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Recent advances in next-generation sequencing technology have yielded
huge amounts of transcriptomic data. The discreteness and the high di-
mensions of RNA-seq data have posed great challenges in biological net-
work analysis. Although estimation theories for high-dimensional modified
Poisson-type graphical models have been proposed for the network analysis
of count-valued data, the statistical inference of these models is still largely
unknown. We herein propose a two-step procedure in both edgewise and
global statistical inference of these modified Poisson-type graphical mod-
els using a cutting-edge generalized low-dimensional projection approach for
bias correction. Extensive simulations and a real example with ground truth
illustrate asymptotic normality of edgewise inference and more accurate in-
ferential results in multiple testing compared to the sole estimation and the
inferential method under normal assumption. Furthermore, the application of
our method to novel RNA-seq data of childhood atopic asthma in Puerto Ri-
cans demonstrates more biologically meaningful results compared to the sole
estimation and the inferential methods based on Gaussian and nonparanormal
graphical models.

1. Introduction. Recent developments of high-throughput sequencing technologies
have generated unprecedented amounts of RNA-seq data for transcriptomics. Network stud-
ies of conditional dependency among genes provide new insights to understand a complex
biological process or disease.

Gaussian graphical model (GGM) has been widely used in characterizing the conditional
relationships among genes in a biological network. However, discrete omics data sets from
the next generation sequencing technology are common because the count values are usually
used to quantify the genetic or genomic information. One typical example is the bulk RNA-
seq data which summarizes the expression of each gene using the number of counts mapped
to it. Another example is the droplet-based single-cell RNA-seq data which quantifies the
cell-level gene expression with unique molecular identifiers (UMIs) (Islam et al. (2014)),
a direct counting of transcript copies. Therefore, the use of GGM on those non-Gaussian
discrete-type data requires a continuous transformation, for example, using the fragments
per kilo base of transcript per million (FPKM) or a log-transformation on the count values.
Converting count values into continuous values tends to alter their biological meanings with
the straightforward interpretation and, sometimes, can be inappropriate (Zwiener, Frisch and
Binder (2014)). Poisson distribution, however, is a popular choice and has been shown more
reasonable than using FPKM in modeling the count data (Anders and Huber (2010)). To de-
scribe the conditional dependency among genes from count-valued omics data, Besag (1974)
proposed a natural extension of the univariate Poisson model to a multivariate case, and Yang
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et al. (2015) further extended this to a general graphical model setting called the Poisson
graphical model (PGM). Moreover, three modified Poisson-type graphical models: the trun-
cated PGM (TPGM), the sublinear PGM (SPGM) (Yang et al. (2013)) and the square-root
PGM (SqrtPGM) (Inouye, Ravikumar and Dhillon (2016)) were proposed to overcome the
major drawback of PGM for count data modeling (see Section 2 for more details).

On the other hand, omics data sets are usually large scale with the number of genes p

allowed to be far larger than the sample size n. To provide reliable estimation for pairwise
conditional dependency with its confidence interval and p-value under such settings, statisti-
cal inference of high-dimensional GGM has been well developed within the recent six years;
see Liu (2013), Ren et al. (2015), Janková and van de Geer (2015), Janková and van de Geer
(2017). Recently, attention has started being paid attention to inference of large non-Gaussian
graphical models; see Li et al. (2016) and Cai et al. (2019) for Ising graphical model (IGM).
Unfortunately, all current methods based on the three aforementioned high-dimensional mod-
ified Poisson-type graphical models only involve estimation, and a unified framework for
their statistical inference is still largely unknown.

In this paper we intend to propose a new inferential procedure that particularly tailors
to the analysis of nonnegative, discrete and high-dimensional transcriptomic data based on
the modified Poisson-type graphical models. Our motivation comes from the novel RNA-seq
gene expression data from the study of the Epigenetic Variation and Childhood Asthma in
Puerto Ricans (EVA-PR) aged nine to 20 years (Forno et al. (2019)). To our knowledge, it is
the first study of atopic asthma in nasal epithelium of a large sample of Hispanic children.
Further details of the data are deferred to Section 1 of the Supplement (Zhang et al. (2020)).

Atopic asthma is one of the most prevalent diseases affecting all ages, but efficient meth-
ods for its accurate diagnosis are still under development. Clinicians have recently considered
using nasal epithelial samples which are much easier to extract and more disease-relevant to
replace white blood cell samples in study of the pathogenesis of atopic asthma. According
to Forno et al. (2019), studies in nasal epithelial samples provide promising results in iden-
tifying epigenetic variants of childhood atopic asthma in Puerto Ricans. Besides, Pandey
et al. (2018) has illustrated differentially expressed genes from transcriptomic profiles that
are more closely related to the mechanism of asthma using adult nasal epithelial samples.
However, conditional dependence among genes underlying atopic asthma from nasal epithe-
lium is largely unknown, a knowledge of which will no doubt facilitate its accurate diagnosis
and the development of its precision medicine.

Inspired by the cutting-edge low-dimensional projection estimator (LDPE) approach in
inference of high-dimensional linear regression (Zhang and Zhang (2014)) and the recent
developments in statistical inference of large IGM, we have developed a novel two-step pro-
cedure in inference of pairwise conditional dependency from large modified Poisson-type
graphical models. The first step involves �1-penalized nodewise regressions, and the second
step is based on a likelihood-based nonlinear projection which relies on the graph structure
itself and is intrinsically different from the essentially linear projection approach considered
in van de Geer et al. (2014) for generalized linear models. For further details, please refer to
Section 3. From the computational perspective our method only requires O(p) �1-penalized
regressions, due to the novelty of our second step, and is computationally less intensive than
the composite likelihood approach and the score matching method proposed in Wang and
Kolar (2016) and Yu, Kolar and Gupta (2016), respectively, targeting on exponential family
graphical model inference.

In Section 2, we briefly review the properties of three typical modified Poisson-type
graphical models. We formally propose a general framework of our procedure with its ap-
plication to the three modified Poisson-type models in Section 3. Section 4 includes im-
plementations with selection of tuning parameters. Then, we demonstrate the validity and
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advantages of our procedure through simulations and a real example with ground truth in
Section 5 and an application to the motivating RNA-seq data of childhood allergic asthma
in Section 6. We finally conclude with discussion in Section 7. Our approach is imple-
mented in a publicly available R package ModPGMInference on the GitHub repository:
https://github.com/zhangr100/ModPGMInference.

2. The modified Poisson-type graphical models. Let X = (X1,X2, . . . ,Xp)ᵀ be a se-
quence of genes with each Xi ∈ {0,1,2, . . .} for i = 1,2, . . . , p. An undirected Poisson
graph G = (V ,E) associated with X consists of the node set V = {X1,X2, . . . ,Xp} and
the edge set E = {pairs of (i, j) if there is an undirected edge between Xi and Xj }. Xi and
Xj are conditionally dependent, given all the other genes {Xr, r �= i, j}, if and only if there is
an edge between the two nodes. More formally speaking, the joint distribution of PGM (Yang
et al. (2015)) is defined as Pψ,�(X) = exp(

∑
1≤i<j≤p θijXiXj + ∑p

i=1(ψiXi − log(Xi !)) −
A(ψ,�)), where A(ψ,�) is the log-normalization constant. The parameter θij represents the
pairwise strength between nodes Xi and Xj and is encoded in a parameter set �. It is easy to
see that Xi and Xj are conditionally independent if and only if θij = 0. Therefore, if the two
nodes are connected in a graph, we set θij �= 0; otherwise, θij = 0. However, PGM can only
model negative pairwise dependency (or θij ≤ 0) if A(ψ,�) < +∞ is achieved. This fact is
due to x2/ log(x!) → +∞ as x → +∞ which can be shown by the Stirling’s approximation.
To overcome the major constraint of PGM, three modified Poisson-type graphical models
are proposed in the literature to allow for both positive and negative dependencies between
pairwise nodes.

2.1. TPGM. Since the domain of PGM is {0,1, . . .}p , the quadratic terms dominate the
distribution when count values are very large which leads to negative dependency. Therefore,
a natural remedy is to truncate the domain of each node to a finite level so as to capture both
positive and negative dependencies. We can make a reasonable assumption that each node Xi

is bounded by a finite number Di with i = 1,2, . . . , p. The joint distribution of TPGM (Yang
et al. (2013)) is defined as

(2.1) Pψ,�(X) ∝ exp

( p∑
i=1

ψiXi + ∑
1≤i<j≤p

θijXiXj −
p∑

i=1

log(Xi !)
)

which has the same format as PGM but with a different log-normalization constant due to the
domain Xi ∈ {0,1, . . . ,Di} for i = 1,2, . . . , p. We mention that the Ising graphical model
(IGM), studied in Ravikumar, Wainwright and Lafferty (2010), Li et al. (2016) and Cai et al.
(2019), is a special case of TPGM when Di = 1 for all i = 1,2, . . . , p.

2.2. SPGM. Unlike TPGM, Yang et al. (2013) also proposed sublinear PGM (SPGM),
an alternative to modify the original PGM without a change on the domain of each node.
Specifically, by replacing the linear statistic of each node in ψiXi and θijXiXj in (2.1)
with a newly-constructed statistic that increases even slower than a linear term, both posi-
tive and negative dependencies are allowed in the modified distribution without a domination
of quadratic terms when the value of each node goes to +∞. Therefore, a modified statistic
for each node Xi with i = 1,2, . . . , p is defined as

S(Xi) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Xi if Xi ≤ Di0,

− 1

2(Di1 − Di0)
X2

i + Di1

Di1 − Di0
Xi − D2

i0

2(Di1 − Di0)
if Di0 < Xi ≤ Di1,

Di0 + Di1

2
if Xi ≥ Di1,

https://github.com/zhangr100/ModPGMInference
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where Di0 and Di1 are predefined thresholds. The joint distribution of SPGM is thus defined
as

Pψ,�(X) ∝ exp

( p∑
i=1

ψiS(Xi) + ∑
1≤i<j≤p

θijS(Xi)S(Xj ) −
p∑

i=1

log(Xi !)
)
.

SPGM will be close to the original PGM as the upper threshold Di1 → +∞. In particular,
SPGM still has a relatively thick tail which is approachable to the Poisson case.

2.3. SqrtPGM. In addition to the aforementioned two models, Inouye, Ravikumar and
Dhillon (2016) proposed a new class of parametric graphical model called Square Root
Graphical Model that allows both positive and negative dependencies. In the Poisson case,
SqrtPGM essentially uses square root to replace the linear statistic of each node in ψiXi

and θijXiXj in (2.1), so the interaction terms become linear to avoid the problem that the
quadratic terms dominate the distribution when the value of each node goes to +∞. The
joint distribution of SqrtPGM is thus defined as

Pψ,�(X) ∝ exp

( p∑
i=1

ψi

√
Xi + ∑

1≤i<j≤p

θij

√
Xi

√
Xj −

p∑
i=1

log(Xi !)
)
.

2.4. A unified representation. Let T (X) and B(X) be the sufficient statistic and the base
measure, respectively. All three modified Poisson-type graphical models can be described in
the following generalized joint distribution:

(2.2) Pψ,�(X) ∝ exp

( p∑
i=1

ψiT (Xi) + ∑
1≤i<j≤p

θijT (Xi)T (Xj ) +
p∑

i=1

B(Xi)

)
.

The corresponding sufficient statistic, base measure and domain of Xi for each model are
summarized in Table 1. Although so far we only define those θij for which i < j , we set
θij = θji to ease our notation whenever θij , i > j is used hereafter.

3. Statistical inference of modified Poisson-type graphical models. We first introduce
a general two-step procedure to obtain each debiased estimator θ̃ij of conditional dependency
between variables Xi and Xj , with applications to three modified Poisson-type graphical
models specified later. The goal is to achieve the desired asymptotic normality (nFij )

1/2(θ̃ij −
θij ) → N (0,1) with a bounded variance (Fij )

−1 as (n,p) → +∞ under certain sparsity
condition of the graph. In addition, we also introduce a global test to discover the entire
graph structure.

3.1. The general framework. The first step is to provide a globally good initial estimator
θ̂ij of θij , and the second step is to correct the potential bias of θ̂ij , via a variant of LDPE
approach (Zhang and Zhang (2014)), to obtain the final estimator θ̃ij .

TABLE 1
Sufficient statistics, base measures and domain of Xi in the three models

Model T (X) B(X) Domain of Xi

TPGM X − log(X!) {0,1, . . . ,Di}
SPGM S(X) − log(X!) {0,1, . . .}
SqrtPGM

√
X − log(X!) {0,1, . . .}
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Step 1 (Initialization): From the joint distribution (2.2) we can obtain that the condi-
tional distribution of the random variable Xi , given all other random variables X−i =
(X1, . . . ,Xi−1,Xi+1, . . . ,Xp)ᵀ, belongs to the univariate exponential family. More specif-
ically, the log-likelihood function log(Pηi

(Xi |X−i )) can be written as T (Xi)μi + B(Xi) −
f (μi) with the parameters ηi = (ψi, θi) = (ψi, θi1, θi2, . . . , θi(i−1), θi(i+1), . . . , θip)ᵀ ∈ R

p

and the sufficient statistic T (Xi). In the above equation we have μi = ψi + ∑
j �=i θij T (Xj ),

and f (μi) is the log-normalization term. To ease notations, we introduce X∗ = (1,Xᵀ)ᵀ,
and X∗−i = (1,X1, . . . ,Xi−1,Xi+1, . . . ,Xp)ᵀ denotes the subvector of X∗ with Xi removed.
Similarly we denote T (X∗−i) = (1, T (X1), T (X2), . . . , T (Xi−1), T (Xi+1), . . . , T (Xp))ᵀ.
Therefore, we have a simple notation of μi = T (X∗−i)

ᵀηi .
Due to the sparse structure of a biological network, the whole parameter set � is com-

monly assumed sparse in the sense that θij = 0 for most pairs of (i, j). Thus, it is natural
to estimate � by solving p �1-penalized nodewise regressions with i = 1,2, . . . , p based on
the conditional distribution Pηi

(Xi |X−i ). Suppose that X(1),X(2), . . . ,X(n) are denoted as n

i.i.d. samples from the joint distribution Pψ,�(X). θi ∈ R
p−1 can be estimated by solving the

following convex optimization problem:

(3.1) η̂i = (ψ̂i, θ̂i) = arg min
ηi

{
l
(
ηi; {

X(k)}n
k=1

) + λi‖θi‖1
}
,

where λi is a tuning parameter and the negative joint log-likelihood function l(ηi;
{X(k)}nk=1) = −∑n

k=1 log(Pηi
(X

(k)
i |X(k)

−i )) takes the form with μ
(k)
i = T (X

∗(k)
−i )ᵀηi

l
(
ηi; {

X(k)}n
k=1

) = −
n∑

k=1

(
T

(
X

(k)
i

)
μ

(k)
i + B

(
X

(k)
i

) − f
(
μ

(k)
i

))
.

Of note, we only penalize θi instead of entire ηi . If one has certain prior knowledge of the bi-
ological network such as group or order structure, then the generic �1 penalty can be replaced
by group Lasso or fused Lasso. To demonstrate the general purpose, we only use generic �1
in our algorithm.

High-dimensional generalized linear model theory suggests that the estimator θ̂i has good
statistical properties in a global sense under certain regularity conditions. Indeed, the exist-
ing method for estimation of entire graph took this approach with theoretical justifications
(Yang et al. (2013), Inouye, Ravikumar and Dhillon (2016)). However, this step itself is not
sufficient for our inference purpose due to the bias incurred from the �1 penalty.

Step 2 (Likelihood-based bias correction): In this step we take a variant of LDPE approach
to correct the bias of θ̂ij obtained from (3.1) for each pair (i, j) with i < j .

The original LDPE (Zhang and Zhang (2014)) can be seen as an extension of the least
squares estimator in the classical theory of linear model to the high-dimensional settings. We
first briefly review the intuition before LDPE. For a low-dimensional linear model with n < p,
Y = Zβ + ε ∈ R

n, where Y = (Y (1), . . . , Y (n))ᵀ, ε = (ε(1), . . . , ε(n))ᵀ, β = (β1, . . . , βp)ᵀ and

the j th column of Z is Zj = (Z
(1)
j , . . . ,Z

(n)
j )ᵀ, the least squares estimator of βj can be written

as as a linear projection of Y onto the orthogonal complement of the column space of Z−j .
In order words, with a score vector V = (v1, v2, . . . vn)

ᵀ, we have

β̃
proj
j =

∑n
k=1 vkY

(k)∑n
k=1 vkZ

(k)
j

= βj +
∑n

k=1 vkε
(k)∑n

k=1 vkZ
(k)
j

+ ∑
l �=j

∑n
k=1 vkZ

(k)
l βl∑n

k=1 vkZ
(k)
j

,

and when V = Z⊥
j , the third term vanishes, resulting in the desired least squares estimator

β̃
proj
j = βj + ∑n

k=1 vkε
(k)/(

∑n
k=1 vkZ

(k)
j ). However, in high-dimensional cases with p > n

and Z in general position, the orthogonal complement of the column space of Z−j vanishes,
and thus the ideal score vector is undefined as Z⊥

j = 0. Following the linear-based projection
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idea but with a general nonzero score vector V , the third term in the decomposition above
presents a nonzero bias. Although we do not know the exact bias term, as β is unknown, this
analysis of the linear estimator suggests a one-step bias correction with an initial estimator β̂ ,

β̃j = β̃
proj
j − ∑

l �=j

∑n
k=1 vkZ

(k)
l β̂l∑n

k=1 vkZ
(k)
j

= β̂j +
∑n

k=1 vi(Y
(k) − Z(k)ᵀβ̂)∑n

k=1 vkZ
(k)
j

.

Therefore, with a globally good initial estimator β̂ and a well-chosen score vector V , it is
expected that the bias due to the third term becomes negligible, resulting in an asymptotically
normal estimator β̃j .

Since LDPE was originally introduced in linear model, for our model we first linearize the
nodewise regression using initial estimators. The parameter of interest θi is encoded in μi

which corresponds to the sufficient statistic T (Xi). For this reason we expand the conditional
expectation of T (Xi), given X−i , which equals the first derivative of f (μi). To further ease
our notations, we denote the first and second derivatives of f (·) by ḟ (·) and f̈ (·), respec-
tively. Then, at the population level we have the following decomposition:

(3.2) T (Xi) = Eηi

(
T (Xi)|X−i

) + εi = ḟ (μi) + εi = ḟ
(
T

(
X∗−i

)ᵀ
ηi

) + εi,

where εi has zero mean, given X−i . Since η̂i is a globally good estimator of ηi obtained in
(3.1), we may take a local Taylor expansion of ḟ (μi) about μ̂i with μ̂i = T (X∗−i )

ᵀη̂i , that is,
ḟ (μi) = ḟ (μ̂i) + f̈ (μ̂i)T (X∗−i)

ᵀ(ηi − η̂i) + Re, where Re denotes the remainder term. By
rearranging terms in the above equation, we have the following linearized version of (3.2):

T (Xi) − ḟ (μ̂i) + f̈ (μ̂i)T
(
X∗−i

)ᵀ
η̂i = f̈ (μ̂i)T

(
X∗−i

)ᵀ
ηi + (Re + εi).

We are in the position to apply the projection-based idea to the regression above with
i.i.d. observations. Specifically, to obtain a better estimator of θij (i < j ), given some initial
estimator η̂i = (ψ̂i, θ̂i), one needs to find an appropriate score vector V = (v1, v2, . . . , vn)

ᵀ ∈
R

n and apply a one-step bias correction from η̂i as follows:

(3.3) θ̃ij = θ̂ij +
∑n

k=1 vk(T (X
(k)
i ) − ḟ (μ̂

(k)
i ))∑n

k=1 vkf̈ (μ̂
(k)
i )T (X

(k)
j )

(1 ≤ i < j ≤ p).

With some algebra it is easy to see that the decomposition of the estimation error for θ̃ij

becomes

(3.4)

θ̃ij − θij =
1
n

∑n
k=1 vkε

(k)
i

1
n

∑n
k=1 vkf̈ (μ̂

(k)
i )T (X

(k)
j )

+
1
n

∑n
k=1 vkRe(k)

1
n

∑n
k=1 vkf̈ (μ̂

(k)
i )T (X

(k)
j )

+
1
n

∑n
k=1 vkf̈ (μ̂

(k)
i )T (X

∗(k)
−{i,j})ᵀ(ηi,−j − η̂i,−j )

1
n

∑n
k=1 vkf̈ (μ̂

(k)
i )T (X

(k)
j )

.

The first term in the right-hand side of (3.4) is denoted as the error term, and the second and
the third terms can be regarded as the bias terms. Intuitively, to achieve the inference purpose,
we need to pick an V such that the bias terms are asymptotically negligible with respect to
the error term while the error term has asymptotic normality with root-n consistency.

To achieve our goal discussed in last paragraph, we look for a population version of V first.
Denote 〈a, b〉 = E(af̈ (μi)b). To have a centered asymptotic normality for the first (error)
term, it suffices to pick V , as any function of X−i as εi has mean zero given X−i . Indeed,
for such a choice we have E(V εi) = 0 with variance Var(V εi) = 〈V,V 〉. Consequently, the
entire first term has the desired asymptotic normality. We leave the mathematical derivation
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of these facts in the Supplementary Material (Zhang et al. (2020)). Besides, for the second
(bias) term we expect that, with a reasonable choice of V , this term itself is small since it
contains a remainder term Re from the second order Taylor expansion. It remains to find a
specific V under this constraint (i.e., V is a measurable function of X−i) so that the third
(bias) term is negligible. To this end, ideally one needs that 〈V,T (X−{i,j})〉 is a zero vector,
where X−{i,j} = (X1, . . . ,Xi−1,Xi+1, . . . ,Xj−1,Xj+1, . . . ,Xp)ᵀ and T (X−{i,j}) ∈ R

p−2 is
defined accordingly. Then it is reasonable to expect the third term is small, given that η̂i is a
globally good estimator.

The major novelty of our method is on the choice of score vector V . Intrinsic to the graph-
ical model joint distribution (2.2), we propose to choose the population V based on the con-
ditional expectation of Xj , given X−{i,j}, with respect to the inner product 〈a, b〉 as follows:

V = T (Xj ) − Eηi ,ηj
(T (Xj )f̈ (μi)|T (X−{i,j}))

Eηi,ηj
(f̈ (μi)|T (X−{i,j}))

(3.5)
:= T (Xj ) − g

(
T (X−{i,j}), ηi, ηj

)
.

It is worthwhile to point out that the conditional expectation function g(·) depends on un-
known parameters only through ηi and ηj . In particular, μi is known given ηi . By our choice,
one can check that 〈V,m(T (X−{i,j}))〉 = 0 for any measurable function m(·). Thus, we have
achieved that 〈V,T (X−{i,j})〉 is a zero vector, and, at the population level, the third (bias)
term in (3.4) becomes zero.

REMARK 1. Our choice of the score V is new and intrinsic to the joint likelihood of
the specific graphical model. Other methods of bias correction for GLMs were discussed in
literature, for example, van de Geer et al. (2014). The difference is that our construction of
V relies on the explicit knowledge of joint conditional distribution of T (Xj ), given all other
covariates T (X−{i,j}) in which the conditional expectation of T (Xj ) is a nonlinear function
of T (X−{i,j}). In contrast, the method proposed in van de Geer et al. (2014) does not impose
the specific conditional likelihood pattern but, essentially, assumes certain linear sparsity
structure among all covariates, and thus the proposed score vector is linear. We emphasize
that this linear sparsity structure is invalid in general in our graphical model settings. For the
reasons above we call this step of our method the likelihood-based bias correction.

In the end, given the population expression of V in (3.5), we need to represent the empirical
element vk in the score vector V . Denote the oracle score of the kth observation as v

(o)
k =

T (X
(k)
j )−g(T (X

(k)
−{i,j}), ηi, ηj ). Here, we call v

(o)
k the oracle score since ηi , ηj are unknown

to us. Those points where T (X
(k)
−{i,j}) has explained most variability of T (X

(k)
j ) would receive

scores with a small magnitude and thus play a less significant role in our method. Intuitively,
we expect that the first term in the right-hand side of (3.4) dominates θ̃ij − θij with our choice
of V . One can show that if ignoring the minor difference between f̈ (μi) and f̈ (μ̂i), then the
asymptotic variance of this first term is F−1

ij , where

Fij = Eηi,ηj

((
T (Xj ) − g

(
T (X−{i,j}), ηi, ηj

))2
f̈ (μi)

) = 〈V,V 〉.
We leave its mathematical derivation in the Supplementary Material (Zhang et al. (2020)).
Thanks to the globally good estimators η̂i and η̂j obtained from Step 1, it is natural for us

to finally use the plugged-in estimator of the oracle, vk = T (X
(k)
j ) − g(T (X

(k)
−{i,j}), η̂i, η̂j )

in the bias correction step (3.3). We defer the specification of complete implementations in
Section 4.
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Intuitively, we expect that our choice of the nonlinear score vector leads to the following
asymptotic normality under some regularity conditions:√

nFij (θ̃ij − θij ) → N (0,1).

While we do not have access to Fij , due to its dependence on unknown parameters, it is

natural to replace it by the empirical estimator 1
n

∑n
k=1 v2

k f̈ (μ̂
(k)
i ). Therefore, we expect the

following asymptotic normality result:

(3.6)

(
n∑

k=1

v2
k f̈

(
μ̂

(k)
i

))1/2

(θ̃ij − θij ) → N (0,1).

3.2. Applications to three modified Poisson-type graphical models. We apply the pro-
posed general framework of statistical inference to the three modified Poisson-type graphical
models described in Section 2. Our current method for modified-Poisson graphical models is
an extension of Li et al. (2016), which only considered Ising graphical model, a special case
of TPGM.

Each nodewise regression in Step 1 for all three models relies on the conditional distribu-
tion Pηi

(Xi |X−i ). A more specific representation is provided as

(3.7) Pηi
(Xi |X−i ) = exp[T (Xi)(ψi + ∑

j �=i θij T (Xj )) + B(Xi))]∑Di

m=0 exp[T (m)(ψi + ∑
j �=i θij T (Xj )) + B(m)] ,

where the corresponding sufficient statistic and the base measure for each model are referred
to Table 1. The threshold Di for each Xi is finite in TPGM, while its value becomes +∞ in
the other two models.

The bias correction in Step 2 needs the knowledge of f (μi) which is the denominator of
the right-hand side of (3.7) for the three models. Specifically, the expression of f (μi) for
each of three models is shown in Table 2, and the details of corresponding ḟ (μi) and f̈ (μi)

are referred to Tables 3 and 4 in the Supplementary Material (Zhang et al. (2020)). Moreover,
the expression of vk in each model is based on the function g(T (X−{i,j}), ηi, ηj ). In general,
the expression of g(T (X−{i,j}), ηi, ηj ) can be presented as

g
(
T (X−{i,j}), ηi, ηj

) = Eηi ,ηj
[T (Xj )f̈ (μi)|T (X−{i,j})]

Eηi ,ηj
[f̈ (μi)|T (X−{i,j})]

=
∑Dj

k2=0(T (k2) · f̈ (θijT (k2) + T (X∗−{i,j})ᵀηi,−j ) · Q)∑Dj

k2=0(f̈ (θij T (k2) + T (X∗−{i,j})ᵀηi,−j ) · Q)

TABLE 2
Details of f (μi) in the three models

Model f (μi)

TPGM log(
∑Di

m=0 exp(mμi − log(m!)))
SPGM log(

∑+∞
m=0 exp(S(m)μi − log(m!)))

SqrtPGM log(
∑+∞

m=0 exp(
√

mμi − log(m!)))
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TABLE 3
Details of g(T (X−{i,j}), ηi , ηj ) in the three models

Model g(T (X−{i,j}), ηi , ηj )

TPGM
∑Dj

k2=0(k2·f̈ (θij k2+X
∗ᵀ
−{i,j }ηi,−j )·Q)∑Dj

k2=0(f̈ (θij k2+X
∗ᵀ
−{i,j }ηi,−j )·Q)

SPGM
∑+∞

k2=0(S(k2)·f̈ (θij S(k2)+S(X∗{−i,j })ᵀηi,−j )·Q)∑+∞
k2=0(f̈ (θij S(k2)+S(X∗−{i,j })ᵀηi,−j )·Q)

SqrtPGM

∑+∞
k2=0(

√
k2·f̈ (θij

√
k2+

√
X∗−{i,j }

ᵀ
ηi,−j )·Q)∑+∞

k2=0(f̈ (θij

√
k2+

√
X∗−{i,j }

ᵀ
ηi,−j )·Q)

with

Q =
Di∑

k1=0

exp
(
T (k1)T

(
X∗−{i,j}

)ᵀ
ηi,−j + T (k2)T

(
X∗−{i,j}

)ᵀ
ηj,−i

+ B(k1) + B(k2) + θijT (k1)T (k2)
)
,

where ηi,−j is the subvector of ηi with θij removed and ηj,−i is the subvector of ηj with
θji removed. Specific g(T (X−{i,j}), ηi, ηj ) for each model is summarized in Table 3, and the
details of corresponding Q are shown in Table 5 in the Supplementary Material (Zhang et al.
(2020)).

3.3. Multiple testing with false discovery rate control. If the structure of an overall graph
is paid attention to, then there involves a multiple testing problem for all θij ’s

(3.8) H0 : θij = 0 vs. H1 : θij �= 0 (1 ≤ i < j ≤ p)

that tests all pairs simultaneously. One of the most popular large-scale multiple testing proce-
dures is the false discovery rate (FDR) analysis (Benjamini and Hochberg (1995)). It is well
known that the false discovery rate FDR(t) = E(FDP(t)) is the expectation of false discovery
proportion (FDP), which is defined as

(3.9) FDP(t) =
∑

(i,j)∈H0
I {|T̂ij | ≥ t}

max{∑1≤i<j≤p I {|T̂ij | ≥ t},1} ,

where T̂ij is some generic test statistic for each individual hypothesis with a given threshold
level t , H0 = {(i, j) : i < j, θij = 0} denotes the set of true nulls (i.e., the edge set E), the
numerator is the total number of false positives and the denominator is the total number of
rejections. The numerator in (3.9) is generally unknown, but, under certain mild sparsity as-
sumption of the underlying graph, one can estimate it by 2(1−	(t))(p2 −p)/2, as suggested
in Liu (2013), where 	(·) is a standard normal CDF.

The test statistic in our case is T̂ij = (
∑n

k=1 v2
k f̈ (μ̂

(k)
i ))

1
2 θ̃ij , a standardized version of θ̃ij .

Following the idea in Liu (2013), we set a predefined level of FDR as 0 < α < 1 and choose
the threshold of the test statistic as

(3.10) t̂ = inf
{

0 ≤ t ≤ 2
√

logp : 2(1 − 	(t))(p2 − p)/2

max{∑1≤i<j≤p I {|T̂ij | ≥ t},1} ≤ α

}
.

We reject H0 in (3.8) if |T̂ij | ≥ t̂ . If no t̂ is chosen, we set t̂ = 2
√

logp as under null; the
distribution of each T̂ij is expected to be close to a standard normal such that the largest mag-
nitude of (p2 −p)/2 statistics is no larger than 2

√
logp with probability going to 1. Although
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we do not provide any theory, we comment that with the constraint t ≤ 2
√

logp in (3.10),
the weak dependency among all T̂ij ’s will not influence the FDR control asymptotically. For
further theoretical justification, please refer to Liu (2013).

4. Implementations for graph inference.

4.1. Algorithm. Step 1 involves a nodewise �1-penalized regression for each node Xi on
all other nodes X−i ; see Ravikumar, Wainwright and Lafferty (2010), Yang et al. (2013).
Here, the intercept ψi is excluded from the penalization. The total computational complexity
of Step 1 is essentially equivalent to solving O(p) �1-penalized regression problems. Each
problem can be solved efficiently using the proximal gradient descent. Set T (X∗) as the
n × (p + 1) matrix with the kth row being T (X∗(k))ᵀ for k = 1, . . . , n. In addition, all the
regressions rely on a single matrix with the ij th element being the inner product between the
ith and j th columns of T (X∗) which includes O(np2) operations. The precalculation of this
matrix can help avoid its repetitive calculation.

The bias correction for the parameter set � in Step 2 has a total of O(p2) loops,
and each loop for θ̂ij involves the calculation of inner products

∑
r �={i,j} θ̂irT (X

(k)
r ) and∑

r �={i,j} θ̂jrT (X
(k)
r ) for all k = 1, . . . , n. The naïve matrix calculation tends to increase the

computational complexity to O(np3). To simplify the computational steps, we precalculate
the inner product between each T (X

∗(k)
−i ) and the initial estimators η̂i and save the value in

a prediction matrix which can be repetitively used for the inner product calculation within
each loop. It can be seen that the precalculation of the prediction matrix helps reduce the
computational complexity of these inner products to O(np2).

Besides the aforementioned implementations with high computational convenience, all the
algorithms are achieved with the Rcpp library. Due to the lack of closed-form expressions for
the normalization terms in the conditional distributions of SPGM and SqrtPGM, the numeri-
cal approximations that require a summation from zero to a large number are highly involved
with many loop operations. The usage of Rcpp library, which incorporates the efficient C++
code under the R environment, helps lower the computational burden for loops. In the end,
we summarize all the steps of our two-step inference method in Algorithm 1.

4.2. Selection of tuning parameters. The tuning parameter λi in (3.1) controls the neigh-
borhood sparsity of each node Xi or the number of edges extending out from Xi , so we need
to select a sequence of λi with i = 1,2, . . . , p for initial estimators in Step 1. According to
the different purpose of inference, we provide two ways for selection of tuning parameters.

We at first focus on the inference of each individual θij . The extended BIC (EBIC) criterion
has been well studied under the regime of high-dimensional graphical models (Barber and
Drton (2015)). We write EBIC for each regression as follows:

(4.1) EBICγ (J ) = 2l
(
ηi; {

X(k)}n
k=1

) + |J |(log(n) + 2γ log(p − 1)
)
,

where l(ηi; {X(k)}nk=1) = −∑n
k=1 log(Pηi

(X
(k)
i |X(k)

−i )), |J | is the cardinality of J = {j : j �=
i and θ̂ij �= 0} and some universal γ ≥ 0. Following the suggestion in Barber and Drton
(2015), we set γ = 0.5 as the default value in real implementations and select the tuning
parameters that minimize (4.1).

For multiple testing, the tuning parameters are chosen as in Liu (2013) to guarantee 2(1 −
	(t))(p2 − p)/2 as close to

∑
(i,j)∈H0

I {|T̂ij | ≥ t} as possible. We leave further details in
Section 5 of the Supplementary Material (Zhang et al. (2020)).

To ensure the validity of EBIC to select tuning parameters, we further performed a com-
prehensive study of hyperparameter selection. We compared inferred networks between the
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Algorithm 1 Statistical inference of the modified Poisson-type graphical models
• Step 1: Initialization

1. Precalculate and save the inner product matrix, where the ij th element denotes the inner
product between the column i and column j of T (X∗).

2. For each Xi , i = 1,2, . . . , p, do nodewise �1-penalized regression (3.1).
3. Obtain each initial estimator θ̂ij for Step 2.

• Step 2: Likelihood-based Bias Correction

1. Precalculate and save the n × p prediction matrix M , where each element μ̂
(k)
i denotes

the inner product of T (X
∗(k)
−i ) and η̂i with k = 1,2, . . . , n and i = 1,2, . . . , p.

2. For each i = 1,2, . . . , p − 1, do:
(a) Calculate ḟ (μ̂

(k)
i ) and f̈ (μ̂

(k)
i ) in (3.3) with k = 1, . . . , n.

(b) With each fixed i, for each j = i + 1, i + 2, . . . , p, do:
i. Calculate q

(k)
1 = μ̂

(k)
i − θ̂ij T (X

(k)
j ) and q

(k)
2 = μ̂

(k)
j − θ̂j iT (X

(k)
i ) with k =

1, . . . , n.
ii. Plug q

(k)
1 and q

(k)
2 into (3.5) to obtain the score vector V .

iii. Generate the final estimator θ̃ij in (3.3).
3. Estimate the standard deviation, the 95% confidence interval, the p-value and the z-

score for each θ̃ij .

proposed method and the sole estimation procedure with only nodewise �1-penalized re-
gressions using EBIC and cross-validation under both simulation settings and the real data
application in Sections 5–6. It is intriguing to notice that the proposed method is robust to
different hyperparameter selection methods, while the sole estimation is very sensitive to
various model selection criteria. Moreover, the proposed method can reach a better balance
between false and true discoveries than the sole estimation based on different hyperparameter
selection methods. More details are left in Section 6 of the Supplementary Material (Zhang
et al. (2020)).

5. Simulations and a real example with ground truth. To show the validity of the
proposed two-step procedure, we evaluated its performance from two-folds: 1. Asymptotic
normality; 2. False discovery rate control for multiple testing. We considered four different
graph settings: (a) the chain graph with two consecutive nodes arranged to be connected, (b)
the grid graph (four-nearest neighbor graph) with nodes arranged to a lattice with maximal
degree d = 4, (c) the Erdős–Rényi (E-R) random graph with average node degree d = 4
and (d) the scale-free network (Barabási and Albert (1999)). We generated random samples
from the three modified Poisson-type models via Gibbs sampling (Zhang, Ouyang and Zhao
(2017)). The first 5000 draws were discarded in the burn-in period. Then, we took one sample
every 100 draws to guarantee independence. In addition, we also compared the proposed
method to the popular Gaussian graphical model estimation with FDR control using Lasso
(GFC_L) (Liu (2013)) by evaluating their performance on simulated RNA-seq data and a real
example with ground truth.

5.1. Asymptotic normality. The lattice size of Grid graph is
√

p × √
p here. For

each given graph we generated 100 data sets with n = 300, p = 100 and 400, respec-
tively, from the three models with each of nonzero entries drawn randomly from the set
(−0.4,−0.3,−0.2,−0.1,0.1,0.2,0.3,0.4). Other parameter details in the three models are
described as below:
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FIG. 1. Histograms of the estimated pairwise entries for p = 400 from the three models in scale-free graph.

• TPGM: The intercept term ψi = 0, and the threshold value Di = 3.
• SPGM: The intercept term ψi = −0.5, and two threshold values Di0 = 3 and Di1 = 6.
• SqrtPGM: The intercept term ψi = 0.

The proposed estimates of each pairwise parameter were obtained based on Algorithm 1 with
EBIC criterion for selection of tuning parameters in all the graph settings. Figure 1 shows the
histograms of randomly selected entries that cover all possible values of true parameters from
the three modified Poisson-type graphical models under high-dimensional settings with p =
400 for Scale-free graph. Each red curve is denoted as the approximate Gaussian density of a
particular entry. It can be seen that the histograms of each entry match with the corresponding
normal distribution very well. The histograms for scale-free graph with p = 100 and the other
three graph settings are referred to Figures 5 to 10 in the Supplementary Material (Zhang et al.
(2020)). Similarly, all the histograms of estimated entries are also in good accordance with
their corresponding normal distributions.

The (1 − α) confidence interval for each θij can be derived straightforwardly from the
asymptotic normality in (3.6),(

θ̃ij − zα/2

(
n∑

k=1

v2
k f̈

(
μ̂

(k)
i

))−1/2

, θ̃ij + zα/2

(
n∑

k=1

v2
k f̈

(
μ̂

(k)
i

))−1/2)
,

where zα/2 is the z-score with the right tail probability equal to α/2, that is, P(N (0,1) >

zα/2) = α/2.
In addition, we also evaluated the performance of empirical coverage probabilities of the

95% confidence intervals of θij ’s to demonstrate the validity of our inference results. Con-
sidering the sparse structures of both graph settings, we separated all θij ’s into two sets: the



INFERENCE OF LARGE MODIFIED POISSON-TYPE GRAPHICAL MODELS 843

TABLE 4
Medians (standard deviations) of empirical coverage probabilities of the 95% confidence intervals in S0 and Sc

0
with p = 400

S0 Sc
0

Chain Grid E-R Scale-free Chain Grid E-R Scale-free

n = 300, p = 400
TPGM 0.9436 0.9352 0.9284 0.9311 0.9511 0.9508 0.9497 0.9501

(0.0118) (0.0087) (0.0081) (0.0117) (0.0010) (0.0010) (0.0012) (0.0009)
SPGM 0.9499 0.9153 0.8910 0.9135 0.9528 0.9536 0.9519 0.9505

(0.0118) (0.0087) (0.0100) (0.0109) (0.0010) (0.0011) (0.0011) (0.0009)
SqrtPGM 0.9524 0.9512 0.9512 0.9549 0.9512 0.9501 0.9501 0.9510

(0.0110) (0.0087) (0.0087) (0.0108) (0.0009) (0.0009) (0.0010) (0.0008)

edge S0 and nonedge Sc
0:

S0 = {
(i, j) : θij �= 0

}
, Sc

0 = {
(i, j) : θij = 0

}
.

Then, based on all the estimates θ̃ij ’s, the average empirical coverage probabilities of the 95%
confidence intervals were evaluated in S0 and Sc

0, respectively. Table 4 reports the medians
(standard deviations) of average empirical coverage probabilities of the 95% confidence inter-
vals over 100 replications for p = 400. As we can see, all results are close to 0.95, the target
confidence level. Additional results towards individual inference with p = 100, n = 150 and
100 and, using settings in Section 5.2, are summarized in Tables 11–14 in the Supplementary
Material (Zhang et al. (2020)).

5.2. False discovery rate control for multiple testing. To evaluate the performance of our
estimates for multiple testing with false discovery rate (FDR) control, we considered the four
graphs with a two-block structure. More specifically, the first half of nodes form one block,
leaving the remaining nodes as another block. Two cases were evaluated: p = 200 and 400.
The detailed parameter settings are described as below:

• TPGM: Each of nonzero entries is randomly drawn: (i) either −0.3 or 0.3 in Block 1;
(ii) either −0.4 or 0.4 in Block 2. For both blocks, each intercept term ψi = −0.5, and
each threshold value Di = 3.

• SPGM: Each of nonzero entries is randomly drawn: (i) either −0.3 or 0.3 in Block 1;
(ii) either −0.4 or 0.4 in Block 2. For two blocks the intercept term ψi is: (i) −0.5 for
chain and scale-free graphs; (ii) −1 for grid and E-R graphs. Two threshold values Di0 = 2
and Di1 = 5.

• SqrtPGM: Each of nonzero entries is randomly drawn: (i) either −0.6 or 0.6 in Block 1;
(ii) either −0.9 or 0.9 in Block 2. The intercept term ψi = 0.

For each of the two cases, we generated 100 data sets with n = 400. We investigated
the performance of our procedure by evaluating true positive rate (TPR) and false positive
rate (FPR) over a range of FDR control levels. Here, we used the tuning selection scheme,
described in Section 5 of the Supplementary Material (Zhang et al. (2020)), for multiple test-
ing. To compare, we also applied the sole estimation procedure with nodewise �1-penalized
regressions in each same data set through a range of regularization parameters. The medians
of TPRs and FPRs at each cut-off over 100 replications from the two procedures are presented
in the receiver operating characteristic (ROC) curves for p = 400, as shown in Figure 2. It
can be seen that all curves from the proposed inferential procedure lie above the ones from
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FIG. 2. ROC curves based on TPRs and FPRs for the proposed inferential procedure and the sole estimation in
the case of p = 400.

the sole estimation and show noticeably better performance in detecting true conditional de-
pendency while simultaneously maintaining false discovers at a low level. ROC curves for
p = 200 which share similar patterns are shown in Figure 11 in the Supplementary Material
(Zhang et al. (2020)).

Furthermore, we report the medians (standard deviations) of empirical FDRs with pre-
specified levels 0.1 and 0.2 for both p = 200 and 400 in Table 5. The medians (standard de-
viations) of their corresponding power values are shown in Table 6. The empirical FDRs are
well controlled at the desired levels with a relatively good performance of power. Additional
simulation results toward global inference with n = 150 are summarized in Tables 15–16 in
the Supplementary Material (Zhang et al. (2020)).

5.3. Evaluation on simulated RNA-seq data. We further evaluated the performance of
the proposed method by comparing it to GFC_L on simulated RNA-seq data. RNA-seq data
was simulated based on the following steps:

(a) (Incorporation of conditional dependence) A simulated normalized count-valued
RNA-seq data set X with n samples and p genes is generated via Gibbs sampling from
SqrtPGM with scale-free graph.

(b) (Pseudo-random number addition) A randomly generated number from uniform dis-
tribution between zero and one is added to each element of the simulated count data to ensure
randomness.

(c) (Inverse power transform) Inverse power transform is performed on Xβ for 0 < β < 1
with the value of β from real data applications.
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TABLE 5
Medians (standard deviations) of empirical false discovery rates

α = 0.1 α = 0.2

Chain Grid E-R Scale-free Chain Grid E-R Scale-free

n = 400, p = 200
TPGM 0.0892 0.0948 0.0939 0.0939 0.1777 0.1794 0.1792 0.1856

(0.0277) (0.0188) (0.0189) (0.0246) (0.0397) (0.0260) (0.0277) (0.0338)
SPGM 0.0858 0.0840 0.0964 0.0938 0.1744 0.1623 0.1760 0.1895

(0.0259) (0.0209) (0.0222) (0.0253) (0.0327) (0.0261) (0.0299) (0.0361)
SqrtPGM 0.0884 0.0903 0.0955 0.0956 0.1762 0.1784 0.1721 0.1810

(0.0237) (0.0323) (0.0277) (0.0262) (0.0327) (0.0318) (0.0368) (0.0346)

n = 400, p = 400
TPGM 0.0940 0.1007 0.1120 0.0937 0.1866 0.1931 0.2052 0.1939

(0.0142) (0.0128) (0.0187) (0.0225) (0.0205) (0.0204) (0.0213) (0.0251)
SPGM 0.0998 0.1154 0.1159 0.1054 0.1852 0.2032 0.2145 0.2092

(0.0212) (0.0173) (0.0141) (0.0242) (0.0218) (0.0231) (0.0201) (0.0249)
SqrtPGM 0.0986 0.0907 0.0997 0.0976 0.2016 0.1818 0.1885 0.2021

(0.0197) (0.0117) (0.0123) (0.0176) (0.0280) (0.0174) (0.0152) (0.0254)

(d) (Final count generation) Elements are rounded down to its nearest integer to obtain
the final simulated RNA-seq data set.

Here, we considered the two-block scale-free graph in Section 5.2. The step (c) was motivated
by the preprocessing steps in Allen and Liu (2013) on original RNA-seq data. The prepro-
cessing on our motivating count-valued RNA-seq data of childhood atopic asthma returned
β = 0.2517.

We used the proposed procedure to generate 100 simulated RNA-seq data sets with
n = 300 and p = 400. Figures 3(A) and 3(B) demonstrate the histograms of count values
from the real data set of childhood atopic asthma and a typical simulated RNA-seq data set.
As it can be seen, their distribution shapes are quite close to each other with decaying pro-
portions of large count values. Before implementing the proposed method, we took a power

TABLE 6
Medians (standard deviations) of power values for corresponding FDR control levels

α = 0.1 α = 0.2

Chain Grid E-R Scale-free Chain Grid E-R Scale-free

n = 400, p = 200
TPGM 0.7222 0.7116 0.7867 0.7727 0.7828 0.7619 0.8329 0.8131

(0.0236) (0.0215) (0.0197) (0.0230) (0.0234) (0.0204) (0.0161) (0.0215)
SPGM 0.7172 0.4881 0.4746 0.7449 0.7677 0.5556 0.5278 0.7879

(0.0226) (0.0256) (0.0228) (0.0247) (0.0241) (0.0238) (0.0241) (0.0238)
SqrtPGM 0.8838 0.7460 0.6613 0.8939 0.9192 0.8069 0.7295 0.9242

(0.0238) (0.0227) (0.0336) (0.0198) (0.0197) (0.0218) (0.0327) (0.0167)

n = 400, p = 400
TPGM 0.6357 0.7131 0.6463 0.6131 0.6910 0.7592 0.6920 0.6633

(0.0177) (0.0114) (0.0123) (0.0164) (0.0183) (0.0113) (0.0122) (0.0168)
SPGM 0.6646 0.4347 0.5087 0.6796 0.7186 0.4908 0.5538 0.7236

(0.0163) (0.0161) (0.0157) (0.0166) (0.0188) (0.0150) (0.0154) (0.0179)
SqrtPGM 0.8492 0.6966 0.6467 0.8065 0.8920 0.7652 0.7107 0.8492

(0.0185) (0.0161) (0.0141) (0.0185) (0.0157) (0.0146) (0.0138) (0.0185)
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FIG. 3. (A) Histogram of real RNA-seq data of childhood atopic asthma. (B) Histogram of typical simulated
RNA-seq data. (C) ROC-type curves based on TPRs and FDRs for the proposed inferential procedure (SqrtPGM
and SPGM) and GFC_L on simulated RNA-seq data.

transformation on the simulated RNA-seq data with β = 0.2517 and rounded down each el-
ement of data matrices to its nearest integer. Before implementing GFC_L, we performed a
log and nonparanormal transformation (Liu, Lafferty and Wasserman (2009)) to continue and
Gaussianize the simulated data sets (Jia et al. (2017)) using the R package huge (Zhao et al.
(2012)). We implemented our proposed method using SqrtPGM and SPGM because they are
more general Poisson-type distributions than TPGM. GFC_L was implemented with the R
package SILGGM (Zhang, Ren and Chen (2018)).

The evaluation of methods depends on the performance of TPR over a range of varying
FDR control levels. The medians of TPRs and FDRs over 100 replications from our approach
(SqrtPGM and SPGM) and GFC_L are illustrated in the ROC-type curves in Figure 3(C).
Both curves from our approach with SqrtPGM and SPGM lie above the one from GFC_L
which indicates that our proposed method is noticeably more capable of capturing built-in
features than GFC_L while controlling FDRs around same levels. Furthermore, we also re-
ported all the medians (standard deviations) of empirical FDRs and corresponding power
values with prespecified levels α = 0.1 and 0.2 in Table 7. The power values from the pro-
posed method with SqrtPGM and SPGM are both greater than those from GFC_L while all
the empirical FDRs are very similar. Additional results with n = 150 are shown in Table 17
in the Supplementary Material (Zhang et al. (2020)).

5.4. A real example with ground truth: Liver cytochrome P450s. We also evaluated the
validity of our proposed approach by comparing with GFC_L on a real example with es-
tablished ground truth. It is a count-valued RNA-seq data set for a liver cytochrome P450s

TABLE 7
Medians (standard deviations) of empirical FDRs and power values from our proposed method (SqrtPGM and

SPGM) and GFC_L on simulated RNA-seq data with FDR controlled at levels α = 0.1 and 0.2

Proposed (SqrtPGM) Proposed (SPGM) GFC_L

FDR Power FDR Power FDR Power

α = 0.1
0.1023 0.6445 0.1143 0.5842 0.0993 0.4786
(0.0181) (0.0259) (0.0191) (0.0224) (0.0250) (0.0237)

α = 0.2
0.1965 0.7085 0.2295 0.6508 0.2018 0.5553
(0.0234) (0.0240) (0.0208) (0.0224) (0.0248) (0.0236)
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FIG. 4. The subnetwork of P450 regulatory system from Yang et al. (2010) with the known regulators and P450
genes shown in blue rectangles and red ovals, respectively.

subnetwork from humans with n = 100 samples and p = 44 genes, and we downloaded the
data from the Supplementary Material of Jia et al. (2017). Through experimental work, Yang
et al. (2010) uncovered a subnetwork of P450 regulatory system for human liver shown in
Figure 4.

At first, we evaluated the scale-free (or power-law) topology of inferred networks because
a biological network generally has a scale-free pattern (Almaas and Barabási (2006)). After
implementing the preprocessing steps in Allen and Liu (2013), we performed the proposed
approach using TPGM, SPGM and SqrtPGM with FDR control at levels 0.001, 0.005, 0.01,
0.05, 0.1 and 0.15. We implemented GFC_L on the data after a log and nonparanormal trans-
formation on the original count values at same levels of FDR control. The power law can be
described as p(λ) ∝ λ−α , where λ and p(λ) are denoted as node degree and its corresponding
probability, and α is a positive number. A correlation value between the log 2 of node degree
and the log 2 of its corresponding probability closer to −1 indicates a better conformation
to the power law. Speaking overall, our proposed approach generates networks that are more
consistently follow scale-free topology than GFC_L, as shown in Table 8. The correlation
values from our approach with TPGM and SqrtPGM are consistently around −0.8 or −0.9.
When prespecified levels become 0.1 and 0.15, the inferred networks from GFC_L are highly
deviated from a scale-free pattern with correlation values of −0.4322 and 0.1344.

We then evaluated the identified gene interactions from inferred networks of GFC_L and
the proposed approach with FDR control at level 0.001 because all of them follow scale-
free topology well with negative correlation values stronger than −0.9. In terms of the pro-
posed approach, we focused on the results with SPGM, due to its slightly better performance

TABLE 8
Correlations between the log 2 of node degree and the log 2 of its corresponding probability of inferred networks

FDR level

0.001 0.005 0.01 0.05 0.10 0.15

GFC_L −0.9304 −0.9304 −0.9304 −0.7734 −0.4322 0.1344
Proposed (TPGM) −0.9395 −0.9000 −0.9000 −0.8788 −0.8192 −0.8041
Proposed (SPGM) −0.9105 −0.8216 −0.7007 −0.6336 −0.5887 −0.5999
Proposed (SqrtPGM) −0.9398 −0.9393 −0.9278 −0.9151 −0.9342 −0.8439
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TABLE 9
The identified gene interactions that overlap the subnetwork from Yang et al. (2010) by GFC_L and the proposed

approach with SPGM

GFC_L Proposed (SPGM)

CYP3A4 —— CYP3A43 CYP3A4 —— CYP3A43
CYP2A7 —— CYP2A13 CYP2A7 —— CYP2A13
AKR1D1 —— GLYAT CYP2C9 —— CYP2C8
NCOA7 —— BCL6 NCOA7 —— BCL6
ETNK2 —— NR1I2 CYP2B6 —— CYP2B7P1

CYP2A7 —— CYP2A6
FMO3 —— SLC10A1

SLC10A1 —— AKR1D1

than TPGM and SqrtPGM. We listed the identified gene interactions that overlap the sub-
network from Yang et al. (2010) in Figure 4 from our proposed approach with SPGM and
GFC_L in Table 9. As it can be seen, our proposed approach with SPGM can capture most of
these interactions identified from GFC_L, for example, CYP3A4 and CYP3A43, BCL6 and
NCOA7, and CYP2A13 and CYP2A7. Moreover, the proposed approach with SPGM can
recover more functionally important interactions between the known cytochrome P450 genes
shown in red ovals in Figure 4 than GFC_L, for example, CYP2C8 and CYP2C9, CYP2B6
and CYP2B7P1, and CYP2A6 and CYP2A7.

6. Application to RNA-seq data of childhood allergic asthma. We applied our pro-
posed approach to the motivating RNA-seq gene expression data that illustrates the count-
valued transcripts of genes from the nasal epithelial cells of n = 157 children (62 females
and 95 males) with allergic asthma in Puerto Ricans. These children have an average age of
15.3 years with a median total IgE (Immunoglobulin E) of 372 IU/mL. More detailed demo-
graphic information of these children is deferred to Table 1 in the Supplementary Material
(Zhang et al. (2020)). Before using the proposed approach, we normalized the RNA-seq data
following the preprocessing steps described in Allen and Liu (2013). After preprocessing,
the normalized data includes p = 500 genes and is more approachable to a Poisson-type dis-
tribution than the original one; see Figure 12 in the Supplementary Material (Zhang et al.
(2020)).

We inferred gene network using the proposed method in the three models with FDR con-
trol at level 0.001. As comparison studies, we also constructed gene network using only the
estimation results from Step 1 of the procedure. To evaluate the overall network structure with
scale-free (or power-law) topology, Figure 5 illustrates the log 2-log 2 plots of node degree
distribution for inferred networks and their corresponding correlation measurements. As it
can be seen, the correlation values based on the proposed inferential procedure are all around
−0.9 and much closer to −1 in TPGM and SPGM, while the values are comparable with
the sole estimation in SqrtPGM. Although the correlation values are still good, the sole esti-
mation generally leads to a much sparser network and fails to capture complex coexpression
structures, particularly for TPGM which has a maximum node degree of 1 and barely demon-
strates any informative interactions. Additional evaluations of the overall network structure
based on the two graphical model methods under normal assumption are shown in Figure 13
in the Supplementary Material (Zhang et al. (2020)). Due to their failure to conform the power
law, we did not include them for further analysis.

In addition to evaluating the overall network structure, we also studied community struc-
ture of all the inferred networks, using the eigenspectrum of the modularity matrix (Newman
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FIG. 5. The log 2-log 2 plots of degree distribution for the inferred networks (NA: Not available).

(2006)), to explore important gene pathways within the identified gene modules to atopic
asthma. Besides the aforementioned methods with three modified Poisson-type models, we
included GFC_L and the nonparanormal SKEPTIC estimator (Liu et al. (2012)) as compar-
ison studies. To ensure the fairness in comparison, we extracted the same 500 genes from
the original data and made a log and nonparanormal transformation to the count values be-
fore the use of GFC_L with FDR control at level 0.001. For nonparanormal SKEPTIC we
obtained Spearman’s rho statistics from the original count-valued data with 500 genes and
implemented the graphical Lasso to estimate networks. The resulting estimated graph was
finally selected by the EBIC criterion. Table 10 demonstrates the identified big gene modules
with a size of at least 30 genes from the inferred gene networks. It can be seen that the pro-
posed method successfully detects two to four big gene modules among three models, while
the sole estimation in TPGM and SqrtPGM, GFC_L and nonparanormal SKEPTIC fail to
identify informative ones.

TABLE 10
The big gene modules identified by different approaches (NA: No modules with a size of at least 30 genes

available)

Method Size of big modules Number of big modules

Proposed (TPGM) 312, 169 2
Proposed (SPGM) 229, 75, 120 3
Proposed (SqrtPGM) 48, 164, 120, 114 4
Estimation (TPGM) NA 0
Estimation (SPGM) 49, 32 2
Estimation (SqrtPGM) NA 0
GFC_L NA 0
Nonparanormal SKEPTIC NA 0
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FIG. 6. Some enriched pathways from the proposed inferential procedure in SqrtPGM.

We further performed gene pathway enrichment analysis on the identified big modules
in Table 10 using ToppGene Suite (Chen et al. (2009)) with FDR control at level 0.05;
see Table 19 in the Supplementary Material (Zhang et al. (2020)) for complete results. From
those modules identified by the proposed inferential procedure, we found some pathways
that are shared within three models and critical to atopic asthma, for example, metal se-
questration by antimicrobial proteins and FasL/CD95L signaling. The antimicrobial activity
of S100A8/A9 proteins can induce a metal-witholding response by starving pathogens with
metal nutrients in inflamed upper airway due to the chronic autoimmune diseases like asthma,
according to Van Crombruggen et al. (2016). The potential role of Fas and its ligand (FasL)
signaling pathway in T helper type 2 (Th2) cells for asthma has been intensively studied
(Potapinska and Demkow (2009), Williams et al. (2018)). More interestingly, we also no-
ticed some unique pathways enriched from the different modules in the three models, as
shown in Figure 6 for SqrtPGM and Figure 14 in the Supplementary Material (Zhang et al.
(2020)) for TPGM and SPGM. CLEC7A/inflammasome pathway (Hadebe, Brombacher and
Brown (2018)) from TPGM and TRAIL signaling pathway (Braithwaite, Marriott and Lawrie
(2018)) from SPGM are important in regulating immune responses to atopic asthma. More
unique pathways were enriched from SqrtPGM, such as Jak-STAT signaling pathway and
Interleukin-4 and 13 (IL-4/IL-13) signaling pathway. Jak-STAT signaling pathway has been
shown to play an important role in the development of atopic asthma by differentiating Th2
cells from naïve T cells (Vale (2016)) and regulating the level of IgE (Zhang et al. (2018)).
IL-4/IL-13 signaling pathway is central for IgE regulation, and genetic alterations in this
pathway reveals its significance to the development of childhood atopic asthma (Kabesch
et al. (2006)). However, the identified gene modules from the sole estimation are not capable
of reflecting critical gene pathways about allergic asthma compared with the proposed infer-
ential procedure. The gene interactions of the module in SqrtPGM with enriched JAK-STAT
signaling pathway as well as their corresponding interactions in TPGM and SPGM are further
presented in Figure 15 in the Supplementary Material (Zhang et al. (2020)).

Then, we investigated interactions among the 12 genes included in the Jak-STAT signal-
ing pathway which is the most significant enriched pathway from SqrtPGM and also the one
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FIG. 7. The inferred interactions of genes within the Jak-STAT signaling pathway.

enriched using a total of 500 genes with FDR control at the 0.05 level; see Table 20 in the
Supplementary Material (Zhang et al. (2020)). Targeting this pathway will be therapeutically
effective on asthma pathology (Vale (2016)). The inferred gene interactions from our proce-
dure, the sole estimation, GFC_L and nonparanormal SKEPTIC are demonstrated at a fixed
panel in Figure 7. As we can see, the sole estimation, GFC_L and nonparanormal SKEP-
TIC can barely detect any informative interactions, except the one between IL6 and CSF3.
Conversely, our procedure is capable of identifying more meaningful interactions related to
atopic asthma in addition to the one between IL6 and CSF3, for example, IL6R and IL6ST
from TPGM, and CSF3 and CSF3R from SqrtPGM. The activation of IL6R requires an asso-
ciation with IL6ST so as to regulate the immune response. CSF3R, which is associated with
asthma, is known as the receptor for CSF3 and should be involved in granulopoiesis during
the inflammatory process. According to a more recent study in Wang et al. (2019), CSF3 is
identified as a major effector that promotes infection-dependent transition to severe asthma,
and inhibition of CSF3R can be a potential strategy for preventing the pathological inflam-
mation. These suggest that the sole estimation, GFC_L and nonparanormal SKEPTIC may
neglect important functional relationships between genes closely related to atopic asthma.

Last, but not least, the inferred networks from our approach can capture important hub
genes that are closely associated with asthma and allergy, for example, NTRK2 (21 and 50
connections to other genes in SPGM and SqrtPGM, respectively) and GSN (27, 23 and 71
connections to other genes in TPGM, SPGM and SqrtPGM, respectively). The two genes
are also listed as the top differentially expressed genes in Forno et al. (2020) and are well
replicated by the two external cohorts from Giovannini-Chami et al. (2012) and Yang et al.
(2017). However, the sole estimation, GFC_L and nonparanormal SKEPTIC fail to identify
these important hub genes.

In summary, our refined inference is more useful compared to the sole estimation, GFC_L
and nonparanormal SKEPTIC. It not only reveals more significant pathways related to atopic
asthma but also captures more complex gene coexpression structures and important hub
genes. The sole estimation and the methods based on Gaussian and nonparanormal graphical
models may lead to information loss and are less powerful to obtain informative disease-
relevant results. Therefore, our procedure can be potentially useful for new treatment devel-
opment in atopic asthma. To further demonstrate the advantages of our proposed method,
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we performed additional analysis of GFC_L on transcript per million (TPM) values from
RNA-seq data; see Section 8.5 of the Supplementary Material (Zhang et al. (2020)) for more
details.

7. Conclusion and discussion. We have developed a novel procedure for statistical in-
ference of three modified Poisson-type graphical models which provides reliable confidence
intervals and p-values of pairwise edge and desirable false discovery rate control of multi-
ple edges to tailor the network analysis of nonnegative, discrete and high-dimensional data.
The procedure essentially relies on the intrinsic property of graphical models and is dif-
ferent from the existing regression-based bias correction. Compared to the sole estimation
approach, the proposed method is robust to different hyperparameter selection criteria, which
results in its noticeably better performance in inferring a more biologically meaningful net-
work by identifying more true signals while simultaneously controlling false discovers at a
reasonably low level. Compared to the application of graphical model methods under nor-
mal and nonparanormal assumptions, the proposed method tends to reveal more biological
meaningful networks and is more capable of capturing important gene interactions with less
information loss. From Yang et al. (2013) they mentioned another modified Poisson-type
model called quadratic Poisson graphical model (QPGM). However, unlike the desired Pois-
son tail, QPGM is more like Gaussian distribution and has Gaussian-esque thin tail. Due to
this major drawback, we do not consider QPGM here.

The proposed method can be applied to more different types of omics data even though
it is mainly motivated by the count-valued RNA-seq, for example, DNA copy number varia-
tion (CNV) data and single nucleotide polymorphism (SNP) data for genomics. In practice,
TPGM is more suitable for the context with a relatively small range of discrete values, such
as CNV or SNP data. For RNA-seq data, which generally has much larger discrete values, we
recommend to explore SPGM or SqrtPGM first because they are more general Poisson-type
distributions and allow a broader set of feasible parameters for pairwise conditional depen-
dence than TPGM. Indeed, when the upper bound Di of TPGM becomes larger, the behavior
of TPGM tends to be closer to original PGM which suffers from the limitation of negative
pairwise dependency. With sufficient computational resource we suggest to explore all three
models by comparing the results of overall network inference, gene modularity detection and
gene network construction for important pathways, according to different purpose of each
study.

There are several limitations of our proposed method which need future study as well.
On the one hand, the proposed method is not symmetric between i and j in estimating each
θij and, generally, depends on the ordering of variables. One can naively apply a sample
splitting scheme for symmetrization. More specifically, we randomly split the data into two
halves. Then, for each fixed pair i < j , we fit the first half of the data into our method to
obtain estimator θ̃ij and then apply the second half to our method with i and j switched to
obtain θ̃j i . The final asymptotically normal estimator is the average of these two independent
estimators θ̃

sym
ij = (θ̃ij + θ̃j i)/2. However, both that sample splitting scheme only uses part

of the data for inference and that the result depends on the random split of the data make
it less preferred in practice. Some preliminary analysis suggests that sample splitting is not
necessary for asymptotic normality of θ̃

sym
ij , but the dependency between θ̃ij and θ̃j i , obtained

with the same entire samples, requires a refined theoretical analysis. We thus leave it as
a future study. On the other hand, our method allows only a single discrete-type data set
as an input. Due to the increasing popularity of multiomics study, the integrative network
analysis of multilayered data sets with both continuous and discrete values is a promising
future direction. To this end, we will further expand our procedure to more generalized or
mixed-type exponential family graphical models as a future work.



INFERENCE OF LARGE MODIFIED POISSON-TYPE GRAPHICAL MODELS 853

Acknowledgments. The authors are grateful to the four anonymous referees, an Asso-
ciate Editor and the Editor for their highly valuable comments that improved the quality of
this paper.

Funding. The first and second authors were supported in part by NSF Grant DMS-
1812030.

The third and fourth authors were supported by NIH Grants HL079966, HL117191, and
MD011764.

SUPPLEMENTARY MATERIAL

Supplementary materialary material to “Inference of large modified Poisson-type
graphical models: Application to RNA-seq data in childhood atopic asthma studies”
(DOI: 10.1214/20-AOAS1413SUPPA; .pdf). In this supplement, we provide more technical
details for our inference procedure, and additional results for simulations and the real appli-
cation.

Code (DOI: 10.1214/20-AOAS1413SUPPB; .zip). R package ModPGMInference, the
package manual, code and data for simulations and real data applications contained in this
paper. In the future, ModPGMInference will be maintained and updated on the GitHub
repository: https://github.com/zhangr100/ModPGMInference.
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