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Abstract: Set classification aims to classify a set of observations as a whole, as opposed to classify-
ing individual observations separately. To formally understand the unfamiliar concept of binary set
classification, we first investigate the optimal decision rule under the normal distribution, which uses
the empirical covariance of the set to be classified. We show that the number of observations in the
set plays a critical role in bounding the Bayes risk. Under this framework, we further propose new
methods of set classification. For the case where only a few parameters of the model drive the difference
between two classes, we propose a computationally efficient approach to parameter estimation using
linear programming, leading to the Covariance-engaged LInear Programming Set (CLIPS) classifier.
Its theoretical properties are investigated for both the independent case and various (short-range and
long-range dependent) time series structures among the observations within each set. The convergence
rates of the estimation errors and the risk of the CLIPS classifier are established to show that having
multiple observations in a set leads to faster convergence rates than in the standard classification sit-
uation in which there is only one observation in the set. The applicable domains in which the CLIPS
classifier outperforms its competitors are highlighted in a comprehensive simulation study. Finally, we

illustrate the usefulness of the proposed methods in classifying real image data in histopathology.

Key words and phrases: Bayes risk, £1-minimization, Quadratic discriminant analysis, Set classification,

Sparsity.
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1. Introduction

Classification is a useful tool in statistical learning, with applications in many important
fields. A classification method aims to train a classification rule based on training data to
classify future observations. Some popular classification methods include linear discriminant
analyses, quadratic discriminant analyses, logistic regressions, support vector machines, neu-
ral nets, and classification trees. Traditionally, the task at hand is to classify an observation
into a class label.

Advances in technology have enabled the production of large amounts of data in areas
such as the healthcare and manufacturing industries. Oftentimes, multiple samples collected
from the same object are available. For example, it has become cheaper to obtain multiple
tissue samples from a single patient in cancer prognosis (Miedema et al., [2012). Specifically,
Miedema et al.| (2012) collected 348 independent cells, each containing observations of varying
numbers (tens to hundreds) of nuclei. Here, each cell, rather than each nucleus, is labeled as
either normal or cancerous. Each observation of nuclei contains 51 measurements of shape
and texture features. A statistical task herein is to classify the whole set of observations from
a single set (or all nuclei in a single cell) as normal or cancerous. This problem was referred to
as set classification by Ning and Karypis| (2009) and studied by Wang et al. (2012) and [Jung
and Qiao (2014). The problem appears in the image-based pathology literature (Samsudin
and Bradley, |2010; Wang et al., |2010; |Cheplygina et al., [2015; [Shifat-E-Rabbi et al., 2020)
and in face recognition, based on pictures obtained from multiple cameras, sometimes called
image set classification (Arandjelovic and Cipolla, [2006; Wang et al., 2012). The approaches

to set classification in the literature are combinations of feature engineering, off-the-shelf
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classifiers (mostly the support vector machine), and consensus learning (either majority or
weighted voting). To the best of the authors’ knowledge, there is no theoretical justification
for set classification. Set classification is not identical to multiple-instance learning (MIL)
(Maron and Lozano-Pérez, 1998; |(Chen et al.l 2006; |Ali and Shah, [2010; (Carbonneau et al.,
2018), as shown by [Kuncheva (2010). A key difference is that in set classification, a label is

given to sets, whereas observations in a set have different labels in the MIL setting.

While conventional classification methods predict a class label for each observation, care
is needed in generalizing the methods for set classification. In principle, more observations
should ease the task at hand. Moreover, higher-order statistics, such as variances and co-
variances, can now be exploited to help classification. Our approach to set classification
is to use the extra information available to us only when there are multiple observations.
To elucidate this idea, we illustrate samples from three classes in Fig. All three classes
have the same mean, and Classes 1 and 2 have the same marginal variances. Classifying
a single observation near the mean to any of these distributions seems difficult. On the
other hand, classifying several independent observations from the same class should be much
easier. In particular, a set-classification method needs to incorporate the difference between

the covariances in order to differentiate these classes.

In this work, we study a binary set-classification framework, where a set of observations
X = {Xy,..., Xy} is classified as either ) = 1 or ) = 2. In particular, we propose
set classifiers that extend a quadratic discriminant analysis to the set-classification setting,
and that are designed to work well in the set classification of high-dimensional data with

distributions similar to those in Fig. [1}
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Figure 1: A two-dimensional toy example showing classes with no difference in the mean or

marginal variance.

To provide a fundamental understanding of the set-classification problem, we establish a
Bayesian optimal decision rule under normality and homogeneity (independent and identi-
cally distributed; i.i.d.) assumptions. This Bayes rule uses the covariance structure of the
testing set of future observations. We show in Section [2] that it becomes much easier to
accurately classify a set when the set size, my, increases. In particular, we demonstrate that
the Bayes risk can be reduced exponentially in the set size mq. To the best of our knowledge,

this is the first formal theoretical framework for set-classification problems in the literature.

Based on the Bayesian optimal decision rule, we propose new methods of set classification
in Section [3, For the situation where the dimension p of the feature vectors is much smaller
than the total number of training samples, we demonstrate that a simple plug-in classifier
leads to satisfactory risk bounds similar to the Bayes risk. Again, a large set size plays a key

role in significantly reducing the risk. In high-dimensional situations, where the number of
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parameters to be estimated (~ p?) is large, we assume that only a few parameters drive the
difference between the two classes. With this sparsity assumption, we propose estimating
the parameters in the classifier using linear programming, referring to the resulting classi-
fiers as Covariance-engaged Llnear Programming Set (CLIPS) classifiers. Specifically, the
quadratic and linear parameters in the Bayes rule can be estimated efficiently under the
sparse structure, owing to the extra observations in the training set resulting from having
sets of observations. Our estimation approaches are closely related to and built upon the
successful estimation strategies of |Cai et al. (2011) and (Cai and Liu (2011). To estimate
the constant parameter, we perform a logistic regression with only one unknown, given the
estimates of the quadratic and linear parameters. This allows us to implement the CLIPS

classifier with high computation efficiency.

In Section [4] we provide a thorough study of the theoretical properties of CLIPS classi-
fiers and establish an oracle inequality in terms of the excess risk. In particular, the CLIPS
estimates are shown to be consistent, and strong signals are always selected with high prob-
ability in high dimensions. Moreover, in contrast to naively using pooled observations, the
excess risk can be reduced by having more observations in a set, a new phenomenon related

to set classification.

In the conventional classification problem where mg = 1, a special case of the proposed
CLIPS classifier becomes a new sparse quadratic discriminant analysis (QDA) method (cf.,
Fan et al., 2015, [2013; |Li and Shao, [2015; |Jiang et al., 2018; Qin|, |2018; Zou, 2019; Gaynanova,
and Wang), 2019; Cai and Zhang, [2019; Pan and Mai, |2020). As a byproduct of our theoretical

study, we show that the new QDA method enjoys better theoretical properties than those
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of some state-of-the-art sparse QDA methods, such as that of [Fan et al.| (2015).

The advantages of our set classifiers are demonstrated in comprehensive simulation stud-
ies. Moreover, in Section |5, we provide an application to histopathology where we classify
sets of nucleus images as normal or cancerous tissue. The proofs of the main results and the
technical lemmas can be found in the Supplementary Material, as well as a study on the case
where the observations in a set demonstrate certain spatial and temporal dependent struc-
tures. There, we use various (both short- and long-range) dependent time series structures

within each set by considering a very general vector linear process model.

2. Set Classification

We consider a binary set-classification problem. The training sample {(X;, V;)}¥, contains
N sets of observations. Each set, X; = {X;1, Xi2, ..., X;n,} © RP, corresponds to one object,
and is assumed to be from one of the two classes. The corresponding class label is denoted
by V; € {1,2}. The number of observations within the ith set is denoted by M; and can
vary between sets. Given a new set of observations (X, V1), the goal of set classification is
to predict YT accurately based on X' using a classification rule ¢(-) € {1,2} trained on the
training sample.

To formally introduce the set-classification problem and study its fundamental properties,
we start with a setting in which the sets in each class are homogeneous in the sense that all
the observations in a class, regardless of the set membership, follow the same distribution
independently. Specifically, we assume both the N sets {(X;, V;)}¥, and the new set (X1, Y1)

are generated independently in the same way as (X',)). To describe the generating process

6
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of (X,)), we assume that the random variables M and ) are independent, denote the
marginal class probabilities by m = pr(}Y = 1) and 1, = pr(Y = 2), and denote the
marginal distribution of the set size M by pp;. In other words, the class membership Y
cannot be predicted based only on the set size M. Conditioned on M = m and Y = y, the

observations X, Xy, ..., Xy in the set X are independent, and each is distributed as f,,.

2.1 Covariance-engaged Set Classifiers

Suppose there are M = m observations in the set XT = {XI, ..., X1} that is to be classified
(called the testing set), and its true class label is Y. The Bayes optimal decision rule classifies
the set X = {z,,...,2,,} as Class 1 if the conditional class probability of Class 1 is greater
than that of Class 2; that is, pr(YT =1 | MT = m, XJT =ux;, j=1,...,m) > 1/2. This is
equivalent to mpas(m) H;n:l fi(z;) > mapar(m) H;n:l fa(x;), owing to the Bayes theorem and
the independence assumption among Y and MT. Let us now assume that the conditional
distributions are both normal; that is, fi ~ N(u1,%1) and fo ~ N(p2, X2). Then, the Bayes

optimal decision rule depends on the quantity

oo o) 1 log mipa (m) [T72, fila;)
1y---ydm) = — m
m mopu (m) [ 171, fa(x;)
1 1 L orga L 1
= Elog(m/ﬂg) 3 log(|Z1]/|%2]) — ol X1+ SHa 2y e
1 1
(S =Ty ) 4 S (B -2 4 St (8 - )s) (21)

Here, |3;| denotes the determinant of the matrix Yy, for & = 1,2, and z = }7* | z;/m and
S =" (x; —)(x; — )" /m are the sample mean and sample covariance, respectively, of

the testing set. Note that the realization XT = {z|,75,...,2,,} implies both the number

7
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of observations m and the i.i.d. observations z;, for j = 1,...,m. The Bayes rule can be

expressed as

op(X") =2 — 1{g(x,...,2,) > 0}, where (2.2)

1
g(xy, .. Ty) = p” log(m/m2) + Bo + BTz + 27VZ/2 + tr(VS) /2,

in which the constant coefficient 3y = {—log(|X1]/|Z2]) — ISy + ul¥5 o} /2 € R, the
linear coefficient vector 8 = X7 'u; — X5y € RP, and the quadratic coefficient matrix
V = %' — 3! € RP*P. The Bayes rule ¢ under the normal assumption in uses the
summary statistics m, z, and S of XT.

We refer to and any estimated version of it as a covariance-engaged set classifier.
In Section |3 several estimation approaches for 5y, 3, and V are proposed. In this section,
we discuss a rationale for considering .

The covariance-engaged set classifier resembles the conventional QDA classifier. As
a natural alternative to , one may consider the sample mean T as a representative of the
testing set, and apply the QDA to z directly to make a prediction. In other words, we classify
this single observation Z to one of the two normal distributions, that is, f; ~ N(uq,31/m)

and fi ~ N(uz,YXs/m). This simple idea leads to

Opz(XT) =2 — 1{gqpa(z) > 0}, where (2.3)
1
gapa(T) = —log(m /m) + By + BTz +2"Vz/2,
in which 8 = {—Xlog(|Z1]/|%2]) — 1 7 w1 + 4335 12} /2. One major difference between

(2.2) and (2.3) is that the term tr(V.S)/2 is absent from (2.3). Indeed, the advantage of

(2.2) over (2.3) comes from the extra information in the sample covariance S of XT. In the

8
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regular classification setting, (2.2) coincides with (2.3)), because tr(V.S)/2 vanishes when X'

is a singleton.

Given multiple observations in the testing set, another natural approach is a majority

vote applied to the QDA decisions of individual observations:

darv(XT) =2 — ]1{i i sign[gqpa ()] > 0}, (2.4)
m =
where sign(¢) = 1,0,—1 for t > 0, ¢t = 0, and ¢ < 0 respectively, and ggpa(z;) is given in
(2.3) with Z replaced by z; (and m by one). In contrast, because g(XT) = # Z;”:l 9apa(T;),
our classifier predicts the class label using a weighted vote of individual QDA decisions.
In this sense, the majority voting scheme can be viewed as a discretized version of .

In Section , we demonstrate that our set classifier (2.2]) performs significantly better than

D).

Remark 1. We have assumed that M and ) are independent in this setting. In fact, this
assumption is not essential, and can be relaxed. In a more general setting, there can be
two different distributions of M, pysi(m) and pye(m), conditional on Y = 1 and Y = 2,
respectively. Our analysis throughout remains the same, except that these distributions
replace two identical factors py(m) in the first equality of ([2.1). If pai(m) and pas2(m) are
significantly different, then the classification is easier, because one can make a decision based
on the observed value of m. Here, we consider only the more difficult setting where ) and

M are independent.
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2.2 Bayes Risk

In this section, we describe an advantage of having a set of observations for prediction, rather
than o having a single observation. For this, we suppose for now that the parameters py
and Y, for k = 1,2, are known and make the following assumptions. Denote Apax(A) and

Amin(A) as the greatest and smallest eigenvalues, respectively, of a symmetric matrix A.

Condition 1. The spectrum of ¥ is bounded below and above: there exists some universal

constant C, > 0 such that C' < Apin (Bx) < Amax(Zg) < Ce, for k = 1,2.

Condition 2. The support of py; is bounded between c¢,,my and C,,mg, where c,, and
C,, are universal constants and mg = E(M). In other words, py/(a) = 0 for any integer
a < cpmg or > Cy,,mg. The set size mg can be large or growing when a sequence of models

is considered.

Condition 3. The prior class probability is bounded away from zero and one: there exists

a universal constant 0 < C < 1/2 such that C, < 7, m < 1— C.

We denote Rpy = pr(¢p(XT) # k| YT = k) as the risk of the Bayes classifier (2.2), given
V' =k Let § = pg — pa. For a matrix B € RP?, we denote |B|r = (30, 2, BE)?
as its Frobenius norm, where B;; is its ¢jth element. For a vector a € RP, we denote
la] = (XF_, a2)Y/? as its €y norm. The quantity D, = (|V|% + |§]?)*/? plays an important
role in deriving a convergence rate of the Bayes risk Rg = mRp; + mRps. Although the

Bayes risk does not have a closed form, we show that under mild assumptions, it converges

to zero at a rate on the exponent.

10
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Theorem 1. Suppose that Conditions ﬁ hold. If Dﬁmo is sufficiently large, then Rp <
4 exp (—c’mng), for some small constant ¢ > 0 depending on C,, ¢, and C, only. In

particular, as Dimo — o0, we have Rg — 0.

The significance of having a set of observations is illustrated by this fundamental theorem.
When pj;(1) = 1, which implies MT = 1 and mo = 1, Theorem provides a Bayes risk bound
Rp < 4dexp (—c’ DI%) for the theoretical QDA classifier in the regular classification setting.
To guarantee a small Bayes risk for the QDA, it is clear that Dz must be sufficiently large.
In comparison, for the set classification to be successful, we may allow Dg to be very close to
zero, as long as mODg is sufficiently large. The Bayes risk of ¢ can be reduced exponentially
in mq because of the extra information from the set.

We have discussed an alternative classifier using the sample mean Z as a representative
of the testing set, leading to ¢p ; . The following proposition quantifies its risk, which

has a slower rate than that of the Bayes classifier Rp.

Proposition 1. Suppose that Conditions ﬁ hold. Denote the risk of classifier ¢pp z in
as Rz. Assume |V |%+mg|d||? is sufficiently large. Then, Rz < 4exp (—c (|V|[% + mold]?)),
for some small constant ¢ > 0 depending on C., ¢,,, and Cy only. In addition, the rate on
the exponent cannot be improved in general, that is, Rz = exp (—c"(|V||% + mold]?)), for

some small constant ¢’ > 0.

Remark 2. Compared with the result in Theorem [l the above proposition implies that
the classifier ¢ ; needs a stronger assumption, but has a slower rate of convergence when

the mean difference mg|d|? is dominated by the covariance difference |V|%. After all, this

11
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natural Z-based classification rule relies only on the first moment of the data set X', while the

sufficient statistics, the first two moments, are used fully by the covariance-engaged classifier

in .

3. Methodologies

We now consider estimation procedures for ¢p based on N training sets {(X;,Vi)}Y,. In
Section we first consider a moderate-dimensional setting where p < coymo/N, with a suffi-
ciently small constant ¢y > 0. In this case, we apply a naive plug-in approach using natural
estimators of the parameters 7, ur, and ;. A direct estimation approach using linear
programming, suitable for high-dimensional data, is introduced in Section Hereafter,

p = p(N) and mo = mo(V) are considered as functions of N as N grows.

3.1 Naive Estimation Approaches

The prior class probabilities 771 and w5 can be estimated consistently using the class propor-
tions in the training data, 7, = Ni/N and 7ty = No/N, where Ny = 3% 1{), = k}. Let
ng = Zfil M;1{Y; = k} denote the total sample size for Class k = 1,2. The set member-
ship is ignored at the training stage, owing to the homogeneity assumption. Note that ng,
n1 + ng, and Ny are random, while IV is deterministic. One can obtain consistent estimators
of u, and ;. based on the training data and plug them into . It is natural to use the
maximum likelihood estimators, given ny,

fi = Z Xij/ny, and %), = Z (X5 — ) (X — )™} e (3.1)

(4,5):Yi=k (4,9):Vi=k

12
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For the classification of XT = {XI, . ,XJLT }, with MT = m and XZ-Jr = x;, the set classifier

(2.2) is estimated as
~ 1 R R R R
H(xT) =2 11{% log(#1/#2) + o+ B72 + 2"VE/2 + tr(VS)/2 > 0}, (3.2)

where ) = —1 {10g(|21|/|22|) — S +ﬂ2TiQ_1ﬂ2}a B = L7 — X5, and V =
22’1 — f]fl. In , we have assumed p < ng, so that 33 is invertible.

The generalization error of the set classifier is R = 7T1R1—|— 7r2]%2, where ]:Ek =
pr(¢p(XT) # k | YT = k). The classifier itself depends on the training data {(X;, Vi)}Y,, and
hence is random. In the equation above, pr is understood as the conditional probability given
the training data. Theorem [2| reveals a theoretical property of R in a moderate-dimensional
setting that allows p, N, and mg to grow jointly. This includes the traditional setting in

which p is fixed.

Theorem 2. Suppose that Conditions ﬁ hold. For any fixed L > 0, if ngo > Cy for
some sufficiently large Cy > 0 and p < colNmy, p2/(NmOD2) < ¢y, and logp < ¢gN for
some sufficiently small constant cg > 0, then with probability at least 1 — O(p~Tt), we have

R < 4exp (—c’moD}%) for some small constant ¢ > 0 depending on Cy, ¢y, L, and C,.

In Theorem , large values of mg not only relax the assumption on D, but also reduce
the Bayes risk exponentially in mg with high probability. A similar result for the QDA,
where M; = MT = 1 and my = 1, was obtained in [Li and Shao (2015) under a stronger
assumption p*/(ND?2) — 0.

For high-dimensional data where p = p(N) » Nmy, and hence p > n; with probability

one for k = 1,2, by Condition , it is problematic to plug in the estimators 1) because 3

13
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is rank deficient with probability one. A simple remedy is to use a diagonalized or enriched
is a p x p identity matrix. Both i]k(d) and ik(e) are invertible. However, to the best of our

knowledge, no theoretical guarantee has been obtained without some structural assumptions.

3.2 A Direct Approach using Linear Programming

To have reasonable classification performance in high-dimensional data analysis, one usually
has to take advantage of certain extra information of the data or model. There are often
cases where only a few elements in V = ¥;' — X7! and 8 = X7y — 25y truly drive the
difference between the two classes. The naive plug-in method proposed in Section ignores
this potential structure of the data. We assume that both V and 8 are known to be sparse,
such that only a few elements of those are nonzero. In light of this, the Bayes decision rule
implies that the dimension of the problem can be significantly reduced, which makes
consistency possible, even in a high-dimensional setting.

We propose directly estimating the quadratic term V, the linear term [, and the con-
stant [y coefficients, taking advantage of the assumed sparsity. Because the estimates are
calculated efficiently using linear programming, the resulting classifiers are called CLIPS
classifiers.

We first deal with the estimation of the quadratic term V = ¥5' — %!, which is the
difference between the two precision matrices. We use techniques developed in the literature
on precision matrix estimation (cf., Meinshausen and Biithlmann, 2006; Bickel and Levina,

2008; [Friedman et al., |2008; [Yuan, 2010; |Cai et al., [2011; Ren et al., 2015). These methods

14
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estimate a single precision matrix with a common assumption that the underlying true
precision matrix is sparse, in some sense. For the estimation of the difference, we propose
using a two-step thresholded estimator.

As the first step, we adopt the CLIME estimator (Cai et al., 2011) to obtain the initial
estimators € and €, of the precision matrices X7! and X3!, respectively. Let B[y =
2., |Bijl and || Bl = max; ;| Bj;| be the vector £; norm and vector supnorm, respectively,

of a p x p matrix B. The CLIME estimators are defined as

), = argmin |Q[; subject to [SxQ — I]o < My, k= 1,2, (3.3)

QeRpPXxP
for some Ay x > 0.
Having obtained ) and Qs, in the second step, we take a thresholding procedure on their

difference, followed by a symmetrization to obtain our final estimator V = (V,;), where

Vi =min{Vy;, V;i}, Vij = (a5 — Ql,z’j)ﬂ{‘QQ,ij — O

> XLN}, (3.4)

for some thresholding level | > 0.

Although this thresholded CLIME difference estimator is obtained by first individually
estimating E,;l, note that the estimation accuracy depends only on the sparsity of their
difference V, rather than on the sparsity of either ;' or ¥;', under a relatively mild
sparsity condition in terms of their matrix ¢; norms. We show in Theorem [3|in Section
that if the true precision matrix difference V is negligible, V = 0 with high probability.
When V = 0, our method described in becomes a linear classifier adaptively. The

computation of V 1) is fast, because the first step (CLIME) can be recast as a linear

program, and the second step is a simple thresholding procedure.

15
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Remark 3. As an alternative, one can also consider a direct estimation of V that does
not rely on individual estimates of Z,;l. For example, by allowing some deviations from the
identity % VYy — 3 + X9 = 0, Zhao et al. (2014) proposed minimizing the vector ¢; norm of
V. Specifically, they proposed VZ¢F ¢ argmin | B|;, subject to ||f]13f32 -3 +ﬁ32|\w S
where \] , is some thresholding level. This method, however, is computationally expensive
(because it has O(p?) number of linear constraints when cast to linear programming) and
can only handle a relatively small size of p. |Cai and Zhang (2019) further considered a
symmetric version of the above direct estimation, and solved it using a primal-dual interior

point method. See also | Jiang et al. (2018). We chose to use (3.4]), mainly because of the fast

computation.

Next we estimate the linear coefficient vector 5 = (1 — B2, where B, = Z;l W, for k =1,2.
In the literature on sparse QDA and sparse LDA, typical sparsity assumptions are placed
on iy — pe and X; — ¥y (see |Li and Shao, 2015), or are placed on both 5 and (s (see, e.g.,
Cai and Liu, 2011; [Fan et al., 2015). In the latter case, § is also sparse because it is the
difference between two sparse vectors. For the estimation of 3, we propose a new method
that directly imposes sparsity on 3, without specifying the sparsity for py, 2, or B, except

for some relatively mild conditions (see Theorem | for details.)

The true parameter [ satisfies X 0r — . = 0. However, owing to the rank-deficiency of
ik, there are either none or infinitely many 6, that satisfy an empirical equation S0k — i =
0. Here, [ and 3, are defined in l) We relax this constraint and seek a possibly

nonsparse pair (61,6s) with the smallest ¢; norm difference. We estimate the coefficients 3

16
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by B = 31 - 527 where

(B1,B2) = argmin  [6; — 6] subject to | Xx0k — fir]ee < Ao, k= 1,2, (3.5)
(01,02):110k 11, <L1

where L; is some sufficiently large constant, introduced only to ease the theoretical evalua-

tions. In practice, the constraint |[0|, < L; can be removed without affecting the solution.

Our procedure (3.5) can be recast as a linear programming problem (see, e.g., |[Candes and

Tao, [2007; (Cai and Liu, 2011) and is computationally efficient.

The direct estimation approach for 8 = X7 u; — X5 s above is a natural extension of
Cai and Liu (2011), in which a direct estimation of 7! (u1 — o) for the LDA (X = %) = %)
was considered. Note that by centering the quadratic Bayes discriminant function ggpa(-),
alternative sparse linear coefficient vectors have been considered in the literature on QDA.
For example, Jiang et al. (2018) proposed estimating (7% + 5 (p1 — p2), while [Li and
Shao (2015), [Fan et al.| (2015), and |Cai and Zhang| (2019) proposed estimating %5 (11, — p12),
both of which are location-invariant. Although ( considered in our approach is not location-
invariant, we emphasize that the sparsity conditions for the three different linear coefficient
vectors are not comparable, because their interpretations differ. Other direct estimation
approaches of the linear coefficient vector have also been considered in related discriminant
analyses, see, for example, (Clemmensen et al. (2011), Witten and Tibshirani (2011) and ;Mai

et al. (2012, 2019).

Finally, we consider the estimation of the constant coefficient 3. The conditional class
probability n(xy,...,z,) =pr(Y =1| M =m, X; =x;, i = 1,...,m) that a set belongs
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to Class 1 given X = {z1,...,x,,} can be evaluated by the following logit function:
77(3717---733m) } ™ {Hnil fl(xz>}
lo =log — + log{ ==
g{l_n<x1a'-'>$m) g7r2 & Hizl f2(l'z)

1 1
=log(my/m) + m(By + 7B + 55TV:E + §tr(VS)),

where Z and S are the sample mean and thecovariance of the set {x1, ..., z,,}, respectively.
Having obtained our estimators V and 3 from and , respectively, and estimated
71 and T by Ni/N and Ny/N, respectively, from the training data, only the scalar f is
undecided. We may estimate Bo by conducting a simple logistic regression with a dummy
independent variable M;, and offset log (7 /72) + M; <X1Tﬁ~ T XIVX, 2+ tr(@Si)/2> for the
ith set of observations in the training data, where M;, X;, and S; are the sample size, sample

mean, and sample covariance, respectively, of the ith set. In particular, we solve

Bo = argmin £(6y | {(X;, V)}Y,, 3, V), where the negative log-likelihood is (3.6)
GOER

N N .
= %Z <(yi —2)M; (90 + log(;\;ﬂ + XI5+ XI'VX;/2 + tr(@Si)/2)
i=1 i

log(1/72)

+ log [1 + exp {MZ (90 + v

L XTH 4 XTVX/2 4 (T S)) /2) H )

Because there is only one independent variable in the logistic regression above, the opti-
mization can be easily and efficiently solved. Alternative ways of estimating the constant
coefficient in the literature on QDA include a simple plug-in estimator (Cai and Zhang, 2019)
and using the idea of cross-validation (Jiang et al., 2018).

For the purpose of evaluating theoretical properties, we apply the sample splitting tech-

nique (Wasserman and Roeder, 2009; |Meinshausen and Buhlmann, 2010). Specifically, we
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randomly choose the first batch of Ni/2 and Ny/2 sets from two classes in the training data
to obtain the estimators V and /3 using 1} and 1) respectively. Then, Bo is estimated
based on the second batch, along with V and 3, using 1) We plug all estimators in ((3.4),

(3.5)), and (3.6)) into the Bayes decision rule (2.2)) and obtain the CLIPS classifier,
s log(#+ /7 L 5 \
p(xh) =2~ 1{@ + Bo+ Bz +77VE/2 + tr(VS)/2 > o}, (3.8)

where z and S are the sample mean and the covariance, respectively, of X7, and MT = m is

its size.

4. Theoretical Properties of the CLIPS classifier

In this section, we derive the theoretical properties of the estimators from f, as
well as generalization errors for the CLIPS classifier . In particular, we demonstrate
the advantages of having sets of independent observations, in contrast to the classical QDA
setting with individual observations under the homogeneity assumption of Section 2] Parallel
results under various time series structures can be found in the Supplementary Material.
To establish the statistical properties of the thresholded CLIME difference estimator V
defined in (]3;4|>, we assume that the true quadratic parameter V = X5 — ¥ has no more
than s, nonzero entries,
P
Ve FMy(s,) = {A = (a;;) € RP*P symmetric : Z I{a;; # 0} < s,4}. (4.1)
ij=1
Denote supp(A) as the support of the matrix A. We summarize the estimation error and a

subset selection result in the following theorem.
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Theorem 3. Suppose Conditions @ hold. Moreover, assume V € FMo(s,), and |2, <
Coy, with some constant Cp > 0, for k = 1,2, and logp < c¢oN, with some sufficiently small
constant co > 0. Then, for any fived L > 0, with probability at least 1 — O(p~t), we have

that

IV=V]w < 2X.y,
IV=Vr < 25\,

IV =V < 250y,

as long as My n = CCp Ler ynd XLN = 8Ch A\ N in , where C' depends on L,C,,C,

Nmg

and ¢, only. Moreover, we have pr(supp(V) supp(V)) =1-0(p~1).

Remark 4. The parameter space F.M(s,) can be extended easily to an entry-wise ¢, ball
or weak ¢, ball, with 0 < ¢ < 1 (Abramovich et al. 2006) and the estimation results in
Theorem |3| remain valid with appropriate sparsity parameters. The subset selection result

also remains true, and the support of V contains those important signals of V above the

noise level 4/(log p)/Nmgy. To simplify the analysis, we consider only ¢, balls in this work.

Remark 5. Theorem |3| implies that the error bounds of estimating V under the vector ¢,
norm and the Frobenius norm both rely on the sparsity s, imposed on V, rather than those
imposed on ¥, or X', Therefore, even if both ¥5' and X' are relatively dense, we still

have an accurate estimate of V, as long as V is very sparse and Cy; is not large.

The proof of Theorem [3| provided in the Supplementary Material, partially follows from

Cai et al. (2011).
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Next, we assume 3 = (31 — [ is sparse in the sense that it belongs to the s;-sparse ball,

Be Fols) = {a = (a;) eRP: Zﬂ{aj £ 0} < s} (4.2)

Theorem 4| gives the rates of convergence of the linear coefficient estimator 3 in 1D under

the ¢; and ¢ norms. Both depend on the sparsity of 8 only, rather than that of 8; or (,.

Theorem 4. Suppose Conditions ﬁ hold. Moreover, assume that B € Fo(s;), logp < ¢oN,
1Belr < Cs, and ||px| < C,, with some constants Cz,C,, > 0, for k = 1,2, and some
sufficiently small constant co > 0. Then, for any fivred L > 0, with probability at least

1—O(p™%), we have that

16-8l1 < C"Cusidan,

16-Bl < C"Cav/sidan,

as long as Aoy = C/“]l\?imf) in , where max{| X7 ey, |55 e} < Co and C",C" depend

on L,C.,cm, Cr,Cg, and C,, only.

Remark 6. The parameter space Fy(s) can be extended easily into an ¢, ball or weak ¢,
ball with 0 < ¢ < 1 as well, and the results in Theorem |4 remain valid with appropriate

sparsity parameters. We focus on Fy(s) to ease the analysis.

Lastly, we derive the rate of convergence for estimating the constant coefficient 5y. Be-
cause [ is obtained by maximizing the log-likelihood function after plugging 3 and V into
, the behavior of our estimator 50 critically depends on the accuracy of estimating [
and V. Theorem [5| provides the result for Gy based on certain general initial estimators B

and V, with the following mild condition.
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Condition 4. The expectation of the conditional variance of the class label ) given X is

bounded below; that is, E (Var(Y | X)) > Clog > 0, where Cj,, is some universal constant.

Theorem 5. Suppose Conditions[1H{] hold, logp < coN with some sufficiently small constant

co > 0, and ||| < C, with some constant C,, > 0, for k = 1,2. In addition, we have

some initial estimators 3, V, 7y, and 7ty such that mo(1 + /(logp)/mo)||3 — B| + mo(1 +

(log p)/mo)|V — V| + maxg_y 2 |7 — 7| < C, for some sufficiently small constant C, > 0

with probability at least 1 — O(p~%). Then, with probability at least 1 — O(p~1), we have

~ logp, = logp. = |7 — g | logp
\50—6o]<05((1+«/m0 B = Bl + (L SRV =Vl s FEEE 2

where the constant Cs depends on L,Ce,Cr, Ciog, Cy, Cpn, and cy,.

Remark 7. Condition {4 is determined by our data-generating process stated in Section
2.1. It is satisfied when the classification problem is nontrivial. For example, it is valid if
pr{C’ <pr(¥y =1|X) <1-C"} > C with some constants C' and C’ € (0,1). As a matter
of fact, Condition 4] is weaker than the typical assumption Clos < pr(Y =1| X) <1 — Cloq
with probability one for X', which is often seen in the literature on logistic regression. See,

for example, Fan and Lv (2013) and [Fan et al.| (2015).

Theorems [3] [4] and [5] demonstrate the estimation accuracy for the quadratic, linear, and
constant coefficients, respectively, in our CLIPS classifier . We conclude this section by
establishing an oracle inequality for its generalization error by providing a rate of convergence
of the excess risk. To this end, we define the generalization error of the CLIPS classifier as

R = mR; + myRy, where Ry, = pr(¢(XT) # k | Y1 = k) is the probability that a new set
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observation from Class k is misclassified by the CLIPS classifier (5()( ). Again, pr is the
conditional probability given the training data {(X;, ;)}Y, which ¢(X") depends on.

We first introduce some notation related to the Bayes decision rule in . Recall that
given MT = m, the Bayes decision rule ¢(XT) depends solely on the sign of the function
g(XT) = Llog(m/ma) + fo + 72 + 2'VZ/2 4 tr(VS)/2. We define by Fy,,, the conditional
cumulative distribution function of the oracle statistic g(XT), given that M' = m and YT = k.
The upper bound of the first derivatives of F},, and Fy,,, for all possible m near zero is

denoted by dy,

dy = max sup ‘F,é | :
me[cmmo,Cmmo], k=1,2 te[—80,00]

where g is any sufficiently small constant. The value of dy is determined by the generating
process, and is usually small whenever the Bayes rule performs reasonably well. According

to Theorems , and , with probability at least 1 — O(p~1), our estimators satisfy that

Syi= (14 «/log 5 - m\+<1+1—>uv vwl+max‘—f’f'+130—ﬁo\=o<m

where ry 1= (1+ (logp)/mo)s A v + (1 +4/(logp) /mo) )Con/si 2o +4/(logp)/(Nm2). The

quantity kydy is the key to obtaining the oracle inequality. Condition [5| guarantees that the

assumptions of Theorem |5| are satisfied with high probability in our settings.

Condition 5. Suppose kymg < ¢ and kydy < ¢p, with some sufficiently small constant

Co>0.

Theorem [6] reveals the oracle property of the CLIPS classifier, and provides a rate of
convergence of the excess risk, that is, the generalization error of the CLIPS classifier less

the Bayes risk Rp defined in Section [2.2]
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Theorem 6. Suppose that the assumptions of Theorems|3 and[{] hold, and that Conditions

J@ also hold. Then, with probability at least 1 — O(p~1), we have the oracle inequality

R < Rp + Cg(/iNdN +p_L),

where the constant Cy depends on L, Ce, Cx, Ciog, Cg, Cpy, €, and C,, only. In particular, R

converges to the Bayes risk Rp in probability as N goes to infinity.

Theorem [6] implies that, with high probability, the generalization error of the CLIPS
classifier is close to the Bayes risk with a rate of convergence no slower than kydy. In
particular, whenever the quantities dy and Cy; are bounded by some universal constant, the
thresholding levels \| y = O(y/logp/(moN)) and Ay y = O(y/log p/(moN)) yield the rate of

convergence kydy in the order of

(1+ \/(logp)/mo)\/logp/(moN)\/gl + (1 + (logp)/mo)+/log p/(moN)s,. (4.3)

The advantage of having large mg can be understood by investigating (4.3)) as a function

of mg. Indeed, the leading term of (4.3) is

2

1 1 s
e’ if mo <logp - min{1, 2};
S1

S
32 2

Viogp |1 s
ﬂ(fp Oﬁp\/?z, if logp - S—j < mg < log p;

1 J[logp )
Voo RV + 5,), i logp < m.

To illustrate the decay rate, we assume s; > 82. Then, as mg increases, the error decreases

2
at the order of mg/ 2 up to a certain point logp - Z—‘;, and then decreases at the order of mg up

to another point log p. When my is large enough that my > log p, the error decreases at the

order of ,/mg.
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To further emphasize the advantage of having sets of observations, we compare a general
case myg = m*, where logp < m*, with the special case that mg = 1, that is, the regular
QDA situation. Then, the quantity xy with m* has a faster decay rate, with a factor of
order between y/m* log p and v/m*log p (depending on the relationship between s; and s,,),
compared to the my = 1 case, owing to the extra observations within each set.

The above discussion reveals that in a high-dimensional setting, the benefit of the set
classification cannot be simply explained by having N* = Nm, independent observations
instead of having only /N individual observations, as in the classical QDA setting. Indeed,

if we have N* individual observations in the classical QDA setting, then the implied rate of

convergence would be either log p4 / }\‘;fni sq (if logp - s2 = s;) or y/logp }\?—frf)\/ﬁ (otherwise),

which is slower than that provided in equation (4.3]).

Remark 8. Note that even in the special QDA situation where mq = 1, owing to the sharper
analysis, our result is still new, and the established rate of convergence (logp)/N' 28+
(log p)*?/N"/2s, in Theorem [f] is at least as good as the (logp)*2/NV2(s, + ;) derived in
the oracle inequality of |Fan et al. (2015) under similar assumptions. Whenever s; > s,, our

rate is even faster, with a factor of order +/s;logp, than that in |[Fan et al.| (2015).

Remark 9. The results in this section, including Theorem [6] demonstrate the advantages of
the set-classification setting in contrast to the classical QDA setting. When multiple obser-
vations within each set have short-range dependence, the rates of convergence for estimating
the key parameters and the oracle inequality resemble the results under the independent as-
sumption. However, the results change significantly when there is a long-range dependence

structure among multiple observations.
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Remark 10. (Cai and Zhang (2019) considered a sparse QDA using a constrained convex
optimization approach, establishing a minimax rate of convergence (s; +s,)(logp-log®> N)/N
on the excess risk up to a logarithmic factor under similar sparsity assumptions. In contrast,
our result in the special QDA situation has the rate of convergence discussed in Remark
[§, which is slower for most scenarios under different assumptions. It would be interesting
to investigate the optimal convergence rates for set classification under both short-range

(including i.i.d.) and long-range dependence structures in future studies.

5. Numerical Studies

In this section, we compare various versions of covariance-engaged set classifiers with other set
classifiers adapted from traditional methods. In addition to the CLIPS classifier, we use the
diagonalized and enriched versions of 3 (labeled as Plugin(d) and Plugin(e), respectively)
introduced at the end of Section , and plug them into the Bayes rule , as done in ((3.2)).
For comparison, we also supply the estimated [y, 5, and V from the CLIPS procedure to a
QDA classifier, which is applied to all the observations in a testing set, followed by a majority
voting scheme (labeled as QDA-MYV). Lastly, we calculate the sample mean and variance of
each variable in an observation set to form a new feature vector, as in Miedema et al. (2012).
Then a support vector machine (SVM; Cortes and Vapnik, 1995) and a distance-weighted
discrimination (DWD; Marron et al., 2007; Wang and Zou|, 2018) are applied to the features
to make predictions (labeled SVM and DWD, respectively). We use the R library clime to
calculate the CLIME estimates, the R library €1071 to calculate the SVM classifier, and the

R library sdwd (Wang and Zou, [2016) to calculate the DWD classifier.
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5.1 Simulations

Three scenarios are considered for the simulations. In each scenario, we consider a binary
setting with V = 7 sets in a class and M = 10 observations from the normal distribution in

each set.

Scenario 1 We set the precision matrix for Class 1 to ;' = (1 + /P)I,. For Class 2, we
set ¥yt =7+ V, where Visap x p symmetric matrix with 10 elements randomly
selected from the upper-triangular part with values equal to (, and all other elements
being zeros. For the mean vectors, we set p; = X (u, u,0,...,0)T and py = (0,...,0)T.
Note that this makes the true value of 8 = X'y — 35 e = (u,u,0,...,0)T; that
is, only the first two covariates have linear impacts on the discriminant function if
u # 0. In this scenario, the true difference in the precision matrices has some sparse
and large nonzero entries, the magnitudes of which are controlled by (. Note that while

the diagonals of the precision matrices are the same, the diagonals of the covariance

matrices are different between the two classes.

Scenario 2 We set the covariance matrices for both classes to be the identity matrix, except
that for Class 1, the leading five-by-five submatrix of ¥; has its off-diagonal elements
set to p. The rest of the setting is the same as that in Scenario 1. In this scenario, both
the difference in the covariance and the difference in the precision matrix are confined
in the leading five-by-five submatrix, so that the majority of the matrix entries are the
same between the two classes. The level of difference is controlled by p: when p = 0,

the two classes have the same covariance matrix.
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Scenario 3 We set the precision matrix »; for Class 1 to be a Toeplitz matrix with the
first row (1 — p?)~1(p°% p', p2, ..., p*~1). The covariance for Class 2, ¥, is a diagonal
matrix with the same diagonals as those of »;. It can be shown that the precision
matrix for Class 1 is a band matrix with degree one, that is, a matrix with nonzero
entries that are confined to the main diagonal and one more diagonal on both sides.
Because the precision matrix for Class 2 is a diagonal matrix, the difference between
the precision matrix has up to p + 2(p — 1) nonzero entries. The magnitude of the
difference is controlled by the parameter p. The rest of the setting is the same as that

in Scenario 1.

We consider different comparisons where we vary the magnitude of the difference in the
precision matrices (¢ or p), the magnitude of the difference in the mean vectors (u), and the

dimensionality (p) when the other parameters are fixed.

Comparison 1 (varying ¢ or p) We vary ¢ or p, but fix p = 100 and u = 0, which means
that the mean vectors have no discriminant power because the true value of 3 is a
zero vector. This shows the performance with different potentials in the covariance

structure.

Comparison 2 (varying u) We vary u, while fixing p = 100 and ¢ = 0.55 in Scenario 1 or
p = 0.5 and 0.3 in Scenarios 2 and 3. This case illustrates the potentials of the mean

difference when there is some useful discriminative power in the covariance matrices.

Comparison 3 (varying p) We let p = 80,100, 120, 140, 160, while fixing ¢ or p in the
same way as in Comparison 2, and fixing v = 0.05, 0.025, and 0.025 in Scenarios 1, 2,
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and 3, respectively.
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Figure 2: Set classification for Scenario 1. The three panels correspond to varying ¢, varying u, and varying

p, respectively. The CLIPS classifier performs very well when the effect of the covariance dominates that of

the mean difference.

Figure [2|shows the performance for Scenario 1. In the left panel, as ¢ increases, the differ-
ence between the true precision matrices increases. The proposed CLIPS classifier performs
the best among all methods under consideration. It may be surprising that the Plugin(d)
method, which does not consider the off-diagonal elements in the sample covariance, works
reasonably well in this setting in which the major mode of variation is in the off-diagonal
of the precision matrices. However, because large values in the off-diagonal of the precision
matrix can lead to large values of some diagonal entries of the covariance matrix, the good
performance of Plugin(d) has some partial justification.

In the middle panel of Figure [2| the mean difference starts to increase. While every
method more or less improves, the DWD method gains the most (it is even the best per-

forming classifier when the mean difference u is as large as one). This may be because the
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Figure 3: Set classification for Scenario 2. The three panels correspond to varying p, varying u, and

varying p, respectively. The classifiers that do not engage the covariance perform poorly when there is no

mean difference signal.

mean difference on which DWD relies, instead of the difference in the precision matrix, is

sufficiently large to secure good performance in separating sets between two classes.
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Figure 4: Set classification for Scenario 3. The three panels correspond to varying p, varying u, and varying

p, respectively. As in Scenario 2, the classifiers that do not engage the covariance perform poorly when there

is no mean difference signal.
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Figure [3| shows the results for Scenario 2. In contrast to Scenario 1, there is no difference
in the diagonals of the covariances between the two classes (the precision matrices are still
different). When there is no mean difference (see the left panel), it is clear that the DWD,
SVM, and Plugin(d) method fail, for obvious reasons (note that the Plugin(d) method does
not read the off-diagonal of the sample covariances, and hence both classes have the same
precision matrices from its viewpoint.) As a matter of fact, these methods all perform as
badly as a random guess. The CLIPS classifier always performs best in this scenario in the
left panel. Similarly to the case in Scenario 1, as the mean difference increases (see the

middle panel), the DWD method starts to improve.

The results for Scenario 3 (Figure {4)) are similar to those of Scenario 2, except that,
this time, the advantage of the two covariance-engaged set classification methods, CLIPS
and Plugin(e), seems to be more obvious when the mean difference is zero (see left panel).
Moreover, the QDA-MV method enjoys some good performance, although not as good as
the CLIPS classifier.

In all three scenarios, it seems that the test classification error is linearly increasing in
the dimension p, except for Scenario 3, in which the signal level also depends on p (greater

dimensions lead to greater signals).

5.2 Data Example

One of the common procedures used to diagnose hepatoblastoma (a rare malignant liver
cancer) is a biopsy, in which the sample tissue of a tumor is removed and examined under a

microscope. A tissue sample contains a number of nuclei, a subset of which is then processed
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to obtain segmented images of nuclei. The data we analyzed contain five sets of nuclei from
normal liver tissues and five sets of nuclei from cancerous tissues. Each set contains 50
images. The data set is publicly available (https://faculty.virginia.edu/rohde/segmented-

nuclei.zip) and was introduced in |Wang et al. (2011, [2010).

We tested the performance of the proposed method on the liver cell nuclei image data set.
First, the dimension was reduced from 36,864 to 30 using a principal component analysis.
Then, among the 50 images of each set, 16 images are retained as a training set, 16 are a
tuning set, and another 16 are the test set. In other words, for each of the training, tuning,
and testing data sets, there are 10 sets of images, five from each class, with 16 images in

each set.

Table [1| summarizes the comparison between the methods under consideration. All
three covariance-engaged set classifiers (CLIPS, Plugin(d) and Plugin(e)) and the QDA-

MV method perform better than those methods that do not take the covariance matrices

Method | number of misclassified sets standard error
CLIPS 0.01/10 0.0104
Plugin(d) 0.74/10 0.0450
Plugin(e) 0.97/10 0.0178
QDA-MV 0.08/10 0.0284
DWD 3.24/10 0.1164
SVM 3.13/10 0.1130

Table 1: Classification performance for the liver cell nucleus image data.
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into account, such as the DWD and SVM (note that they do consider the diagonal of the

covariance matrix.)

To gain some insight into why the covariance-engaged set classifiers work and traditional
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Figure 5: PCA scatter plots for the liver cell nucleus image data. Both classes are shown in different colors

(blue and purple, or lighter and darker gray). (1): the elementary observations in the raw space; different

sets are shown in different symbols. (2) and (3): the augmented space seen by the DWD and SVM methods.

(4) is a zoomed-in version of (3).

difficulty with this data set.

It is shown that traditional multivariate methods have a fundamental
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methods fail, we visualize the data set in Figure Subfigure (1) shows a scatter plot
of the first two principal components of all the elementary observations (ignoring the set
memberships) in the data sets, in which blue (light gray) and violet (dark gray) depict the
two different classes. Observations in the same set are shown using the same symbol. The
first strong impression is that there is no mean difference between the two classes on the
observation level. In contrast, it seems the second moment, such as the variance, distinguishes

the two classes.

One may argue that the DWD and SVM should theoretically work here, because they
work on the augmented space where the mean and variance of each variable are calculated
for each observation set, leading to a 2p-dimensional feature vector for each set. However,
Subfigures (2)—(4) invalidate this argument. We plot the augmented training data in the
space formed by the first two principal components (Subfigure (2)). The augmented test
data are shown in the same space in Subfigure (3), with a zoomed-in version in Subfigure
(4). Note that the scales for Subfigures (2) and (3) are the same. These figures show that
more than just the marginal mean and variance are useful here, and our covariance-engaged

set classification methods have used the information in the right way.

Supplementary Material

The online Supplementary Material contains additional theoretical arguments, proofs of

all results, and an additional data analysis.
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