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We present a metastructure architecture with a bistable microstructure that enables extreme broadband
frequency conversion. We use numerical and experimental tools to unveil the relationship between input
excitations at the unit cell level and output responses at the macrostructural level. We identify soliton-lattice
mode resonances resulting in input-independent energy transfer into desired metabeam vibration modes as
long as transition waves are triggered within the metastructure. We observe both low-to-high and high-to-
low incommensurate frequency interactions in the metabeams, thus enabling energy exchange between
bands 2 orders of magnitude apart. This behavior generalizes fluxon-cavity mode resonance in super-
conducting electronics, providing a general method to extreme frequency conversion in mechanics.
Importantly, the introduced architecture allows for expanding the metamaterials design paradigm by
fundamentally breaking the dependence of macroscopic dynamics on the unit cell properties. The resulting
input-independent nature implies potential applications in broadband frequency regulation and energy

transduction.
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Introduction.—Solitary waves appear in various physical
systems [1] playing a pivotal role in applications, including
waveguiding [2], photonics [3], optical communications
[4], reversible logic gates [5], lasing [6], morphing struc-
tures [7], nondestructive testing [8], and soft robotics [9]. A
unique aspect of solitons is their quasiparticle character-
istics. This allows for better imaging using sonic bullets
[10] or dense wavelength-division multiplexing for optical
communications exploiting cavity solitons [11]. Solitons’
resonant interactions with cavities have enabled the gen-
eration of lasers exhibiting frequency conversion not
readily available with conventional sources exploiting
fluxons—a type of transition wave or topological soliton
—in Josephson junctions [12]. Such extreme frequency
conversion in mechanical systems is less common and is
typically achieved via subharmonic, superharmonic, or
combination resonances [13] and nonlinear coupling
between normal modes [14]. Nonlinear multimode meta-
materials can provide alternate ways to attain frequency
conversion through their amplitude-dependent dispersion
relations [15,16]. Intermodal interactions through
nonlinearly generated higher harmonics have been theo-
retically and experimentally demonstrated, enabling
energy exchange between different wave modes [17-19].
Furthermore, magnetic metamaterials featuring engineered
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defects have demonstrated conversion from high- to low-
frequency modes through resonant coupling between
localized defect modes and extended lattice modes [20].
However, to excite these interaction mechanisms, the defect
mode’s frequency needs to be commensurate with or a
combination of the system’s modes, still limiting the
attainable frequency bandwidth.

Lattices composed of bistable elements can support
transition waves exhibiting particlelike behavior [21-23].
When the constitutive on-site members are built with asym-
metric bistable elements, transition waves become uni-
directional [24,25] and exhibit unique input-independent
dynamics [26], implying strong potential for broadband
applications. Enabling nonlinear interactions similar to
fluxon-cavity mode resonances exploiting the input fre-
quency independence of transition waves offers the poten-
tial for extreme energy conversion currently absent in
mechanical systems. In this study, we demonstrate extreme
energy exchange in mechanical systems with metabeams
composed of a bistable microstructure that promotes non-
linear coupling between wave and metastructural modes in
an analogous process to fluxons interacting with cavity
modes in superconductors [6,12]. Importantly, the soliton
resonant interactions enable extreme frequency conversion
and response manipulation in mechanical systems, without
recourse to dispersion-related phenomena. The unveiled
dynamics are insensitive to the excitation frequency, thus
laying the foundation for a new physical mechanism, the
dynamics of which are independent of the metamaterial
building block size.

Experimental results.—To illustrate the extreme fre-
quency conversion phenomenon, we manufacture and test
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a metabeam featuring an engineered bistable micro-
structure. The model metabeam is built by 3D printing a
ladderlike structure [black component in Fig. 1(a)], the
rungs of which are interconnected by springlike features
providing intersite interaction. The intersite members are
aligned at a small offset distance from the metabeam’s
center line. This design feature is introduced to break the
cross section’s symmetry about the center line, allowing the
excitation of the bending modes by in-plane inputs (see
Movie S1 [27]). The metabeam is then fitted between a set
of flexible holders [white components in Fig. 1(a)],
providing flexibility in the transverse direction and
allowing the microstructure to exhibit two different
stable states [red and green dashed lines in Figs. 1(a)(i)
and 1(a)(ii)]. In this example setup, one end of the structure
is clamped to realize a fixed-free boundary condition. A
harmonic displacement input is imposed at the first element
in the in-plane direction through an electrodynamic shaker.
The input and output displacements are measured by a set
of laser displacement sensors, pointing at the flat surfaces
of the shaker head and near the free end of the structure,
respectively. The overall experimental setup is shown in
Fig. 1(a)(iii), and more detailed fabrication and experi-
mental methods are given in Sec. 1 of Supplemental
Material [27].

To summarize the input and output frequency relations,
we construct an output frequency diagram [Figs. 1(b) and
1(c)]. The diagram summarizes up to the 20 largest peaks of
the output displacement’s power spectral density (DPSD)
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FIG. 1. (a) Experimental demonstrator and shaker test setup.
Experimental output frequency diagrams under (b) small- and
(c) large-amplitude excitations. fou., fin, and f; are the output
frequency, input frequency, and fundamental mode of the
metabeam, respectively.

as a function of the input frequency. Each dot in the
diagram represents the available frequency component of
the output response, while its size indicates the relative
intensity: A larger dot indicates larger spectral contribution.
For each input cases, the relative intensity rppgp iS
calculated by DPSD,; /DPSD,,,,., where DPSD; is the power
of the ith frequency component and DPSD,,,,, is the power
of the most dominant peak. DPSD,’s less than 0.1% of
DPSD,,.x are discarded to declutter the output frequency
diagrams. For better visualization of the subdominant
frequency peaks, the dots are logarithmically scaled such
that they appear as 2'°¢0’orsp in size. Blue dots indicate the
generation of in-plane transition waves within the meta-
beam, while red dots represent responses involving no
phase transitions. The DPSD is obtained when the system
attains steady state with the aid of welch function in
PYTHON’s scipy library at 1000 Hz sampling frequency
without windowing.

For a relatively small input displacement about one of the
stable states for which transition waves are not triggered,
the dominant output frequency corresponds to either the
input frequency or its harmonics close to the fundamental
mode (4.62 Hz [27]) of the metabeam [Fig. 1(b)]. The
harmonic contributions’ appearance is due to the experi-
mental limitation in generating purely sinusoidal displace-
ment signals with our test setup, leading excitation of
superharmonics of the input frequency (Sec. 2 of
Supplemental Material [27]). In this low forcing amplitude
regime, the observed dynamics are fully accountable in
terms of the typical linear and weakly nonlinear responses
that do not involve the triggering of transition waves.

Increasing the imposed displacement amplitude further
triggers transition waves, revealing an output frequency
branch close to the structural mode [green dashed line in
Fig. 1(c) and Movie S2] in addition to a branch corre-
sponding to the input frequencies (red dashed line).
Interestingly for the input frequencies above 2.5 Hz, the
frequencies of this subdominant output branch are not the
results of superharmonic resonance [see the spectral con-
tent around 4.5 Hz in Figs. S2(e) and S2(f)]; rather, these
exhibit incommensurate relations with the input frequen-
cies. Our experiments thus reveal that the generation of
transition waves results in a solution branch showing
coherent output frequency around the fundamental mode
f1 of the metabeam unrelated to the input frequencies.
Notably, the transition wave generation yields a fundamen-
tal mechanism to achieve incommensurate frequency res-
onance displaying strong stability, which is uncommon in
structural systems [30]. As this dynamics manifests when
transition waves (i.e., topological solitons) are triggered,
we referred to this phenomenon as solitonic resonance.

The solitonic resonance can be explained by the tran-
sition wave’s particlelike nature [1,31]. In this regime, the
generated quasiparticles impulsively excite the meta-
structure continuously. This triggers lasting transients even
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FIG. 2. (a) Schematic representation of a beam subjected to a
moving particle. (b) Power spectral density of the approximated
tip displacement of the beam in a fixed-free configuration.

in a nonconservative system. This mechanism is similar to
frequency up-conversion in devices [32], but our metabeam
utilizes the quasiparticle motion instead of direct impacts.
We can further analogize the metabeam’s solitonic reso-
nance employing an Euler-Bernoulli beam subjected to an
in-plane traveling particle. The motion of a single particle
moving along the beam’s length can be mathematically
represented as a localized traveling impulse [Fig. 2(a)].
This beam problem can be solved exactly by a modal
expansion method (see Sec. 4 of Supplemental Material
[27] for the analysis details). An example five-term
approximation of the tip displacement for such a beam
in a fixed-free configuration is obtained by sending 22
particles every 2 ms. The resulting DPSD obtained for the
response between 24 and 44 ms [Fig. 2(b)] confirms that a
moving impulse indeed excites the normal modes f,’s of
the beams.

Numerical results.—Although the postbuckled beam
design as the microstructure readily yields bistability in
an experimental demonstrator, a spring-joined bistable
unit cell design is more advantageous for a simpler mathe-
matical description. Thus, we adopt it in the subsequent
numerical investigation by constructing a beamlike frame
with underlying spring-mass bistable microstructures [23].
We introduce an offset from the center line of the frame
[dash-dotted line in Fig. 3(a)] to break the system’s cross-
sectional symmetry and amplify the flexural motion. The
buckled beam, providing the local bistability, is idealized
by a pair of linear springs with the constants k, and k3. The
spring with the constant k; serves as the intersite con-
nection between neighboring on-site members. The flanges
and the holders of the experimental demonstrator form an
external elastic frame, which is idealized by the rest of the
linear springs (k;—kg) in the mathematical design.
Additionally, small mass proportional damping is imposed
across the metabeam to suppress any unwanted transient
effects.

A fixed-free boundary condition is used; however, the
ensuing dynamics are independent of the boundary con-
ditions (Sec. 6 of Supplemental Material [27]). Harmonic
displacement input u(f) = R — Acos(2zfi,t — ¢y) or
force input p(r) = F sin 2z f;,t are used to separately excite
the metabeam [33]. The excitation is applied in the in-plane
direction at the leftmost node of the internal bistable lattice,
where A, ¢, and F are the displacement amplitude, phase

constant, and forcing amplitude, respectively. The output
displacement is measured at the top rightmost node in the
out-of-plane direction. See Fig. 3(a) and Sec. 5 of
Supplemental Material [27] for the full metabeam descrip-
tion and design parameters. The metabeam’s dynamics are
simulated using ABAQUS/STANDARD implicit nonlinear
solver and reported in output frequency diagrams.

We first construct a numerical model qualitatively
similar to the experimental metabeam, which is achieved
by matching the unit cell natural frequency and the
fundamental macrostructural mode of the numerical model
to those of the experimental metabeam (see Supplemental
Material [27] for the design parameters). The simulated
output response diagrams display qualitative agreement
with the experimental response. The metabeam under 1 mm
input amplitude shows purely linear behavior, confirming
that the solitonic resonance is not a product of the peculiar
unit cell design [Fig. 3(b)]. Under 9.5 mm input amplitude,
transition waves are triggered within the metabeam, result-
ing in coexisting linear and solitonic resonance solution
branches [red and green dashed lines in Fig. 3(c)]. The
numerical simulations for this case are then extended to a
higher input frequency range, still showing the output
frequency branch concentrated at ~4.62 Hz [34] but almost
eliminating the branch corresponding to the input frequen-
cies. This disappearance of the input frequency contribu-
tion is due to the aperiodic generation of the transition
waves. At low input frequencies, such that the snap-through
transitions at the excitation site occur at a much slower rate
than the transition wave’s propagation speed, each unit’s
interwell oscillation takes place at the same frequency as
the input frequency, resulting in the direct contribution
from the input. In contrast, increasing the input frequency
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FIG. 3. (a) Schematic representation of the metabeam. Output
frequency diagrams for a qualitatively similar numerical design
under (b) small- and (c) large-amplitude excitations. The enlarged
region shows the low-frequency responses corresponding to the
experimental range.
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results in a faster transition wave generation rate so that the
newly generated and previously traveling transition waves
interact with one another. Thereby, the resulting interwell
oscillations occur at nondefinite rates, imposing the preva-
lence of transient effects in the response. The transient
effect’s dominance over the input frequency effect can be
further manipulated by the system damping as long as
manufacturing technology allows (Sec. 7 of Supplemental
Material [27]).

Even more extreme energy transfer can be achieved,
employing the force input, since the induced snap-through
instability is chaotic in nature [35], hence facilitating the
aperiodic generation of transition waves. As a baseline
design, the spring constants are tuned to have the funda-
mental macroscopic mode at 26.3 Hz and the unit cell mode
at 39.7 Hz (see Supplemental Material [27] for the design
parameters). Transition waves can be excited via quasistatic
or dynamic inputs but are more easily triggered by
harmonic excitations around the unit cell mode, as shown
in the response map [Fig. 4(a)]. The map indicates whether
transition waves are generated for the given input amplitude
and frequency combinations. Furthermore, the frequency
range expands with increasing forcing amplitudes.

The particlelike nature of the transition waves can be
clearly identified by the stable propagation of the kink-
shaped waveform in Fig. 4(b)(i), showing the in-plane
displacement u; of the center mass in the space configu-
ration under a quasistatic (1 Hz) input. For higher input
frequencies [36 Hz in Fig. 4(b)(ii)], the waveform is
distorted by nonlinear interactions with other lattice modes.
Nevertheless, the waveform starting at one stable state and
ending at another is readily identifiable. In addition, the

induced transition waves provoke response amplification as
in mechanical resonance. Figure 4(c) shows the responses
just below and above the forcing amplitude triggering
transition waves. With only ~3.4% increase in the forcing
amplitude, the output displacement w, amplifies as much as
~14 times (Sec. 8 of Supplemental Material [27]).

Figure 4(d)(i) shows the output frequency diagram for
the baseline design under ' = 1 N, and one representative
response (f;, = 36 Hz) when transition waves are gener-
ated is given in Fig. 4(e). The resulting power spectral
densities of w,’s again confirm that the generation of
transition waves excites the macroscopic metastructure’s
fundamental mode [dashed line in Fig. 4(d)(i)]. Compared
to the displacement input cases, however, almost complete
energy transfer into this macroscopic mode can be achieved
due to the aperiodic generation of transition waves,
illustrated by the nondefinite state transition rates of the
in-plane displacement u; at the excitation site [Fig. 4(e)(1)].
The effect of the generation rate disperses in the frequency
spectrum, leaving the transient effect to dominate the out-
of-plane response. As the forcing amplitude increases to
1.7 N, the input bandwidth yielding solitonic resonance
broadens [Fig. 4(d)(ii) and Movie S3]. It is further observed
that even noisy input sources can be transformed into a
single coherent response mode (Sec. 9 of Supplemental
Material [27]). Thus, the strongly nonlinear dynamics
displayed by the proposed metastructures enable a robust
mechanism for broadband frequency conversion into a
coherent output frequency independently from the excita-
tion frequencies.

Other potentially useful nonlinear behaviors exist out-
side the solitonic resonance domain, such as second
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(a) Response map in terms of input forcing amplitude and frequency, where blue dots indicate that transition waves are

triggered. (b) In-plane displacements of the center masses in space configuration, showing transition wave propagation. (c) Response
amplification when transition waves are triggered (in blue) compared to when they are not triggered (in red). (d) Output frequency
diagrams for various input conditions, showing the output frequency spectrum for each input frequency. (e) Representative response of

solitonic resonance, obtained for ¥ = 1 N at 36 Hz.
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FIG. 5. Output frequency diagrams for various unit cell and
external frame design combinations, demonstrating extreme
tuning flexibility. (a) Design B-1 increases the initiation fre-
quency of the solitonic resonance, and (b) design B-2 increases
the output frequency. Output frequency diagrams for metabeam
designs tuned to enable (c) low-to-high and (d) high-to-low
frequency conversions, where the input and output frequencies
are 1-2 orders of magnitude apart.

harmonic generation [between 12 and 20 Hz in Fig. 4(d)(i)]
or frequency doubling (above 56 Hz) (Sec. 10 of
Supplemental Material [27]). These will be addressed in
detail in a separate study.

Tuning flexibility.—The simplicity and periodicity of the
proposed metastructure allow the operating bandwidth to
be easily tuned to suit a vast range of applications. The unit
cell design dictates the central input frequency around
which the solitonic resonance emerges, while the overall
metastructure topology controls the corresponding output
frequency. Quadrupling &, and k5 doubles the in-plane unit
cell mode, thus shifting up the input frequency inducing
solitonic resonance [Fig. 5(a)]. On the other hand, quad-
rupling k,—kg approximately doubles the macrostructure’s
original natural frequencies, moving the output frequency
of solitonic resonance to a higher frequency range
[Fig. 5(b)].

The metabeam can also be tuned to display remarkable
energy exchanges between incommensurate frequency
bands, which can be separated by several orders of
magnitude. Two such examples are presented (see
Supplemental Material [27] for the design parameters):
one optimized to operate at 3-5 Hz range yielding
~18.63 Hz solitonic resonance [Fig. 5(c)] and the other

at 400-560 Hz range yielding solitonic resonance below
10 Hz [Fig. 5(d)]. The tuning flexibility in the presented
metastructures thus yields a blueprint for unprecedented
dynamical manipulation from an intrinsically nonlinear
interaction.

Conclusions.—We demonstrate nonlinear interactions
involving solitary wave and vibration modes, resulting in
extreme frequency conversion in generic bistable meta-
structures. Notably, the observed phenomenon referred to
as solitonic resonance allows for a remarkably stable
means to achieve input-independent frequency conversion,
in which the output response is unaffected by wave
dispersion. This behavior generalizes analogous fluxon-
cavity mode resonance in superconducting electronics,
providing an exemplary platform for frequency regulation
and energy conversion applications across physical fields.
The tuning flexibility of the presented metabeam also
allows for extreme energy exchange between incommen-
surate frequencies separated by orders of magnitude.
Importantly, the presented architecture provides a general
model system for realizing unique properties in metama-
terials at frequencies not dictated by the unit cell, opening
up new avenues for attaining extreme dynamics.
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1 Experimental method

(a) Lattice (b) Flexible holder

FIG. S1: CAD models for (a) the lattice and (b) the flexible holder with key geometric dimensions shown.

The experimental demonstrator is prepared by assembling multiple parts printed with a fused-deposition-modeling
3D printer (Ultimaker 3 Extended). First, a lattice structure [the black component in Fig. 1(a) in the manuscript and
Fig. S1(a)] is 3D-printed in black PLA material, where the ribs are interconnected by spring-like features.! The lattice
axis (along the intersite springs) is slightly offset from the centerline of the structure so as to amplify the flexural
motion. Next, a set of four flexible holders [the white component in Fig. 1(a) and Fig. S1(b)] are printed in white
PLA and fitted with the flanges of the lattice structure. Upon assemblage, the holders precompress the lattice to allow
two different stable states [Figs. 1(a)(i) and 1(a)(ii)] and provide flexibility in the transverse direction. The cylindrical
hole at the center of each unit cell is filled with ~2.6 g of solder to increase the inertia of unit cells. The fixed-free
boundary condition is realized by clamping the flanges at one end of the assembled structure to the rigid test rig and
leaving the other end unconstrained [Fig. 1(a)(iii)].

The metabeam is excited by APS 113 long-stroke electrodynamic shaker powered by APS 125 power amplifier. An
open-loop control system is designed in Simulink, and a sinusoidal input signal is sent through dSpace data acquisition
system (DS1104) to control the shaker. The amplitude of the input signal is controlled by manually changing the
amplifier gain; the gain is increased until noticeable periodic motions start for the small-amplitude responses and
until the transition waves are generated in the metabeam for the large-amplitude responses. Due to the shaker’s
limited capability, only approximate displacement-controlled tests are performed. Although the reaction force from
the demonstrator affects the shaker force, its effect is minimal due to the heavy armature weight (2.5 kg), which is
cross-checked by measuring the input displacements with a laser displacement sensor (Keyence LK-H157) pointing at
the flat surface of the shaker head. The measured input displacements are almost sinusoidal with small contributions
from the higher harmonics, which becomes vanishingly small as the input frequency increases further due to the
increased inertial effect of the moving parts of the shaker.? The output responses are measured by another laser
sensor, pointing to one of the beam surfaces near the free end, as shown in Fig. 1(a)(iii).

1The maximum build plate size of Ultimaker 3 Extended is 215 mm, and so the lattice structure is printed in two pieces and glued
together.
2Refer to the following section for the measured displacements



2 Selected experimental results

(a) Small amplitude @ 0.5 Hz

(b) Small amplitude @ 2.7 Hz
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FIG. S2: Selected experimental results. (a,b) Metabeam responses for 0.5 Hz and 2.7 Hz under small-amplitude
displacement inputs yielding direct correspondence between the input and the dominant output frequencies. (c,d)
Metabeam responses for 0.5 Hz and 2.1 Hz under large-amplitude displacement inputs yielding superharmonic reso-
nances of the input frequencies. (e,f) Metabeam responses for 2.7 Hz and 3.1 Hz, showing solitonic resonance (blue
dashed line), the frequency content of which is incommensurate with the input frequency.

Some of the measured time responses wsy’s and the associated DPSD’s are presented in Fig. S2. The applied
displacements w1 ’s are not purely sinusoidal but contain the harmonics of the input frequency due to the reaction force
from the metabeam sample. However, these harmonic contributions are minimal compared to the input frequency,
especially for higher input frequencies. Under small-amplitude input displacements, the input frequency contributions
are directly reflected in the DPSD, exhibiting typical linear and weakly nonlinear behaviors [Figs. S2(a) and S2(b)].
For large-amplitude input displacements that trigger transition waves, the contributions from the harmonics of the
input frequency are emphasized. For input frequencies whose integer multiples are close to the natural frequency of
the metabeam (~4.62 Hz), superharmonic resonances occur as can be identified by the spikes at the corresponding
harmonics of the input frequencies [Figs. S2(c) and S2(d)]. However, for input frequencies whose harmonics are
not close to the natural frequency of the metabeam, a totally unrelated frequency component appears, which is due
to the transient effect from the generated transition waves [dashed line in Figs. S2(e) and S2(f)]. This constitutes
incommensurate frequency generation, a signature of the solitonic resonance phenomenon.



3 Natural frequencies of the experimental demonstrator

(a) Unit cell frequency @ 65Hz (b) 1st structural mode @ 4.62Hz
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FIG. S3: Measured free vibration responses and the corresponding power spectral densities for (a) the unit cell and
(b) the macroscopic structure under impulsive inputs.

The natural frequency of the unit cell is obtained by gently hammering the first element in the in-plane direction and
measuring its free response. This bistable element is disconnected from the neighboring unit cell to avoid measuring
the natural frequencies of the coupled system modes. To find the dominant frequency, we analyze the response signal
between 20 and 20.4 s, where the vibration amplitudes are small enough to minimize the shift from nonlinear effects.
The dominant mode occurs at ~65 Hz [Fig. S3(a)]. For the structural mode, a small initial displacement is applied at
the free end, and then the resulting free response is measured. The signal is analyzed between 44 and 52 s to obtain
the frequency content, and the natural frequency is measured to be ~4.62 Hz [Fig. S3(b)].

4 Beam subjected to a moving particle

The fundamental dynamics in soliton-metastructure interactions can be described by a beam subjected to in-plane
moving particles. The motion of a single particle traveling along the beam’s length can be mathematically represented
as a traveling impulse p(z,t) = P§(x — c(t —mT)) for mT <t < mT + £, where P, ¢, L, , m, and T are the forcing
amplitude, the particle speed, the beam’s length, Dirac-Delta function, an integer from 0 to the number M of particles
sent in series, and the period of excitation, respectively. The period of the excitation in this context is not the one
for the simple harmonic motion but indicates the time interval between two traveling particles. Assuming an Euler-
Bernoulli beam, we can write coupled equations for the longitudinal displacement u(z,t) and transverse displacement
v(z,t) in the following general form:

0?u(x,t) P3v(z, ) O*u(x,t)
EA Ere G e pA 9z p(z,t). 1)
O*v(z,t) DBu(x,t) O*v(x,t)  Op(a,t) '
Bl ~C g TP = o

where the axial stiffness FA, bending stiffness EI, coupling stiffness G, density p, and cross-sectional area A are
constant. Aligning the z-coordinate direction along the neutral axis (centroidal axis), the equations of motion can be
decoupled. The uncoupled equation for v(z,t) is:
E184v(x,t) . pA82v(x,t) _ e@p(m,t)’ ($.2)
Ox?t ot? Ox

where e is an eccentricity from the centroid, and the variables and the parameters are redefined according to the changed
coordinate x. This resulting e couples the longitudinal and transverse motions, thus justifying the introduction of the
offset between the main axis of the bistable lattice and the centerline of the metabeam in both the experimental and
numerical models.

Eq. (S.2) can be solved by a modal expansion v(z,t) = >~ | gn(t)¢n(x), where g,,(t)’s are the generalized Fourier
coefficients corresponding to the normal modes ¢, (z)’s. The normal modes can be obtained by solving the associated
homogeneous problem

4
¢ (x) — Bpo(z) =0, (5.3)
2
where 31 = %, Wp = 2T fp, a% = %, and the prime represents the derivative with respect to . One way to represent
the normal modes of a fixed-free beam is
oOn () = (cos Bz — cosh Bx) + ,(sin B,z — sinh B, x), (S.4)

_ sinB,L—sinh B, L
where Cn ~ cos BnL+cosh B, L°
cos B, Lcosh B, L = 1.

and the eigenvalue (3, can be obtained from the roots of the characteristic equation



Substituting v(z,t) into Eq. (S.2) and using Eq. (S.3),

o

>l (1) + aBan ()] dn(z) = b3’ (x — ct), (S.5)

n=1

where b = ;—Z. Using the orthogonality of ¢, (x)’s, we obtain an ordinary differential equation for ¢, (t):

in(®) + a2Big (1) = LT C 00D _ _b0n(cl) (56)

where W, = [ ¢2(x)dz. Assuming zero initial conditions [v(0) = 0, ¥(0) = 0], the solution for g, (t) can be obtained
from the method of variation of parameters:

i=0 Jq

T4 L
—w"l;Vn S e ¢, (c(r —iT)) sinwy (t — 7)dr  for mT + £ <t < (m+1)T,

——b 5T ! @l (e(r —iT)) sinwy, (t — 7)dr for mT <t <mT + &
an(t) = { o n r o ) - ¢ (S.7)

=0 JiT

yielding solutions of the form:

() = G SIN(Wit 4 Opm) + i On (c(t - mT)) for mT <t <mT + %
@) = Crum SIN(wy t + énm) for mT + % <t<(m+ 1T,

where anpm, bpm, and ¢, are the constants determined by the system parameters, and 6, and énm are the phase
constants.
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FIG. S4: Power spectral densities of the approximated tip displacements of a fixed-free metabeam under (a)
fin = 100 Hz, (b) fin, = 200 Hz, (c) fin = 500 Hz, and (d) fi, = 1000 Hz.

We obtain example responses of the fixed-free beam with a 5-term approximation: v(z,t) = Zi:l Gn(t)dn(x). The
following parameters are used for the examples: EI = 70,000 MPa, p = 2.7x10* tonne, w = 10 mm, » = 10 mm, L
= 100 mm, e = 3 mm, P = 10,000 N/mm, and ¢ = 100,000 mm/s. Twenty-two particles (traveling impulses) are sent
in series, and the frequency responses are obtained between 127 and 22T s. Figure S4 shows the DPSD’s of the tip
displacements under various input frequencies fi, = 1/T. For the input frequencies fi,’s whose harmonics are close
to the fundamental mode f; (= 823 Hz) of the metabeam, the most dominant response occurs at these harmonics
[Figs. S4(a) and S4(b)]. Even for the input frequencies which do not have immediate integer relationships close to the
fundamental mode, the frequency contribution corresponding to the fundamental frequency still remains [Figs. S4(c)
and S4(d)].? These results are in agreement with the experimentally observed behaviors.

3The slight mismatch between the frequency peak and fi is due to the frequency discretization size. For example, the discretization
size is 100 Hz in Fig. 4(d) so that the peak appears at 800 Hz, the closest bin to fi (823 Hz).



5 Metabeam description and design parameters

A rectangular building block forming the external frame of the metabeam is composed of the linear springs with
constants k4, ks, and kg connecting the point masses ms and m3 at the top and bottom vertices, respectively, and two
diagonal springs with constants k7 and ks providing static stability to the frame [refer to Fig. 3(a) in the manuscript].
Stemming from the top and bottom masses are linear springs with constants k; and ks joining the center mass my
at an angle, forming a bistable mechanism. For all examples in this study, the value of k5 is chosen such that the
spring forces are balanced in the out-of-plane direction* under small perturbations along the main lattice axis so
that the unit cell mass does not incur an excessive transverse fluctuation while undergoing interwell oscillations. The
center masses of the neighboring bistable elements are then connected to one another by the linear intersite springs
with stiffness k1. For the numerical simulations in this study, the mass proportional damping with a coefficient ~ is
applied to suppress unwanted transient dynamics. The governing equations of motion can be found in Sec. 11 of this
Supplemental Material.

Table S1 lists the sets of design parameters for all the metabeam designs appearing in this study. Design A is
a qualitatively similar design to the experimental metabeam. For Design A, the design parameters are adjusted to
yield closely approximate values for the size of the metastructure (14 unit cells 27 mm apart), the natural frequency
of the unit cell (65 Hz), and that of the macrostructure (4.62Hz) to those of the experimental demonstrator. Design
A-1 and Design A-2 are the variations of Design A, where only the mass proportional damping coefficient values
are increased and decreased to observe the effect of system damping on the output frequency spectrum under low-
frequency excitations. Design B is the baseline design for the metabeam under force excitation. The parameters
for Design B are selected such that the metabeam operates in the 0-100 Hz range. We use ke = 1.076 N/mm and
ks = 0.6 N/mm for the bistable microstructure, yielding the unit cell mode at 39.7 Hz. k; = 1.241 N/mm is chosen
to minimize the discreteness effects of the lattice.® For design simplicity, the baseline values for k4, ks, k¢, k7, and
ks are selected to have the same stiffness, 1,500 N/mm, yielding the fundamental macroscopic mode at 26.3 Hz. The
coefficient « is chosen to be 9.91 s™! so that the decay rate corresponds to the damping ratio ¢ = 0.03 with respect
to the fundamental structural mode. Design B-1 shifts the operating frequency band (input frequencies initiating the
solitonic resonance) to a higher frequency region from that of Design B. This is achieved by stiffening the springs
forming the bistable elements (springs with constants ko and k3) from the baseline design since the transition wave
generation, which leads to the solitonic resonance, is governed by the resonant excitation of the bistable unit cell in
the in-plane direction. Design B-2 shifts the output frequency of the solitonic resonance to a higher frequency region.
The springs forming the external frames (springs with constants k4, ks, ke, k7, and kg) govern the natural frequencies
of the macrostructural modes and are thus stiffened to increase the output frequency. Design C and D demonstrate
the extreme tunability that allows frequency conversion between frequencies several orders of magnitude apart. The
internal bistable microstructure of Design C (Design D) is tuned to have a very low (high) natural frequency to achieve
an extreme low-to-high (high-to-low) frequency conversion.

H kl ‘ k‘g ‘ k‘3 ‘ k‘4, ]4;5 ‘ kﬁ ‘ k‘7, ]4;8 ‘ mi ‘ mao, T3 ‘ L1 ‘ Lg ‘ L3 ‘ R ‘ Y ‘ N

Design A 4 13.9 | 133 | 6.35 20 20 5 5 27 | 46 | 44 | 8 3.19 | 14
Design A-1 4 139 | 13.3 | 6.35 20 20 5 5 27 | 46 | 44 | 8 5.81 | 14
Design A-2 4 13.9 | 133 | 6.35 20 20 5 5 27 146 | 44| 8 | 0319 | 14
Design B 1.241 | 1.076 | 0.6 | 1,500 | 1,500 | 1,500 | 2 1 20140 | 20| 8 9.91 | 30
Design B-1 || 4.96 | 4.30 | 2.4 | 1,500 | 1,500 | 1,500 | 2 1 20 (40 [ 20 | 8 | 9.91 | 30
Design B-2 || 1.241 | 1.076 | 0.6 | 6,000 | 6,000 | 6,000 | 2 1 20 | 40 | 20 | 8 9.91 | 30
Design C 0.1 | 0242 | 0.2 | 1600 100 800 20 10 25 | 55 | 45| 8 | 0.708 | 20
Design D 96.3 | 100.2 | 70 800 800 800 1 1 5 6 4 1.2 31.3 | 40

TAB. S1: Summary of the parameters for each metabeam design. The units of the stiffness k;’s, mass m;’s, distance
L;’s and R, and mass proportional damping coefficient v are N/mm, g, mm, and s, respectively. N is the number of
unit cells forming the metabeam.

4The metabeam is defined in a 2D space. In this study, the in-plane direction is the direction along the bistable lattice, and the
out-of-plane (or transverse) direction is the direction perpendicular to the in-plane direction.

5The ratio between k1 and the effective in-plane stiffness keg = (% + %) R? of the bistable unit cell affects the lattice

discreteness [1, 2] and is ~10 for the selected stiffness values.



6 Metabeams under a different boundary condition

(a) Simply supported: 1st mode @ 69.3 Hz (b) F=1.1N
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FIG. S5: (a) Fundamental structural mode of Design B under the simply-supported boundary condition. (b) The
corresponding output frequency diagram under F' = 1.1 N, exhibiting solitonic resonance at the fundamental mode.

The input-independent frequency conversion into a single dominant frequency (solitonic resonance) is a robust
phenomenon not tied to a specific boundary condition. The simply-supported boundary condition is simulated by
fixing the leftmost bottom node and constraining the out-of-plane motion of the rightmost bottom node. All design
parameters are kept the same as those of Design B, and the changed boundary condition shifts the first structural mode
to 69.3 Hz [Fig. S5(a)]. For a sufficiently large input force that can trigger transition waves, the same characteristic
behavior (input-independent output frequency at the structural mode) remains for the domain where transition waves
are generated as shown in Fig. S5(b).

7 Damping effect in the low input frequency domain

(a) Design A-1: High damping (b) Design A-2: Low damping
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FIG. S6: Output frequency diagrams for the qualitatively similar numerical design under (a) high and (b) low system
damping.

Since the output frequency branch near the macroscopic structural mode arises due to the repeated transient effects
from the traveling transition waves, the degree of the system damping greatly affects which solution branch dominates
the response. For a large proportional damping coefficient v = 5.81 s”! compared to that of the qualitatively similar
design in the manuscript (Design A), the solitonic resonance branch begins to disappear [Fig. S6(a)]. On the other
hand, for very low proportional damping coefficient v = 0.319 s7!, the solitonic resonance branch is accentuated,
becoming qualitatively closer to a complete input-independent transformation [Fig. S6(b)].



8 Amplification by solitonic resonance
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FIG. S7: (a) In-plane displacement of the center node and (b) the out-of-plane displacement of the top node at the
rightmost unit cell under 32 Hz inputs near the critical forcing amplitude yielding solitonic resonance. There is drastic
amplification of the motion when solitonic resonance occurs (at 0.61 N plotted in blue), compared to the case solitonic
resonance is not triggered (at 0.59 N plotted in red).

Since solitonic resonance relies on a series of transition waves, which appear as high-orbit interwell oscillations for
each element of the underlying bistable lattice, a larger-amplitude macroscopic behavior is expected, compared to the
case where transition waves are not triggered. At 32 Hz input frequency, for example, the critical forcing amplitude
that enables solitonic resonance is about 0.6 N. The responses under forcing amplitudes just before and after solitonic
resonance are plotted in Fig. S7. Figure S7(a) shows the in-plane displacements of the center node at the rightmost
unit cell. The jumps between the two equilibrium points (0 mm and 16 mm) indicate that transition waves are
triggered under 0.61 N input (plotted in blue), as opposed to small fluctuations about one of the equilibrium points
under 0.59 N input (plotted in red).® Figure S7(b) shows the corresponding out-of-plane displacements of the top
node at the rightmost unit cell, and the maximum amplitude is ~14 times larger when solitonic resonance occurs than
the case it does not. The increase in the forcing amplitude is only ~3.4%, yet the output displacements associated
with solitonic resonance is much larger. In other words, the excitation of solitonic resonance shows the hallmark signal
amplification effect in resonant responses.

9 Solitonic resonance from noisy sources

Solitonic resonance can also be excited by inputs with broadband spectra. To demonstrate this, we generate noisy
signals by combining multiple sinusoidal inputs whose frequencies fi’s are incommensurate with one another to excite
the metabeams. The frequency components are obtained from a power-law relationship fl = %m'l'@ between 0-
200 Hz. The sinusoids are prepared with alternating phases to avoid an initial abrupt force peak; as time progresses,
the combined signals become more randomly dispersed due to the incommensurate frequency relationship, thereby
resulting in a noisy excitation. The final form of the noise is n(t) = >, A;(—1)""*sin 27 f;it, where A; is the amplitude
of each sinusoid, which is set equal to one another to simulate approximately randomly distributed excitation spectrum.
In the limit, this tends to white noise. The mass proportional damping coefficient is reduced to 3.30 s™! from the baseline
design to facilitate state transition, and the simulation is run for a sufficiently long period (80 s) to capture the random
effects from the noisy inputs. The power spectral densities of the input force (FPSD) and the output displacement
(DPSD) are obtained from the response between 70 and 80 s.

The intensity of the noise is increased until an in-plane direction state transition is triggered at the excitation
site; the first occurrence of the state transition is observed at A = 0.066 N [see Fig. S8(a)]. However, the rate of the
occurrence of the transition waves is intermittent and random, which cannot be used as a reliable source of coherent
output frequency generation. We add a small sinusoidal input (0.11 N at 35 Hz that is near the resonant frequency
of the unit cell) on top of the noise to promote more frequent interwell oscillations necessary for generating solitonic

6The in-plane displacement is larger near the excitation site (~4 mm); however, its wave amplitude does not propagate to the opposite
end of the structure due to the system dissipation. Solitonic resonance does not exhibit such dissipation in wave amplitudes throughout
the bistable lattice since unattenuated propagation is a hallmark of transition waves.



(a) Excitation with white noise only

I ~
1 —~20 1 |
— £ I |1.5e-37
Z £ 1.5e-3 : |
e . S o I : 1.0e-31
_ Ak
20.0 20.5 21.0 0 10 20 30 40 50 60 70 80 9, 1.0e-31 1|1 | |5.0e-41
Time (s) e o
0.03 1 |l
— il 0.01
Q 0.02 S 5.0e41 20 30 40 50
D € o | —=
o — 1 1 -
L 0.01 ~ Y /|
2 ' et
_ 0.0 —
0.00 1 ‘ ‘ ‘ : : : ‘ | P ‘
0 100 200 0 10 20 30 40 50 60 70 80 0 50 100 150 200
Frequency (Hz) Time (s) Frequency (Hz)
(b) White noise with small sinusoidal excitation @ 35Hz P
1 —~20 : I o003
= IS 0.030 |
£, € o
Q = 00251 1| 1 |o0.02
1 S o
! . ! 0.0204 | |
20.0 1205 21.0 1| | [o01
Time (s) 0.01571 1| | _J
1 |
0.00
0.050 = 0.010 T -
a E : : 20 30 40 50
7] —=
& 0.025 - 0.0057 11 "
~ Pt
£ IL“ I -
0.000 ¢ ‘ -1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0.000 =
0 100 200 0 10 20 30 40 50 60 70 80 0 50 100 150 200
Frequency (Hz) Time (s) Frequency (Hz)

FIG. S8: Responses of the metabeam under (a) a white noise only and (b) a combined input with both white noise
and small sinusoidal excitation. p is the input force, u; is the in-plane displacement obtained at the excitation site,
and wsy is the out-of-plane displacement obtained at the top node of the rightmost unit cell.

resonance. The effect of this additional input component is small as the required forcing amplitude to trigger transition
waves from a purely sinusoidal input at 35 Hz is ~0.55 N. The output responses under this combined excitation are
plotted in Fig. S8(b). The in-plane displacement wu; at the excitation site shows that interwell oscillations occur more
often than the case under noise only. Specifically, the resulting out-of-plane displacement ws of the top node at the
rightmost unit cell and its DPSD display a single dominant output frequency near the macrostructural mode. In other
words, a small fraction of the input energy otherwise required for a perfect system is enough to yield solitonic resonance
under the presence of noise. Thus, solitonic resonance will be enhanced in realistic conditions, which inevitably are
subjected to noisy perturbations. Importantly, this result implies that even noisy sources (e.g., colored inputs) can be
transformed into a single coherent mode through the strongly nonlinear interaction with the metabeam.



10 Characteristic time responses

(a) Linear response (F=0.1N @ 8Hz)
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FIG. S9: Four characteristic time responses of the metabeam and their power spectral densities: (a) linear response
whose output frequency corresponds to the input frequency, (b) generation of superharmonic contribution to the input
frequency, (c) frequency doubling, and (d) solitonic resonance. The input frequencies are indicated by the black dashed

lines.

Four characteristic time responses that can be observed in the studied metabeam are plotted in Fig. S9. For a
very small force input, the output frequency directly corresponds to the input frequency [Fig. S9(a)]. When operated
in a weakly nonlinear regime, the second harmonic frequency begins to contribute to the output response. Depending
on where the output frequencies fall on the dispersion relation, both of the frequency contributions may coexist
[Fig. S9(b)], or either of the contributions may cut off, leading to linear response or frequency doubling [Fig. S9(c)].”
Finally, solitonic resonance occurs when transition waves are triggered within the metabeam [Fig. S9(d)]; the dominant

frequency is totally unrelated to the input frequency.

7Their complete characterization will be addressed in a separate study
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11 Governing equations

Each unit cell of the metabeam has 6 degrees of freedom, and the equations of motion can be derived from the
Euler-Lagrangian method. The Lagrangian £ =7 — V can be readily written as

1 1
T = Z|: my u1n+w1n)+ m2(u2n+w2n)+ m3(u3n+w3n)

2 2
(S.8)
al 1 1o, =T, o, 1o, 1, 1, 1,
— 2
= E: [ ko A3 + 2k3A3+2k6A6] + n§:1 [leAlJr2k4A4+2k5A5+2k7A7+ Ll

where 7 and V are the system’s total kinetic and potential energies, IV is the number of unit cells, and u, , and w, »
are the in-plane and out-of-plane displacements of the mth mass of the nth unit cell, respectively. The corresponding
spring deflection A; for each spring with stiffness k; is given as:

A= \/(Ll + U1 — UL )2+ (W1 g1 — w1 0)2 — Ly
A2 = \/(R T Uz — ulv”)z + (LQ + wan — wl,n)2 - \/R2 + L%

A3 = \/(R + Uzn — ul,n)2 + (L3 + Win — wS,n)2 - \/R2 + L?;

Ay = \/(Ll + Uz 1 — Uz )2+ (Wo g1 — wap)? — L

Ay = \/(Ll + Uz pt1 — U3 n)? + (Wanp1 — w3 )2 — L1

Ag = \/(u2n —uz pn)?+ (Lo + L3 + wan — w3 )% — (L2 + L3)

A7 = \/(L1 +ug 1 — Uz )2 + (Lo + Ls + wo g1 — w3 pn)? — \/L% + (Lo + L3)?

Ag = \/(Ll + U3z nt+1 — U2,n)2 + (Lo + L3+ wapn — wg,n+1)2 — \/L% + (Ls + L3)2.

Additionally, small dissipation is applied in the form of a mass proportional damping with a coefficient v to suppress
any unwanted transient effect. The full expressions of the governing equations for the nth unit cell are shown at the
end of this section.

The obtained set of discrete equations is highly coupled and nonlinear involving several radical expressions. There
exists no exact solution, and thus we use a commercial numerical solver, ABAQUS/STANDARD, for the numerical
analyses. The built-in implicit solver uses Hilber-Hughes-Taylor method [3], but the numerical solution parameter «
is set to zero so that the method becomes equivalent to the standard Newmark method. Design A and its variations
are simulated for 30 s with the fixed time step At = 10® s, and the frequency contents are obtained from the time
responses between 10 and 30 s. Design B and its variations are simulated for 6 s with At = 107 s, and the frequency
contents are obtained from the response between 4 and 6 s. Design C is simulated for 20 s with At = 10 s, and the
frequency contents are obtained from the response between 10 and 20 s. Design D is simulated for 8 s with At = 107 s
and the frequency contents are obtained from the response between 4 and 8 s.

ko (—u1p +uzpn+ R) (\/Lg +R? — \/(—w1,n +wa + Lo) 2 + (—u1,n + u2, + R) 2)
Vw1, +way + Lo) 2+ (—u1, +us, + R)2
B (~uin + o+ R) (VIE+ 2 = /(W0 — wan + Lg)? + (—trn + g + R)?)
\/(wl)n — w3y + L3)2+ (—u1n + ugy + R)?2
k1 (—u1p1 +wrn + L1) (\/(—Ul,n_1 Fur gy +L1)2+ (Wi pa —wip)? — L1>
\/(—U1,n-1 +up g+ L)%+ (w1 —wip)?
k1 (—u1,n + U1 py1 + L1) (\/(_ul,n +ut 1+ L1) 2+ (w1 — wins1) 2 — L1)

_ =0,
\/(—ULn + Ut 1 + L1) 2 + (w1, — w1 n41) 2
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+
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12 Movie S1: Coupling between the in-plane and out-of-plane motions

Movie S1 illustrates how the in-plane and out-of-plane motions are coupled with each other. The first half (between 3
and 20 s) of the playback shows the excitation of the flexural motion upon the passage of a single transition wave (or
topological soliton) in the numerical Design B. The responses in Y-direction (in the simulation coordinate) is scaled
by 40 times to aid the identification of the out-of-plane motion visually. Similarly, the second half (between 25 and
46 s) of the playback shows the coupling in the experimental demonstrator.

13 Movie S2: Experimental demonstration

Movie S2 shows an experimental observation of solitonic resonance under 1.1 Hz displacement input large enough
to trigger transition waves. As transition waves propagate within the metabeam, a series of free vibrations near the
natural frequency of the structure occurs, yielding an output frequency contribution different from the input frequency.
The solitonic resonance is manifested by the faster transverse vibration than the input frequency.

14 Movie S3: Solitonic resonance

Movie S3 shows simulations of solitonic resonance responses obtained under F' = 1.7 N at 8 Hz, 36 Hz, and 68 Hz.
The first half (starting at 3 s) of the playback shows the animated results between 4 and 5 s in the simulation
time. Transition wave propagation within each metabeam is observable from the recurrent oscillations of the bistable
elements between the stable points. To better identify the macroscopic structural motion, we scale the deformations
by ten times for the second half (starting at 19 s) of the playback. The stable propagation of the compression and
rarefaction wave groups bolsters the quasi-particle nature of the transition waves. Even though the input frequencies
are drastically different, the out-of-plane motions occur at a similar frequency, indicating input-independent frequency
conversion.
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