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Synchrony among population fluctuations of multiple coexisting species has
a major impact on community stability, i.e. on the relative temporal con-
stancy of aggregate properties such as total community biomass. However,
synchrony and its impacts are usually measured using covariance methods,
which do not account for whether species abundances may be more corre-
lated when species are relatively common than when they are scarce, or
vice versa. Recent work showed that species commonly exhibit such ‘asym-
metric tail associations’. We here consider the influence of asymmetric tail
associations on community stability. We develop a ‘skewness ratio” which
quantifies how much species relationships and tail associations modify stab-
ility. The skewness ratio complements the classic variance ratio and related
metrics. Using multi-decadal grassland datasets, we show that accounting
for tail associations gives new viewpoints on synchrony and stability; e.g.
species associations can alter community stability differentially for commu-
nity crashes or explosions to high values, a fact not previously detectable.
Species associations can mitigate explosions of community abundance to
high values, increasing one aspect of stability, while simultaneously exacer-
bating crashes to low values, decreasing another aspect of stability; or vice
versa. Our work initiates a new, more flexible paradigm for exploring species
relationships and community stability.

This article is part of the theme issue ‘Synchrony and rhythm interaction:
from the brain to behavioural ecology’.

1. Introduction

Understanding how the dynamics of individual species within an ecological
community combine to determine the temporal stability of key aggregated
properties of the system as a whole is a topic that has fascinated ecologists
for decades [1-4]. An important early insight was that an aggregate community
property such as the total biomass of all species can be relatively stable through
time, even while the dynamics of individual species are highly variable, so
long as different species exhibit offsetting, asynchronous or partially asynchro-
nous fluctuations [5,6]. Such fluctuations are often referred to as compensatory
dynamics, because decreases in some species’ abundances are compensated
for by simultaneous increases in other species [5-8]. However, when species
instead exhibit dynamics that are positively correlated through time—
synchrony—the aggregate community property tends to have increased
variability [3,9-11]. Other fields, with which some readers may be more fam-
iliar, have very similar notions of synchrony. For instance, synchronous
volume fluctuations of insect mating calls can produce large oscillations in the
total volume of an acoustic signal [12]. Thus, species relationships, and specifi-
cally the degree of synchrony between the population dynamics of different
species, are important contributors to the stability of an aggregate community
property. Here, the terminology ‘species relationships’ encompasses direct
species interactions as well as related responses to environmental and other dri-
vers. In addition to total biomass, aggregated community properties can include
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total abundance, net primary productivity, decomposition
rate, and various nutrient cycling rates.

Synchronous versus compensatory dynamics, and their
influence on community stability, have been studied in a
wide variety of ecological communities (e.g. [5,13,14]).
Synchrony is often owing to common responses to environ-
mental changes (e.g. [5,14-16]), whereas compensatory
dynamics result from multiple mechanisms, including
competitive interactions and differing responses to environ-
mental changes (e.g. [4,14,15,17,18]). Severe environmental
stressors that impact all populations are expected to synchro-
nize dynamics, whereas stressors with differential impacts
allow for compensatory dynamics [19]. Although past work
on the general concept of ‘community stability’ has led to a
myriad of precisely defined alternative measures of ‘stability”’
[20], we here focus on the common practice of examining the
variability, through time, of an aggregate community prop-
erty such as the total biomass of all species, referring to this
henceforth as ‘community variability.’

Much past work on species relationships and their influ-
ence on community variability has examined covariances
between population time series, to characterize species
relationships, and the temporal variance of an aggregate com-
munity property such as total biomass, to characterize
community variability [5,6,10,19,21,22]. For instance, if x;(t)
are data representing the population abundance or biomass
of species i=1, ..., N at the sampling times t=1,..., T, and
if w; = mean(x;), v; = var(x;) and v;; = cov(x;, x;) (here j=
1,..., N is another species index), community variability
has commonly been quantified using the squared coeffi-
cient of variation of Xy (t) = > ; xi(t), i.e. Viom = var(xyy)/

(mean(xi))* = (Zi,j v,~]~>/ (2, w)?. This quantity obviously

connects to species relationships measured via the covari-
ances, v;;, which appear directly in the formula. Denoting
by Ving = (Z, vii)/ (Zl M,-)2 the value that V., would take
if the dynamics of each species were independent of the
dynamics of other species (so v;;=0 for all i #}), the classic
variance ratio was defined [5] as ¢y = Veom/Vind =
var(xe)/ (32 vi) = (Zi,j Uij)/ (>;vi). Thus Veom =y Vina.
Because Vi,q has been interpreted as what community variabil-
ity would be, without species relationships, ¢y is the factor by
which species relationships inflate or decrease community
variability. The variance ratio has therefore been used [6,8] as
an index of whether dynamics are synchronous or compensa-
tory. If ¢, >1, the interpretation has been that dynamics are,
on balance, synchronous because then Vi, >Ving, ie. the
aggregate property X is more variable than it would be if
species dynamics were independent. Conversely, if ¢, <1, the
interpretation has been that dynamics are compensatory [10].
Extensions, improvements and alternatives to the original
variance ratio have been proposed, notably the synchrony
metric of Loreau & de Mazancourt [10], here denoted
#v,Lam. Whereas newer metrics such as ¢y, .qm have interpre-
tive and other advantages over the original variance ratio
[10,23], in this study, we show that the ways in which species
relationships influence community variability are likely to be
more nuanced than is revealed by either the variance ratio
approach or by any existing extensions or alternatives.
Whereas the variance ratio compares V., to the baseline
value Vi,g that would be the community CV? under an
assumption of species independence (by considering the
ratio ¢y =Veom/ Vind), ¢vLam instead compares Veom to the

baseline value V., that would be the community CV?
under an assumption of perfect linear correlation between
species dynamics (again by considering a ratio): ¢y ram =
Veom/ Ve 1t is straightforward to show [23] that
Vem = (3 \/ZT,,)Z/ > p,,-)z, i.e. that this expression is what
community CV? would be under perfect linear correlation
between species [23]; and therefore that ¢y gy = (Zi,j U,~,~> /
(> \/27”)2 Timescale-specific alternatives and extensions of
the original variance ratio approach have also been devel-
oped [24-26]. Although each alternative metric improves
upon the original variance ratio in at least some respects,
we nevertheless construct the specific statistical tools of this
paper as extensions of the original variance ratio. This is for
mathematical simplicity, and also because the choice makes
little difference: the concepts of this study can be applied as
improvements to all the existing frameworks of which we
are aware. We return to this topic in the Discussion.

We begin by giving an intuitive introduction to the main
concepts of this study; we do so by considering two simulated
community dynamics datasets (figure 1a,b; data generated as
in the electronic supplementary material, S1; see also figure S1).
Both communities consist of N = 20 species. Data were generated
so that species marginal distributions (and therefore the means,
Ui, and variances, v;) were the same, up to sampling variation,
in both scenarios. In other words, the distribution of abundances,
through time, of any given species i was the same for both scen-
arios. Likewise, data were generated so that species covariances,
v; for i # j, were essentially the same for figure 14,b. Thus both
Veom and Vi,g, which depend only on the y; and vy, were the
same in both scenarios, and so ¢y was the same. Because Vi
also depends only on the u; and vy, ¢y;1.am Was also the same in
our two scenarios, up to sampling variation (figure 1a,b). Thus
classical approaches do not distinguish between the scenarios,
neither in the nature of species relationships nor in the effects
of relationships on community aggregate dynamics x.(). Any
approach that considers only species marginal distributions
through time and the covariances v; will not detect the differ-
ences between our two scenarios, by construction. The metric
of [22] is another such.
species aggregate
dynamics differed in important and related ways in our scen-

Nevertheless, relationships  and
arios. In both scenarios, the 20 species could be separated into
two groups of 10 species (the red lines on figure 14,b are one
group and the black lines are the other), and the dynamics of
species in the different groups were compensatory. However,
in scenario 1 (figure 1a), species in the same group exhibited
strongly synchronous dynamics when those species were
scarce (below about 5.5 on the y-axis of figure 1a), and
much less synchronous dynamics when those species
were common (above about 5.5); whereas in scenario 2
(figure 1b) species in the same group exhibited strongly
synchronous dynamics when common and much less syn-
chronous dynamics when scarce. Dynamics like scenario 1
could occur ecologically if red species in figure 1a were sensi-
tive to an environmental factor, F, but only when it goes
below a threshold. So all the red species are controlled by
the same factor, F, when it is below the threshold, and
hence are synchronous when scarce. When F is above the
threshold, the red species are each sensitive, instead, to
other, distinct factors, rendering them asynchronous when
common. Black species of figure 1a may also be sensitive to
F, but in a reverse manner, being all adversely impacted by
F when it is above the threshold, and unaffected by F
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Figure 1. Pedagogical example showing two communities (a,b) of 20 species each that are not distinguishable via the classic variance ratio approach and related
approaches, but that nonetheless differ markedly in potentially important ways. See Introduction for details and interpretation. See the electronic supplementary
material, figure S1 for larger versions of (a,b). Dashed and dotted lines on (c,f) represent thresholds. If the lower threshold (dashed line) were a disastrous threshold
for Xt (f) to cross, then the first scenario (c,e) would involve much more risk than the second scenario (see probabilities of crossing the threshold listed to the left of
the dashed lines on (e,f)—the probability for scenario 1 is an order of magnitude higher). On the other hand, if the upper threshold (dotted line) were a disastrous
threshold for x,,(t), the second scenario would involve more risk (see probabilities to the right of the dotted lines on (e,f)—the probability for scenario 2 is much
higher). Time series were generated and statistics computed for 100 000 years, but are plotted on (a,b) for 60 years only, for clarity. (Online version in colour.)

below the threshold. Resulting community dynamics (figure
lc—f) differed between scenarios because of the distinct
species relationships. The aggregate quantity, i was
more likely to crash to low values in the first scenario
(figure 1c,e) than in the second scenario (figure 1d,f; compare
the probabilities on (ef) listed to the left of the dashed lines),
whereas x,:(t) was more likely to explode to high values in
the second scenario than in the first (compare the probabil-
ities on (ef) to the right of the dotted lines). Thus total
abundance was left-skewed, frequently crashing to low
values, for scenario 1 (c,e); but was right skewed, frequently
exploding to high values, in scenario 2 (d,f).

It is not difficult to imagine ecological ramifications or
applied significance of the distinction illustrated here. For
instance, grazers subsisting on a grass mixture will have
different growth prospects if that mixture exhibits occasional
crashes (which may harm the grazers) compared to if the
mixture shows occasional explosions of abundance (unlikely
to harm them). Thus species relationships and their effects on
community aggregate dynamics may differ in potentially
ecologically meaningful ways not detected by classical
approaches. The reliance of earlier approaches on variances,
covariances and related linear tools renders those approaches
unable to register the differences illustrated here.

This study addresses three gaps in the research
literature. First, commonly used past descriptions of species
relationships have been oversimplified, based primarily on
covariances or correlations of species time series. The example
above suggests that more nuanced measures should be devel-
oped that identify whether species abundances are more
related to each other when the species are common, or scarce
(figure 1). Our first goal (G1) is to develop an approach
to studying relationships between species that complements
classic approaches relying on covariances. Second, past
measures of community variability have typically focused
on the variance or coefficient of variation of an aggregate prop-
erty like x;. The example above suggests that more nuanced

or complementary measures should be developed, taking
skewness into account (figure 1). Our goal (G2) is to develop
an approach to studying community variability that comp-
lements the coefficient of variation. Finally, the example
above suggests that means by which species relationships
influence community variability should be studied using
the new measures of G1 and G2. Our goal (G3) is to do so,
using data from long-term studies from mixed-grass prairie
in Hays, Kansas and from the Konza Prairie Long-Term
Ecological Research (LTER) site, also in Kansas.

The core ideas of this study relate to extreme events, and
to how relationships between constituents of an aggregate
quantity change during such events. There are strong connec-
tions to risk pricing in finance. A portfolio of investments
should reduce risk if constituent investments are negatively
correlated or uncorrelated. However, if constituents become
positively correlated, risk can be accentuated. Some observers
have blamed the 2008 financial crisis on analysts estimating
correlations between housing default risks based on data
from normal times, not taking into account that in a crisis,
default risks become more correlated. In crisis, financial
products based on aggregating mortgages therefore became
riskier. A single modelling approach [27] was apparently
widely used [28]. The relationship between two real quan-
tities, be they investment risks or species populations, can
probably never be completely captured by a single number
such as a covariance [29], nor considered to be constant
through time. Just as for mortgage defaults risks, the abun-
dances of two species may be more or less correlated under
different circumstances. Classical approaches that character-
ize relationships between species using covariances may
therefore neglect something important. For instance, corre-
lations between species may change as global climate
change progresses, or when extreme climatic events occur
[30]. Financial analysts have learned these lessons and have
begun developing more appropriate models [29]. Ecologists
can benefit from application of the same methods. Overall,
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this study initiates a new and more flexible paradigm for con-
ceptualizing synchronous and compensatory dynamics in
ecosystems, and their influence on community variability.

2. Theory

We now illustrate theoretically how relationships between
species, beyond covariances, can influence variability of the
total community. The theory here relates to, but goes substan-
tially beyond, the example of figure 1. As in the Introduction,
let x;(t) be an abundance measure for species i=1,..., N at
timeft=1,...,T. Weuse N =20 and T =100 000 in the theoreti-
cal examples here. This large value of T was used to ensure
that sampling effects do not obscure our theoretical
results. We assume the multivariate random variables
x(t) = (x1(t), ..., xn(t)) are independent and identically distrib-
uted for distinct times, t. It should be straightforward to
replace this assumption with an appropriate assumption of
stationarity and ergodicity, with no real change to results,
but we adopt the stronger assumption for simplicity. To
describe species relationships, classic approaches use the
covariances v;; = cov(x;, x;), and related quantities. We will
instead consider how x; and x; are related in their distribution
tails. To describe community variability, classic approaches
use the variance of xt = > _; x;, or its coefficient of variation.
But these are only summaries of the distribution of x.. We
will consider the whole distribution, including its skewness.

We present four scenarios (scenarios 1-2 below and 3-4 in
the electronic supplementary material, S2 and figure S2). For
all scenarios, the marginal distributions x; and the covari-
ances v;; are the same, as are the quantities var(xiot), Veom,
Vind, Vsyn, #v and ¢yram. Thus, as in the example of figure
1, our scenarios are indistinguishable to classic approaches
but are nevertheless ecologically distinct: the total abundance
Xiot achieves more extreme values under some scenarios than
others. Hence our scenarios represent communities showing
different characteristics of variability. Scenarios are intention-
ally simplified, with complexities such as autocorrelation
excluded, for clarity, but the ideas also apply to real commu-
nities (see below). We additionally compare each scenario to
a reference comonotonic scenario (called scenario C), for which
the x; are related via perfect positive relationships. This is a
scenario of maximal covariance between species, and there-
fore maximal values of var(xy) [29] and of community
variability, given fixed species marginal distributions, x;.

In scenario 1, which is a baseline, (x4, ..., x5) is a multi-
variate normal distribution with mean (0,...,0) and
covariance matrix having 1s along the diagonal and off-
diagonal entries 0.6. A sample from (xy, x,) (figure 2a) and
marginal histograms (side panels of figure 2a) help illustrate
the distribution. The standard deviation of x., was 15.7,
and its skewness was close to 0 (figure 2b). The probability
of xi¢ exceeding a high threshold is given in figure 2c for a
range of high thresholds. Likewise the probability of X
falling below a low threshold is in figure 2d for a range of
low thresholds. These probabilities represent the chances
that xo will surpass or fall below a threshold considered dis-
astrous or unacceptable from an applied or ecological
viewpoint, and we refer to these as disaster thresholds. It is
possible to imagine applied scenarios in which exceeding a
high threshold is disastrous, and other scenarios in which dis-
aster instead occurs when x, falls below a low threshold.

Our theory can be considered in relation to either of these
applied scenarios, so we keep them both in mind while
developing the theory.

For the comonotonic scenario C, we assume x;=x; for
all i. This is a specific form of comonotonicity [29], with the
relationship between x; and x, pictured in figure 2e. Because
synchrony between the dynamics of individual species is per-
fect, sd(xyo) is much larger than in scenario 1 (figure 2f; the
dashed black lines on that panel and the panels below it
are reproduced from figure 2b, to facilitate comparisons).
Probabilities of x. exceeding a high disaster threshold or fall-
ing below a low one are likewise larger (red lines in figure 2g,
h; dashed black lines on those panels and the panels below
them are reproduced from panels (c,d), respectively).

Scenarios 2-4 illustrate the ideas, previously little
recognized in ecology, of tail comonotonicity [29] and tail
associations [30-32], and the consequences of tail associations
for xi¢ and its extreme values. In scenario 2, as in all our
scenarios, each x; is standard-normally distributed (figure 2i
side panels), but (x, ..., xy) is not a multivariate normal dis-
tribution. Instead, (xy, ..., Xxn) was engineered so that x; and x;
are perfectly related when they exceed some threshold,
but imperfectly related below the threshold (figure 2i; see
the electronic supplementary material, S2 for details of each
scenario). The strength of association below the threshold
was chosen to make cov(x;, x;) equal to the same value as
in scenario 1, so sd(xy,) was also the same, up to sampling
variation, as in scenario 1 (figure 2j). (Recall that
sd(Xior) = v Var(tioy) and var(x) = =i cov(x;, x;).) Comono-
tonicity in the upper tails produces right/positive skewness
in xy (figure 2j). Skewness translates to elevated probabil-
ities of xor exceeding high disaster thresholds, compared to
scenario 1 (blue lines in figure 2k; the dashed red lines on
panels (k) are copied from the solid red lines of panels
(g,h), respectively, to facilitate comparisons). The probability
of exceeding sufficiently high disaster thresholds is actually
the same as scenario C (figure 2k). So although scenarios 1
and 2 are indistinguishable to classic approaches, the prob-
ability of disaster in scenario 2, for high disaster thresholds,
is much elevated, and is as high as it can possibly be given
the species marginal distributions used. Although it does
not appear unstable to classic approaches, the scenario 2 com-
munity is maximally unstable with respect to high disaster
thresholds.

Scenario 3 parallels scenario 2, but with comonotonicity
in the left tails instead of the right, and concomitant elevated
probabilities of xi falling below a low disaster threshold.
Scenario 4 shows comonotonicity in both tails, and thus
elevated probabilities both of xi, exceeding high disaster
thresholds and falling below low ones (electronic supplemen-
tary material, S2 and figure S2).

Although scenarios 14 are indistinguishable to classic
approaches, the probabilities of disaster are elevated in scen-
arios 24, and are maximal, given fixed species marginal
distributions, for some disaster types (high or low disaster
thresholds), depending on the scenario. Perfect comontoni-
city in the tails of population distributions x; simplifies our
presentation of the theoretical ideas, but is not necessary to
generate skewness in X and elevated disaster probabilities.
Similar results pertain for essentially any case where associ-
ations between species are asymmetric in the tails.

Our scenarios were constructed using mathematical
results of [29,33]. We refer the reader to those papers for
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Figure 2. Theoretical scenarios demonstrating how species relationships can influence a community aggregate quantity in ways that are not detectable by classic
approaches. The abbreviation ‘sd’ stands for ‘standard deviation’, sk’ stands for ‘skewness’, ‘th’ stands for ‘threshold” and “fr stands for ‘frequency’. Scenario C is the
reference, comonotonic scenario of maximal community variability. See the Theory section for other notation and interpretations, and the electronic supplementary
material, section S2 and figure S2 for scenarios 3 and 4 and for mathematical details. (Online version in colour.)

mathematical specifics, while here summarizing aspects
important for ecological applications. Given one-dimensional
cumulative distribution functions Fy, ..., Fy, the Fréchet space
R(F1 ;o
(x1, ..., xn) with the Fy, ..., Fy as their marginal distribution

., Fy) is the set of all N-dimensional random vectors

functions. Thus the Fréchet space represents, in our model-
ling context, all possible interspecific relationships (different
degrees and kinds of synchrony and compensatory dynamics
between species) that can pertain, given fixed species mar-
ginal distributions. So the question of what forms the

distribution of x.,; can take across the Fréchet space is a pre-
cisely formulated version of the classic question of how
species interrelationships such as synchrony and compensa-
tory dynamics can influence community variability. It is
well known to statisticians that the sum x,; exhibits maximal
variance when the x; are comonotonic [29]; this is the maxi-
mal-synchrony case. Cheung & Vanduffel [29] showed the
converse, i.e. if var(xy) is maximal in the Fréchet space,
then (xy, ..., xn) must be comonotonic (subject to some mild
regularity assumptions about the F;). The classical variance
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ratio and Loreau-de Mazancourt approaches essentially make
sole use of var(x,) to quantify community variance (Vop, is
used, actually, but this is equivalent, since species marginals
are fixed within the Fréchet space). However [29] showed
that, even if we consider only the sub-Fréchet space consist-
ing of random vectors (xy,...,xn) in R(Fy, ..., Fy) that
additionally have var(xi) = S for some fixed S, there are
random vectors that achieve extreme values just as extreme
as the comonotonic case (e.g. scenarios 2—4 in figure 2;
electronic supplementary material, figure S2). Existing
approaches in the ecological literature tell us nothing about
true community variability, in the sense that if species
relationships are tail associated, the community can exhibit
the same extreme behaviour as the comonotonic case,
while the classically important quantity var(xy,) gives the
impression of a much more stable community. We next tran-
sition to describing the data and the statistics used to assess
to what extent the above theory applies to those data.

3. Methods

(a) Dn)ta

We used data from two grassland sites, both monitored for dec-
ades. After initial processing, data from the Hays, Kansas site
consisted of annual estimates of basal cover, averaged over 36
quadrats from which livestock were excluded, for each species
present, for the years 1932-1972 [34]. Data from Konza Prairie,
after initial processing, consisted of annual canopy per cent
cover data by species for the years 1983-2018, averaged over
20 annually burned plots on tully soils, ungrazed by livestock
[35]. Additional details are in the electronic supplementary
material, S3.

Community data often include numerous rare species. Rare
species complicate analyses of interspecific relationships and
their effect on community variability because the relationship
of a rare species with another species is difficult to accurately
assess. We therefore categorized species as ‘common’ (present
in the system for at least 35 years), ‘rare’ (present for at most 2
years), or ‘intermediate’ (other species). Rare and intermediate
species were combined into a single pseudo-species for analyses.
Common species (electronic supplementary material, tables S1
and S2) made up the overwhelming majority of both the Hays
and Konza communities (electronic supplementary material,
figure S3), so ‘intermediate’ species were actually quite uncom-
mon, and it is the variability of common species, and their
relationships, that mainly determine community variability.
Henceforth the terminology ‘species’ signifies both true species
and the pseudo-species formed by combining rare and inter-
mediate species.

(b) Statistical methods: quantifying tail associations

Figure 1 and the Theory section suggest that to accomplish goal
G1 of the Introduction, we could apply measures of tail associ-
ation between species, and asymmetries of tail association. We
here define such measures, based on the partial Spearman
correlation of [31]. Notation is summarized in the electronic sup-
plementary material, table S3. Given x;(t) for =1, ..., T, we begin
by defining the normalized rank u;(t), equal to the rank of x;(t) in
the set {x;(1), ..., x(T)}, divided by T + 1. The smallest element of
this set is here considered to have rank 1. Plotting the normalized
ranks u;(t) and u;(t) against each other for two positively associ-
ated species x; and x; provides a visual indication of tail
association and asymmetries in tail association (e.g. the
points of figure 3; see also the electronic supplementary material,

Figure 3. A normalized rank plot (see Methods) can visually help reveal that
an association between variables is stronger in the lower tails of the variables’
distributions than it is in the upper tails (as in this example), or vice versa (as
in the electronic supplementary material, figure S4). In this example, points
are clustered closer to the u; = u; diagonal in the lower left than in the upper
right, revealing stronger association between the variables in the lower tails
of their distributions. The partial Spearman correlation, cory,, (x;, X;)
(Methods), within a band defined by two bounds 0 < b,<b, <1 can be
computed for any band to quantify the component of the overall Spearman
correlation due to that band. Solid diagonal lines show the band associated
with b= 0.1 and b, = 0.25. Up to sampling variation, the (total) Spearman
correlation is 0.8 on both this plot and the electronic supplementary material,
figure S4, though patterns of tail association differ. This figure was slightly
modified from fig. 4 of [30] and fig. 7 of [31].

figure 54), as described in [31]. Given two bounds 0<b;<b, <1 (
stands for lower’ and u for ‘upper’), we define the lines u; +u;=
2b; and u; + u;= 2b,,, which intersect the unit square [0, 1] x [0, 1] of
the normalized rank plot (figure 3 shows these bounds for b;=0.1
and b, =0.25). The partial Spearman correlation associated with
the band circumscribed by these bounds is

> (u;(t) — mean(u;))(u j(t) — mean(u )

(T — 1)y /var(u;)var(u) !

where sample means and variances are computed over t=1,..., T
but the summation in the above formula is only computed over ¢
such that u;(t) +u;(t) > 2b; and u;(t) + u;(t) <2b, (e.g. the points in
the band delineated by the two diagonal lines on figure 3). The par-
tial Spearman correlation is the component of the Spearman
correlation which can be attributed to the points in the band. For
two positively associated variables, corgps measures lower-tail
association, and cory 5,1 measures upper-tail association. The differ-
ence Corpps —COrps; is a way to measure asymmetry of tail
associations. Positive values of this statistic indicate stronger
lower-tail association, and negative values indicate stronger
upper-tail association. We henceforth use the shorthand cor; for
corgos and cor, for corpsi. Genest & Favre [36] recommend
making inferences about dependence structures such as tail associ-
ations using rank-based approaches such as the tools we
introduced here. Work of Ghosh and colleagues [30-32] provides
additional information on why rank-based approaches and the par-
tial Spearman correlation are an appropriate statistical choice for
purposes such as ours.

We computed cor; — cor, for all positively associated species
pairs (those with positive overall Spearman correlation); nega-
tively associated pairs were ignored because theory suggested
the importance of positively associated species pairs (but see
the electronic supplementary material, S4 for thoughts on
future work). Figure 1 and the Theory section suggest that
communities with a preponderance of upper-tail association
between positively associated species will have x, with distinct
distributional properties from communities with more lower-tail

cory, b, (xi, xj) = 3.1)
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association. Community aggregated tail association between
positively associated species was measured by counting the
number, n;, of values cor(x;, x;) —cor,(x;, x;), for i#j, that
were positive, representing stronger lower- than upper-tail
association between positively associated species; as well as the
number, 1, of values that were negative, representing stronger
upper- than lower-tail association. We also computed the sum,
Ao, of cor(x;, x;) — cor,(x;, xj) across all positively associated
species pairs, i, j. This was positive if lower-tail association was
stronger, in aggregate, than upper-tail association, and negative
if the reverse. We call Ay, the fotal community tail association.
Note that the word “positive’ applies in three senses, here, all
distinct: positive association of species pairs; positivity of
cory(x;, x;) — cory(x;, x;); and positivity of Ao

(c) Statistical methods: quantifying variability, and the
skewness ratio

To accomplish goal G2 of the Introduction, we need a measure of
the distribution x that characterizes community variability in a
way that complements var(xit) or Veom. We use the skewness,
sk(xot) (see the electronic supplementary material, S4 for details).
As illustrated in figure 1, skewness complements use of var(xy.)
or Veom to characterize community variability, because strongly
negative values indicate that x, undergoes large downward
departures from typical values (crashes), and large positive
values indicate that x, undergoes upward departures
(explosions); either of these dynamical behaviours can happen
independently of the values of var(xi:) and V.,m. Because
sk(xot) relates to upward or downward departures of xy, from
typical values, it also relates to probabilities that x.. will surpass
a high disaster threshold (see Theory) or fall below a low one.
Just as the variance ratio ¢y is the quotient Veom/Ving, we
analogously define a skewness ratio. Let Scom = sk(xit), and con-
sider the value that S.om would take if species dynamics were

ind = M, where mj3(x;) is the third central
(>0)

moment of x; (electronic supplementary material, S4). The

skewness 1atio iS ¢s=Scom/ Sind, SO that S.om=0sSing- It is also

possible to define a skewness metric in a manner that attempts

to parallel the choices made in constructing ¢y;;.4m. This is elabo-

rated in the Discussion.

Values of the skewness ratio provide a summary of how
species relationships influence community variability that comp-
lements information provided by the variance ratio. The
skewness ratio can be positive or negative because S, and
Sina can be positive or negative, unlike Vo and Ving. If ¢s>1,
Scom has greater magnitude, but the same sign, as what its
value would be in the absence of species relationships (Sing)-
Assuming, for simplicity ¢y~ 1 (see the electronic supplemen-
tary material, S5 and table S4 for more on this assumption), if
Sina is positive, then ¢s>1 means Scom > Sing >0, i.e. species
relationships magnify the tendency for the community aggregate
quantity x to explode to high values; and if S;,q is negative,
then ¢s>1 means Scom < Sina <0, i.e. species relationships mag-
nify the tendency for xi to crash to low values. This can be
viewed as a new type of synchrony, in the sense that species
relationships inflate community variability by accentuating the
probability that x. will exceed large disaster thresholds, or fall
below small ones.

If 0<¢s<1, then S.om has lower magnitude, but the same
sign, as Sing. Again assuming, for simplicity, that ¢y~ 1 (see
the electronic supplementary material, S5 for more on this
assumption), if Sing is positive, then 0 <¢s<1 means 0< Scom <
Sind, 1.€. species relationships mitigate the tendency for xi to
explode to high values; and if S;,q is negative, then 0<¢s<1
means Sing < Scom <0, i.e. species relationships mitigate the ten-
dency for xy to crash to low values. This can be viewed as a

independent, i.e. S

new type of compensatory dynamics, because species relation-
ships reduce a kind of community variability.

If ¢s <0, what happens? If Si,g <0, so that without species
relationships xi,; would have exhibited occasional crashes, we
instead have Scom > 0: with species relationships x; instead exhi-
bits occasional explosions. If Si,q>0, so that without species
relationships x, would have exhibited occasional explosions,
we instead have S.om < 0: with species relationships x. instead
exhibits occasional crashes. Thus the tendency of x to crash
or explode is reversed by species relationships. We again
assume, here, for simplicity, that ¢y~ 1; see the electronic
supplementary material, S5.

Our skewness ratio does not supplant the variance ratio (or
any of its alternatives, such as the Loreau-de Mazancourt
metric), but rather complements it. Just as one understands
more about a distribution by knowing both its variance and
skewness, so one understands more about community dynamics
by combining the variance and skewness ratio approaches. The
values of ¢, and ¢s provide complementary information about
how the distribution of x is influenced by species relationships
(see the electronic supplementary material, S5). See figure 4a,b for
a summary of the two approaches.

(d) Statistical methods: the link from tail associations
to variability

The skewness ratio ¢s = Scom/ Sina provides information about the
influence of species relationships, of all kinds, on community
skewness, Scom = sk(xt), because Seom is influenced by species
relationships of all kinds and S;q is influenced by none. To
understand the specific influence of species tail associations
and asymmetries of tail associations on Scom (G3 of the Introduc-
tion), we developed a randomization procedure that rendered
symmetric the tail associations between species, while keeping
other statistical properties of community dynamics approxi-
mately fixed. Given the data x;(t) (i=1,..., N, t=1,..., T), the
randomization procedure produced any desired number M of
surrogate datasets xl(m)(t), m=1,..., M, with properties detailed
in the electronic supplementary material, S6 (see also the elec-
tronic supplementary material, figures S5-57). Because these
surrogate datasets had symmetric tail associations between
species but were otherwise statistically similar to the original
dataset, x;(t), Scom = sk(xwt) was computed for the original
data, and a surrogate skewness value, sk(zi xl(-’”)), was com-
puted for each of the surrogate datasets. A test of whether
asymmetry of tail associations between species significantly
influenced S, was obtained by examining whether Scon, fell
sufficiently in the tails of the distribution of surrogate values to
meet a desired statistical confidence level. This approach pro-
duces a test of the null hypothesis that Scom was no more
extreme than would have been expected by chance if species
relationships were symmetric in their tail associations, against
the alternative hypothesis that asymmetries of species relation-
ships contribute meaningfully to community skewness. We
used M=10000 to ensure the p-values produced by this
method were very precise.

The quantity S,,, which represents what community skew-
ness would be without asymmetries of tail association between
species, was defined as the median of the values sk(},x/"); it
is Snta, and associated quantities which we will now define,
that are used to accomplish goal G3 of the Introduction.
Here and below, ‘ta’” stands for ‘tail association” and ‘nta’
stands for ‘no tail association’. We also defined the quantities
#5,ta = Scom/ Snta aNd @5 cor = Snta/ Sina- The quantity ¢g or satisfies
Snta = 95,corSind, and therefore is the factor by which correlations
between species, as distinct from asymmetries of tail association,
influence community skewness. The subscript ‘cor’ is a
reference to the effects of correlation. The quantity ¢s, satisfies
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(@) variance ratio approach
Vcom ¢V Vind

¢V = ¢V,ta x ¢V,cor

(©)

¢V,ta Vv ¢V,cor

nta
influence of tail-association
on variance ratio approach

(b) skewness ratio approach

S S
com i
¢ ind

¢S = ¢S,la x ¢S,cor

¢S,ta Snta ¢S,c0r

influence of tail-association
on skewness ratio approach

(d)

Figure 4. Summary of approach. Arrows in (a—d) imply an equation where the quantity in the box at the arrow tail, times the quantity labelled on the arrow itself,
equals the quantity in the box at the arrow head. For instance, the arrow in (a) represents the equation Vom = @yVing.

Scom = #5,taSnta, and therefore is the factor by which asymmetric
tail associations between species further influence community
skewness. So a value of ¢s;, which differs from 1 indicates
that asymmetric tail associations have a role in determining
Scom- Statistical significance, here, is judged as in the previous
paragraph. It is straightforward to show that ¢gs = ¢g tafs,con SO
Scom = 05 tads corSind- ThUS ¢sa and ¢gor Separate the influence
of species relationships on community skewness into factors
owing to asymmetries of tail associations and correlations with
symmetric tail associations. For comparison, V..m was also
computed for the data and for surrogates, defining quantities
Vitar ®vcor and ¢y, which are related to each other in an analo-
gous way. Figure 4a—d summarize the new quantities and their
relationships. Because V.., depends only on species means
and covariances, which are preserved by surrogates, we know,
a priori, that Vi = Veom and ¢y = 1.

Having defined methods, we can now frame hypotheses
suggested by figure 1 and the Theory section using the new
methods; tests of the hypotheses will address goal G3 of the
Introduction. Figures 1 and 2 and electronic supplementary
material, figure S2 suggest that communities exhibiting a prepon-
derance of lower-tail association should have total community
dynamics that are more left-skewed, or less right-skewed, than
would have been the case without these tail associations. This
is the same as saying that for communities for which n;,>ny
and A >0, we should have S o < Spra- Furthermore, figures 1
and 2 and electronic supplementary material, figure S2 suggest
that communities exhibiting mostly upper-tail association
should have total community dynamics that are more right-
skewed, or less left-skewed, than would have been the case
with symmetric tail associations. This is the same as saying
that for communities for which n; <n; and A <0, we should
have Scom > Snta- We test these hypothesis with the two grassland
datasets in Results and discussion below.

4. Results and discussion

Addressing the goal G1 of the Introduction, of applying a
new way of quantifying species relationships that comp-
lements covariance approaches, the quantities cor; — cor,
for all positively associated pairs of species within the Hays
and Konza datasets were computed (electronic supplemen-
tary material, figure S8), as were the community aggregate
quantities n;, and ny; and the total community tail association
values A,y (Methods). Results revealed marked differences
between Hays and Konza in species’ tail associations.
Although both datasets had pairs of positively associated
species with more lower-tail association and pairs with
more upper-tail association, 1, =70 was greater than n;; =40
and Air=6.1 was positive for Hays, and n; =70 was less
than n,;,=82 and A;:=-1.3 was negative for Konza. Thus
lower-tail association was dominant at Hays and upper-tail
association was dominant at Konza.

We earlier framed the hypotheses that communities exhi-
biting more lower- than upper-tail association should also
have x, more left-skewed, or less right-skewed, than if tail
associations were symmetric; and communities exhibiting
more upper- than lower-tail association should have x
more right-skewed, or less left-skewed, than if tail associ-
(Methods). We tested
hypotheses for Hays and Konza, thereby addressing goals

ations were symmetric these
G2 and G3 of the Introduction. The quantities of figure 4
are displayed for our data in figure 5. Because n; >y and
Aot >0 for Hays

figure S8A), Scom should be less than S,¢,. This was confirmed

(electronic  supplementary material,
(figure 5b). Both S.om and Sn., were positive and the
component of the skewness ratio owing to tail association,
#sta= 0.3, was less than 1. Becuse np <ny and A <0 for
Konza (electronic supplementary material, figure S8B), Scom
should be greater than S, This was also confirmed
(figure 5d). Scom and Sp, Were again positive, so for Konza
$sta = 2.8 was greater than 1. These results were statistically
significant: for Hays, S.om was less than a fraction 0.9973 of
the analogous quantities computed using the Hays surro-
gates datasets (corresponding to p=1—0.9973 =0.0027 for a
one-tailed test); whereas for Konza, S.o, was greater than
a fraction 0.9748 of the analogous surrogate values for
Konza (p=0.0252, one-tailed test; electronic supplementary
material, figure S9). Thus asymmetric tail associations between
species significantly modified the skewness of the total com-
munity abundance, X, lowering it for Hays and raising it
for Konza and thereby influencing community variability
and probabilities of passing disaster thresholds. Figure 6
makes concrete some of the conclusions of this paragraph.

As anticipated (Methods), the variance ratio approach did
not register the importance of tail associations for community
variability and thus provided an incomplete picture of the
influence of species relationships on community variability,
ie. Vpa®Veom and ¢ynx1 for both Hays and Konza
(figure 5a,c). This result was expected because V., depends
only on species means and covariances, which were pre-
served by the randomized, surrogate datasets from which
Vata is computed (Methods). Vy, and Vi om were not statisti-
cally distinguishable for the grassland data: the distribution,
across surrogates, of the squared coefficients of variation
of the quantities ), xf-’”) (recall that V,,, was defined to be
the median of this distribution), was centred very close to
the value of Vi, for both Hays and Konza (electronic
supplementary material, figure S9A,C).

We now compare conclusions about Hays that would
typically be drawn by using only the variance ratio approach,
to conclusions drawn using both the variance and skewness
ratios. Because ¢y <1 (figure 5), dynamics in Hays would
classically be interpreted as compensatory, i.e. species
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variance ratio approach, Konza skewness ratio approach, Konza
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Figure 5. The quantities of figure 4 computed for the Hays (a,b) and Konza (¢,d) datasets. See the electronic supplementary material, figure S9 for related results.

relationships buffer community variability. However, the
combined approach yields more nuanced information. The
skewness ratio, ¢s, was substantially less than 1, with
Scom =0.2 less than S;,q =0.8 (figure 5), suggesting that the
tendency for the total community abundance x to explode
to high values (right skewness) and surpass high disaster
thresholds was mitigated by species relationships. This find-
ing supports the variance-ratio-based conclusion that species
relationships are generally stabilizing at Hays, but also
extends the classic result by revealing the greater importance
of community relationships for mitigating explosions of X
to high values, compared to their lesser role in mitigating
crashes. Apparently, species relationships can mitigate or
accentuate extreme values of x, differentially for high
versus low extremes. See the electronic supplementary
material, S7 for related results and discussion.

We next compare conclusions about Konza drawn by
using only the variance ratio approach to conclusions
drawn using both the variance and skewness ratios. Because
¢y was slightly less than 1 (figure 5), dynamics in Konza
would classically be interpreted as slightly compensatory.
However, using both the variance and skewness ratios
together yields conclusions that differ substantially. The
skewness ratio, ¢s, was much greater than 1, with S, =1.4
correspondingly much greater than S;,q =0.2 (figure 5). So
although species relationships slightly reduce the variance
of X, they also dramatically increase right skew of xiq.
This, in turn, leads to an overall greater propensity for
explosions of xi¢ to high values, and a correspondingly
accentuated probability that xi will exceed high disaster
thresholds. Crashes of xi, to low values are reduced by
species relationships. The variance ratio obscures the fact
that species relationships modify extreme behaviour of x
differently in the two tails of its distribution. Although the
variance ratio suggests that species dynamics at Konza are
compensatory, reducing community variability, in fact this
is true only for mitigating crashes of xi to low values;
species relationships instead accentuate the tendency of X
to explode to high values. See the electronic supplementary
material, S7 for related results and discussion.

Thus the skewness ratio newly reveals differences between
Hays and Konza. For both communities, ¢y, is slightly or
moderately less than 1, suggesting compensatory, stabilizing
species relationships. However, ¢s was less than 1 for Hays
and was markedly greater than 1 for Konza owing partly to
differing influences of interspecific tail associations on the dis-
tributions of xy,. Hays can probably still be labelled as a
community showing stabilizing, compensatory dynamics. By
contrast, species relationships in Konza only reduce commu-
nity variability in that they mitigate crashes of x,. Species
relationships simultaneously accentuate explosions of X to
high values, a feature that should probably not be considered
as stabilizing. For some applications, it may indeed be more
important to avoid crashes than to avoid explosions of X to
high values, and for those applications it may still be reason-
able to characterize species relationships at Konza as
stabilizing; but this possibility depends on the applied context,
and does not reduce the importance of our larger point that
species relationships can be differently ‘stabilizing’ or ‘destabi-
lizing’ (i.e. reducing versus increasing community variability)
in the two tails of xiy a feature of empirical reality not
captured by the variance ratio and other standard approaches.

These results highlight the previously unrecognized
importance of tail associations for community dynamics.
The influence of tail associations on the distribution of X
can be as great or greater than the influence of species corre-
lations with symmetric tail association. For Konza, ¢s, and
#s,cor Were similar (figure 5), indicating that both tail associ-
ations and correlations were comparable in their effects on
the skewness of xy, (recall that Scom =@stafs corSina)- FOr
Hays, however, ¢ .o was close to 1 and ¢g v, differed substan-
tially from 1 (figure 5), indicating that essentially all of the
influence of species relationships on sk(xi) was owing to
asymmetric tail associations between species. The influence
of tail associations on the CV of x.,; was negligible, as indi-
cated previously, but that reflects the inability of the CV to
detect the impact of tail associations, rather than indicating
that tail associations were unimportant.

Figure 6 makes more concrete some of the above con-
clusions through comparison of x. time series in Hays and
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Figure 6. Example, using data, of the effect of tail association on dynamics of aggregate community abundance, (x)or. Empirical (x),o; time series for Hays (a) and
Konza (d) are solid lines, with distributions of values across time shown in (b,e), respectively. Dashed lines on (a,d) show community abundance sums for ‘typical’
surrogate datasets produced via a randomization procedure that rendered tail associations symmetric, but left unchanged other statistical aspects of the data
(Methods). Distributions across time for the dashed lines are in (c,f), respectively. Thus comparing dashed to solid lines, or comparing (b) to (c) (for Hays) or
(e) to (f) (for Konza) reveals the effects of tail associations between species on community dynamics. Though the effect appears subtle, extreme high values
are mitigated by tail associations in Hays (e.g. values on (c) exceed 8000, but values on (b) do not, and see also the dotted-line threshold on (a)); whereas
extreme low values are mitigated in Konza (e.g. values on (f) go just below 120 but values on (e) do not, and see also the dotted-line threshold on (d)). If
extreme values spell disaster in an applied scenario, these differences are important. This figure is an empirical parallel to aspects of figure 1. ‘Abundance’
was basal cover (cm?) for Hays (a—c) and per cent cover for Konza (d—f). Vertical ticks between axes and histograms show the location of individual
data points. Skewness, ‘sk’, is displayed on each histogram panel. Surrogates were selected for display which were median with respect to skewness of the
total abundance, so that values of skewness on (c) and (f) approximate Sp,.

Konza to total abundance time series computed for random- ecosystem function in question), the details of tail associ-
ized, surrogate datasets for which tail associations were ations between species should be of clear applied interest in
rendered symmetric. The figure also helps illuminate future many circumstances. In essence, we showed that tail associ-
applied possibilities of the ideas of this study. For Hays, ations between species can have important effects on
Xtot would have risen to more extreme high values were it extreme behaviour of ecosystem functioning variables; so
not for the dominance of lower-tail associations between there is applied importance whenever extreme values
species in that system. For Konza, x,; would have fallen to would be a concern.

more extreme low values were it not for the dominance of As described in the Introduction, the variance ratio ¢y
upper-tail associations in that system. Because grazers seem compares V oy to the independence benchmark Vg (¢ =
more likely to be harmed by extreme low values of X Veom/Ving), wWhereas the Loreau-de Mazancourt metric
than by extreme high values, the differences between these dvLam compares Vo, to the benchmark value Vi, that com-
systems illuminate some of the applied possibilities of our munity CV? would take if species dynamics were perfectly
ideas. Whereas we emphasize that our data were from live- linearly associated (¢v,Lam = Veom/ Vsyn)- This choice leads to
stock-excluded plots, so applications to grazing are only substantial interpretive and other advantages of ¢y qm over
suggestive, our overall results nevertheless show that details ¢y [10,23], and as a result ¢yrqm is increasingly widely
of species interactions can mitigate or accentuate extreme used. An approach to community skewness using a para-
values of aggregate ecosystem functioning differently for digm similar to that of Loreau and de Mazancourt is
high versus low extremes. Because human systems that available, and reveals the same main ideas we elaborated in
depend on ecosystem functions (e.g. livestock grazing, this study using ¢s, but does not appear to have the same
though there are many examples) will react differently to advantages over ¢s that ¢yrqm has over ¢y; nevertheless,

high versus low extremes (and this will depend on the such a metric may be worth considering in future work.
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Because ¢y am = Veom/Veyn, Whereas ¢y =Veom/Ving, an
alternative to ¢s=Scom/Sina which follows the same
paradigm may be ¢sram=Scom/Ssyn, Where Sg, is the
benchmark value that community skewness would take in
the case of perfect synchrony between species dynamics.
Whereas Vg, was community CVv? computed under an
assumption of perfect linear associations between the
dynamics of different species [23], under our framework it
may make more sense to consider Sgy, to be community
skewness under an assumption of species comonotonicity.
Perfect linear associations between species cannot generally
be realized without altering the marginal distributions of
the species, and such alteration seems, to us, to be inconsist-
ent with using a benchmark scenario in which species
relationships are altered but other aspects of dynamics are
kept constant. An alternative approach using ¢s.am = Scom/
Seyn would reveal essentially the same main ideas that we
have revealed with the current approach of this study,
because S, and Vy, would probably have to be defined in
the same way. The main ideas of this study centre on the
importance of tail associations for the skewness of x, and
therefore for extreme values of X, Those ideas can be
explored regardless of whether independence or perfect syn-
chrony is used as a benchmark for comparison. One of the
advantages of ¢y am over ¢y is that ¢y am always takes
values between 0 and 1, facilitating comparisons across com-
munities. But the same is not necessarily true for ¢sqm, as a
careful examination of figures 2 and the electronic sup-
plementary material, S2 will reveal (sk(x,,) for scenario 2
divided by the same quantity for scenario C is much greater
than 1, whereas computing the analogous quotient for
scenario 3 gives a quantity much less than —1). Another
advantage of ¢yLam over ¢y is that /Viy, equals a weighted
average of the CVs of individual species, and hence can be
interpreted as population-level variability. Thus ¢y qm can
be elegantly interpreted as a scaling factor converting
population- to community-level variability, whereas an ana-
logous interpretation for ¢y is not available. However, such
an interpretive advantage does not appear to extend to
#s,Lam. Decades passed between the formulations of the
original variance ratio and the Loreau-de Mazancourt and
other improvements. Our goal with this study was to intro-
duce the main ideas of tail association and its importance
for community stability. We welcome the possibility that
future research will reveal a metric that captures these main
ideas, but with additional advantages.

Our work may also provide lessons for other fields. More
detailed statistical descriptions of synchrony have become
increasingly useful in recent years. Tail association metrics
and related ‘copula’ statistics, though apparently seldom
used so far in most biological research areas, may turn out
to provide fruitful additional ways to make synchrony stat-
istics more detailed and more useful across many fields. In
many fields, techniques for quantifying the synchrony of sig-
nals have historically been crude, but have recently become
more detailed, thereby enhancing progress. For instance,
one paper in this special issue develops newly detailed
frequency-specific descriptions of a kind of synchrony, and
then uses them to make new inferences about musical and
rhythmic behaviour in humans [37]. The examples of [38]
on the interactive vocalizations of primates are also enhanced
by a frequency-specific perspective: fig. 1C of [38] shows
coordination of not only the timings but also the pitches of

the calls of a pair of indris, a feature which would not be m

revealed without the additional statistical detail provi-
ded by the frequency-specific techniques of that paper
(spectrograms). Sheppard, Zhao and colleagues [26,39,40]
developed detailed frequency-specific measures of synchrony
in population ecology which provided major inferential
benefits. One common feature of all these studies is that pro-
gress was achieved through use of frequency-specific
statistical descriptors of synchrony that were more detailed
than earlier correlation and related basic tools. But spectral
tools are not the only statistical approach by which additional
information can be extracted from synchronous or asynchro-
nous pairs of signals. Mathematically, the nature of the
relationship between two quantities is an infinite-dimen-
sional object, even when neither quantity exhibits spectral
structure of any kind [31]. Most synchrony measures extract
only a small portion of the available information. But the
field of copula statistics [41] provides well-developed and gen-
eral tools for assessing the complete information content. Tail
association tools such as used in this study assess one aspect
of copula structure. The potential of tail association and
copula tools to reveal previously unsuspected useful infor-
mation in patterns of synchrony across multiple fields of
biology may be great, as demonstrated by our successes in
this study. For instance, [42] indicates, in this special issue,
that many childhood neurodevelopmental disorders are
associated with deficits in rhythm, timing and synchrony.
One wonders if diagnosis of disorders may be improved by
applying copula statistics to data on synchrony tasks
attempted by patients. Whereas we are not child psychologists
and cannot critique work in that field or in many of the other
disparate fields represented in this special issue, the power of
copula statistics and the general scarcity of prior application of
such tools to synchrony compel us to recommend these
approaches to synchrony researchers in all fields.

5. Conclusion

It has been known for decades that species relationships can
accentuate or mitigate the temporal variability of an aggre-
gate community property such as the total abundance of all
species, through synchronous or compensatory dynamics
of species. However, our results show that consequences of
species relationships for community stability are more com-
plex than previously recognized. Synchronous relationships
between the dynamics of different species are not necessarily
well characterized by standard, commonly used covariance
measures: species can exhibit contrasting patterns of tail
association which are not detected by standard approaches.
Moreover, the temporal stability of total abundance is also not
necessarily well characterized by commonly used measures
based on the coefficient of variation. Total abundance can exhi-
bit patterns of skewness which correspond to increased
probabilities of crashes, or explosions to high values, that are
readily interpretable as instability. Thus the original variance
ratio approach, whereby patterns of species’” synchronous or
compensatory dynamics are assessed using covariance tools
and then related to community variability measured using a
coefficient of variation, is probably inadequate, by itself. Species
relationships can actually mitigate or accentuate community
variability differentially for community crashes or explosions
to high values, a fact which was apparently not previously
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recognized. In other words, species relationships can mitigate
explosions of total abundance to high values, while simul-
taneously exacerbating the tendency to crash to low values; or
vice versa. Our new skewness ratio approach complements
the variance ratio to reveal a more multidimensional nature of
species relationships and their effects on community variability.
Overall, our work has begun a new and more flexible approach
to synchrony, compensatory dynamics and their influence on
community stability.
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