . . , am, am, . . . , am︸ ︷︷ ︸
sm terms

,

where si, aj ∈ Z+ for all i, j. Let S(n, s1, . . . , sm) be the number of s1,s2,. . . ,sm-simple progressions
in {1, 2, . . . , n}.

10



By the same reasoning as in Section 2.3, there is a bijection between the set of progressions of
this form and the set of progressions of any permuted form, and there are

(
k−1

s1...sm

)
such permuted

forms. And

S(n, s1, . . . , sm+1) =
n∑

i=1

⌊
i

sm+1

⌋
· S(n− i, s1, . . . , sm),

since an s1,s2,. . . ,sm+1-simple progression in {1, 2, . . . , n} is simply an s1,s2,. . . ,sm-simple progres-
sion in [n− i], for some i, followed immediately by sm+1 more terms. And within the remaining i

numbers, starting with the first, there are
⌊

i
sm+1

⌋
possible common differences that will keep the

entire s1,s2,. . . ,sm+1-simple progression in {1, 2, . . . , n}.
So in this way we have recursively found the number of s1,s2,. . . ,sm-simple progressions for an

arbitrary m. And so
S(n, s1, . . . , sm+1)− Fm(n)

counts the number of s1,s2,. . . ,sm-simple progressions with exactly m + 1 distinct common differ-
ences. And if s1 < s2 < · · · < sm+1, then by Lemma 3.1,(

k − 1

s1 . . . sm+1

)
[S(n, s1, . . . , sm+1)− Fm(n)]

counts the number of all progressions which are of a form which is a permutation of the s1,s2,. . . ,sm-
simple form.

Otherwise, if we only assume s1 ≤ s2 ≤ · · · ≤ sm+1, then just like with 2-pseudo progressions,
we may over count. Indeed, if in the multiset {s1, s2, . . . , sm+1} we have, say, 7 appearing 3 times
(say, s3 = s4 = s5 = 7), then this alone causes the above expression to over count by a factor of
3! = 6 (just like in the 2-pseudo progressions, when s = t implied that we over counted by a factor
of 2! = 2). To see this, note that each such progression will have been counted once when the copies
of a3 were counted by s3, the copies of a4 were counted by s4, and the copies of a5 were counted
by s5; but will also have been counted once for each of the other 3! pairings between these ais and
sjs. This reasoning gives the answer of

1

n1!n2! · · ·n`!

(
k − 1

s1 . . . sm+1

)
[S(n, s1, . . . , sm+1)− Fm(n)]

where ni is the multiplicity of the ith distinct number in s1, s2, . . . , sm+1, and therefore ` is the size
of {s1, s2, . . . , sm+1} as a set (i.e., removing multiplicities). Note that our answer in the 2-pseudo
progression case is a special case of this. Adding up all the possibilities, and adding back in the
progressions with at most m distinct common differences, gives you the final count:

Fm+1(n, k) = Fm(n) +
∑

s1≤···≤sm+1

1

n1!n2! · · ·n`!

(
k − 1

s1 . . . sm+1

)
[S(n, s1, . . . , sm+1)− Fm(n)] .

This also gives a particularly nice formula for F̃m+1(n, k), which you recall is the number of
k-term progressions in {1, 2, . . . , n} with exactly m + 1 common differences. The above reduces to
the following:

F̃m+1(n, k) =
∑

s1≤···≤sm+1

1

n1!n2! · · ·n`!

(
k − 1

s1 . . . sm+1

)
S̃(n, s1, . . . , sm+1).
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3.2 Iterative Count
In this section we generalize the ideas of Section 2.4 to count k-term m-pseudo progressions in
{1, 2, . . . , n}.

Remark 3.3. As before, the differences in an m-pseudo progression will be denoted di for 1 ≤ i ≤
m. In this section, we assume

0 < d1 < d2 < · · · < dm.

Proposition 3.4. For any i such that 0 < i ≤ m, and fixed list of positive integers ||d1||, ||d2||, . . . , ||dm||
such that

∑m
j=1 ||dj || = k−1, and fixed multiplicities 0 < d1 < d2 < · · · < di−1, the maximum value

of the difference di of a k-term m-pseudo progression with m distinct differences is,

d̄i =


(n− 1)−

( i−1∑
j=1

dj · ||dj ||+
m∑

j=i+1

((j − i) · ||dj ||)
)

k − 1−
i−1∑
j=1

·||dj ||

 .

Proof. Assume the setup of Proposition 3.4. We have a fixed list of numbers ||d1||, ||d2||, . . . , ||dm||
such that

∑m
j=1 ||dj || = k − 1, a difference pattern, and a fixed size of differences d1, d2, . . . , di−1.

Similar to the proof for Lemmas 2.14 and 2.13, the largest difference between the initial and
final term of a progression in {1, 2, . . . , n} is n− 1. In other words, for a progression that starts at
1, the last term in the progression is, 1 +

∑m
i=1 di · ||di||. If we want to determine a difference that is

as large as possible, we can assume that 1 +
∑m

i=1 di · ||di|| is as large as possible. Thus, we assume
1 +

∑m
i=1 di · ||di|| = n (and we consider issues of whether this value is an integer later). Thus, to

determine the maximum value for di we must remove dj · ||dj || from n−1 for each known difference
d1, d2, . . . , di−1.

Similar to the proof for Lemma 2.13, since we want to determine the largest possible value for
di, we will assume for each j > i that dj is as small as possible while still maintaining the inequality
from Remark 3.3. That is, we will assume for each j > i that dj = di + (j − i). For example,
di+1 = di + 1.

However, since we are determining the value of di, we will account for each dj of size di + (j− i)
by removing (j − i) · ||dj || from n − 1 and distributing the remaining value equally between the
remaining k − 1−

∑i−1
j=1 ·||dj || possible skips.

The floor of this expression gives the largest possible value for the difference of size di.

Proposition 3.5. Given a fixed d1, d2, . . . , dm, ||d1||, ||d2||, . . . ||dm|| such that
∑m

i=1 ||di|| = k − 1,
and difference pattern, the number of k-term m-pseudo progressions in a set {1, 2, . . . , n} with a
fixed difference pattern is

n−
m∑
j=1

dj ||dj ||.

Proof. This result follows the same reasoning as Proposition 2.15.
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Proposition 3.6. Given an n, k and m, the total number of k-term pseudo progressions in
{1, 2, . . . , n} with exactly m distinct differences is

k−1∑
||d1||=1

k−2∑
||d2||=1

· · ·
k−(m−1)∑
||dm−1||=1

d̄1∑
d1=1

d̄2∑
d2=d1+1

· · ·
d̄m∑

dm=dm−1+1

(
k − 1

||d1||, ||d2||, . . . , ||dm||

)(
n−

m∑
j=1

dj ||dj ||
)
.

This can be written more succinctly as

∑
D

(
k − 1

||d1||, ||d2||, . . . , ||dm||

)(
n−

m∑
j=1

dj · ||dj ||
)
,

where D = {(d1, . . . , dm, ||d1||, . . . , ||dm||) such that ||di|| 6= 0,
∑m

i=1 ||di|| = k − 1, 1 ≤ di ≤ d̄i, and
di < dj whenever i < j}.

In order to compute the total number of k-term m-pseudo progressions (that is, progressions
with up to m distinct differences), sum the above over all m from 1 to m.

Proof. We can determine the total number of m-pseudo progressions in {1, 2, . . . , n} with a given
set of fixed positive integers d1, d2, . . . , dm, ||d1||, ||d2||, . . . , ||dm|| such that

∑m
i=1 ||di|| = k − 1 and

a fixed difference pattern from Proposition 3.5. By Lemma 2.5, we can scale this count by the
number of possible difference patterns to determine the number of m-pseudo progressions with
fixed parameters d1, d2, . . . , dm, ||d1||, ||d2||, . . . , ||dm||. The number of such difference patterns is
the number of ways to choose where the ||di|| differences of size di occur for each i from 1 to m.
That is, the multinomial coefficient (

k − 1

||d1||, ||d2||, . . . , ||dm||

)
.

To determine the allowable collections of numbers d1, d2, . . . , dm, ||d1||, ||d2||, . . . , ||dm||, we con-
tinue with similar reasoning as in Proposition 2.16. That is, we iterate over all possible values of
||di|| from 1 to k−1−(m−1) (in order to ensure no ||di|| = 0) such that

∑m
i=1 ||di|| = k−1. In order

to maintain the inequality from Remark 3.3 and the maximum in Proposition 3.4, we iterate over
the values of di from di−1 + 1 to d̄i. All such valid lists of differences d1, d2, . . . , dm and amounts
||d1||, ||d2||, . . . , ||dm|| can be represented by the set D.

3.3 Reinterpreting combinatorial identities
Observe that if a (k−1)-pseudo progression has j numbers in [v] (which can occur in

(
v
j

)
ways), then

the other k− j numbers in the pseudo progression can be anywhere in the set {v + 1, v + 2, . . . , n},
which has size n− v. The number of ways to complete this is Fk−1−j(n− v, k − j). Thus,

Fk−1(n, k) =
k∑

j=0

(
v

j

)
Fk−1−j(n− v, k − j).

Recalling that Fk−1(n, k) =
(
n
k

)
, this gives a new proof of the Chu-Vandermonde identity:(

n

k

)
=

k∑
j=0

(
v

j

)(
n− v

k − j

)
.
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4 Generating Functions
An m-pseudo progression places a limit of m on the number of distinct differences within such a
progression. In this section, we go to the opposite extreme and ask what happens if we demand
all of the differences be distinct. Indeed, below we find the generating function which counts the
number of k-term pseudo progressions in {1, 2, . . . , n} where all of the k− 1 differences are distinct.

We will be discussing m-pseudo progressions without needing to refer to any particular m
(m = k− 1 would suffice, except that we do not wish to allow fewer than k− 1 distinct differences).
Therefore we will continue to refer to these as pseudo progressions without mentioning any m.

It is well known that
xk(k−1)/2

(1− x)(1− x2) · · · (1− xk−1)

is the generating function for integer partitions with k − 1 distinct parts. That is, the coefficient
of xt in this generating function gives the number of partitions of t into k − 1 distinct parts:
t = p1 + p2 + · · ·+ pk−1, where each pi is a positive integer and p1 < p2 < · · · < pk−1.

Definition 4.1. Fix a k and n. For t < n, let c(t) be the number of partitions of t into k − 1
distinct parts.

Lemma 4.2. There are
n−1∑

t=
k(k−1)

2

(k − 1)! · (n− t) · c(t)

k-term pseudo progressions in {1, 2, . . . , n} with distinct common differences.

Proof. Given a partition of t into k− 1 distinct parts, note that we can create a pseudo progression
in {1, 2, . . . , n} which starts at 1, ends at t+1, and whose common differences are distinct. Namely,
if the partition is t = p1 + p2 + · · ·+ pk−1, then the pseudo progression is

1 , 1 + p1 , 1 + p1 + p2 , . . . , 1 + t.

Also, observe that because p1 < p2 < · · · < pk−1, we in fact can find (k − 1)! pseudo progressions
which start at 1 and end at t+ 1 by simply considering all possible permutations of {p1, . . . , pk−1},
and adding in the pi in the order determined by the permutation.

Moreover, all k-term pseudo progressions with distinct common differences that start at 1 and
end at t + 1 can be realized in this way. To see this, simply take such a pseudo progression,
1 = a1, a2, . . . , ak = t + 1, and observe the k − 1 distinct common differences,

a2 − a1 , a3 − a2 , . . . , ak − ak−1.

The sum of these common differences telescopes, so their sum can be seen as ak−a1 = (t+1)−1 = t.
And being distinct, once they are reordered in increasing order they do indeed form a partition of
t with k − 1 distinct parts.

So there is in fact a total of (k−1)! · c(t) k-term pseudo progressions in {1, 2, . . . , n} which start
at 1, end at t+1, and have distinct common differences. To obtain a count for all such progressions,
we simply need to multiply by the number of possible starting points. The progressions could begin
at 1 and end at t+ 1, begin at 2 and end at t+ 2, . . . , begin at n− t and end at t+ (n− t). In total,
there are n − t ways that we can “shift” these progressions which start at 1 into progression that
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start at higher values. Thus, by multiplying by n− t we get the total number of (n− t) · (k−1)! ·c(t)
k-term pseudo progressions in {1, 2, . . . , n} with distinct common differences.

Finally, we must sum over all possible values of t. The smallest t corresponds to the smallest
value which can be partitioned into k − 1 distinct parts, which is

1 + 2 + 3 + · · ·+ (k − 1) =
k(k − 1)

2
.

The largest possible t is n − 1, since this corresponds to a progression which starts at 1 and ends
at t + 1 = n. Thus, by summing over these possible vales of t, we get our final count:

n−1∑
t=

k(k−1)
2

(k − 1)! · (n− t) · c(t).

We now use this to find the generating function for the number of k-term pseudo progressions
in {1, 2, . . . , n} with distinct common differences.

Theorem 4.3. The number of k-term pseudo progressions in {1, 2, . . . , n} with distinct common
differences is the coefficient on xn in the generating function

(k − 1)!x1+k(k−1)/2

(1− x)3(1− x2)(1− x3) · · · (1− xk−1)
.

Proof. Recall that the generating function for the number of integer partitions with distinct parts
is

xk(k−1)/2

(1− x)(1− x2) · · · (1− xk−1)
.

That is, the coefficient of xt in this generating function gives c(t). By scaling, the coefficient of xn

in
xn−t+k(k−1)/2

(1− x)(1− x2) · · · (1− xk−1)

now gives c(t). Thus, by Lemma 4.2, since there are
∑n−1

t=
k(k−1)

2

(k− 1)! · (n− t) · c(t) k-term pseudo
progressions in {1, 2, . . . , n} with distinct common differences, this value is given by the coefficient
of xn in

n−1∑
t=

k(k−1)
2

(k − 1)!(n− t)xn−t+k(k−1)/2

(1− x)(1− x2) · · · (1− xk−1)
=

(k − 1)!xk(k−1)/2

(1− x)(1− x2) · · · (1− xk−1)

n−1∑
t=

k(k−1)
2

(n− t)xn−t.

By substituting i for n− t, which reverses the order of summation, the above is equivalent to

(k − 1)!xk(k−1)/2

(1− x)(1− x2) · · · (1− xk−1)

n− k(k−1)
2∑

i=1

ixi.

15



Notice that the coefficient on xn here is the same as in

(k − 1)!xk(k−1)/2

(1− x)(1− x2) · · · (1− xk−1)

∞∑
i=1

ixi,

and so this new expression also has the property that the coefficient on xn gives the number of
k-term pseudo progressions in {1, 2, . . . , n} with distinct common differences. Since

∑∞
i=1 ix

i has
generating function x

(x−1)2 , this is equivalent to

(k − 1)!x1+k(k−1)/2

(1− x)3(1− x2)(1− x3) · · · (1− xk−1)
,

as desired.

5 Symmetries
We have observed (see Section 7) that for certain small values of k, the number of k-term m-
pseudo progressions in {1, 2, . . . , n} is equal to the number of (n− k)-term m-pseudo progressions
in {1, 2, . . . , n}. Indeed, the relationship seems to be related to the compliment. Consider a k-term
m-pseudo progression and let K be the subset of {1, 2, . . . , n} consisting of the elements of the
progression. Then, the set Kc = {1, 2, . . . , n} \K corresponds to an (n− k)-term progression.

Note that the Kc progression will include a difference of 1 whenever there are two adjacent
numbers in {1, 2, . . . , n} which are not in K (for k < n

2 −1, this is guaranteed). The Kc progression
will include a difference of 2 whenever the K progression had a term i ∈ {2, 3, . . . , n− 1} for which
i − 1 and i + 1 are not in K (for most sets K of small size, such an i will exist). For the Kc

progression to have a difference of d > 1, the K progression would have to include d−1 consecutive
terms.

Since terms from the K progression have to be used to create differences in the Kc progressions,
|K| creates a bound on how many differences the Kc can have. Indeed, by this reasoning, it is
impossible for the Kc progression to have more than m differences if

|K| < 1 +

m+1∑
d=2

(d− 1) = 1 +

(
m + 1

2

)
.

In Section 7 you will see these symmetries in our tables of values, which also show other interesting
behavior. For example, the number of 4-term 3-pseudo progressions in {1, 2, . . . , 14} is equal to the
number of 10-term 3-pseudo progressions in {1, 2, . . . , 14}.

6 Further Directions
We were motivated to study this problem because of a problem in Ramsey theory, and it is in this
direction that we plan to move to next.

Consider the positive integers Z+ = {1, 2, 3, 4, . . . }. An r-coloring of these integers is produced
by assigning each of these integers one of r colors. The question is whether every r-coloring of
Z+ contains a k-term monochromatic arithmetic progression. Such a progression is a collection of
integers a, a + d, a + 2d, . . . , a + (k − 1)d which are all assigned the same color. Here, d is called
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the common difference. The seminal van der Waerden theorem [7] says that given any k and r,
there exists some N such that every r-coloring of {1, 2, 3, . . . , N} contains a k-term monochromatic
arithmetic progression; the smallest such N is denoted w(k, r). For example, w(3, 2) = 9. That
is, every 2-coloring of {1, 2, 3, . . . , 9} contains a 3-term monochromatic arithmetic progression, and
furthermore it is not true that every such coloring of {1, 2, 3, . . . , 8} does. For example, here is a
2-coloring that avoids such a progression:

1 2 3 4 5 6 7 8.

Much work has been done to try to bound w(k, r). The best upper bound is that w(k, r) ≤ 22r2
2k+9

,
and is due to Tim Gowers.

Brown, Graham and Landman [1] investigated what happens when you restrict the allowable set
of arithmetic progressions. In particular, if D ⊆ Z+ is a set of allowable common differences, they
asked whether there must still exist an N for which every r-coloring of {1, 2, 3, . . . , N} contains a
monochromatic arithmetic progression whose common difference is in D. That is, their research
focused on a subset of the collection of arithmetic progressions. It seems natural then to ask what
happens when you instead consider a superset of this collection.

Landman and Robertson recently asked about generalizations of van der Waerden’s theoerm
to m-pseudo progressions. Now that m-pseudo progressions are better understood through their
count, we aim to determine the smallest values of N for which every r-coloring of {1, 2, . . . , N}
contains a monochromatic m-pseudo progression.

7 Tables of Values and Graphs
Below are tables of values for the number of k-term m-pseudo progressions, as well as graphs to
visualize these values.
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2-pseudo progressions table
k\n 5 6 7 8 9 10 11 12 13 14 15 16
1 5 6 7 8 9 10 11 12 13 14 15 16
2 10 15 21 28 36 45 55 66 78 91 105 120
3 10 20 35 56 84 120 165 220 286 364 455 560
4 5 15 29 52 84 126 180 249 331 431 549 686
5 1 6 21 44 78 120 186 264 363 478 627 792
6 0 1 7 28 64 120 182 274 386 533 715 918
7 0 0 1 8 36 90 180 282 426 582 795 1060
8 0 0 0 1 9 45 123 264 433 672 919 1236
9 0 0 0 0 1 10 55 164 379 658 1057 1472
10 0 0 0 0 0 1 11 66 214 533 987 1654
11 0 0 0 0 0 0 1 12 78 274 735 1458
12 0 0 0 0 0 0 0 1 13 91 345 995
13 0 0 0 0 0 0 0 0 1 14 105 428
14 0 0 0 0 0 0 0 0 0 1 15 120
15 0 0 0 0 0 0 0 0 0 0 1 16
16 0 0 0 0 0 0 0 0 0 0 0 1

3-pseudo progressions table
k\n 5 6 7 8 9 10 11 12 13 14 15 16
1 5 6 7 8 9 10 11 12 13 14 15 16
2 10 15 21 28 36 45 55 66 78 91 105 120
3 10 20 35 56 84 120 165 220 286 364 455 560
4 5 15 35 70 126 210 330 495 715 1001 1365 1820
5 1 6 21 56 126 252 438 720 1119 1666 2379 3312
6 0 1 7 28 84 210 462 864 1476 2343 3505 5128
7 0 0 1 8 36 120 330 792 1596 2892 4755 7240
8 0 0 0 1 9 45 165 495 1287 2793 5385 9300
9 0 0 0 0 1 10 55 220 715 2002 4669 9592
10 0 0 0 0 0 1 11 66 286 1001 3003 7504
11 0 0 0 0 0 0 1 12 78 364 1365 4368
12 0 0 0 0 0 0 0 1 13 91 455 1820
13 0 0 0 0 0 0 0 0 1 14 105 560
14 0 0 0 0 0 0 0 0 0 1 15 120
15 0 0 0 0 0 0 0 0 0 0 1 16
16 0 0 0 0 0 0 0 0 0 0 0 1
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4-pseudo progressions table
k\n 5 6 7 8 9 10 11 12 13 14 15 16
1 5 6 7 8 9 10 11 12 13 14 15 16
2 10 15 21 28 36 45 55 66 78 91 105 120
3 10 20 35 56 84 120 165 220 286 364 455 560
4 5 15 35 70 126 210 330 495 715 1001 1365 1820
5 1 6 21 56 126 252 462 792 1287 1666 2379 4368
6 0 1 7 28 84 210 462 924 1716 3003 5005 7888
7 0 0 1 8 36 120 330 792 1716 3432 6435 11440
8 0 0 0 1 9 45 165 495 1287 3003 5385 12870
9 0 0 0 0 1 10 55 220 715 1666 5005 11440
10 0 0 0 0 0 1 11 66 286 1001 3003 8008
11 0 0 0 0 0 0 1 12 78 364 1365 4368
12 0 0 0 0 0 0 0 1 13 91 455 1820
13 0 0 0 0 0 0 0 0 1 14 105 560
14 0 0 0 0 0 0 0 0 0 1 15 120
15 0 0 0 0 0 0 0 0 0 0 1 16
16 0 0 0 0 0 0 0 0 0 0 0 1

2-pseudo progressions graph
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3-pseudo progressions graph

4-pseudo progressions graph
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