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Measuring the dependence of k ≥ 3 random variables and drawing in-
ference from such higher-order dependences are scientifically important yet
challenging. Motivated here by protein coevolution with multivariate categor-
ical features, we consider an information theoretic measure of higher-order
dependence. The proposed collective dependence is a symmetrization of dif-
ferential interaction information which generalizes the mutual information
of a pair of random variables. We show that the collective dependence can be
easily estimated and facilitates a test on the dependence of k ≥ 3 random vari-
ables. Upon carefully exploring the null space of collective dependence, we
devise a Classification-Assisted Large scaLe inference procedure to DEtect
significant k-COllective DEpendence among d ≥ k random variables, with
the false discovery rate controlled. Finite sample performance of our method
is examined via simulations. We apply this method to the multiple protein
sequence alignment data to study the residue or position coevolution for two
protein families, the elongation factor P family and the zinc knuckle family.
We identify novel functional triplets of amino acid residues, whose contribu-
tions to the protein function are further investigated. These confirm that the
collective dependence does yield additional information important for under-
standing the protein coevolution compared to the pairwise measures.

1. Introduction. Ever since the pioneering observation on evolutionary interactions be-
tween flowering plants and insects by Charles Darwin (Darwin (1859)), coevolution has been
an important topic of evolutionary theory to understand the interdependences among living
systems (Thompson (1994)). Defined as the coordinated changes taking place among or-
ganisms or biomolecules, coevolution typically stabilizes or improves functional interactions
among the various parts. Rapid recent advances in genome sequencing has led to growing
numbers of studies of coevolution at the molecular level (Fraser et al. (2004), Cusick et al.
(2005), Chao et al. (2008), Ochoa and Pazos (2014)). In computational biology, multiple se-
quence alignments (MSA) for protein families have become accessible for large numbers of
species, and the identification of coevolution signals from an MSA has proven to be highly
effective for the analysis and prediction of protein structure and function (Afonnikov and
Kolchanov (2004), Wells and McClendon (2007), Burger and van Nimwegen (2010), Morcos
et al. (2011)). Amino acid mutations within or among protein sequences is considered to be
a key factor for understanding protein function. When multiple residues of a protein or even
multiple interacting proteins have a change at one position in a functional protein, one then
normally expects to find compensating changes at other positions to maintain its normal func-
tion. That is, the residue level coevolution can be inferred from the simultaneous mutation
among multiple positions in the MSA.
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While the experimental identification of coevolving residues in a protein sequence would
be arduous and/or serendipitous, computational methods are simple and have shown success
in a wide range of applications (de Juan, Pazos and Valencia (2015)). For example, mutual
information has been exploited to predict coevolved amino acids and applied to allosteric
pathway identification, functional site detection and residue contact prediction (Korber et al.
(1993), Martin et al. (2005), Dunn, Wahl and Gloor (2008)). A mutual information based
network approach was proposed to identify catalytic residues by Buslje et al. (2010). Ad-
justed for the indirect or transitive effects, methods focusing on residue contact prediction
have been introduced, such as the direct coupling analysis (Weigt et al. (2009), Morcos
et al. (2011)). Utilizing the correspondence between the graph structure and the precision
matrix, the protein sparse inverse covariance estimation was proposed by Jones et al. (2011),
with similar approaches being commonly exploited in genetic network analysis (Yin and Li
(2011), Zhi et al. (2013), Cai et al. (2013), Wang et al. (2015), Xia, Cai and Cai (2018)).
By using the so-called statistical potential energy, approaches, such as the statistical cou-
pling analysis, explicitly search for groups of coevolving residues to identify the allosteric
pathways within proteins (Lockless and Ranganathan (1999), Halabi et al. (2009), Reynolds,
McLaughlin and Ranganathan (2011)). Coevolution analysis has also been applied to improve
protein sequence matching (Jia and Jernigna (2018)), understand protein dynamics (Mishra
and Jernigna (2018)) and detect deleterious mutations (Hopf et al. (2017)).

Existing measures to extract coevolution signals from the MSA primarily focus on pair-
wise coherence. Despite their popularity, any extension to higher-order scenarios, where the
coevolution would involve k ≥ 3 residues simultaneously, has not often been carried out even
though in practice the intrinsic nature of protein structures is to have such multiple interac-
tions, and these should be considered for predicting the fitness of amino acid substitutions in
proteins or evolutionarily conserved protein-protein interactions. In other applications, cer-
tain higher-order dependences have been employed to detect functional modules in oncogenic
networks (Ciriello et al. (2012), Bueno and Mar (2017)) as well as to define higher-order link-
age disequilibrium among three or more alleles in genetics (Slatkin (2008)). Most approaches
employ pairwise measures to identify the higher-order dependences, such as the three-residue
correlation (Figliuzzi, Barrat-Charlaix and Weigt (2018)). This, however, presents some fun-
damental challenges. Physically, it is not always realistic to assume an arbitrary network to
be represented by the collection of many two-body interactions, even for some ideal models
such as the Potts model. Moreover, it is well known in probability that the pairwise depen-
dence, and therefore bivariate measures such as the correlation or the distance covariance,
cannot be used directly to detect the joint dependence. A classical example is the Bernstein’s
coin, as detailed in Section A.1 of the Supplementary Material (Jernigan et al. (2020)).

To directly model the higher-order dependence, various statistical approaches have been
identified because of their flexibility with respect to the data type and capability for draw-
ing inferences. For example, by modeling the higher-order dependence as edges containing
more than two vertices, the random hypergraphs, such as those from the generalized Erdös–
Rényi model, have been employed to study complex community structures beyond pairwise
associations (Klamt, Haus and Theis (2009), Yuan et al. (2018)). Using compound Poisson
processes, Staude, Rotter and Grün (2010) and Staude, Grün and Rotter (2010) proposed
testing procedures to detect higher-order correlations and cumulants in neural spike counts.
A similar but less parametric approach has been developed based on the maximum entropy
distribution (Onken, Dragoi and Obermayer (2012)). The aforementioned methods either
rely on the correct model specification or continuous measurements and, therefore, are not
directly applicable to the general discrete and categorical data, such as the MSA data. In
addition, the higher-order dependence may encounter certain degeneracy that permits the full
knowledge of all variables, given only one in the group, which is referred to as the full depen-
dence (Galas et al. (2010, 2014)). That is, each random variable is deterministically specified
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by another one in the group, and, therefore, the joint distribution is degenerate. On the one
hand, such full dependence should have already been detected in the pairwise dependence
relationship, and, ideally, it should be avoided in the higher-order dependence detection. On
the other hand, from the information theoretic point of view, such a degeneracy does not
incur for authentic higher-order dependences which require full knowledge of all others col-
lectively to predict one variable. In fact, no information will lose by removing all but one
variables from the group (Fleuret (2004), Galas et al. (2010)). In other words, the group is
degenerate in the sense that its total entropy equals to the entropy of any individual variable
in the group. Finally, inference on the higher-order dependence is by nature of high dimen-
sion and requires careful control on the false discover rate (FDR, Benjamini and Hochberg
(1995), Dudoit and van der Laan (2008), Sun, Zhang and Owen (2012), Cai and Liu (2016)).
However, the large-scale multiple inference of existing measures of higher-order dependence
has not been fully explored.

To circumvent these challenges and detect nonfull-dependence higher-order dependences
among residues or positions on the MSA, we consider an information theoretic measure,
the differential interaction information (DII) and its symmetrization, collective dependence
(Galas et al. (2014)). DII and the collective dependence are built upon the interaction infor-
mation, a multivariate generalization of mutual information. Compared to existing measures,
collective dependence vanishes for two extreme cases, full dependence and full indepen-
dence. In addition, collective dependence accommodates discrete and categorical data more
naturally as its building block; the information entropy originally was for an arbitrary discrete
distribution and can be effectively estimated based on independent and identically distributed
(i.i.d.) observations (Paninski (2003)). Specifically, take the trivariate {X1,X2,X3} as an ex-
ample; DII of X1 with respect to others is defined by H(X1) − H(X1,X2) − H(X1,X3) +
H(X1,X2,X3), where H(·) denotes the marginal entropy of the corresponding random vari-
ables. The collective dependence is then defined as the product of DIIs of each random vari-
able with respect to others (see Section 2 for further details). It can be shown that collective
dependence vanishes if a subset of {X1,X2,X3} is independent of the remaining variables.
In addition, it is also zero for the other extreme case, full dependence. On the other hand, it is
nonzero if the trivariate is dependent but not degenerate due to the full dependence. Hence,
the collective dependence provides a model-free measure to identify higher-order dependence
in multivariate discrete and categorical distributions.

As noted, identification of all k (≥ 3) variables with significant collective dependence
from a d-dimensional random vector is a large-scale multiple inference problem with

(d
k

)
hy-

potheses, for which FDR controlling procedures can be employed. However, as the collective
dependence is the product of individual DIIs, the null space of each test, which corresponds
to the lack of higher-order collective dependence, is composite in nature. A naive testing pro-
cedure common for all possible distributions under the true null will compromise the power.
Whenever additional information on the potential nonzero DIIs is provided, one can im-
prove the power of each test by constructing specific null distribution of the test statistic. To
that end, we propose a Classification-Assisted Large scaLe inference to DEtect COllective
DEpendence (CALL-DECODE) in this paper. We first estimate k DIIs for each of the

(d
k

)
groups of random variables using certain debiased entropy estimator (Paninski (2003)). Then,
we classify all these

(d
k

)
groups to mutually exclusive subsets by detecting potential nonzero

DIIs in comparison to some large deviation bounds. Leveraging such a classification, the
empirical false discovery proportion (FDP) is computed using subset-specific cutoffs and,
therefore, with respect to the nominal FDR, defines the threshold for identification of random
variables with significant collective dependence.

Collective dependence and our method, CALL-DECODE, can be easily implemented and
used to identify coevolution signals for k ≥ 3 residues or positions from the MSA. For exam-
ple, in our study on protein coevolution of the elongation factor P family and the zinc knuckle
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family, we focus on k = 3 and show that our method is capable of identifying the important
residues connecting triplets with significant third order collective dependence. Those novel
hub residues, such as Lys14, Phe16, Asn17, Ala25 and Lys26 from the zinc knuckle family,
are mostly missed by methods based on mutual information. They are critical for the protein’s
function such as interacting with RNA/DNA and are consistent with recent experimental re-
sults and discussions in literature.

1.1. Outline. In the next section we introduce the collective dependence to quantify as-
sociations of k ≥ 3 variables from a d-dimensional random vector. Section 3 provides details
of the CALL-DECODE procedure. For simplicity of presentation, we focus on k = 3 corre-
sponding to triplets of random variables. We report numerical studies in Section 4 to demon-
strate the finite sample performance of our method. In Section 5 we present the results of two
applications of collective dependence and CALL-DECODE to the motivating protein coevo-
lution problems. The paper is concluded in Section 6 with discussions. Technical discussions,
additional numerical experiments and extra results for the real data analysis are deferred to
the Supplementary Material (Jernigan et al. (2020)).

2. Collective dependence. In this section we briefly review the differential interaction
information (DII) and introduce the collective dependence (Galas et al. (2014)) as a measure
to quantify the higher-order dependence for k ≥ 3 random variables.

Assume that independent d-dimensional observations X1, . . . ,Xn are i.i.d. copies of a dis-
crete random vector X = (X1, . . . ,Xd). The marginal probability function of X is defined by
P(Xb = l) = pb,l for each b = 1, . . . , d , where l ∈ Xb = {0,1, . . . ,Lb} with known Lb ≥ 1,
and pb,l ∈ [0,1], ∑Lb

ł=0 pb,l = 1. Motivated by our application to protein coevolution, we as-
sume each Lb remains fixed while the sample size n and dimension d can diverge. Besides
discrete type distribution with finite possible outcomes for each coordinate, there is no other
distributional assumption on the joint probability function. We also call it distribution-free
model.

To formally introduce DII, we recall that the mutual information is a fundamental
information-theoretic quantity to measure the codependence between two random variables,
which is I(X1,X2) = H(X1) + H(X2) − H(X1,X2), where H(ν) is the joint entropy of a
general collection of random variables ν. One popular way of generalizing of the mutual in-
formation to the multivariate case is the so-called interaction information (McGill (1954)).
This quantity has been studied from different view points in literature (McGill (1954), Yeung
(1991), Galas et al. (2010)). In the case of three random variables with k = 3, the in-
teraction information can be written as the gain (or loss) in mutual information between
any two of the variables, due to additional knowledge of the third random variable. That
is, I(X1,X2,X3) = I(X1,X2) − I(X1,X2|X3) = H(X1) + H(X2) + H(X2) − H(X1,X2) −
H(X1,X3)−H(X2,X3)+H(X1,X2,X3). Intuitively, this is the amount of information shared
by all three variables together. It enjoys many desired properties such as permutation sym-
metric and that it vanishes if any one variable is independent of the other two. The gen-
eral interaction information of a collection of random variables ν can be defined using the
inclusion-exclusion formula (Bell (2003)) as follows:

I(ν) = ∑
{τ }

(−1)|τ |+1H(τ ),

where {τ } is the collection of all subsets of ν and |τ | denotes the cardinality of τ . This general
interaction information is the amount of information shared by all the variables together and
has similar good properties as the case k = 3 does.

However, the downside of using interaction information as our measure is that it does not
vanish for the full dependence scenario but this extreme degeneracy should be avoided in
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higher-order interaction detection (Fleuret (2004), Galas et al. (2010)). While there are more
than one way to get zeros at this extreme, Galas et al. (2014) suggest a natural choice called
the differential interaction information (DII). Specifically, for a target variable X ∈ ν, the DII
of X with respect to others, �ν,X is defined by the change in the interaction information
between sets that differ only by the addition of X, that is, �ν,X = I(ν) − I(ν \ {X}). It also
can be written in terms of the marginal entropies by the inclusion-exclusion formula of I(ν)

as follows:

(2.1) �ν,X = ∑
{τX}

(−1)|τX |+1H(τX),

where {τX} is the collection of all subsets of ν that contain X. It is interesting to notice that
DII is equivalent to the conditional interaction information �ν,X = −I(ν \ {X}|X) which is
equivalent to the conditional mutual information for k = 3 (Fleuret (2004), Vejmelka and
Paluš (2008)). This definition successfully tackles the challenge due to full dependence since
for this case any variable, say Y , fully determines all other variables which further implies
�ν,X = I(ν) − I(ν \ {X}) = I(Y ) − I(Y ) = 0. By the equivalent definition in (2.1), one can
easily see that �ν,X = 0 if any variable in ν \ {X} is independent of all remaining variables.
However, �ν,X is not permutation symmetric, as it specifies a target variable X. In addition,
one can see that �ν,X may not vanish if X is independent of all remaining variables. For
example, when k = 3 and ν = {X1,X2,X3} with X3 independent from X1 = X2, it is easy
to obtain that �ν,X3 = −H(X1) = −H(X2). Finally, to solve these two issues while keeping
the property that �ν,X = 0 for the full dependence scenario, Galas et al. (2014) define the
collective dependence �ν of a collection of random variables ν by the symmetrization of DII
for all variables within ν as follows:

(2.2) �ν = (−1)|ν| ∏
X∈ν

�ν,X.

We list the desired properties of the collective dependence in the following proposition which
is from Galas et al. (2014). We refer readers to Galas et al. (2014) for further details and expla-
nation of the collective dependence, including its connection to the so-called set complexity
in biological system.

PROPOSITION 1 (Galas et al. (2014)). Given random variables ν = {X1, . . . ,Xd}, the
collective dependence defined in (2.2) vanishes if: (i) all variables are independent, or (ii) all
the variables are fully dependent or (iii) there exists Xj independent from the remaining
variables for some j ∈ {1, . . . , d}.

For each k ≥ 3, we introduce the collective dependence for all k-groups of d-dimensional
random vector X = (X1, . . . ,Xd). Denote νk ⊂ {X1, . . . ,Xd}, where |νk| = k, that is νk =
{Xh1, . . . ,Xhk

} with {h1, . . . , hk} ⊂ {1, . . . , d}. DII of variable Xhj
with respect to a group of

k variables, �νk,hj
, is defined as follows, where {τj } is the collection of all subsets of νk that

contain Xhj
:

(2.3) �νk,hj
= ∑

{τj }
(−1)|τj |+1H(τj ).

Equipped with DII �νk,hj
, the collective dependence among k variables specified by νk , �νk

is then defined as follows:

�νk
= (−1)k

k∏
j=1

�νk,hj
.
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For a particular k-group νk , �νk
, therefore, measures the higher-order dependence among

variables specified by νk . As demonstrated by Proposition 1, �νk
= 0 whenever the k vari-

ables in νk are independent, or fully dependent or any individual variable in νk is independent
of the others. That is, �νk

= 0 implies the lack of collective dependence for variables in a par-
ticular νk .

We close this section by proposing a simple estimator �̂νk,hj
of each DII �νk,hj

. Specif-
ically, for small k, �νk

can be estimated well through the estimation of each entropy.
Given the distribution-free model discussed before, one can estimate H(τj ) by the maxi-
mum likelihood estimator (MLE), that is, ĤMLE(τj ) = −∑

cτj
f̂τj

(cτj
) log(f̂τj

(cτj
)), where

f̂τj
(cτj

) = n−1 ∑n
i=1 I(Xi,τj

= cτj
) with cτj

∈ Xτj
, the set of all possible values of Xτj

. For
fixed k, this simple “plug-in” estimator ĤMLE(τj ) is asymptotically minimax with both bias
and variance decreasing at the rate of 1/n (Basharin (1959), Paninski (2003)). In addition,
one can easily provide a sub-Gaussian type large deviation bound using the bounded differ-
ence inequality. To further correct the finite sample bias, in this paper we adopt the following
Miller–Madow bias-corrected estimator (Miller (1955)) based on MLE, hereafter,

Ĥ(τj ) = ĤMLE(τj ) + |Xτj
| − 1

2n
= −∑

cτj

f̂τj
(cτj

) log
(
f̂τj

(cτj
)
) + |Xτj

| − 1

2n
.

By plugging each bias-corrected entropy estimator into (2.3), we, therefore, obtain the esti-
mate of each DII, �̂νk,hj

= ∑
{τj }(−1)|τj |+1Ĥ(τj ). As a by-product, the collective dependence

among k variables specified by νk can be easily estimated by �̂νk
= (−1)k

∏k
j=1 �̂νk,hj

.

REMARK 2.1. It is worthwhile to mention that, when k = 3, the population DII is al-
ways nonpositive. This is due to the following fact: without loss of generality, assuming
ν = {X1,X2,X3}, we have �ν,3 = H(X3) − H(X1,X3) − H(X2,X3) + H(X1,X2,X3) =
−I(X1,X2|X3), where I(X1,X2|X3) is the conditional mutual information of X1, X2 given
X3. For a general k > 3, the corresponding DIIs can be either positive or negative. While the
targeted true DII is nonpositive, its Miller–Madow estimator due to the bias-correction can
be positive. We demonstrate the histograms of DII estimators in the Supplementary Material
(Jernigan et al. (2020)).

3. Large scale inference on the collective dependence. As discussed above, vanishing
�νk

implies the lack of higher-order dependence. The goal of this paper is to construct a
multiple testing procedure for testing the collective dependence of all k-groups. Hereafter,
without loss of generality, k ≥ 3 is prespecified; we index all the possible νk by � with � =
1, . . . , pk := (d

k

)
, and we will substitute all indices involving νk by �. Besides, we still use

generic h1, . . . , hk to denote the indices of variables in the �th k-group.
Denote the set of true null hypotheses by H0 = {� : 1 ≤ � ≤ pk,�� = 0}. However, for

each 1 ≤ � ≤ pk , the null hypothesis H�
0 : �� = 0 is composite. Indeed,

(3.1) �� = 0 ⇐⇒ at least one ��,hj
= 0, 1 ≤ j ≤ k.

In what follows, we first briefly discuss a natural and simple testing procedure for each H�
0 .

To control the type one error for the composite null, this procedure might be conservative.
To boost the power for testing each H�

0 , we then formally introduce a novel classification-
assisted multiple testing procedure CALL-DECODE. First, we classify each null into one of
the (k + 1) categories H0,j , j = 0, . . . , k via a thresholding procedure. The test statistic for
each H0,j distinguishes from each other. Next, we calculate the p-value for each of the pk

null hypotheses according to its category and apply a novel FDR-controlling procedure to
test H�

0 simultaneously for all 1 ≤ � ≤ pk .
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3.1. A simple testing procedure. For each fixed 1 ≤ � ≤ pk , consider testing �� = 0.
One simple idea is to test each sub null hypothesis H

�,j
0 : ��,hj

= 0 for all 1 ≤ j ≤ k. If there
exists at least one j such that H

�,j
0 is not rejected, we fail to reject the null H�

0 : �� = 0.
To illustrate, we assume that, after some standardization, each scaled estimator of DII

�̆�,hj
= �̂�,hj

(σ̂ ∗
�,jj )

−1/2 follows a standard normal distribution asymptotically under the

null H
�,j
0 , where σ̂ ∗

�,jj is some accurate variance estimator for �̂�,hj
. Therefore, it is natural

to use �̆�,hj
as the test statistic for each H

�,j
0 such that H

�,j
0 is rejected if |�̆�,hj

| > t for

some critical value t > 0. Notice that our goal is to test H�
0 rather than each H

�,j
0 . To control

the type one error with respect to a prespecified level α > 0 for H�
0 , one need to pick t

carefully for each H
�,j
0 . One can always pick a conservative t = �−1(α/(2k)) based on

the Bonferroni correction. Nevertheless, this does not reflect the relationship highlighted in
(3.1). Indeed, one would not reject H�

0 if and only if at least one of the k subhypotheses
fails to be rejected. One extreme under the null H�

0 is that only one sub null is true while
all others are false. Without loss of generality, we assume that ��,h1 = 0 and ��,hj

	= 0 for
j ≥ 2. Therefore, asymptotically, we have to pick t = �−1(α/2), since the probability of
rejecting any H

�,j
0 is tiny for j ≥ 2 as n diverges. One can easily see that this choice of

t = �−1(α/2) enables us to control the type one error when the number of true sub nulls are
greater than one as well. In other words, a simple testing procedure is to reject H�

0 , whenever
minj=1,...,k |�̆�,hj

| > �−1(α/2).
While the above simple testing procedure for each H�

0 is expected to be asymptotically
valid, it may potentially lack of power. In fact, if the number of zero coordinates (sub nulls)
in the vector (��,h1, . . . ,��,hk

) is larger than one, then the choice of t for minj=1,...,k |�̆�,hj
|

is conservative, that is, the actual type one error is much smaller than α. To boost the power,
we propose a classification-assisted method. The underlying idea is that if we could obtain
the information that how many sub nulls are potentially true, then we are able to calibrate the
distribution of our test statistic better. To be specific, each null H�

0 can be categorized into k

different cases. Set the number of zero coordinates in the vector (��,h1, . . . ,��,hk
) by z� for

1 ≤ � ≤ pk . Then, define H0,j = {� : 1 ≤ � ≤ pk, z� = j} as the collection of those k-groups
with j zero-valued DII. Clearly, H0,j ∩H0,i = ∅ whenever i 	= j . Besides, H0 = ⋃k

j=1 H0,j .
For notational simplicity, we set alternative hypotheses as H1 = {� : 1 ≤ � ≤ pk,�� 	= 0} =
H0,0. We formally introduce our procedure in two steps below, respectively, leaving a specific
algorithm illustration for the third order collection dependence to conclude Section 3.

3.2. Classification of differential interaction information. In this step we apply a simple
thresholding procedure to identify ��,hj

’s with strong signals. The purpose is to provide a
classification rule so that we can classify each k-group into one of the (k + 1) cases H0,j ,
j = 0,1, . . . , k. That is, we can obtain the number of potentially true sub nulls for each H�

0 ,
1 ≤ � ≤ pk .

To this end, we apply a bootstrap procedure to facilitate our classification. Let {X∗
i ,1 ≤

i ≤ n} be samples drawn randomly with replacement from the original data {X1, . . . ,Xn},
where X∗

i = (X∗
i,1, . . . ,X

∗
i,d) for 1 ≤ i ≤ n. Compute (�̂∗

�,h1
, . . . , �̂∗

�,hk
) in a similar way,

as discussed before, based on {X∗
i ,1 ≤ i ≤ n}, that is, �̂∗

�,hj
= ∑

τ∗
j
(−1)

|τ∗
j |+1Ĥ(τ ∗

j ), where

the sum is taken over all subset τ ∗
j of the �th k-group that contains Xhj

. For some given
large positive integer B , we replicate the above procedure B times independently and obtain
�̂

∗,1
�,hj

, . . . , �̂
∗,B
�,hj

. Define the sample covariance matrix of (�̂∗
�,h1

, . . . , �̂∗
�,hk

) for each 1 ≤ � ≤
pk as �̂

∗
� = (σ̂ ∗

�,ij )k×k , where σ̂ ∗
�,ij = B−1 ∑B

t=1(�̂
∗,t
�,hj

− �̂�,hj
)(�̂

∗,t
�,hi

− �̂�,hi
).
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Finally, we define the scaled DII based on this bootstrap procedure as �̆�,hj
=

�̂�,hj
(σ̂ ∗

�,jj )
−1/2. Then, we apply the thresholding procedure as

�̆th
�,hj

= I
{|�̆�,hj

| >
√

2 log(kpk)
}
.

We set the threshold
√

2 log(kpk) as under the null, the distribution of each �̆�,hj
, 1 ≤ � ≤ pk ,

1 ≤ j ≤ k is expected to be close to a standard normal such that the largest magnitude of those
kpk statistics is no larger than

√
2 log(kpk) with probability approaching to 1. After taking

this thresholding procedure, those DIIs with strong signals are able to survive. In the end we
can define the number of zero coordinates of (�̆th

�,h1
, . . . , �̆th

�,hk
) by ž� for 1 ≤ � ≤ pk and set

our classification rule as

H̆0,j = {� : 1 ≤ � ≤ pk, z̆� = j} for j = 0,1, . . . , k.

3.3. Classification-assisted large scale inference to detect collective dependence. We are
ready to introduce our new multiple testing procedure to detect the significant collective
dependence, namely, the CALL-DECODE. For each of the k possible categories under the
null H̆0,j , j = 1, . . . , k, we consider a different test statistic.

For each j = 1, . . . , k, we consider those � ∈ H̆0,j . Without loss of generality, we assume
that the first j coordinates of (�̆th

�,h1
, . . . , �̆th

�,hk
) are zeros. Then, on the event that our clas-

sification is accurate, the specific null H�
0 for this k-group becomes that ��,h1 = ��,h2 =

· · · = ��,hj
= 0. The validity of our classification result can be justified under certain mini-

mum signal strength condition on each nonzero DII. To test this simplified null, we further
scaled these first j coordinates such that they are asymptotically normal with identity covari-
ance, that is, (�̄�,h1, . . . , �̄�,hj

) = (�̂�,h1, . . . , �̂�,hj
)(�̂

∗
�,[j ][j ])−1/2, where �̂

∗
�,[j ][j ] is the

upper-left j by j submatrix of �̂
∗
� . Motivated by the alternative hypothesis � ∈ H1 = H0,0

in which all coordinates of (��,h1, . . . ,��,hk
) are nonzero, we use the smallest magnitude

among (�̄�,h1, . . . , �̄�,hj
), that is,

(3.2) T� = min
t=1,...,j

|�̄�,ht |,

as the test statistic for this k-group. The cumulative distribution function (c.d.f.) of this vari-
able under the specific null mentioned above can be written asymptotically as Fj (x) = 1 −
[2{1 −�(x)}]j . We further define the βth quantile of Fj (x) as F−1

j (β) = inf{x : Fj (x) ≥ β}.
We apply the above procedure for each � ∈ ⋃k

j=1 H̆0,j . Clearly, there are k different Fj (x)

corresponding to the k categories.
We now develop the multiple testing procedure motivated by the protocol pioneered by

Cai and Liu (2016) for all ��’s,

H�
0 : �� = 0 vs. H�

1 : �� 	= 0 (1 ≤ � ≤ pk).

Given the category of each k-group with the aid of classification rule proposed in last subsec-
tion, we are able to calculate the p-value of each test statistic T�, 1 ≤ � ≤ pk . It is worthwhile
to point out that as a byproduct of the second step, we have already identified H̆0,0 as k-
groups with significant collective dependence. Let β be the p-value threshold level such the
null hypotheses �� is rejected whenever T� ≥ F−1

j (β). Then, the FDP of the procedure is
defined as ∑

�∈H0
I{T� ≥ F−1

j (β)}
max(|H̆0,0| + ∑k

j=1
∑

�∈H̆0,j
I{T� ≥ F−1

j (β)},1)
,
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where |H̆0,0| is the cardinality of the set H̆0,0. An oracle threshold level for controlling the
false discovery proportion at a prespecified level 0 < α < 1 is then

βore = inf
{

0 ≤ β ≤ 1 :
∑

�∈H0
I{T� ≥ F−1

j (β)}
max(|H̆0,0| + ∑k

j=1
∑

�∈H̆0,j
I{T� ≥ F−1

j (β)},1)
≤ α

}
.

However, this oracle threshold βore is unknown and need to be estimated, as it depends on
the knowledge of the set of null hypotheses H0. Motivated from Cai and Liu (2016), with the
assumption that majority null hypotheses are true (i.e., |H0|/(pk −|H̆0,0|) → 1), we estimate
the numerator, the number of the true nulls, which are falsely rejected by the procedure at the
threshold level β , as (pk − |H̆0,0|)(1 − β), which leads to the final FDR procedure,

(3.3) β̃ = inf
{

0 ≤ β ≤ Cβ : (pk − |H̆0,0|)(1 − β)

max(|H̆0,0| + ∑k
j=1

∑
�∈H̆0,j

I{T� ≥ F−1
j (β)},1)

≤ α

}
.

Whenever β̃ does not exist, as suggested by Cai and Liu (2016), we simply let β̃ = Cβ :=
1 − (pk − |H̆0,0|)−1. We reject H�

0 , whenever either � ∈ H̆0,0 or T� ≥ F−1
j (β̃), where � ∈

H̆0,j , 1 ≤ j ≤ k. We emphasize that the above procedure is based on an approximation of∑
�∈H0

I{T� ≥ F−1
j (β)}/|H0| by (1 −β). It is important to impose the constraint 0 ≤ β ≤ Cβ

in (3.3) since this approximation would not be accurate when β is very close to 1. In addition,
the dependence among all T� would not influence this approximation too much when |H0| is
reasonably large.

We summarize the proposed inference procedure for third order collection dependence as
a demonstration below before concluding this section with a few important remarks.

Algorithm: CALL-DECODE for Significant Triplets

Input. Data matrix with n rows and d columns, number of bootstrap iterations B, nominal
FDR α, pthr and ε if screening.

Step 0. Initial screening as discussed in Section A.2.2.

Step 1. Classification. For each triplet � = 1, · · · ,p3 := (d
3

)
, do

Step 1.1. estimate differential interaction information (�̂�,h1, �̂�,h2, �̂�,h3), where
�̂�,hj

= ∑
{τj }(−1)|τj |+1Ĥ(τj ), as defined in Section 2;

Step 1.2. estimate the variance of �̂�,hj
, σ̂ ∗

�,jj using B bootstrap iterations and obtain

scaled differential interaction information �̆�,hj
= �̂�,hj

(σ̂ ∗
�,jj )

−1/2;
Step 1.3. threshold differential interaction information (�̆th

�,h1
, �̆th

�,h2
, �̆th

�,h3
) with

�̆th
�,hj

= I{|�̆�,hj
| > √

2 log(3p3)};
Step 1.4. set H̆0,j = {� : 1 ≤ � ≤ p3, z̆� = j} for j = 0,1,2,3 as the classification rule,

where ž� = ∑3
k=1 I(�̆

th
�,hk

= 0).

Step 2. Compute test statistic for each triplet.
Step 2.1. transform differential interaction information to (�̄�,h1, . . . , �̄�,hj

) using
estimated covariance from B bootstrap iterations;

Step 2.2. calculate test statistic T� = mint=1,...,j |�̄�,ht | for the �th triplet. The distribution
under null �� = 0 relies on classification: Fj (x) = 1 − [2{1 − �(x)}]j for class j .

Step 3. Identification. For level α, we compute β̃ using (3.3) and reject �� = 0 for the �th
triplet whenever either � ∈ H̆0,0 or T� ≥ F−1

j (β̃).

Output. 3-dimensional index vectors for identified triplets.
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REMARK 3.1. Though motivated from Cai and Liu (2016), our procedure has unique
novelty due to the classification step. One major difference from Cai and Liu (2016) is that
we take into account those k-groups H̆0,0 with strong collective dependence. As a result,
our finite sample approximation of the numerator potentially is more accurate. After all,
intuitively, we only need |H0|/(pk − |H̆0,0|) → 1, while routine application of Cai and Liu
(2016) requires |H0|/pk → 1.

REMARK 3.2. After the classification step, our test statistic T� in (3.2) is based on the
smallest magnitude. Alternatively, one can also consider chi-square type approach for the
simplified null ��,h1 = ��,h2 = · · · = ��,hj

= 0. However, if only some of these quantities
are zero while the null H�

0 is still true, the chi-square based test is more likely to reject the
null while T� is relatively insensitive to this pathological case. In practice, to reduce the effect
of rare cases that some of the classification were not accurate in the first step, we advocate
using T� over the chi-square type statistic. After all, it is more intuitive to use the weakest
signal among all coordinates of (��,h1, . . . ,��,hk

) if the goal is to test whether at least one
of them is zero.

REMARK 3.3. In practice, one can always apply a variable screening step before CALL-
DECODE to remove those (nearly) deterministic variables and reduce the computational bur-
den. This screening procedure is motivated by the fact that in many applications, including
the protein coevolution study, some variables demonstrate little variation and hence are nearly
deterministic. Intuitively, those variables are not important in interpreting the dependence re-
lationship among a group of variables. Indeed, this is the case in our setting: one can easily
show that there is no (very weak) collective dependence among any k-group including at
least one such a (nearly) deterministic variable; see Section A.2 of the Supplementary Mate-
rial (Jernigan et al. (2020)) for further details on this claim, including a detailed description
of the proposed screening procedure with theoretical justification in Section A.2.2.

4. Monte Carlo evidence. In this section we report results from Monte Carol experi-
ments to evaluate the finite-sample performance of our method on detecting the significant
higher-order collective dependence of d-dimensional random vectors. For demonstrations we
focus on k = 3 to identify dependent triplet.

We generate multivariate discrete or categorical data from two settings, the truncated con-
tinuous distribution (TCD) and the multinomial distribution (MD). The empirical FDR and
power are computed based on 100 replications. In simulations we let the nominal FDR equal
to 0.2, d = 20 or 26, and B = 1000 for the classification step in our method. Notice that, for
the third order collective dependence, d = 20 or 26 variables have 1140 or 2600 candidate
triplets and indeed lead to a large scale inference problem. On the other hand, for the moti-
vating protein coevolution problem many important protein families do have a small number
of positions on their sequences, such as the zinc knuckle family with only d = 16 residues.

4.1. TCD setting. For the TCD setting, first generate random vectors Zi = (Zi1, . . . ,

Zid), i = 1, . . . , n, with i.i.d. coordinates Zib ∼ F , where F is either the standard normal
(C1) or the standardized exponential distribution with mean 5 (C2). Using covariance ma-
trix �, Zi’s are further transformed as Zi�

1/2 to possess nondegenerate higher-order de-
pendence. We consider two block diagonal settings for � that the first design has one large
block of size 15 and five remaining nonzero diagonals (S1) and the second has three blocks
of size 6 and two remaining nonzero diagonals (S2). Settings S1 and S2 have 455 and 60
triplets with nontrivial collective dependence, respectively. For both settings we let the diag-
onal entries belonging to blocks equal to 0.5, the nonzero off-diagonal entries equal to 0.2
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TABLE 1
The empirical FDRs for detecting triplets with significant third order collective dependence by the proposed

algorithm under the TCD setting for models C1 (standard normal) and C2 (standardized exponential),
covariances S1 and S2, and TK with K = 3,4. The nominal FDR is 0.2, and results are based on 100 repetitions

Model K/n 250 500 750 1500 2000 2500

C1S1 3 0.068 0.058 0.064 0.025 0.012 0.013
4 0.223 0.125 0.106 0.114 0.117 0.135

C1S2 3 0.197 0.092 0.082 0.030 0.026 0.022
4 0.225 0.198 0.149 0.122 0.124 0.106

C2S1 3 0.084 0.074 0.076 0.013 0.014 0.022
4 0.203 0.167 0.104 0.071 0.050 0.045

C2S2 3 0.151 0.052 0.050 0.023 0.018 0.023
4 0.188 0.204 0.201 0.181 0.136 0.181

and the remaining diagonals equal to 1.3. From Zi�
1/2, we obtain data Xi = (Xi1, . . . ,Xid)

with Xib = TK([Zi�
1/2]b) for 1 ≤ b ≤ d , where TK(x) = ∑K−1

ι=0 ιI(x ∈ IK
ι ) is a truncation

operator to generate K levels from x. For K = 3, we let I 3
0 = (−∞,−1], I 3

1 = (−1,1],
I 3

2 = (1,∞) for model C1 and I 3
0 = (0,1], I 3

1 = (1,3], I 3
2 = (3,∞) for model C2. Similarly,

when K = 4, I 4
0 = (−∞,−1], I 4

1 = (−1,1], I 4
2 = (1,2], I 4

3 = (2,∞) for model C1 and
I 4

0 = (0,1], I 4
1 = (1,2], I 4

2 = (2,3], I 4
3 = (3,∞) for model C2. In summary, for the TCD

setting we have eight different scenarios based on the latent distribution F , the covariance
� and the truncation operator. Though the rigorous characterization of sparsity for collective
dependence is nontrivial under the general setting, it is easy to see that the third order collec-
tive dependence is relatively dense for setting S1 given d = 20. For the TCD setting we let
n = 250,500,750,1500,2000 and 2500.

From Table 1 the empirical FDR is under control at the nominal level as n increases for
in general. Even for n = 250, the empirical FDR is reasonably controlled for K = 3 under
all four settings while it is slightly inflated when K = 4. The slight inflation of empirical
FDR for K = 4 and n = 250 is more or less due to the simultaneous estimation of entropy
for a large number of discrete distributions with many unique values. The larger block size
in � (setting S1) leads to more dependent triplets. The seemingly conservative FDR control
for large n in Table 1 can be interpreted as a result due to the dependence across triplets
and the corresponding hypotheses which usually influences the FDR control in practice (Cai
and Liu (2016)). The empirical power, as displayed in Figure 1, approaches toward one as
n increases and provides numerical evidence for our procedure’s consistency. Our method
is more powerful for the setting of covariance with larger blocks. Settings with K = 4 are
more powerful than those with K = 3, which is not surprising as more information will be
available, given a larger K (Cover and Thomas (2006)). The difference in power between
settings of the standard normal (C1) and the standardized exponential (C2) is mainly caused
by the difference in P([Zi�

1/2]b ∈ I 3
0 ) between Zi1 ∼ N(0,1) and Zi1 ∼ exp(5)/5 which

leads to different entropy.

4.2. MD setting. Under the MD setting we generate data Xi’s using multinomial distribu-
tion Multi(M, r) with M trials and probability vector r = (r1, . . . , rQ), where

∑Q
q=1 rq = 1.

Specifically, we consider two designs. For design I (D1), Xi = (Xi,(1),Xi,(2)), where the 9-
dimensional vectors Xi,(1) ∼ Multi(M, r) and independent from Xi,(1), the 11-dimensional
vector Xi,(2) has independent components uniformly sampled from {0,1,2,3,4}. Design II
(D2) is similar to D1 except that Xi,(1) is a 15-dimensional multinomial random vector. That
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FIG. 1. The empirical powers for detecting triplets with significant third order collective dependence by the
proposed method under the TCD setting for models C1 (standard normal) and C2 (standardized exponential),
covariances S1 and S2 and TK with K = 3,4. The nominal FDR is 0.2, and results are based on 100 repetitions.

is, d = 20 for D1 and d = 26 for D2. Designs I and II have 84 and 455 triplets with nontrivial
collective dependence, respectively. For all settings, M ∈ {2,5,10}. The Q-dimensional r is
either fixed with a common value Q−1 for all components or random whose entries are deter-
mined via dividing Q i.i.d. U(0,1) random numbers by their sum. In summary, for the MD
setting we have four different cases based on the design and the randomness of r. Compared
to the TCD setting, the number of dependent triplets for the MD setting is similar. Here, we
let n = 1000,1500,2000,2500,3000, and 3500.

In Table 2, the empirical FDRs are satisfactorily controlled for the MD setting. Similar to
the TCD setting, the seemingly conservative empirical FDR can be interpreted by the strong
dependence among hypotheses associated to triplets. As n increases, numerical evidences in
Figure 2 show that our procedure remains consistent. In comparison to the TCD setting, the
multinomial distribution has negative covariance between components whose magnitude in-
creases in M . Therefore, larger M will incur stronger dependence among test statistics T�’s
and the corresponding hypotheses which compromises the power. For M = 2, the data is

TABLE 2
The empirical FDRs for detecting triplets with significant third order collective dependence by the proposed

method under the MD setting for Designs I and II with random and fixed r (D1r and D1u; D2r and D2u,
respectively), where M = 2,5,10. The nominal FDR is 0.2, and results are based on 100 repetitions

Model M/n 1000 1500 2000 2500 3000 3500

D1r 2 0.020 0.016 0.013 0.012 0.013 0.010
5 0.019 0.010 0.015 0.013 0.010 0.014

10 0.024 0.029 0.026 0.021 0.022 0.028

D1u 2 0.045 0.051 0.022 0.000 0.001 0.000
5 0.014 0.021 0.031 0.038 0.031 0.020

10 0.028 0.033 0.024 0.036 0.046 0.038

D2r 2 0.036 0.044 0.043 0.045 0.039 0.038
5 0.008 0.015 0.018 0.022 0.021 0.025

10 0.007 0.020 0.016 0.020 0.022 0.025

D2u 2 0.057 0.071 0.072 0.067 0.066 0.066
5 0.013 0.016 0.016 0.027 0.026 0.031

10 0.022 0.004 0.022 0.024 0.028 0.029
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FIG. 2. The empirical powers for detecting triplets with significant third order collective dependence by the
proposed method under the MD setting for Designs I and II with random and fixed r (D1r and D1u; D2r and
D2u, resp.), where M = 2,5,10. The nominal FDR is 0.2, and results are based on 100 repetitions.

sparse by structure, and the estimation of entropy is fast and accurate which leads to substan-
tially higher power compared to other scenarios. With more variability it is not surprising that
the random r leads to a loss in power. Finally, it is interesting that D1 provides a more power-
ful result than D2 for both random and uniform probability vectors r. Though the number of
dependent triplets under D2 is more than that under D1, the total number of candidate triplets
under D2, which is 2600, is more than double that under D1, which is 1140. That is, the num-
ber of potentially dependent hypotheses to be multiple tested in D2 is much larger than that in
D1. In addition, a larger d leads to more marginal entropy to be estimated and may, therefore,
undermine the overall accuracy to estimate the collective dependence, particularly when M

is large and n is small. Hence, these factors together compromise the empirical power when
the sample size is small.

5. An application to protein coevolution. Conservation of function within a protein
family dictates the pattern of sequence variation. For example, in order to maintain a func-
tional interaction, all residues involved usually mutate together. Those jointly dependent
residues and corresponding positions on the sequence are the key components to understand
protein coevolution. In this section we apply our method to the protein coevolution prob-
lem. Particularly, we employ the collective dependence as a measure and apply our detection
procedure, CALL-DECODE, to identify functional triplet of amino acids residues from the
protein MSA data.
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FIG. 3. A snapshot of the (raw) MSA data for analysis.

5.1. Data description and processing. As discussed in Section 1, the MSA data is typical
for computational approaches to study protein coevolution. Generally speaking, the MSA is
the sequence alignment of three or more biological sequences, such as protein or nucleic
acid, of same length. During the alignment process the input sequences are considered to
have an evolutionary relationship by which they share an evolutionary linkage and a common
ancestor. In this study an MSA consists of a group of homologous protein sequences aligned
using hidden markov models. The MSA data for each protein family is retrieved from the
Pfam database (Finn et al. (2008)), and the corresponding structure is obtained from the
Protein Data Bank (PDB, Berman et al. (2000)). Each family describes a protein motif which
refers to a structural domain with certain biological functions. As shown in Figure 3, an
aligned MSA data is an n × d matrix with n independent protein sequences from a common
family and d positions encoding the type of amino acid. Here, n is the size of a protein family
and is usually fairly large for coevolution study. The raw value at each of the d position is
from 21 unique alphabets representing the 20 amino acid types plus one gap symbol.

In our analysis, the raw MSA data is further processed as follows. First, we remove the
redundant sequences using a similarity threshold of 90% and eliminate the columns that
have more than 10% gaps. Then, we remove all the conserved positions with low information
entropy. Finally, we categorize all amino acid types and the gap symbol into six classes, based
on the size and the chemical attributes. That is, the data for analysis contains six unique
alphabets, as summarized in Table 3. Extracting coevolution signals of functional triplets
of residues is then fulfilled through detecting triplets with significant collective dependence
among d discrete random variables taking values on {0,1,2,3,4,5}.

5.2. Results and findings. We study two protein families, the elongation factor P family
(Pfam ID: PF09285) and the zinc knuckle family (Pfam ID: PF00098) for demonstration pur-
poses. By identifying triplets having significant collective dependences, our method reveals
novel amino acid residues that are critical for the protein’s function, which are missed by
the widely used methods based on mutual information (denoted as MI, Martin et al. (2005)),
whose details and additional comparisons are deferred to Section C in the Supplementary
Material (Jernigan et al. (2020)).

TABLE 3
Code of the six alphabets in the data for analysis; see
Nelson and Cox (2005) for coding of amino acid types

Alphabet Amino acid types or gap symbols

0 B,J,O,Z,U,X, ‘−’, ‘·’
1 A,G
2 C,S,T,N,Q
3 D,R,E,K,H
4 F,Y,W
5 P,V,I,L,M
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FIG. 4. (a) The structure of EF-P (from Thermus thermophilus). Three domains are colored separately. (b) The
coverage of coevolved positions on the MSA identified as significant by our method and MI. The x-axis is the posi-
tion index of the MSA, and the y-axis is its appearance frequency based on the corresponding method. A position
is included if it has been identified as significant by either method. Hubs are in red.

5.2.1. Elongation factor P family. Elongation factor P (EF-P) is a prokaryotic protein
translation factor required for peptide bond synthesis on 70S ribosomes. It stimulates riboso-
mal peptidyl transferase activity. Although the exact biological mechanism remains unknown,
EF-P has been hypothesized to alter the affinity of the ribosome for tRNA and thus increases
their reactivity as acceptors for peptidyl transferase. As shown in panel (a) in Figure 4, EF-P
consists of three β-barrel domains. Domain I is topologically the same as the N domain of
an EF-P homolog of Eukarya and Archaea, eIF-5A. EF-P domains II and III share the same
topology as that of the eIF-5A C domain.

In this analysis we focus on the C-terminal domain in EF-P, the domain labeled III in panel
(a) in Figure 4. One side of the surface of domain III has a patch of conserved basic residues
which are positively charged and favorable for nucleic acid binding (Hanawa-Suetsugu et al.
(2004)). Residues on the other side of domain III are mostly negatively charged and con-
served. A conserved residue indicates small or no variations at the corresponding position on
the MSA. For the coevolution analysis those conserved positions are ignored.

The raw MSA data consists n = 4886 sequences. The number of nonconserved positions
involved in the analysis is d = 55. As a result, 2022 out of 26,235 candidate triplets are identi-
fied with significant third order collective dependence by our method with FDR controlled at
0.05. This covers 50 out of the total 55 positions on the MSA. As a comparison, MI is applied
to the same data. MI selects 122 out of 1485 candidate pairs which covers 38 positions. Panel
(b) in Figure 4 displays the frequencies of each position belonging to a significant triplet or
pair based on the corresponding method. From the detection results we also extract the hub
positions and corresponding amino acid residues. Hubs are considered to be important for bi-
ological functions and structural stability (Buslje et al. (2010), Zhang, Ren and Chen (2018)).
Positions on the MSA with the top one third highest appearance frequency are considered to
be hubs.

Some positions are commonly identified as hubs by our method and MI, such as positions
43, 51, 69, 70, 108 and 117 on the MSA (Panel (b) in Figure 4), corresponding to residues
Gly138, Asp142, Gly147, Ser148, Leu163 and Lys172 (Panel (a) in Figure 5). In contrast,
residues Leu130, Val139, Gly146, Ala157 and Asp174 (at positions 32, 44, 66, 89, and 119)
are selected uniquely as hubs based on the collective dependence. It is interesting that the
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FIG. 5. (a) The hub residues of EF-P C-terminal Domain. Residues in red are commonly identified by both
CALL-DECODE and MI. Residues uniquely selected by CALL-DECODE are in purple. The mapping between
residue index and position index is displayed in the legend (generated from PfamScan). The position index refers
to the column number in the MSA. The residue index is the unique identifier (residue name plus residue number)
for a residue on the protein structure defined in the PDB file. (b) The structures of EF-P monomer and tRNA in
the surface representation. Domain I, II, III in EF-P are in red, green and blue, respectively.

hubs loosely fall within two clusters. Within each cluster the spatial proximity of hub residues
suggests collective mutations of residues.

The similarlity between the shape of EF-P monomer and the approximaitely 95 degree-L
shape of tRNA molecule is well known (Hanawa-Suetsugu et al. (2004), panel (b) in Fig-
ure 5). It has been suggested that the similarity of EF-P monomer in shape and size to tRNA
may help proteins to pass through the entrance of the ribosome (Vestergaard et al. (2001)).
Both the I-II and II-III domain interfaces are formed by hydrophobic side chains with high
surface complementarities. The hub residues uniquely discovered by our method, Ala157 and
Asp174, are in the loop region connecting domains II and III (Panel (a) in Figure 5). This loop
region resembles a joint interface between the two domains. Therefore, this reflects the func-
tional importance of Ala157 and Asp174 for stabilizing the overall structure shape which is
involved in RNA (or DNA) binding interactions.

5.2.2. Zinc knuckle family. The zinc finger domain is a transcription factor mostly inter-
acting with DNA or RNA. In a zinc finger domain, the zinc ion helps stabilize and hold the
domain in a specific shape while all the side chains of functional amino acids reach out to in-
teract with nucleotides. The functional amino acids determine the binding location of protein
to DNA or RNA. Zinc finger domains are stable and rarely undergo conformational changes
beyond target binding. Based on the overall shape, zinc finger domains can be classified into
different types. For example, the zinc knuckle family (ZnkF) is a subtype with a gag-knuckle
fold which consists of two β-strands connected by a CCHC-type zinc knuckle followed by a
short helix or loop.

In addition to the relatively short sequence, the high variability in nonconserved positions
of ZnkF makes it difficult to determine the group of positions with functional or structural
specificity using methods that are based on pairwise coherence measures. For example, a
traditional approach to identify a group of coevolved positions from pairs is to combine MI-
selected pairs by referring to the transitive relationship. However, the high background noise,
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FIG. 6. The coverage of coevolved positions on the MSA identified as significant by our method and MI. The
x-axis is the position index of the MSA, and the y-axis is its appearance frequency based on the corresponding
method. A position is included if it has been identified as significant by either method. Hubs are in red.

which accounts for the intrinsic random variability in data (Dunn, Wahl and Gloor (2008)),
makes it unreliable to employ the transitive relationships for identifying higher-order groups
of coevolving positions from coevolved pairs.

In the Pfam database, ZnkF includes 808 species with 22,448 sequences and the average
length of domain across species is 17.8 amino acids. We focus on a species with n = 9029
sequences and d = 16 amino acids in this analysis. With nominal FDR controlled at 0.05, out
of 560 candidates, our method identifies 37 triplets with significant collective dependence
which covers 14 out of the total 16 positions on the MSA. As a comparison, MI selects 11
pairs out of 120 candidates and covers 11 positions. Again, the advantage of collective de-
pendence is demonstrated in the wider coverage of positions than MI. Displayed in Figure 6,
MI fails to identify positions 8, 31 and 32 on the MSA and neither does it select hubs Phe16,
Asn17 and Asn27 at positions 9, 10 and 30, respectively.

Compared with results from MI, our method identifies dependent triplets and reveals more
hub residues critical for protein’s function. In fact, hubs Lys14, Phe16, Asn17, Ala25 and
Lys26, corresponding to positions 7, 9, 10, 28 and 29 on the MSA in Figure 6, are functional
residues interacting with the nucleotides. They are keys to understand the mechanism of
HIV-1 (De Guzman et al. (1998)). Panel (a) in Figure 7 displays the protein structure of the
HIV-1 nucleocapsid (NC) protein, which posses the zinc knuckle domain, bound to the SL3
�-RNA recognition element (PDB ID is 1a1t). This structure reveals the functions of our
identified hubs: Lys14, Phe16, Asn17, Ala25 and Lys26. The 20-nucleotide RNA segment
in panel (a) in Figure 7 is part of what is known as �-site, which contains four stem-loop
structures, denoted as SL1 through SL4. The 20-nucleotide RNA segment assembles SL3, a
highly conserved structure among different strains of HIV-1. In panel (a) in Figure 7, Ala25
interacts with nucleotides A8 and G9 on the 20-nucleotide RNA segment; Lys26 interacts
with A8; the backbones of Phe16 and Ala25 for hydrogen bonds with G9; and the Lys14
backbone forms a hydrogen bond with G9. The base of the tetraloop nucleotide, A8, makes
hydrophobic contacts with Ala25, Phe16 and Asn17.

Though the function of identified Asn27 at position 30 on the MSA remains uncovered, we
notice that the side chains of Phe6, Gln9 and Asn27 point to the same center and are spatially
close to each other (Panel (b) in Figure 7). This indicates a noncharged side chain interaction.
Chakrabarti and Bhattacharyya (2007) showed that there is a high propensity of Asn-Gln
spatial proximity in general due to their stability. In addition, for 1a1t, Phe6 is the amino acid
next to Asn27-Gln9 with a high preference for aromatic side chains. In fact, the side chains
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FIG. 7. (a) The interaction between HIV-1 NC protein and RNA. Hub residues identified by collective depen-
dence are in red, while the interacting nucleotides are in purple. The mapping between residue index and position
index is displayed in the legend (generated from PfamScan). (b) The triplet residue contact formed by Asn27, Gln9
and Phe6 on the HIV-1 NC protein (in purple).

of these three amino acids point to the geometric center of this triplet neighborhood. We
hypothesize that the triplet residue contacts made by Asn27-Gln9-Ph6 support the structural
stability and may further aid the structure positioning to form the protein-RNA interaction.

6. Conclusions with discussions. Measuring the dependence of k ≥ 3 random variables
is fundamentally different from measuring their pairwise dependence. Statistically, bivariate
measures, such as mutual information, distance covariance and partial correlation, cannot be
directly employed to detect a higher-order dependence. In practice, the data are commonly
discrete or categorical such as the protein coevolution study and, therefore, demand measures
with fewer parametric assumptions. Efforts on generalizing bivariate measures to k ≥ 3 vari-
ables scattered in literature are often model specific and thus cannot be easily adopted for our
purpose. More importantly, the higher-order dependence may encounter certain degeneracy
due to the full dependence relationship which should be avoided in higher-order dependence
detection. In response to these challenges, we introduce an information theoretic measure,
collective dependence (Galas et al. (2014)), to quantify the dependence among k variables.
Using a bias-correction estimator on information entropy, we can estimate the collective de-
pendence effectively.

Comparison with other FDR procedures. Identifying k sub-vectors with significant col-
lective dependence from a d-dimensional random vector is intrinsically a large scale multiple
testing problem. Furthermore, the symmetry of collective dependence with respect to the
permutation of variables leads to composite nulls which compromises the power of naive
multiple testing procedures. To that end, we propose a classification-assisted multiple testing
procedure, CALL-DECODE, to detect the kth order collective dependence. Our method pro-
vides satisfactory powers in practice while controls FDR. We discuss the novelty of CALL-
DECODE in the context of multiple testing problems. First, our two-step multiple testing
procedure is an extension of the method by Cai and Liu (2016) from the pairwise depen-
dence to the collective dependence with a general order. Similar to Cai and Liu (2016), the
major difference from the standard Benjamini–Hochberg (BH) procedure lies in that by im-
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posing constraint Cβ in (3.3), the dependence among test statistics are expected to be neg-
ligible when the nulls are dominant. Second, CALL-DECODE can be viewed as one of the
structure-adaptive algorithms which have drawn significant attention recently (Li and Bar-
ber (2019)). Without our classification step, one can always follow the simple procedure in
Section 3.1 to obtain a conservative p-value for each k-group, and then apply the multiple
testing procedures, such as the standard BH method or the method by Cai and Liu (2016),
to control the FDR. In particular, for each k-group, one can use T� = mint=1,...,k |�̆�,ht | with
the null c.d.f. F1(x) = 1 − [2{1 − �(x)}]1. In contrast, in a data-adaptive fashion, each p-
value is “reweighted” according to an updated c.d.f. Fj (x) = 1 − [2{1 − �(x)}]j whenever
the corresponding k-group is classified into the j th category during the classification step of
CALL-DECODE, that is, � ∈ H̆0,j . Then, the method by Cai and Liu (2016) is applied to the
reweighted p-values to control the FDR in our procedure. More comparisons between our
method and other multiple testing procedures that integrate prior structure of hypotheses are
detailed in the Supplementary Material (Jernigan et al. (2020)).

Possible failure with classification errors. The minimum signal strength on each nonzero
DII to be classified correctly in our CALL-DECODE is at the order of

√
log(kpk)/n because

its target is to bound the supnorm of all DII estimators, that is, sup�,j |�̆�,hj
|. Since this

minimum signal strength condition may not be satisfied, one natural question is what would
happen if the classification step is not accurate? After all, if all k-groups can be classified
perfectly, then it is no bother to conduct multiple testing procures. To this end, we would like
to first provide some insights on the potential errors and their consequences on our multiple
testing procedure.

Due to the conservative threshold, it is well expected that all DII estimators with a true
null would be thresholded to zero in the classification step, that is, H0,j ⊂ ⋃k

t=j H̆0,t for each
0 ≤ j ≤ k. In particular, we expect those k-groups in the category H0,k would be classified
correctly. All potential errors, due to some DII estimators with nonnull, are thresholded to
be zero incorrectly and can be categorized into two types. The first one corresponds to those
k-groups with nonzero (alternative) collective dependence, that is, H0,0. However, this type
of error is less worrisome since a valid test would be conducted in Steps 2 and 3 of our
CALL-DECODE with true alternative. The second type of classification errors corresponds
to those k-groups with zero (null) collective dependence, but some of their nonzero DIIs are
thresholded incorrectly. For example, some � ∈H0,j , j > 0 can be classified into one of those
H̆0,l , j +1 ≤ l ≤ k. For this type of error, the Steps 2 and 3 of CALL-DECODE are no longer
accurate because when comparing the minimum test statistic T� = mint=1,...,l |�̄�,ht | with the
quantile F−1

l (β), we hope to accept the null (note this k-group � has a true null), but it turns
out the alternative of Step 2.2 is true. Since l > j , we would expect the calculated p-value
based on an inappropriate quantile F−1

l (β) is smaller than it should be based on the correct
quantile F−1

j (β). This potentially would lead to an inflation of the FDR level. However, as we
briefly explained in Remark 3.2, we adopted the minimum test statistic T� over other options
(such as chi-square based test) to alleviate the inflation of FDR level due to insensitivity of
T� on j . In Section B.1.2 of the Supplementary Material (Jernigan et al. (2020)), we confirm
this intuition with additional simulation experiments, from which we observe that errors in
the classification step, especially the second type of classification errors that some � ∈ H0,j

is misclassified into one of those H̆0,l for j + 1 ≤ l ≤ k, become substantial when the sample
size n is small, the number of unique values Lb taken by Xb is large, or the signal strength
is weak. Correspondingly, the FDR control is slightly compromised due to the errors in the
classification step, particularly for small n and weak signals. On the other hand, as the signal
strength or the sample size increasing, the empirical FDR quickly becomes under control
with respect to the nominal level, and, meanwhile, the errors of classification vanish rapidly.
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Discussion on future theoretical studies. Methodologically, our procedure CALL-
DECODE is motivated from the pioneer works on multiple testing entries within the large
covariance and precision matrices (Liu (2013), Cai and Liu (2016)). Consider our test statis-
tics {T�}pk

�=1 with corresponding null reference c.d.f. {F�(t)}pk

�=1, where F� = Fj when the
�th group is in the category j . The desired FDR control of our method can be established if
sup0≤β≤1−p−1

k
|∑�∈H0

I{T� ≥ F−1
j (β)}/{|H0|(1 − β)} − 1| converges to zero in probability.

This uniform convergence can be achieved by bounding the pairwise covariances among T�’s
at each value of β (see Lemma 3 of Cai and Liu (2016) or Lemma 6.3 of Liu (2013)). In
particular, it is sufficient to show that the majority of pairwise covariances among T�’s are
small (see Lemma 4 of Cai and Liu (2016), for instance). With additional sparsity conditions
that the majority of null hypotheses are true, the last step is potentially manageable once one
can show the test statistic T� is asymptotically linear. Hence, as a future theoretical study, a
refined analysis is in need for the linear representation of each T� as well as for bounding
each pairwise covariance among T�’s by certain polynomials of DIIs, under some regularity
conditions.

Extensions and potential challenges. Though we focus on k = 3 for the purpose of sim-
ple presentation, CALL-DECODE can be easily extended to k ≥ 4 for collective dependence
of higher orders. This, however, will encounter two major challenges. First, large k will lead
to more delicate composite nulls and, therefore, increases the complexity of the classifica-
tion step in CALL-DECODE. Meanwhile, investigating the collective dependence with po-
tentially divergent k (and/or for continuous random variables) is of information theoretic
interesting by itself. The second challenge is the increasing computational demands due to
the exponentially growing number of quadruplets, quintuplets and so on even for small d .
The computational cost due to the bootstrap can be resolved by deriving the asymptotic be-
havior of empirical estimator of collective dependence. In principal, our procedure can also
be easily extended to continuous distributions as long as asymptotic normality of individual
marginal entropy estimators H(τj ) can be achieved. For instance, under certain smoothness
condition on the joint density function, the Kozachenko–Leonenko estimator Kozachenko
and Leonenko (1987) based on the nearest neighbor distances is asymptotically normal when
k = 3, while certain weighted Kozachenko–Leonenko estimator (Berrett, Samworth and Yuan
(2019)) is preferred for general k. Both directions, more or less, can be reduced to investigat-
ing the asymptotics and large deviations of certain refined estimator to the entropy, such as
the weighted Kozachenko–Leonenko estimator. We will pursue this in a future work.

To demonstrate our method for the protein coevolution study, we considered two protein
families, the elongation factor P family and the zinc knuckle family. The identified triplets
and hub residues from both families suggest interesting mechanisms of protein interactions
with RNA or DNA in vivo, and some of these have been validated in literature. In addition
to the promising application to protein coevolution, the collective dependence and our pro-
cedure are of wide applicability and can be easily applied to other areas in which the data
are also categorical or counts with finite unique values. For example, the single-nucleotide
polymorphism (SNP) data, whose measurements take values at {0,1,2} to represent homozy-
gous reference allele, heterozygote and homozygous for alternative allele, or the binary DNA
methylation data, where the methylation status of a CpG site is encoded as a binary variable to
represent it, is either methylated or unmethylated. Here, our method can be applied to reveal
the potential higher order dependence among positions in the genome or CpG sites on some
regions of DNA. With those information recovered, we can not only identify critical hubs, as
did for the protein coevolution, but also we can further investigate how does the higher order
dependence vary across different biological conditions. Furthermore, for both the SNP and
binary DNA methylation data, the spatial structure among positions or CpG sites are defined
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much clearer than that for the MSA data in protein coevolution. Hence, we can learn how
does the higher order dependence align or disagree with the spatial structure of positions in
the genome or CpG sites on DNA and uncover more sophisticated mechanisms in the genetic
variation or DNA methylation. Exploring our method within other areas will be our future
efforts.
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