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Understanding the processes that stabilize species populations is a fundamental ques-
tion in ecology and central to conservation biology. In metapopulations, dispersal can
act as a ‘double edged’ sword for species stability by simultaneously decreasing local
population variability (thereby decreasing local extinction risk) while increasing spatial
synchrony (thereby increasing landscape-level extinction risk). These dynamics may
operate at different timescales, complicating efforts to assess their relative importance
for long-term stability. Here, we use a simple metapopulation model to understand
how dispersal affects population variability and spatial synchrony across timescales.
Our model shows that dispersal has contrasting effects at short versus long timescales
on the variability and synchrony of populations. For populations that exhibit slow
recovery when perturbed (i.e. under-compensatory growth), dispersal decreases local
population variability while increasing spatial synchrony at long timescales. In con-
trast, at short timescales dispersal increases local population variability while decreasing
spatial synchrony. For populations that recover via damped oscillation when perturbed
(i.e. over-compensatory growth), the effects of dispersal are all opposite to those for
populations with under-compensatory growth, at both short and long timescales. The
timescale-dependent effect of dispersal has important implications for empirical stud-
ies. Specifically, studies conducted over short periods may only observe population
variability increasing and spatial synchrony decreasing with dispersal, whereas the
opposite patterns may predominate over longer periods. Our results provide novel
insights on the dynamics underlying the role of dispersal and highlight the importance
of time series length in empirical studies of metapopulations.

Keywords: dispersal, metapopulation, over-compensatory growth, spatial synchrony,
stability, timescale, time series length, under-compensatory growth
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Introduction

The field of spatial ecology has highlighted that the fate of
a local population may be fundamentally tied to connection
with surrounding populations. This idea has been formal-
ized in the concept of metapopulation, defined as a collec-
tion of spatially separate populations that interact through
dispersal (Levins 1969, Hanski 1999). Early conceptualiza-
tions of metapopulation theory highlighted that dispersal is
central to the stability of metapopulations. For instance, in
a stochastic environment where populations fluctuate con-
stantly through time, dispersal can provide stabilizing effects
by dampening the temporal variability of individual popula-
tions (Briggs and Hoopes 2004). On the other hand, dis-
persal can also generate spatial population synchrony (i.e.
temporal correlation between local populations), such that
all populations rise and fall at the same time (Liebhold et al.
2004). Synchronized fluctuations can be destabilizing, even
causing increased extinction of the entire metapopula-
tion (Heino et al. 1997, Earn et al. 2000). Consequently,
the overall effect of dispersal on metapopulation stability is
determined by the balance between its locally stabilizing and
spatially synchronizing effects (Higgins 2009, Abbott 2011,
Wang et al. 2015, Fox 2017).

The stabilizing and synchronizing effects of dispersal have
been shown to depend on endogenous and exogenous fac-
tors, particularly the species’ intrinsic growth rates and spatial
correlation in the environment. A population’s growth rate
determines the rate at which it can independently recover
from perturbation. Higher rates of dispersal, for instance, are
often required to stabilize or rescue a local population with
a lower growth rate (Wang et al. 2015, Zelnik et al. 2019).
At the landscape level, spatial environmental correlation can
cause spatial population synchrony (Moran 1953) and also
modulate the role of dispersal, such that the synchronizing
effect of dispersal is relatively weaker in a spadially correlated
environment (Kendall et al. 2000, Ripa 2000, Liebhold et al.
2004). Thus, dispersal, local population growth rate and
environmental correlation interact and jointly shape the
stability and synchrony in metapopulations (Kendall et al.
2000, Wang et al. 2015). As these factors operate at different
timescales (i.e. periods of fluctuations, such as annual disper-
sal events or decadal climate oscillations), the combination
of these drivers may differentially affect population dynamics
and spatial synchrony across timescales.

The timescale-specific patterns of population dynamics
have long been acknowledged in ecological studies. Empirical
studies reported that natural populations often exhibit posi-
tively autocorrelated temporal dynamics (Pimm and Redfearn
1988, Halley 1996, Inchausti and Halley 2001). Theoretical
models showed that population growth rate and the times-
cale structure of environmental fluctuations have significant
influences on the timescale-specific patterns of population
dynamics (Ripa and Lundberg 1996, Kaitala et al. 1997,
Petchey et al. 1997). Specifically, populations with low
growth rates converge gradually to its equilibrium when
perturbed (referred to as ‘under-compensatory growth’;

Ruokolainen et al. 2009), resulting in population dynamics
with positive temporal autocorrelation. In contrast, popula-
tions with high growth rates overshoot the equilibrium when
perturbed (referred to as ‘over-compensatory growthy), result-
ing in population dynamics with negative autocorrelation.
Moreover, the timescale structure of environmental fluctua-
tions can generate similar patterns in population dynamics,
e.g. populations living in a positively autocorrelated environ-
ment tend to exhibit positive autocorrelation (Kaitala et al.
1997, Garcifa-Carreras and Reuman 2011).

In a spatial context, the importance of timescale has
become evident for understanding synchronous fluctua-
tions of populations across space. Recent theory clarifies that
spatial population synchrony measured at a specific times-
cale can be driven by spatial environmental correlation at
the same timescale (Sheppard et al. 2016, Desharnais et al.
2018). Such theoretical insights have provided new oppor-
tunities to detect the drivers of spatial population dynam-
ics in nature (Sheppard et al. 2016, 2019, Anderson et al.
2019). For instance, by showing the timescale-specific syn-
chrony of both aphid populations and a number of climatic
factors, Sheppard et al. (2016) discovered that winter tem-
perature was a major driver of the spatial synchrony of aphid
phenology. Theory also indicated that the presence of dis-
persal could alter the effect of environmental correlation in
shaping the timescale-specific patterns of spatial synchrony
(Desharnais et al. 2018). But an important and understudied
problem is how dispersal itself shapes spatial synchrony across
timescales. In particular, while dispersal can increase the sta-
bility and spatial synchrony of local populations (Abbott
2011), whether such effects are consistent across timescales
is unknown.

Here we investigate how dispersal interacts with popula-
tion growth rate and environmental noise to regulate popu-
lation variability and synchrony at different timescales, as
well as their empirical implications. In particular, if dispersal
affects population variability and synchrony differently at
different timescales (on a frequency domain), we expect that
the empirical relationships between dispersal and population
variability or synchrony may vary with the time series length
(on a time domain), because short time series can only cap-
ture dynamics at short timescales but long ones can capture
dynamics at both short and long timescales. Specifically, we
use two-patch metapopulation models and employ Fourier
transforms (Brillinger 2001, Bloomfield 2004) to uncover
the timescale-specific patterns of population variability and
spatial synchrony in the frequency domain. We first examine
whether dispersal has different effects on population vari-
ability or spatial synchrony at short versus long timescales,
and test whether these effects differ when populations exhibit
under- and over-compensatory growth. We then use simu-
lated time series to investigate relationships of dispersal with
population variability and spatial synchrony, and test whether
these relationships depend on time series length. Our analy-
ses derived new predictions on the timescale-dependent
effects of dispersal, and we conclude with a discussion on the
theoretical and practical implications of our results.



Methods

The metapopulation model

We consider a two-patch discrete-time metapopulation
model, in which population dynamics are governed by a
Ricker growth function, environmental stochasticity and

dispersal:
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Here, x(2) and x/(#) denote the population size in patch i
recorded before and after the dispersal process, respectively.
K and 7, are the carrying capacity and intrinsic growth rate in
patch 7, and 4 is the dispersal rate. = (g,,€,)” is two-dimen-
sional Gaussian white noise with component variances 0.01
and correlation coefficient p, which describes the response
of population growth rate to environmental fluctuations. We
calculate population variability and synchrony based on x,(z)
to avoid the immediate influence of dispersal (de Raedt et al.
2019; but see Desharnais et al. 2018). Previous studies that
considered both x,(2) and x,'(#) showed that these two types of
models generated qualitatively similar effects of dispersal on
synchrony and variability (Wang et al. 2015).

In our model, we consider the intrinsic growth rates (7)) to
be within the interval (0,2), such that local populations always
have stable equilibria K. When 0 < 7, < 1, a local population
exhibits under-compensatory growth and converges mono-
tonically to its steady state when disturbed. When 1 < 7, < 2,
the local population exhibits over-compensatory growth and
oscillates but eventually converges to its steady state when

disturbed (Ruokolainen et al. 2009, McCann 2012).

(1a)

(1b)

M(r+l)=x/0)xexp[n[1—

Synchrony and variability: overall and timescale-
specific measures

We measure the temporal variability by the squared coefhi-
cient of variation (CV?), i.e. the ratio of temporal variance
(var(x)) to the squared mean (x*) of population size. Given
a time series of metapopulation dynamics, we calculate popu-
lation variability (V) by the average temporal variability of
the two local populations, i.e. V,=(CV?*(x,) + CV*(x,))/2; we
calculate metapopulation variability (V) by the temporal
variability of total metapopulation size (V,,=(CV?*(x, +x,)).
The spatial synchrony (¢) is defined as the temporal correla-
tion between the two populations (i.e. ¢=cor(x,,x,)). To be
distinguishable from the timescale-specific metrics below, we
refer to these metrics as overall (meta)population variability
and overall synchrony.

We then derive the timescale-specific metrics for vari-
ability and synchrony based on discrete Fourier transforma-

tion (Shumway and Stoffer 2017). Specifically, the sample

variance of population 7 can be decomposed into the sum
of timescale-specific terms: var(x)=2X_I(c), where /(o)

denotes the power spectrum of time series x, at the time

r ,T,...,T,T} (Zhao et al. 2020), cor-
T-1T-2 2

responding to the frequency f= 7/c in other contexts (Halley
1996). Similarly, the sample covariance between popula-
tions 7 and j could be decomposed into sum of timescale-
specific terms: cov(x,x)=Z I (c), where [I.].(G) denotes the
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cospectrum between the time series x, and x,. For a times-
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timescale-specific measure of population variability, and
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specific measure of metapopulation variability. By definition,
the overall population and metapopulation variability can
be expressed as the sum of timescale-specific population and
metapopulation variability, respectively, i.e. V,=Z_V,(c) and

I; (o)
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as a timescale-specific measure of synchrony used by
Desharnais et al. (2018). The denominator of this metric
serves to normalize by the power spectrum of the two time
series, so §(0) is a timescale-specific measure of synchrony
that is independent of timescale-specific patterns of variance
(Desharnais et al. 2018). Note that the sum of ¢$(c) across
timescales does not equal the overall synchrony ¢.

the timescale-

V,=Z.V,(6). We also define ¢(G)=

Analytic investigation

We solve analytically our model (1) in a spatially homoge-
neous case, i.e. the two patches have same environmental
conditions (r,=r,=r, K,=K,=K), using a linearization
approximation around the equilibrium (Supporting infor-
mation). Note that the linearization approximation requires
that the equilibrium is asymptotically stable (0 < » < 2) and
the environmental stochasticity is not very strong (Loreau
and de Mazancourt 2013, Wang et al. 2015). For the over-
all metrics of variability and synchrony, previous studies
have provided analytic solutions for ¢, V), and V,, (Abbott
2011, Wang et al. 2015). These solutions show that dispersal
decreases the variability of local populations but increases
spatial synchrony; these two effects cancel out at the larger
metapopulation scale, such that dispersal has no effect on
the stability of the metapopulation. Given the homogeneity
assumption of our model, we also have: V,,=V, X (1+¢)/2
(Wang et al. 2015). For the timescale-specific metrics, we
can similarly linearize the model and use filter theory of
time series (Reinsel 1993) to derive the analytic solutions for
d(0), V(o) and V(o) as functions of timescale, growth rate,
dispersal and timescale-specific variance/synchrony of envi-
ronmental noise (Supporting information; Desharnais et al.



2018). We note that the analytical solutions of timescale-
specific variability and synchrony correspond to Fourier
transforms of infinite time series (Supporting information).
To visualize and compare with simulation results based on
finite time series of length L, we rescaled the timescale-

specific variability and synchrony by: z'(c)= #(0) , where
z(0) denotes ¢(c), V(o) or V(o) (Supportiné informa-

tion). Following Sheppard et al. (2016), we used the thresh-
old 6=4 between short and long timescales. We note that
the timescale 6 corresponds to the reciprocal of frequency
(on a frequency domain), which is different from the time
series length Z (on a time domain).

Simulations

We first simulated the nonlinear dynamics described by Eq.
1 in homogenous landscapes with the same values of » and
K in the two patches. We did so across a range of parameter
values, systematically varying intrinsic growth rate (r=0.45,
0.55, ..., 1.55), dispersal (4=0, 0.05, 0.1, ..., 0.5) and
spatial correlation in the environment (p=-0.9, 0.8, ...,
0.8, 0.9). For each set of parameters, we set the initial values
of population sizes as the carrying capacities K and ran the
simulations for 1000 time steps to ensure that populations
reach their stationary states and then recorded time series of
the following 200 time steps. With the simulated time series,
we applied the discrete Fourier transform (using the function
‘ff’ in Matlab) to derive the timescale specific metrics of vari-
ability and synchrony.

The length of time series may affect our ability to detect
timescale-specific patterns of variability and synchrony and
their relation with ecological factors (Inchausti and Halley
2002). To investigate this, we simulated metapopulation
dynamics to stationary states (7=1000) and then record
time series with different lengths or number of time steps.
We also examined how the ‘observed’ relationships (i.e.
based on our simulated data) between dispersal and over-
all synchrony or variability might differ between short (five
timesteps) and long (60 timesteps) time series.

We then performed further simulations to test whether
our results hold in landscapes with spatial heterogeneity,
temporally autocorrelated environmental noises and more
patches. We first simulated heterogeneous metapopulations
with asymmetric population growth rates (r, # r,) or carrying
capacity (K, # K,). We then consider cases where the envi-
ronmental noise is temporally autocorrelated. Specifically, we
define the noise term by a first-order autoregressive process
(AR(1)): e(r) =ge(r — 1)+E&(2), where (z) are white noises
and 0 < ¢ < 1, i=1, 2. A larger autoregression coefficient ¢
will result in a higher temporal autocorrelation. Lastly, we
simulated a 16-patch metapopulation model with local pop-
ulation growth characterized by Eq. 1b and global dispersal,
i.e. an emigrant from one patch has equal probabilities of
immigrating into the other 15 patches.

Results

Analytic approximations for homogeneous
metapopulations

We derive analytic solutions for timescale-specific metrics
of synchrony and variability in homogenous two-patch
landscapes (Supporting information). In the case that the
environmental noise has the same power spectrum (/;) and
spatial synchrony (p) at all timescales, the timescale-specific
solutions for spatial synchrony (¢(0)), population variability
(V(0)) and metapopulation variability (V,(6)) can be sim-
plified as (Supporting information, Eq. B14-B16):

l1-a)p+a

b(0) ="

(1—a)+ap @

~ [(l—oc)+0cp]><lo
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where

2d(1-r)cos(2n/c)—(1-4)(1-7)
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a(o)=

The above solutions clarify how the timescale-specific patterns
of synchrony and variability depend on population dynami-
cal parameters. In particular, the timescale-specific variability
for both local populations and metapopulations increase as
the timescale (6) increases when population dynamics are
under-compensatory (r < 1), and they both decrease as ¢
increases when population dynamics are over-compensatory
(r> 1) (Fig. 1; Supporting information). Similarly, at short
timescales, synchrony and both population and metapopula-
tion variability all increase as 7 increases; at long timescales, all
these synchrony and variability metrics decrease as 7 increases
(Fig. 1; Supporting information).

The effect of dispersal on synchrony and variability
depends on the timescale considered and the population
growth rate (Fig. 2). When r < 1, dispersal increases spa-
tial synchrony and decreases population variability at long
timescales, but it has just the inverse effects at short times-
cales. When » > 1, dispersal has the opposite effects on spa-
tial synchrony and population variability at both short and
long timescales. In the absence of dispersal, spatial synchrony
equals p at all timescales (Fig. 2b, ¢). Additionally, dispersal
has no effect on the metapopulation variability at all times-

cales (Fig. 2¢, f).
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Figure 1. Timescale-specific population variability (V,(0), ), spatial synchrony (¢(c), b) and metapopulation variability (V,,(6), c) as func-
tions of timescale (2 < 6 < 100) and growth rate (7), derived from analytic approximations. Parameters: p=0, 4=0.2, K=10, var(e) =0.01.

The correlation of environmental noises (p) has posi-
tive effect on spatial synchrony and metapopulation vari-
ability at all timescales, regardless of the magnitude of 7
(Supporting information). But the effects of environmental
correlation on local population variability differ between
under- and over-compensatory systems (Supporting infor-
mation). When r < 1, local population variability increases
as p increases at long timescales, but it decreases slightly as
p increases at short timescales. When 7 > 1, the opposite is
true. See the Supporting information for analytic investiga-
tions on the dependency of V), ¢ and V), on parameters 4,
o and p.

Local population variability

Spatial synchrony

Variability and synchrony in simulated
metapopulations

Our simulations of homogeneous metapopulations reveal
similar patterns as the analytic solutions, provided sufliciently
long time series (e.g. 200 timesteps). In particular, dispersal
has contrasting effects on variability and synchrony at short
and long timescales, which depend on whether population
growth follows under- or over-compensatory dynamics.
In under-compensatory systems (r < 1), spatial synchrony
increases and population variability decreases, as dispersal
increases, at long timescales; in contrast, spatial synchrony

Metapopulation variability
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Figure 2. Timescale-specific population variability (V(c)), spatial synchrony (¢(6)) and metapopulation variability (V,(c)) as functions of
timescale and dispersal rate (d), derived from analytic approximations. Note that spatial synchrony always equals 0 when 4=0, which is
invisible in the figure. Parameters are set with »=0.5 (under-compensatory, a—), 1.5 (over-compensatory, d—f) and p=0, K=10,

var(€) =0.01.



decreases and population variability increases, as dispersal
decreases, at short timescales (Supporting information). In
over-compensatory systems (7 > 1), the effects of dispersal are
opposite at both short and long timescales (Supporting infor-
mation). In these homogeneous metapopulations, dispers
has no effect on metapopulation variability at all timescales,
regardless of » (Supporting information). Besides, the (meta)
population variability and synchrony all increase with 7 at
short timescales, and they decrease with 7 at long timescales
(Supporting information). The environmental correlation
generally increases metapopulation variability and synchrony,
except for population variability at short timescales when 7 <
1, or at long timescales when > 1 (Supporting information).
All these effects of dispersal, growth rate and environmental
correlation are consistent with analytic solutions (Fig. 1, 2,
Supporting information).

We then explore how the length of time series may influ-
ence their relationships with dispersal and intrinsic growth
rate. The length of time series used for calculations directly
influence the empirical relationship between dispersal and
overall synchrony or population variability, even though
the time series are generated from the same underlying
model and only differ in their length. Specifically, given
a long time series (length=60), the overall synchrony
increases, and overall population variability decreases, as
dispersal increases, no matter whether local populations
exhibit under- or over-compensatory dynamics (Fig. 3d—e).
However, given a short time series (length=5), the overall

spatial synchrony decreases and the overall population vari-
ability increases, as dispersal increases, when populations
exhibit under-compensatory growth (i.e. » < 1); opposite
patterns are observed when populations exhibit over-com-
pensatory growth (i.e. » > 1) (Fig. 3a-b). In other words,
when populations exhibited under-compensatory dynam-
ics, dispersal has contrasting effects on spatial synchrony
or population variability in short versus long time series.
Lastly, the metapopulation variability exhibits no rela-
tion with dispersal, regardless of the time series length or
whether populations follow under- or over-compensatory
dynamics (Fig. 3c-f).

Similarly, the overall synchrony or (meta)population vari-
ability also exhibit contrasting relationships with the intrin-
sic growth rate (7) in short versus long time series. Given
a long time series (length=60), the overall synchrony and
(meta)population variability all exhibit U-shape curves with
r (Supporting information), consistent with theoretical pre-
dictions (Wang et al. 2015). However, given a short time
series (length=15), the overall synchrony and (meta)popula-
tion variability all increase monotonically with 7 (Supporting
information). Besides, the overall synchrony and (meta)
population variability generally exhibit positive relationships
with the environmental correlation, except that the variability
of under-compensatory populations decreases slightly with p
in short time series (Supporting information).

To examine how additional ecological complexity alter the
above results obtained from homogeneous metapopulations
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Figure 3. Effect of dispersal on local population variability (a, d), spatial synchrony (b, €) and metapopulation variability (c, f) calculated
from short (a—) and long (d—f) time series. Blue and red lines represent models with under- and over-compensatory population growth
(r=0.5 or 1.5), respectively. Dash lines represent respectively analytical solutions of variability and synchrony derived in Wang et al. (2015)
(note that solutions are the same when »=0.5 and 1.5). Parameters: p=0, var(€) =0.1, K=10. The results represent the average across 500

000 (length=5) or 50 000 (length =60) simulated communities.
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000 (length = 60) simulated communities.

with white noises, we simulate population dynamics in
heterogeneous landscapes or in temporally autocorrelated
environments (Fig. 4). In heterogeneous landscapes where
the two patches differ in their intrinsic growth rates () or
carrying capacities (K), spatial synchrony at all timescales
generally increase as dispersal increases in over-compensa-
tory systems (r > 1); in under-compensatory systems (r <
1), spatial synchrony decreases as dispersal increases in short
time series, and it increased as dispersal increases in long time
series (Fig. 4). Such patterns also hold if the environmental
fluctuations exhibited temporal autocorrelation. That said,
if the environmental autocorrelation is very strong, spatial
synchrony always increases with dispersal, regardless of the
time series length (Fig. 4). Moreover, our simulations using
16-patch models exhibited similar time length dependency
of spatial asynchrony—dispersal relationship as 2-patch
ones (Supporting information). In all these heterogenous
or autocorrelated scenatios, the overall population variabil-
ity exhibits opposite patterns compared to those of overall
synchrony (Supporting information). Overall, we find our
results derived from two-patch homogeneous metapopula-
tions with white noise are generally consistent in larger or
heterogeneous metapopulations or with temporally autocor-
related environmental variability.

Discussion

Our study demonstrates that dispersal has contrasting effects
on spatial synchrony and population variability at short versus
long timescales. We show that the well-documented locally
stabilizing and spatially synchronizing effects of dispersal

operate only at particular timescales, and opposite effects
can arise at other timescales. We present analytic predictions
for two-patch homogeneous metapopulations, which are
shown by simulations to hold in broader context with spa-
tial heterogeneity and environmental autocorrelation. One
implication of the timescale-dependent effects of dispersal
is that the empirical relationship between dispersal and spa-
tial synchrony or population variability can exhibit opposite
patterns, simply because of different time series lengths. Our
findings have important implications for experimental and
observational studies that seek to understand the role of dis-
persal in structuring and sustaining metapopulations.

Contrasting effects of dispersal at short versus long
timescales

The effects of dispersal on population variability and syn-
chrony have been widely explored in metapopulation
models. Previous models showed that dispersal is a ‘double-
edged sword’ for metapopulation stability by decreasing
local population variability but also increasing spatial syn-
chrony (Hudson and Cattadori 1999, Kendall et al. 2000,
Abbottetal. 2011, Wang et al. 2015). While such local stabi-
lizing and spatially synchronizing effects of dispersal are well
understood, our model demonstrates that these two effects
are timescale-dependent and, moreover, such timescale-
dependency relies on the nature of population growth of the
species of interest.

For populations exhibiting under-compensatory growth
(i.e. slow recovery after being perturbed), the local sta-
bilizing and spatially synchronizing effects of dispersal
operate mainly at long timescales. At short timescales,
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Figure 5. An illustration on the dispersal-induced negative synchrony at short timescales in under-compensatory systems: with (a—c) and
without (d—f) dispersal. Each panel represents the dynamics of two populations (blue and red) during one time step. Three different sce-
narios of the initial states are shown in (a, d), (b, €) and (c, f). Starting from a different population size (i.e. x,(#) and x,(#)), each population
experiences first dispersal () and then local growth (), indicated by the thick and thin arrows, respectively. The dashed lines indicate the
overall changes during one time step. Strong dispersal reduces the difference between the two populations via a statistical averaging effect,
and then the intrinsic growths moves the population size towards the equilibrium. Note that in a highly under-compensatory systems, the
effects of intrinsic growth are moderate in one time step. Overall, the two populations always exhibit a negative correlation during one
time step (between # and z+ 1) in the presence of dispersal (a—c), and either positive (e—f) or negative (d) correlations in the absence of

dispersal.

counterintuitively, dispersal destabilizes local populations
and desynchronizes population dynamics across patches
(Fig. 2a—c). Such counterintuitive effects can be under-
stood from the interaction between environmental fluctua-
tions and the statistical averaging effect of dispersal (Briggs
and Hoopes 2004). For example, consider a starting point
where the two patches have different population sizes due
to environmental fluctuations (Fig. 5). During the next
step, dispersal will decrease the population size in one patch
and increase it in the other, followed by relatively moder-
ate changes in population size driven by local under-com-
pensatory population growth in both patches (Fig. 5a—c).
Therefore, in the short term, dispersal causes different
population sizes to converge toward intermediate values,
which generates a negative correlation between populations
and thus decreases spatial synchrony (Fig. 5a—c). But in the
absence of dispersal, local population growth causes differ-
ent population sizes to converge toward the equilibrium,
where a negative temporal correlation between the two pop-
ulations emerges only if the population size in one patch
is larger, and that in the other patch is smaller than the
equilibrium (Fig. 5d—f). In contrast, for populations exhib-
iting over-compensatory growth (i.e. dampening oscillatory
recovery after being perturbed), the interaction between
environmental fluctuations and the averaging effects of dis-
persal leads to opposite effects of dispersal across timescales:

dispersal has local stabilizing and spatially synchronizing
effects at short timescales, and opposites effects at long
timescales (Fig. 2d-f; see the Supporting information for
illustration).

Although previous studies have revealed both under-
and over-compensatory growth in natural populations, the
former was found to be far more common than the latter
(Fagan et al. 2010, Cortés 2016). In these under-com-
pensatory populations, the contrasting effects of dispersal
at short versus long timescales lead to an increasing trend
of spatial synchrony with timescales, even if spatial envi-
ronmental correlation is constant at all timescales (Fig. 2).
Such an increasing trend of spatial synchrony with times-
cale is consistent with observations from recent empirical
studies, which revealed a higher spatial synchrony at longer
timescales in gypsy moth defoliation (Walter et al. 2017),
zooplankton abundances (Anderson et al. 2019) and the
productivity of terrestrial vegetation and marine phyto-
plankton (Defriez and Reuman 2017a, b, Sheppard et al.
2019). One explanation for the higher spatial synchrony
at longer timescales was the stronger spatial environmental
correlation at long timescales (Sheppard et al. 2016, 2019,
Desharnais et al. 2018). Our theoretical results, however,
provide an alternative explanation from endogenous pro-
cesses via the interaction between dispersal and under-com-
pensatory growth dynamics.



Time series length matters in metapopulation studies

The contrasting effects of dispersal at short versus long times-
cales lead to a sample size dependency of the empirical relation-
ship between dispersal and population variability or synchrony.
For populations with under-compensatory growth, short time
series would reveal a positive effect of dispersal on the overall
population variability and a negative effect on overall spatial
synchrony, which is the opposite of predictions derived from
long time series or analytic solutions (Fig. 3; Abbott 2011,
Wang et al. 2015). Such a contrast can be explained by the fact
that short time series represented information mainly at short
timescales, at which dispersal has opposite effects from long
timescales (Fig. 5). In comparison, long time series cover infor-
mation at both short and long timescales, which reflect the
combined effect of dispersal across all timescales. Sample size
dependency also applies to other factors that exhibit contrast-
ing effects at short and long timescales — for instance popula-
tion growth rate (Supporting information).

Such a sample size dependency has two implications for
ecological research. First, to understand the effect of disper-
sal (and other factors), comparison between metapopulation
experimental studies should be made among experiments
with similar time series length and between species with
similar types of growth (e.g. over- or under-compensatory).
A growing number of metapopulation experiments has been
conducted to test the effect of dispersal on spatial synchrony
and population variability, which revealed a range of effect
sizes and directions (Dey and Joshi 2006, Steiner et al. 2011,
2013, Thompson et al. 2015). Our results suggest that dif-
ferent time series length might complicate across-study com-
parison and account for the idiosyncratic conclusions in the
literature. Smeti et al. (2016), for example, conducted an
experiment of phytoplankton metapopulations that spanned
15-30 generations and found no significant effects of disper-
sal on spatial asynchrony. Our results suggested that the short
experimental period may explain the reported insignificant
effect of dispersal. Second, because the goal of understanding
variability and synchrony is to eventually predict the long-
term persistence of populations, we argue that sufficiently
long time series should be used to reveal the long-term, or
‘theoretically expected’, relationship between dispersal and
population dynamics. An important question remains: ‘How
long of a time series is necessary for experimental research to
reveal the ‘theoretically expected’ relationship?

Determining a ‘critical time series length’ is particularly
useful for metapopulation study design as well as cross-study
comparisons. We suggest that a tentative time series length
may be derived by conducting a simulation-based statisti-
cal power analysis. Specifically, based on prior knowledge on
the dynamical parameters of the focal species (e.g. intrinsic
growth rate), one can simulate metapopulation models with
different experimental setting (e.g. gradients of dispersal, envi-
ronmental noise, number of replicates, etc.) and numerically
determine the minimum time series length for exhibiting a
positive dispersal—spatial synchrony relationship with a given
accuracy (Supporting information). Our preliminary analyses

show that a longer time series or more replicates are required
for metapopulations with under-compensatory dynamics
(r < 1), a lower environmental correlation between patches
and replicates (p) and a narrower gradient of dispersal rate,
whereas the variance of environmental noise (6%) has only
moderate influence (Supporting information). We encourage
such kind of power analysis before starting a metapopulation
study or conducting meta-analyses of spatial synchrony.

Conclusion

The past decades of metapopulation research have made signif-
icant progress in understanding the role of dispersal in popu-
lation variability and synchrony (Abbott et al. 2011). To date,
however, studies have generally used overall measures of vari-
ability and synchrony that integrate information over a wide
range of timescales, which potentially overlooked the times-
cale dependence of dispersal effects. Our study demonstrates
thart dispersal has contrasting effects on population variability
and synchrony at short versus long timescales. A timescale-
specific perspective not only extends our understanding of
dispersal impacts on metapopulations, but also has important
implications for how we interpret the results from empirical
studies utilizing time series of different lengths. In particular,
the length of time series itself is sufficient to generate con-
trasting conclusions about the relationship between dispersal
and spatial synchrony. Future studies are needed to explore
the implications of the timescale-dependent effects of dis-
persal for population extinction probability and to examine
how time series length may affect the empirical relationship
between dispersal and spatial synchrony in empirical data.
Our study highlights the importance of accounting for the
time series length when comparing results among studies of
spatial synchrony. This is in line with recent calls to account
for spatial scale when comparing results among studies of bio-
diversity and stability (Chase and Knight 2013, Wang et al.
2017). Our findings add to a growing body of work sup-
porting the idea that long-term, continual data collection
(e.g. the long-term ecological research; LTER) is needed to
advance population ecology (Clutton-Brock and Sheldon
2010, Gaiser et al. 2020), because ecological cause-and-effect
inferences can be qualitatively altered by time series length.
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