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ABSTRACT

There is an increasing need for efficient and automatic evalu-
ation of brain tumors on magnetic resonance images (MRI).
Most of the previous works focus on segmentation, regis-
tration, and growth modeling of the most common primary
brain tumor gliomas, or the classification of up to three types
of brain tumors. In this work, we extend the study to eight
types of brain tumors where only global diagnosis labels are
given but not the slice-level labels. We propose a weakly
supervised method and demonstrate that inferring disease
types at the slice-level would help the global label predic-
tion. We also provide an algorithm for feature extraction via
randomly choosing connection paths through class-specific
autoencoders with dropout to accommodate the small-dataset
problem. Experimental results on both public and propri-
etary datasets are compared to the baseline methods. The
classification with the weakly supervised setting on the pro-
prietary data, consisting of 295 patients with eight different
tumor types, shows close results to the upper bound in the
supervised learning setting.

Index Terms— Autoencoder, small dataset, feature en-
semble

1. INTRODUCTION

Brain tumors are among the most fatal cancers. Around 25 per
100,000 adults are diagnosed with primary tumors of the brain
or nervous system and approximately one-third of the tumors
being malignant [1]. Many different types of brain tumors
exist, such as gliomas, pituitary and meningiomas. Magnetic
Resonance Images (MRI) is a clinical routine frequently used
for brain tumor detection and classification.

While deep learning based algorithms have achieved enor-
mous success in medical image analysis fields, they usually
heavily rely on fully annotated data. Annotating large amount
of medical data usually requires expert domain knowledge,
and is tedious, time-consuming and not realistic to obtain. In
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this paper, we focus on overcoming the data hungry problem
where only limited training data are available or only global
diagnosis is available but costly detailed annotation is not
available. The global diagnosis information is less informa-
tive than detailed annotation mask, but can be retrospectively
obtained with significantly lower cost.

Analyzing brain tumor on MR images is an important
topic in medical imaging, which has motivated advanced deep
learning techniques for classification, detection, segmenta-
tion, registration, retrieval, image generation and enhance-
ment [2]. Many research efforts have been devoted to brain
tumor segmentation [3, 4, 5]. Another track of work is to
classify an MR volume directly or classify MR slices given
corresponding supervised labels [6, 7, 8].

Most existing works mainly focus on supervised learning
in brain tumor classification. Specifically, given global diag-
nosis labels, a volumetric MRI is considered as a single data
point [8], whereas other works [6, 7] consider each MRI slice
as a single data point, which requires labels to each slice. Our
work focuses on predicting slice labels using only the given
global labels of the training data. The global labels are then
inferred by combining the predicted slice labels. This not only
makes the dataset labeling free, but also significantly reduces
the chance of overfitting, an issue often arising in treating a
whole MRI volume as a single data point. The idea of elimi-
nating the human labeling effort has attracted a considerable
amount of attention in the research community in brain tumor
segmentation, histopathology image classification and natural
image segmentation [9, 10, 11].

We propose a weakly supervised learning method to over-
come the challenge of acquiring expensive slice-level labels.
Weakly supervised learning represents the training scheme
where only the diagnosis for a whole MRI volume is given,
but the detailed labels for each slice are unknown during train-
ing. We treat each MRI slice as one data point, whose label
could be healthy or tumor. The problem is then transformed
to an optimization problem for deciding the label of each slice
between the global diagnosis label and the healthy label.

Instead of using a traditional convolutional neural net-
work (CNN) performing feature learning and classification
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simultaneously, we propose a hierarchical model to learn
features using class-specific autoencoders separately from
the classification network. Inspired by Dropout [12] and
DropConnect [13], we propose Block-connection-dropout for
regularizing the process of feature extraction. These ideas
are intended to perform implicit data augmentation, intro-
duce noises and regularize the model, such that they can
improve the generalization ability of the networks, and thus
give improved testing performance.
Our contributions can be summarized as follows:

e We propose a weakly supervised learning method that
treats each MRI slice as a data point and infers the pa-
tient diagnosis label by aggregating the slice label pre-
diction.

e We propose a feature extraction scheme called Multi-
RAED. It is trained with class-specific autoencoders,
and extracts features by selecting random paths within
those autoencoders using block-connection-dropout.

e We have collected a dataset with 295 patients of eight
types of tumors. The proposed algorithms are demon-
strated to be effective compared to fully supervised
learning.

2. METHODS

2.1. Weakly-supervised Learning

Different from existing public datasets with detailed slice-
level labels [6], our dataset has only global labels in pa-
tient level. We propose to use a weakly-supervised learning
method to locate the slices where the tumor presents, and sub-
sequently to help predict the patient-level labels. Our method
is based on the observation that for a type ¥y MR volume,
its slices can be labeled as either y or healthy. We augment
the label space by adding a label representing a healthy MRI
slice, such that the label of each slice can be represented by
a one-hot vector of length K + 1, where K denotes the total
number of diseases in the dataset.

Given an MR image x, we let (x(1), - .-, x(*)) denote its
M slices. The corresponding ground truth patient label is rep-
resented by a one-hot vector t. Its predictions are denoted as
y=(FW, -, M), where ) is the prediction of the i-th
slice which is also a one-hot vector. Let j = 47 Zf\il g
be the average prediction through all slices. We model the
weakly supervised learning problem as an optimization prob-
lem with the following objective function for an MR image:

K
Lx,§,8) £ = tilogy; + (el + Bk 1), (1)
j=1

where K is the number of classes. The first term in the equa-
tion — Zfi ; tjlogy; is the cross entropy loss between t and

¥1.x, which emphasizes that among all the predicted §(*)’s, if
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they are not predicted as healthy slices, they are constrained
to be the same as the ground truth tumor type. By setting
a > [, the second term avoids the scenario where all the
slices are labeled as the ground truth tumor type. This is be-
cause if so, the second term reduces to oM. But if one slice
is labeled as healthy (i.e., class K + 1), the second term be-
comes a(M — 1)+ 8 < aM, leading to a smaller loss. Thus,
the objective function ensures that some slices are predicted
as the ground true tumor type, but not all of them are expected
to be categorized into the same class.

2.1.1. Test-time MR volume classification.

Our proposed model is able to predict slice labels without
slice training labels. The prediction of an MR volume, de-
noted as y, will be the class associated with the largest y;,
i.e., k = arg max; ;.

2.2. Feature Extraction via Autoencoder-Dropout

We propose to train two networks for the feature extraction
and classification respectively, as shown in Fig.1. An autoen-
coder is first trained to extract features from the training data,
and then a classifier is built based on the extracted features.
Because the extracted features are set to endow smaller di-
mensions than the original data, the classifier is expected to
be trained faster without too much performance loss.
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— c
2 g =
(0]
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Feature Extraction

Fig. 1. Autoencoder-classification model

2.2.1. Multi-Autoencoders (MultiAE)

Instead of using a single autoencoder model for all classes, we
propose to use multiple class-specific autoencoders to learn
discriminative features, each corresponding to one class. We
denote this model as MultiAE, and the features extracted from
one autoencoder is called a feature group. Once all the au-
toencoders are trained, features from all autoencoders can
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be used as features for classification. By training on class-
specific data, the MultiAE is able to encode class information
in latent features, potentially leading to better discrimination
ability. This can also be considered as training data augmen-
tation to alleviate the problem of limited training data. We use
dense blocks to build an autoencoder, to preserve information
from both low-level features and high-level features.

2.2.2. Random combination of autoencoders with dropout

(MultiRAED)

Inspired by the feature learning in CNN, we design a simi-
lar hierarchical feature representation learning paradigm. In
CNN, features are learned hierarchically by combining low-
level features such as edges and corners to high-level features
such as complicated shapes or objects. In our class-specific
autoencoders, we randomly pick paths of the dense blocks to
learn features. If we have m autoencoders with each having
n dense blocks, there are m”™ possible combinations for con-
structing the hierarchical feature representations. An example
of two autoencoders with two dense blocks each is illustrated
in Fig. 2, where four feature groups are generated to fit into
the classifier. Each input data sample can be augmented to
m' feature groups.

The number of feature groups will increase exponentially,
leading to redundant input for the classifier. To reduce the
complexity of the extracted features and also prevent their
co-adaptation, we propose a block-connection-dropout archi-
tecture inspired by DropConnect [13]. When extracting fea-
tures to train the classifier, we randomly drop some possible
connections between the blocks. This model is denoted as
MultiRAED in later content. Specifically, denote the map-
ping by the classifier implemented by a neural network as
y = f(x) with input features x. The output y is an unnor-
malized vector of length K, where K represents the number
of classes. When the input contains only one feature group
x, the probability of the input belonging to class ¢ is calcu-

evi elf ™
Ef(:v?yj - ij,f:le[f(X)]j
the #*" element in the vector y. When p feature groups were
selected after dropout some feature groups, denoted as x* ...
xP, the probability of the input belonging to class 7 is:

lated as: P; =

, where y; represents

S0yt S [

B »K 1625):1?/; o E]K_lezf;ﬂf(xt)]j '
J: =

P

3. EXPERIMENTS

To test our method, we have created so far the largest brain
tumor dataset in terms of number of tumor types, which con-
tains 8 tumor types with 295 patients. There are 50 Glioma,
50 Meningioma, 44 Metastases, 26 Lymphoma, 35 Prolacti-
noma, 22 Ependymoma, 22 Medulloblastoma, and 46 Acous-
tic Neuroma patients in the dataset. We adopt a 7-fold cross
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Table 1. Classification accuracy on public dataset

2D-SingleAE | 2D-MultiAE | 2D-MultiRAED [6] [7]
89.62% 90.87% 91.80% 91.28% | 86.56%
+3.22% +1.63% +2.80%

validation setting to estimate the performance, i.e., the dataset
is partitioned into a training set (72%), a validation set (14%)
and a test set (14%) in every training round. We also test our
method on a public dataset [6]. The public dataset contains 3
tumor types and about 200 patients.

3.1. Parameter Settings

Every autoencoder consists of 3 dense blocks in encoder and
decoder part respectively, and the classifier consists of 2 dense
blocks. All the dense blocks have 6 convolutional layers in-
side. To prevent overfitting, dropout with dropout rate 0.1 and
weight decay with hyper-parameter 1le — 4 are implemented.
Learning rate decay is also used to improve the performance,
learning rate will multiply 0.3 when 50% of the training pro-
cess and 75% of the training process is finished respectively.
We randomly select 27 feature groups (out of 8 = 512 pos-
sible feature groups) for each MR volume due to the memory
limitation. « and ( in Eq.( 1) are set to be 1 and 0.01 re-
spectively. Our implementation is based on Tensorflow and
Nvidia Titan Xp GPU.

3.2. Experimental Results and Discussion

We first test some of our models on the public dataset [6].
Because the public dataset only contains slice-level data, the
weakly-supervised method is not applicable, we only test
Multi-AE and Multi-RAED. For comparison, we also test
the result using single autoencoder (denoted as Single-AE).
The results are shown in Table 1. The experiments on the
public dataset shows that the separation of feature learning
and classification will achieve similar accuracy as the direct
classification.

To demonstrate the effectiveness of the weakly supervised
learning and the MultiRAED models, we test five different
models on two tasks of our collected dataset: 3-type and 8-
type brain tumor classifications. For the 3-tumor-type case,
Glioma, Meningioma, and Metastases patients are selected
to be consistent with the public dataset. In both cases, five
models are tested in the following experiments:

e DenseNet: This model is served as a baseline for clas-
sifying 2D MR slices or 3D MR volumes directly using
a DenseNet structure [14].

e MultiRAED: This model classifies 2D MR slices or
3D MR volumes with MultiRAED features extraction.
Weakly supervised learning is not used in the first two
models.
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Fig. 2. Illustration of proposed model with two autoencoders and two classes of data. X; and X denote training data from two
different classes. X; and X5 are corresponding reconstructed data. Black lines denote the training process of autoencoders.
Colored lines denote different feature extraction paths when extracting feature groups.

e Weakly: This model tests our proposed weakly-
supervised learning algorithm. Slice labels are not
used during training.

o Weakly-MultiRAED: This model combines the pro-
posed weakly-supervised learning program with the
MultiRAED feature extraction. Slice labels are not
used in training.

e Supervised-MultiREAD: Slices labels are used in
training for this model. This serves as a upper bound
for comparison with the weakly supervised learning.

Table 2. Accuracy on proprietary brain tumor dataset
Models 8-type 3-type
3D-DenseNet 38.61% + 7.88% 55.00% + 5.93%
3D-MultiRAED 48.06% £ 13.67% | 63.33% £4.71%
Weakly 47.23% +6.23% | 67.05% £+ 7.09%
Weakly-MultiRAED 56.33% + 4.89% 73.65% + 3.65%
Supervised-MultiRAED | 57.13% + 1.92% | 73.95% + 8.94%

The classification results are shown in Table 2. We have
the following observations: (1) Our two weakly supervised
learning models are effective comparing to the 3D methods,
which directly classify 3D volumes. The results of weakly
supervised learning with MultiRAED is very close to the
corresponding supervised version where slice-level labels are
provided in training. (2) The effectiveness of MultiRAED
is demonstrated by improvement of “3D-MultiRAED” com-
pared to “3D-DenseNet”, and “Weakly-MultiRAED” com-
pared to “Weakly”. MutliRAED improves feature learning
with a large margin. 3) The similar result patterns can be
observed in both 8-type and 3-type classifications. Other than
the accuracy, the ROC curve is plotted in Fig. 3. Our dataset
is much more challenging than the public dataset, where the
accuracy has been pushed to more than 90%.
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Fig. 3. ROC curve of 3-type tumor classification on our pro-
prietary dataset, the figure is plotted based on one class vs. all
other classes comparison.

4. CONCLUSION

We proposed a weakly supervised learning method without
needing slice-level labels for efficient and effective tumor
classification. The multiRAED is a general strategy to aug-
ment the limited training data in medical domain. The weakly
supervised methods proposed here show a possible way of
collecting large scale brain tumor dataset retrospectively
without giving detailed slice level annotation.
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