
High-order Differentiable Autoencoder for Nonlinear Model Reduction

SIYUAN SHEN∗, State Key Laboratory of CAD&CG, Zhejiang University, China
YIN YANG∗, Clemson University, USA
TIANJIA SHAO†, State Key Laboratory of CAD&CG, Zhejiang University, China
HE WANG, University of Leeds, UK
CHENFANFU JIANG, UCLA, University of Pennsylvania, USA
LEI LAN, Clemson University, USA
KUN ZHOU, State Key Laboratory of CAD&CG, Zhejiang University, China

Fig. 1. In this paper, we exploit deep autoencoder (DAE) networks to accelerate physics-based simulation. In order to model nonlinear subspace dynamics
accurately, second- and high-order derivatives of the deep decoder net must be efficiently evaluated to match the subspace simulation frame rate. We address
this technical challenge by collectively applying complex-step input perturbations to the deep net. This is the first time a high-order differentiable neural net is
employed in physical simulation problems. Our method can be further strengthened with the domain decomposition method as a nonlinear DAE better
captures local deformation effects. In this example, the puffer ball has 320 elastic strings, and we assign a 𝑛𝑝 = 10 linear subspace and a 𝑛𝑞 = 5 nonlinear
subspace at each string. With the help of substructured deformation, DAE-based nonlinear reduction produces interesting animation effects. We believe this is
a representative example showing case the advantage of data-driven animation using a DAE. As the geometries of all the strings are the same, generating local
training poses is also more effective.

This paper provides a new avenue for exploiting deep neural networks to
improve physics-based simulation. Specifically, we integrate the classic La-
grangian mechanics with a deep autoencoder to accelerate elastic simulation
of deformable solids. Due to the inertia effect, the dynamic equilibrium
cannot be established without evaluating the second-order derivatives of
the deep autoencoder network. This is beyond the capability of off-the-shelf
automatic differentiation packages and algorithms, which mainly focus on

∗Joint first authors
†Corresponding author

Authors’ addresses: Siyuan Shen, State Key Laboratory of CAD&CG, Zhejiang Univer-
sity, China, shensiyuan@zju.edu.cn; Yin Yang, ClemsonUniversity, USA, yin5@clemson.
edu; Tianjia Shao, State Key Laboratory of CAD&CG, Zhejiang University, China,
tianjiashao@gmail.com; He Wang, University of Leeds, UK, H.E.Wang@leeds.ac.uk;
Chenfanfu Jiang, UCLA, University of Pennsylvania, USA, cffjiang@seas.upenn.edu;
Lei Lan, Clemson University, USA, lanlei.virhum@gmail.com; Kun Zhou, State Key
Laboratory of CAD&CG, Zhejiang University, China, kunzhou@acm.org.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
0730-0301/2021/8-ART68 $15.00
https://doi.org/10.1145/3450626.3459754

the gradient evaluation. Solving the nonlinear force equilibrium is even
more challenging if the standard Newton’s method is to be used. This is
because we need to compute a third-order derivative of the network to
obtain the variational Hessian. We attack those difficulties by exploiting
complex-step finite difference, coupled with reverse automatic differenti-
ation. This strategy allows us to enjoy the convenience and accuracy of
complex-step finite difference and in the meantime, to deploy complex-value
perturbations as collectively as possible to save excessive network passes.
With a GPU-based implementation, we are able to wield deep autoencoders
(e.g., 10+ layers) with a relatively high-dimension latent space in real-time.
Along this pipeline, we also design a sampling network and a weighting net-
work to enable weight-varying Cubature integration in order to incorporate
nonlinearity in the model reduction. We believe this work will inspire and
benefit future research efforts in nonlinearly reduced physical simulation
problems.

CCS Concepts: • Computing methodologies → Physical simulation;
Dimensionality reduction and manifold learning.

Additional Key Words and Phrases: Model reduction, Autoencoder, Differen-
tiation, GPU, Deformable model

ACM Reference Format:
Siyuan Shen, Yin Yang, Tianjia Shao, He Wang, Chenfanfu Jiang, Lei Lan,
and Kun Zhou. 2021. High-order Differentiable Autoencoder for Nonlinear
Model Reduction. ACM Trans. Graph. 40, 4, Article 68 (August 2021), 15 pages.
https://doi.org/10.1145/3450626.3459754

ACM Trans. Graph., Vol. 40, No. 4, Article 68. Publication date: August 2021.

https://doi.org/10.1145/3450626.3459754
https://doi.org/10.1145/3450626.3459754


68:2 • Shen et al

1 INTRODUCTION
Model reduction is a widely-used and highly-effective technique
for accelerating physically-based simulation. It is also sometimes
known as reduced-order simulation or subspace simulation. While
named differently, the core idea is to build a linear subspace with re-
duced degrees-of-freedom (DOFs) so that the physical equations can
be solved with a system of a smaller size. This approach is sensible
because many parts of the real physical world evolve smoothly and
continuously along the time and space. Sharp and high-frequency
physical changes are less common and should be treated with dedi-
cated numerical methods. Existing model reduction methods have
been dominantly linear reduction with a constant tangent space.
The expressivity of linear reduction is a known limitation. As many
physical phenomena are intrinsically nonlinear, a linearly reduced
model only covers a small fraction of the dynamics space – all the
information outside of the subspace is filtered. Thus, one has to
(substantially) increase the dimensionality of the subspace to incor-
porate a desired nonlinear effect even this effect itself may be of low
rank (thinking of a bead travelling on the circle).

One question rises naturally: can we build a nonlinear reduction
framework with a time-varying (as opposed to constant) tangent
space that best fits “local” dynamics? The challenges are twofold.
First, the underlying manifold representing the nonlinear dynamics
is often too complex to be expressed in a closed form. Developing
a nonlinear subspace-fullspace transformation, as a counterpart of
modal analysis in linear reduction, is theoretically difficult. Sec-
ond, a nonlinear reduction brings extra computation burdens to
the simulation, largely originating from the need for evaluating the
derivatives of the subspace-fullspace transformation function. The
computational cost goes up quickly with respect to the subspace
size, which in turn neutralizes the original motivation of applying
model reduction.

In this paper, we propose a new nonlinear model reduction frame-
work that is tightly coupled with the classic Lagrangian mechanics.
Although we demonstrate the effectiveness of our method in the
context of elastic simulation, we believe our method could also be
useful in other physics-based simulation problems like fluid [Kim
and Delaney 2013] or cloth animations [Hahn et al. 2014]. Our reduc-
tion mechanism is data-driven with a deep autoencoder (DAE) in the
loop, which obviates the need for a closed-form subspace-fullspace
transformation function. DAE is an unsupervised learning architec-
ture skilled in data compression [Hinton and Salakhutdinov 2006]
and has been proven effective in deformable simulation recently [Ful-
ton et al. 2019]. Along this direction, we augment the DAE network
with the complex-step finite difference (CSFD) method [Martins et al.
2003], enabling its high-order differentiability, so that the neural
net can be computationally integrated with Lagrangian formula-
tion. To achieve this goal, we make several mentionable technical
contributions:

Efficient high-order differentiable deep autoencoder. A physically
accurate coupling between DAE and elastic dynamics requires the
information of the first- and second-order derivatives (for Newto-
nian equations of motion). Existing differentiation techniques such
as backpropagation (BP) [Hecht-Nielsen 1992] for neural networks

or automatic differentiation (AD) [Bücker et al. 2006] for more gen-
eral computations are optimized for gradient estimation only, and
become cumbersome in high-order cases. We leverage CSFD to facil-
itate the differentiation of the autoencoder network. Conceptually
straightforward, this however is not “as easy as pie” as it appears.
Albeit the excellent numerical robustness and accuracy, CSFD needs
to apply a complex-value perturbation for each input variable, lead-
ing to excessive forward passes of the deep neural net. We resolve
this challenge by applying the function perturbation collectively and
deploying CSFD inside other differentiation procedures such as BP
and directional derivative. With a GPU-based implementation, we
simulate complex nonlinear models in real time with a deep decoder
net in the loop.

Coupling PCA with deep encoding net. The tangent space of a DAE
may vary drastically to incorporate nonlinearity seen in the training
poses yielding a bumpy and uneven deformation manifold. This
is analogous to over-fitting. A possible cure is to use contractive
autoencoder or CAE [Rifai et al. 2011b]. CAE adds a regularizer in
the objective function that forces the network to learn a function
that is robust under slight input variations. While it could be a vi-
able solution, we propose a more convenient and effective option.
In our framework, DAE is constructed within the residual space
of a standard PCA. In other words, DAE is designed to be comple-
mentary to an underlying linear subspace, and the latter guarantees
the existence of a smooth tangent variation. With this design, we
can deepen the DAE architecture to capture nonlinear and salient
deformation poses.

Weight-varying subspace integration using deep neural networks.
Reduced simulation is often coupled with sparse force and Hes-
sian integration, which down samples element-wise volumetric
integration to a small collection of key elements, called Cubature
elements [An et al. 2008]. After Cubature elements are selected,
one also needs to compute its integration weight by solving a non-
negative least-square problem. The weight coefficient of a Cubature
element is typically fixed given the training set. This is reasonable
for linear reduction and works well in practice. However, in the
context of nonlinear reduction, as the tangent space varies along the
simulation, fixed weighting Cubature is problematic. To this end,
we propose a deep neural network (DNN) based sampling method,
that fully replaces Cubature training. Our DNN has two modules.
The first module is a graph convolution network (GCN) that outputs
the possibility of an element being a Cubature element. On the top
of it, the second module is a DNN, which predicts the weight of
selected Cubature elements. The last layer of this DNN carries out a
per-neuron square operation to ensure the final network output is
non-negative. The training alternates between those two modules.
Unlike conventional Cubature sampling strategy, our network-based
approach is able to select multiple Cubature elements each iteration,
and thus greatly shortens the training time.
We have evaluated our framework on various simulation sce-

narios, and our method produces visually-plausible results in real
time or at an interactive rate. We also notice that our nonlinear
model reduction framework synergizes with domain decomposition
method [Barbič and Zhao 2011; Wu et al. 2015; Yang et al. 2013] – a
small-size nonlinear subspace captures deformation effects much

ACM Trans. Graph., Vol. 40, No. 4, Article 68. Publication date: August 2021.



High-order Differentiable Autoencoder for Nonlinear Model Reduction • 68:3

better at a local domain than over the entire deformable body. To
this end, we also demonstrate examples combining DAE and domain
decomposition. As a natural follow up of our method, we do not
intend to over claim this extension as our contribution.

Model reduction, regardless of nonlinear or linear, seeks for smart
trade-offs among simulation effects, accuracy, and performance.
Arguing conclusively that the nonlinear model reduction is always
better than linear model reduction techniques is too bold and over-
confident. Indeed, one should scrutinize various aspects in practice,
such as the problem size, expected results, time budget, hardware
resources. before choosing a specific simulation algorithm. However,
we do believe the techniques purposed in the paper are worthy and
non-trivially advance state-of-the-art model reduction methods.

2 RELATED WORK
Model reduction has been successfully employed inmany simulation-
related problems in computer graphics including fluid dynamics [Kim
and Delaney 2013; Treuille et al. 2006], cloth animation [Hahn et al.
2014], shape deformation [Von-Tycowicz et al. 2015; Wang et al.
2015], material design [Musialski et al. 2016; Xu et al. 2015], an-
imation control [Barbič et al. 2009, 2012], etc. In this paper, we
narrow our focus on using data-driven nonlinear model reduction
to improve elastic simulation of solid objects.
There are several well-established numerical solutions for de-

formable models such as finite element method (FEM) [Zienkiewicz
et al. 1977], finite difference method [Zhu et al. 2010], meshless
method [Martin et al. 2010; Müller et al. 2005], or mass-spring sys-
tem [Liu et al. 2013]. Most of them end up with solving a large-scale
nonlinear system if an implicit time integration scheme is used. For
high-resolution models, computing their time-varying nonlinear
dynamics is expensive. Speeding up the deformable simulation can
be achieved using carefully designed numerical treatments like the
multigrid method [Tamstorf et al. 2015; Zhu et al. 2010], delayed
matrix update [Hecht et al. 2012], or parallelizable solvers [Fratar-
cangeli et al. 2016; Wang and Yang 2016]. These methods focus on
improving the performance for the fullspace nonlinear optimization
without condensing the simulation scale.

Acceleration can also be achieved using model reduction, which
removes less important DOFs and creates a subspace representa-
tion of fullspace DOFs. Modal analysis [Choi and Ko 2005; Hauser
et al. 2003; Pentland and Williams 1989] and its first-order deriva-
tives [Barbič and James 2005; Yang et al. 2015] are often considered
as the most effective way for the subspace construction. Displace-
ment vectors from recent fullspace simulations can also be utilized
as subspace bases [Kim and James 2009]. Alternatively, it is also vi-
able to coarsen geometric representation to prescribe the dynamics
of a fine model [Capell et al. 2002; Gilles et al. 2011; Lan et al. 2020;
Martin et al. 2010].

Those prior arts demonstrate impressive results, oftenwith orders-
of-magnitude performance speedups with model reduction. In most
cases, the generalized coordinate linearly depends on the fullspace
displacement in the form of u = Uq with U being constant. This is
why we refer to them as linear subspace methods. On the contrary,
nonlinear reduction holds a more complicated relation between gen-
eralized and fullspace coordinates. For instance, nonlinear modal

analysis [Pesheck et al. 2001] aims to extend its linear version, and
it has been used in structural analysis [Setio et al. 1992]. However, it
is hardly useful for simulation acceleration – extracting the modal
space for a given configuration is normally dealt with by solving an
eigenproblem (i.e., as in linear modal analysis), and it is clearly in-
feasible to exhaustively sample all the system configurations even in
the pre-computation stage. Only when the animation follows some
pre-known patterns, we may re-use the solution of rest-shape eigen-
problem [Mukherjee et al. 2016] or interpolate multiple sparsely
chosen linear subspaces [Xu and Barbič 2016]. Due to this challenge,
the nonlinear subspace method is less explored.

In this paper, we do not aim to derive a closed-form mathematical
formulation connecting the generalized coordinate and the fullspace
coordinate. Instead, we leave this challenge to a deep neural network
that learns the map directly from many seen simulation poses. This
is a straightforward data-driven approach and has been exploited in
graphics for years [Ladickỳ et al. 2015; Wang et al. 2011]. Our nov-
elty however is to enable its efficient and high-order differentiability
so that the DNN can be embedded into classic physical simulation
frameworks such as Lagrangian mechanics [Brizard 2014] etc. The
DNN used in our framework is a deep autoencoder or DAE [Hin-
ton and Salakhutdinov 2006] originally designed for dimension
reduction. Its superior performance in data compression and mul-
tidimensional scaling has quickly drawn many attentions. DAE is
successfully deployed in NLP [Socher et al. 2011], image/video com-
pression [Ballé et al. 2016; Habibian et al. 2019], GAN [Makhzani
et al. 2015], facial recognition [Zeng et al. 2018], 3D shape anal-
ysis [Nair and Hinton 2009], just to name a few. The volume of
DAE-related studies is too vast to be contained here.
The most relevant study of our work is the contribution from

Fulton and colleagues [2019]. Indeed, we are strongly motivated
and inspired by those recent efforts [Fulton et al. 2019; Wiewel et al.
2019] that also seek for DAE-based nonlinear reduction. To this end,
we re-examine each step along the pipeline of reduced simulation
and devise a comprehensive solution to couple DAE with nonlinear
elastic simulation seamlessly. One core ingredient is the high-order
differentiability that should be evaluated efficiently to match the
frame rate of model reduction. We deliver this important technical
asset by leveraging complex-step finite difference or CSFD [Luo
et al. 2019; Martins et al. 2003]. Similar to standard finite difference,
CSFD applies a perturbation to the function input and evaluates
how the perturbation alters the function output. This perturbation
however, is a complex-value quantity in CSFD, which avoids the
numerical issue of subtractive cancellation. While CSFD seems to
be a possible approach to the differentiability of DAE, its efficient
deployment for high-order differentiation remains challenging in
practice. An naïve implementation of CSFD requires one forward
pass of the net for each input variable. This scheme leads to O(𝑛3)
passes for a DAE-enabled Newton iteration. As discussed in § 4,
we attack this difficulty by applying the complex stepping in CSFD
collectively whenever possible to remove redundant network passes.
This method allows us to efficiently run the DAE differentiation
on GPU and obtain its high-order derivatives in milliseconds. In
order to ensure the smoothness of the simulation tangent space, our
framework consists of two layers: the first layer is a standard PCA-
based linear subspace and within the orthogonal space of which,

ACM Trans. Graph., Vol. 40, No. 4, Article 68. Publication date: August 2021.



68:4 • Shen et al

DAE is deployed to capture nonlinear deformations more effectively.
Lastly, we also design a DNN-based Cubature training procedure
to generate pose-dependent weight coefficients for a more accurate
subspace integration.

3 LINEAR AND NONLINEAR MODEL REDUCTION
To make the paper more self-contained, we start with a brief review
of the linear model reduction framework, and show its nonlinear
generalization with DAE afterwards. Here, we assume that a DAE
is differentiable and defer the discussion about how to compute its
first- and high-order derivatives to the next section.

3.1 Linear Model Reduction
Under the FEMdiscretization, themotion of an elastically deformable
solid can be described with the Euler-Lagrange equation:

M¥u + f𝑑𝑎𝑚𝑝 (u, ¤u) + f𝑖𝑛𝑡 (u) = f𝑒𝑥𝑡 , (1)

where M ∈ R𝑁×𝑁 is the fullspace mass matrix; f𝑖𝑛𝑡 and f𝑒𝑥𝑡 are
the nonlinear internal force and external force. Here, we lump M
to be a diagonal matrix. f𝑑𝑎𝑚𝑝 is the damping force, and it is often
modeled, under the assumption of Rayleigh damping, as:

f𝑑𝑎𝑚𝑝 =

(
𝛼M + 𝛽 𝜕f𝑖𝑛𝑡 (u)

𝜕u

)
¤u. (2)

Eq. (1) describes the force equilibrium at all 𝑁 DOFs of the un-
known displacement vector u. Computing u in Eq. (1) using non-
linear methods like Newton’s method needs to solve an 𝑁 -by-𝑁
linearized system repeatedly, which is slow and expensive for large-
scale models. Linear model reduction prescribes the kinematics of
this 𝑁 -dimension system with a set of generalized coordinates p
such that u = Up. U ∈ R𝑁×𝑛 is sometimes called subspace matrix,
which is constant in linear reduction. An important convenience
brought by the linearity is the time derivatives of ¤u = U¤p and ¥u = U¥p
follow the same relation. Therefore, Eq. (1) can be projected into
the column space of U as:

M𝑝 ¥p + U⊤f𝑑𝑎𝑚𝑝 (Up,U¤p) + U⊤f𝑖𝑛𝑡 (Up) = U⊤f𝑒𝑥𝑡 , (3)

whereM𝑝 = U⊤MU is the reduced mass matrix. Eq. (3) has the same
structure of Eq. (1) despite under a more compact representation of
p.

3.2 Nonlinear Model Reduction
Nonlinear reduction also uses a set of generalized coordinates q.
However, the relation between u and q is in a more generic form
of u = 𝐷 (q). Intuitively, 𝐷 prescribes an 𝑛-dimension deformation
manifold embedded in R𝑁 . Applying time differentiation at both
sides yields:

¤u =
d𝐷 (q)

d𝑡 =
𝜕𝐷 (q)
𝜕q

¤q = J¤q, (4)

and
¥u =

d
d𝑡

(
𝜕𝐷 (q)
𝜕q

¤q
)
= (H · ¤q) ¤q + J¥q, (5)

where J = 𝜕𝐷 (q)/𝜕q ∈ R𝑁×𝑛 is the Jacobian of𝐷 (q), which depends
on q and spans the tangent space at a given reduced coordinate.
H ∈ R𝑁×𝑛×𝑛 is a third order tensor of the second-order derivative
(i.e., Hessian) of 𝐷 . The dot notation (·) stands for the tensor inner

product a.k.a. tensor contraction. Substituting Eqs. (4) and (5) into
Eq. (1) followed by a tangent space projection gives the nonlinearly
reduced equation of motion:

J⊤M
(
(H · ¤q) ¤q + J¥q

)
+ J⊤f𝑖𝑛𝑡 (𝐷 (q)) = J⊤f𝑒𝑥𝑡 . (6)

Here, the damping force term is ignored for a more concise notation.
Given a time integration algorithm on q e.g., the implicit Euler

method, we have: q = q̄+ℎ ¤q and ¤q = ¤̄q+ℎ¥q, where ℎ is the time step
size, and ¯(·) indicates the kinematic variable is from the previous
time step. The final system that needs to be solved becomes:

J⊤MJ(q − q̄ − ℎ ¤̄q) + J⊤f𝑓 𝑖𝑐𝑡 (q) + ℎ2J⊤f𝑖𝑛𝑡 (q) = ℎ2J⊤f𝑒𝑥𝑡 , (7)

with
f𝑓 𝑖𝑐𝑡 = M ( [H · (q − q̄)] (q − q̄)) . (8)

f𝑓 𝑖𝑐𝑡 is the fictitious force that responds for inertia effects associated
with the varying Jacobian J. We also consider M𝑞 = J⊤MJ is the
reduced mass matrix of the nonlinear reduction, which is no longer
constant as J also depends on q.

3.3 AQuick Discussion
Clearly, f𝑓 𝑖𝑐𝑡 is the most tricky part in Eq. (7).H is the Hessian of
the coordinate transformation 𝐷 . Not only a third order tensor, but
H(q) is also a function of q. Therefore, if we want to solve Eq. (7)
using, for instance, Newton’s method in the implicit integration,
we need to compute 𝜕H/𝜕q to assemble the corresponding system
matrix, which is a forth order tensor and the resultant of third-
order differentiation over 𝐷 . This nasty computation stands as a
major obstacle for nonlinear model reduction. In [Fulton et al. 2019],
the fictitious force term is discarded in the time integration of the
generalized coordinate. This heuristic can somewhat be understood
as performing an explicit subspace projection at the current time
step ignoring the fact that a generalized velocity ¤q also brings inertia
effects when 𝐷 is nonlinear.
On the one hand, we consider ignoring f𝑓 𝑖𝑐𝑡 reasonable and an

understandable compromise in the setting of [Fulton et al. 2019].
First of all, f𝑓 𝑖𝑐𝑡 vanishes under quasi-static deformations as ¤q is
close to zero. Secondly, in [Fulton et al. 2019] the encoding-decoding
network is shallow, and 𝐷 represents a net of only two layers. In
addition, a preliminary PCA is performed to “regularize” raw train-
ing poses. Those treatments effectively suppress the nonlinearity
in J (soH is small) and lessen the inertia deformation induced by
f𝑓 𝑖𝑐𝑡 . On the other hand, as f𝑓 𝑖𝑐𝑡 is missed in [Fulton et al. 2019], the
underlying dynamic equation is inaccurate anyway. Visible artifacts
are inevitable under higher-velocity deformations or a deeper DAE
is employed (i.e., in our case).

3.4 PCA-orthogonal DAE Reduction
An autoencoder is an unsupervised learning algorithm that con-
denses the input high-dimension data into a low-dimension latent
space (i.e., encoding), which is then expanded to the original dimen-
sionality to monitor the compression loss (i.e., decoding). If this
network only has one hidden layer, or it does not involve nonlin-
ear activations, the autoencoder is similar to PCA [Bourlard and
Kamp 1988]. In this case 𝐷 is linear, and the resulting network after
training spans the same linear subspace as PCA does (under L2 loss).

ACM Trans. Graph., Vol. 40, No. 4, Article 68. Publication date: August 2021.



High-order Differentiable Autoencoder for Nonlinear Model Reduction • 68:5

Nonlinear
Smooth

Fig. 2. Increased nonlinearity
better fits training poses but
also makes the network more
wiggling.

This however is, not what we seek
for in nonlinear model reduction since
𝐷 is expected to capture as much
nonlinearity as possible to enrich the
subspace expressivity. To this end,
we ought to keep the autoencoder
deep and nonlinear. Unfortunately,
too much nonlinearity seems to be
harmful to the simulation as well. As
illustrated in Fig. 2, with increased
nonlinearity, the network (i.e., the
curve in the figure) can be stretched
to reach some irregular and distant poses in the training set. In the
meantime, the geometry of the deformation manifold also becomes
more wiggling – same as what we experience in high-order polyno-
mial fitting. As we know, the simulation under nonlinear reduction
corresponds to travelling on the deformation manifold of 𝐷 , driven
by the generalized forces in the tangent space. A wiggling manifold
could stiffen the simulation and induce artifacts.
There are several possible remedies of this issue. As in [Fulton

et al. 2019], one could regularize the training data before the network
training. This strategy is commonly used in training deep neural
nets on a very large-scale data set that could potentially be noisy
e.g., ImageNet [Russakovsky et al. 2015]. However, the training data
in our case are synthesized by running physical simulations, and
they are noise-free. While PCA regularization certainly prevents
overfitting, it also negatively impacts the richness of the nonlinear
subspace. Alternatively, CAE is also a promising method [Rifai
et al. 2011a]. It injects a penalty term related to ∥J∥𝐹 to enhance
the smoothness of 𝐷 so that a highly curved manifold is unlikely.
Unfortunately, neither method looks attractive to us: the very reason
of using DAE is to enhance the nonlinearity of the subspace, while
both PCA regularization and Jacobian penalty aim to prune the
subspace nonlinearity, contradicting our original motivation. The
remaining option is to expand the dimension of the latent space,
which is also problematic knowing that the computational cost for
nonlinear model reduction is much higher than linear reduction
(i.e., due to the evaluation of high-order differentiation).

Our answer to this dilemma is to split the total simulation space
into two orthogonal spectra: a PCA-based linear subspace (or it
could be constructed by any linear model reduction methods) S𝑝
and a DAE-based nonlinear manifold S𝑞 such that S𝑝 ⊥ S𝑞 . This
strategy shares similar nature of a recent contribution from Zhang
and colleague [2020], where the secondary dynamic motion effects
are enriched within a subspace orthogonal to the rig space. The
orthogonality allows the dynamics from both subspaces to be sim-
ply super-positioned. The advantages of this subspace design are
multifaceted. First of all, we can now increase the dimension of
the linear subspace with a moderate cost to the overall simulation
performance. Secondly, under this design, PCA basis matrix is part
of the Jacobian of the overall subspace S𝑝 ∪ S𝑞 . Therefore, the sim-
ulation does not experience the locking artifact. Explicitly building
the linear subspace also allows us to push the depth of the DAE as
needed to capture nonlinear deformations and keep latent space
highly compact at the same time.

… … … …

Encoding Decoding

1

, , ,
0

pn

i j i k j k
k
U Uδ

−

=

− ∑

Fig. 3. The network structure of our DAE. At both sides of the DAE, we
append a fully connected filtering layer (in green) to remove any displace-
ments from PCA space S𝑝 .

3.5 Network Architecture
The network architecture of our DAE is visualized in Fig. 3. It has a
symmetric structure at encoding and decoding parts. Before training
the DAE, we perform PCA over the training set to obtain basis
vectors of S𝑝 . They are packed into the matrix U. U is 𝑁 ×𝑛𝑝 , where
𝑛𝑝 represents the dimensionality of S𝑝 . Columns in U are all unit
vectors, and they are orthogonal to each other. To ensure S𝑝 ⊥ S𝑞 ,
we append a filtering layer at both ends of the encoder and and the
decoder. This filtering layer is fully connected (FC) and has fixed
weights: the weight coefficient of the edge connecting 𝑖-th and 𝑗-th
neurons before and after this FC layer is 𝛿𝑖, 𝑗 −

∑𝑛𝑝−1
𝑘=0 𝑈𝑖,𝑘𝑈 𝑗,𝑘 , where

𝛿𝑖, 𝑗 = 1 for 𝑖 = 𝑗 and 0 otherwise. In fact, this FC layer carries out a
matrix-vector product of (I − UU⊤)x for an input vector x, which
removes any components in x that generate non-zero projections in
S𝑝 so that the input of the encoder and the output from the decoder
are all orthogonal to S𝑝 .

After filtering, the DAE moves to an intermediate activation part,
which consists of multiple (e.g., 6 to 8) FC layers of the same width.
The width is normally set at the order of log𝑁 . Each layer is non-
linearly activated. Our activation function is quite different from
other deep nets. ReLU (rectified linear unit) is a widely chosen acti-
vation, and works well in many deep learning tasks by default [Nair
and Hinton 2010]. However, ReLU is piecewise linear with a 𝐶1
discontinuity. A DAE only activated by ReLU may degenerate to
PCA. The exponential linear unit or ELU enhances the smoothness
of ReLU, but it could remain a linear activator for certain input
signals. To this end, we use the trigonometric function sin𝑥 as our
activation [Tancik et al. 2020]. sin𝑥 has a derivative of an arbitrary
order, and it does not have a saturated gradient at both directions.
This pleasing property frees us from worrying about the vanishing
gradient problem [Hochreiter et al. 2001] even the network is deep
(over 10 layers). Finally, the feature vector is compressed to the
latent space. We use 𝑛𝑞 to denote the dimension of S𝑞 . 𝑛𝑞 is a small
number, typically below a couple of dozens in our experiments.

3.6 The Simulation System
Now, we have everything to give the formulation of the final sys-
tem we need to solve. With S𝑝 and S𝑞 constructed, the fullspace
displacement is written as:

u = Up + 𝐷 (q), s.t. U⊤𝐷 (q) = 0. (9)

ACM Trans. Graph., Vol. 40, No. 4, Article 68. Publication date: August 2021.



68:6 • Shen et al

Thanks to the orthogonality between S𝑝 and S𝑞 , we stack Eqs. (3) and (6)
jointly to obtain:

J̃⊤M̃J
(
r − r̄ − ℎ ¤̄r

)
+ J̃⊤f𝑓 𝑖𝑐𝑡 + ℎ2̃J⊤ (f𝑖𝑛𝑡 − f𝑒𝑥𝑡 ) = 0, (10)

where r = [p⊤, q⊤]⊤ is the generalized coordinate concatenating
both p and q, and J̃ = [U, J] ∈ R𝑁×(𝑛𝑝+𝑛𝑞 ) . Here, f𝑓 𝑖𝑐𝑡 is in the
same form of Eq. (8) because it vanishes in S𝑝 . Eq. (10) can then be
concisely written as 𝜙 (r) = 0. Its Jacobian is a (𝑛𝑝 +𝑛𝑞) × (𝑛𝑝 +𝑛𝑞)
matrix:

𝜕𝜙

𝜕r
= H̃⊤M̃J

(
r − r̄ − ℎ ¤̄r

)
+ H̃⊤f𝑓 𝑖𝑐𝑡 + J̃⊤M [U,ΔJ + J]

− ℎ2H̃⊤ (f𝑖𝑛𝑡 − f𝑒𝑥𝑡 ) + ℎ2
(̃
J⊤
𝜕f𝑖𝑛𝑡
𝜕u

J̃
)
, (11)

which needs to be updated and solved at each Newton iteration.
Here, H̃ = 𝜕2u/𝜕r2 = diag(0,H). The most involving term is ΔJ,
which is defined as:

ΔJ ≜ (S · (q − q̄)) · (q − q̄) +H · (3q − 3q̄ − ℎ ¤̄q) . (12)

In order to compute ΔJ, we need to calculate S, an 𝑁 ×𝑛𝑞 ×𝑛𝑞 ×𝑛𝑞
forth tensor, and it is the third-order derivative of DAE: 𝜕3𝐷 (q)/𝜕q3.
If we choose to use first-order or quasi-Newton solvers [Liu et al.
2017], the computation of S could be avoided, but we still need to
compute the HessianH. Nevertheless, for subspace simulation with
a small-size system matrix, Newton’s method with a direct linear
solver like Cholesky is always preferred.
Evaluating high-order differentiation of a deep net is not intu-

itive. Currently, gradient-based optimization is the mainstream so-
lution for the network training, where the network gradient can
be computed via BP. Second- and high-order derivatives are not
well supported and are not efficient enough for subspace simulation
tasks. Next, we discuss how we solve this technical challenge by
exploiting the complex-step finite difference scheme.

4 HIGH-ORDER DIFFERENTIABILITY VIA CSFD
Computing the derivative of a function is omnipresent in physics-
based simulation. It is typically done by inferring analytic form
of the derivative function by hand or with assistance from some
symbolic differentiation software like Mathematica [Wolfram et al.
1999]. Alternatively, it is also possible to approximate the deriva-
tive numerically. The finite difference is the most commonly-used
method, which applies a small perturbation ℎ to the function in-
put and the first-order function derivative can be estimated as:
𝑓 ′(𝑥) ≈ (𝑓 (𝑥 + ℎ) − 𝑓 (𝑥))/ℎ. However, it is also known finite
difference suffers with the numerical stability issue named subtrac-
tive cancellation [Luo et al. 2019]. This limitation could be avoided
by complex-step finite difference or CSFD [Luo et al. 2019; Martins
et al. 2003].

4.1 First- and High-order CSFD
Let (·)∗ denote a complex variable, and suppose 𝑓 ∗ : C → C is
differentiable around 𝑥∗0 = 𝑥0 + 0𝑖 . With an imaginary perturbation
ℎ𝑖 , 𝑓 ∗ can be expanded as:

𝑓 ∗ (𝑥0 + ℎ𝑖) = 𝑓 ∗ (𝑥0) + 𝑓 ∗
′
(𝑥0) · ℎ𝑖 + O(ℎ2) . (13)

We can “promote” a real-value function 𝑓 to be a complex-value
one 𝑓 ∗ by allowing complex inputs while retaining its original com-
putation procedure. Under this circumstance, we have 𝑓 ∗ (𝑥0) =

𝑓 (𝑥0), 𝑓 ∗
′ (𝑥0) = 𝑓 ′(𝑥0) ∈ R. Extracting imaginary parts of both

sides in Eq. (13) yields:

Im
(
𝑓 ∗ (𝑥0 + ℎ𝑖)

)
= Im

(
𝑓 ∗ (𝑥0) + 𝑓 ∗

′
(𝑥0) · ℎ𝑖

)
+ O(ℎ3) . (14)

Note that the error term (O(ℎ3)) in Eq. (14) is cubic because the
quadratic term of ℎ in Eq. (13) is a real quantity and is excluded by
Im operator. We then have the first-order CSFD approximation:

𝑓 ′(𝑥0) =
Im

(
𝑓 ∗ (𝑥0 + ℎ𝑖)

)
ℎ

+ O(ℎ2) ≈
Im

(
𝑓 ∗ (𝑥0 + ℎ𝑖)

)
ℎ

. (15)

It is clear that Eq. (15) does not have a subtractive numerator, mean-
ing it only has the round-off error regardless of the size of the
perturbation ℎ. If ℎ ∼

√
𝜖 i.e., around 1×10−16, CSFD approximation

error is at the order of the machine epsilon 𝜖 . Hence, CSFD can be
as accurate as analytic derivative because the analytic derivative
also has a round-off error of 𝜖 .

The generalization of CSFD to second- or even higher-order dif-
ferentiation is straightforward by making the perturbation a multi-
complex quantity [Lantoine et al. 2012; Nasir 2013]. The multicom-
plex number is defined recursively: its base cases are the real set
C0 = R, and the regular complex set C1 = C. C1 extends the real
set (C0) by adding an imaginary unit 𝑖 as: C1 = {𝑥 + 𝑦𝑖 |𝑥,𝑦 ∈ C0}.
The multicomplex number up to an order of 𝑛 is defined as: C𝑛 =

{𝑧1 + 𝑧2𝑖𝑛 |𝑧1, 𝑧2 ∈ C𝑛−1}. Under this generalization, the multicom-
plex Taylor expansion becomes:

𝑓 ★(𝑥0 + ℎ𝑖1 + · · · + ℎ𝑖𝑛) = 𝑓 ★(𝑥0) + 𝑓 ★
′
(𝑥0)ℎ

𝑛∑︁
𝑗=1

𝑖 𝑗

+ 𝑓 ★
′′ (𝑥0)
2 ℎ2 ( 𝑛∑︁

𝑗=1
𝑖 𝑗
)2 + · · · 𝑓

★(𝑘)

𝑘! ℎ𝑘
( 𝑛∑︁
𝑗=1

𝑖 𝑗
)𝑘 · · · (16)

Here,
(∑
𝑖 𝑗
)𝑘 can be computed following the multinomial theorem,

and it contains products of mixed 𝑘 imaginary directions for 𝑘-th-
order terms. For instance, the second-order CSFD formulation can
then be derived as follows:

𝜕2 𝑓 (𝑥,𝑦)
𝜕𝑥2 ≈

Im(2)
(
𝑓 (𝑥 + ℎ𝑖1 + ℎ𝑖2, 𝑦)

)
ℎ2

𝜕2 𝑓 (𝑥,𝑦)
𝜕𝑦2 ≈

Im(2)
(
𝑓 (𝑥,𝑦 + ℎ𝑖1 + ℎ𝑖2)

)
ℎ2

𝜕2 𝑓 (𝑥,𝑦)
𝜕𝑥𝜕𝑦

≈
Im(2)

(
𝑓 (𝑥 + ℎ𝑖1, 𝑦 + ℎ𝑖2)

)
ℎ2 ,

(17)

where Im(2) picks the mixed imaginary direction of 𝑖1𝑖2. One can
easily tell from Eq. (17) that second-order CSFD is also subtraction-
free making them as robust/accurate as the first-order case. With
CSFD, we augment the DAE to allow each neuron to house a complex
or a multicomplex quantity. Therefore, the input perturbation can
be passed through the network for computing its derivative values.

4.2 Differentiation under Tensor Contraction
A limitation of CSFD lies in its dependency on the perturbation. If
the function takes𝑚 input variables e.g., an𝑚-dimension vector,

ACM Trans. Graph., Vol. 40, No. 4, Article 68. Publication date: August 2021.



High-order Differentiable Autoencoder for Nonlinear Model Reduction • 68:7

CSFD needs to evaluate the function for𝑚 times in order to com-
pute its first-order derivative. In our case, the function is shaped
as a DAE. More precisely, 𝐷 (q) corresponds to the decoding part
of the network (Fig. 3). We need to take a forward pass of the de-
coding network as one function evaluation. The total number of
network forwards goes up exponentially with respect to the order
of differentiation. Therefore, computing S in Eq. (12) requires 𝑛3

𝑞

network forwards per Newton iteration, which is further scaled by
the complexity 𝐷 . This is too expensive for real-time simulation
even on GPU.
An important contribution of this work is to efficiently enable

high-order differentiability of DAE (or other deep networks) while
eliminating excessive network perturbations. Our method is based
on two following key observations:

• In CSFD, the imaginary parts can be somehow understood as the
differential change induced by the perturbation. Under a straight
usage, CSFD is analogous to forward automatic differentiation
(AD) [Guenter 2007], but with much better generalization to
higher orders. The potential of CSFD is maximized if the function
has a high-dimension output so that one function evaluation
gives you more information of the differentiation. Conversely,
the BP procedure of a neural net is essentially a reverse AD [Bay-
din et al. 2017] – its efficiency is optimal when the input of a
network is in high dimension. This is exactly the case in neural
net training, where we have a large number of network param-
eters as the function input. It is clear that CSFD and BP nicely
complement each other so that we can choose the direction of
network propagation accordingly.

• While high-order differentiation produces high-order tensors,
those tensors are rarely needed in its original form. In most cases,
they are to be “reduced” by tensor contractions with other tensors
left and right to them. Those reduction operations allow us to
apply the perturbation collectively, not at an individual variable
but in the form of vector or tensor.

4.3 Right Contraction via Directional Derivative
We now elaborate our method first with a toy example. Consider
𝑓 : R𝑚 → R. Computing its Hessian (H = ∇2 𝑓 ) will need 𝑚2

perturbations with second CSFD (Eq. (17)). However, if ∇2 𝑓 is also
contracted with a right vector a, Ha can actually be evaluated much
more efficiently as:

[H(x)a]𝑘 =

𝑚−1∑︁
𝑙=0

lim
ℎ→0

[∇𝑓 (x + ℎe𝑙 ) − ∇𝑓 (x)]𝑘
ℎ

· [a]𝑙 ,

⇒ [H(x)a]𝑘 =

𝑚−1∑︁
𝑙=0

lim
ℎ→0

[∇𝑓 (x + [a]𝑙ℎe𝑙 ) − ∇𝑓 (x)]𝑘
ℎ

,

⇒ Ha = lim
ℎ→0

∇𝑓 (x + ℎa) − ∇𝑓 (x)
ℎ

≈ Im(∇𝑓 (x + ℎ𝑖 · a))
ℎ

.

Here, [·]𝑘 gives 𝑘-th element of vector, and e is the canonical bases.
In the second line of the derivation, we substitute ℎ with [a]𝑙ℎ to
cancel the multiplication of [a]𝑙 . One may now recognize that Ha
is essentially the directional derivative of ∇a 𝑓 .

x

y
w

×
z

2[ ]⋅ x

y
wz

3y =
2x hi= +

36z x hiy +×= =
2 236 9 3

36 36
6

hi
w z h hi= = −
≈ +

+

Forward pass

6 3z hi= +

2x hi= +

3y = 36 36w hi= +

× 2[ ]⋅

2 12 6w z hi
z

∂
= = +

∂

3(12 6 ) 36 18w w z hi hi
x z x

∂ ∂ ∂
= = + = +

∂ ∂ ∂

3z
x
∂

=
∂

2

2 / 18Imw w h
x x

∂ ∂ = = ∂ ∂ 
Backward pass

Fig. 5. By augmenting BP with CSFD, we can efficiently evaluate high-order
differentiation of a deep net, followed by a left-side tensor contraction.

1 2 3j k lx hi ha i h ib+ ++

( )f x 

…

3

3

f∂
∂x

a
bka

lb

Fig. 4. Right contraction
can be dealt with by apply-
ing CSFD perturbation col-
lectively.

This finding is not new and has been
used in Jacobian-free solvers [Knoll and
Keyes 2004]. However, we note that this
strategy can also be generalized for high-
order cases. As shown in Fig. 4, one differ-
entiation operation lifts the order of the
resulting tensor by one. A right contrac-
tion of the tensor undoes this expansion
so that the perturbation can be applied
together. Now let us advert to the forth
tensor S in Eq. (12). Its exact form is of
less interest to us. Instead, we would like
to compute the matrix after two contrac-
tions with q − q̄. To this end, we apply a collective third-order
multicomplex perturbations to the decoding DAE for 𝑛𝑞 times. The
𝑗-th perturbation computes the 𝑗-th column of the resulting matrix.
This perturbation is applied along the first imaginary direction 𝑖1 at
the 𝑗-th element of the DAE input q. The perturbations in 𝑖2 and 𝑖3
are scaled by the corresponding elements in q − q̄. Putting together,
the 𝑗-th element, which is a third-order multicomplex quantity, of
the CSFD input is:

[q★] 𝑗 = [q] 𝑗 + ℎ𝑖1 + ℎ[q − q̄] 𝑗 𝑖2 + ℎ[q − q̄] 𝑗 𝑖3 . (18)

After the forward pass, we extract the component at 𝑖1𝑖2𝑖3 direction,
and divide it by ℎ3.

4.4 Left Contraction via Complex-step Backpropagation
In the simulation, there are several computations involving contrac-
tion between a left vector and a differentiation tensor such as all
theH⊤ terms in Eq. (11). In those cases, the contraction occurs at
the dimension which is not expanded by the differentiation. Hence,
the strategy outlined in § 4.3 does not apply. Consider evaluating
a ·H (i.e.,H⊤a). We carry out our computation with an auxiliary
function 𝑔(q) = a · 𝐷 (q) ∈ R. As 𝐷 is embodied as a neural net-
work, this auxiliary function can also be viewed as appending an
FC layer at the end of the net reducing its 𝑁 -dimension output to a
single scalar (like the loss function). Because a is independent on 𝐷 ,
𝜕𝑘𝑔/𝜕q𝑘 = a ·𝜕𝑘𝐷/𝜕q𝑘 . Hence, a ·H can be computed as the Hessian
of 𝑔(q). Here, the reader may be reminded thatH is a function of q,
and it is the second derivative of 𝐷 . A standard second CSFD will
need 𝑛𝑞 (𝑛𝑞 +1)/2 perturbations knowing 𝜕2𝑔/𝜕q2 is symmetric. We
show that is computation can be further reduced to O(𝑛𝑞).

ACM Trans. Graph., Vol. 40, No. 4, Article 68. Publication date: August 2021.



68:8 • Shen et al

As mentioned, CSFD is most suited for differentiating functions
with a high-dimension output – 𝑔(q) is not such a function, which
outputs a single scalar. Its derivative could be more efficiently com-
puted by reverse AD or BP. As a first-order routine however, BP
only computes the gradient function 𝜕𝑔/𝜕q. To this end, we inject
CSFD into the BP procedure treating BP as a generic function and
enabling complex arithmetic along the BP computation to perturb
the gradient of 𝑔. It starts with a complex-perturbed forward pass
of the network 𝑔 by adding the perturbation at one element (say the
𝑗-th element) of the network input as: [q∗] 𝑗 = [q] 𝑗 +ℎ𝑖 . The feedfor-
ward of the net delivers this complex perturbation to all the neurons
[q] 𝑗 influences. BP then ensues. During BP, all the computations
are complex-based. If a neuron receives an imaginary component in
the forward pass, this imaginary component participates in BP and
passes complex-value feedback signals to its previous layer. After
BP, all the signals at the input layer are divided by ℎ yielding one
column of a ·H.

Fig. 5 illustrates this process with a simple net: two neurons (𝑥 and
𝑦) multiply first, and the result (𝑧) is squared to generate the output
(𝑤 ). Suppose 𝑥 = 2 and 𝑦 = 3, and we want to compute the second
derivative of the network output with respect to 𝑥 . The perturbation
ℎ is applied to 𝑥 so that 𝑥 = 2+ℎ𝑖 , and all sequential neurons become
complex-value. After the forward pass, BP invokes. Everything
remains the same as the regular BP except the computation is in
complex. For instance, 𝜕𝑤/𝜕𝑧 = 2𝑧; as 𝑧 holds a complex value,
𝜕𝑤/𝜕𝑧 = 12 + 6ℎ𝑖 is also complex. Finally, after BP completes. The
real part of 𝑥 gives the value of the first-order derivative – the same
as the original BP algorithm, and the imaginary part of 𝑥 after being
divided by the input perturbation ℎ is the second derivative. Along
this procedure, we follow the strategy in [Luo et al. 2019] to avoid
unneeded complex computations. For instance in Fig. 5, high-order
terms of ℎ is discarded in𝑤 .
Thanks to CSFD, all the tensor-related computations can now

be completed with 𝑛𝑞 network passes, either forward passes with
CSFD or backward passes with CSFD-enabled BP. Those 𝑛𝑞 network
passes can be executed in parallel on GPU as one single mini-batch.
The remaining performance bottleneck is the subspace integration
of reduced force and elastic Hessian. This computation is usually
handled with the Cubature method [An et al. 2008]. In the next
section, we discuss how we replace the classic Cubature sampling
with a neural network based one to allow a pose-dependant subspace
integration.

5 NEURAL CUBATURE SAMPLING AND WEIGHTING
In model reduction, it is expected that all the computations are
carried out in the polynomial time of the reduced order 𝑛𝑝 + 𝑛𝑞 .
For Saint Venant-Kirchhoff (StVK) material model under linear re-
duction, it is possible to pre-compute the polynomial coefficients
for reduced force and Hessian [Barbič and James 2005] at the cost
of O(𝑛4

𝑝 ). Unfortunately, other material models do not share this
convenience. A practical solution is the so-called Cubature sam-
pling [An et al. 2008]. Cubature selects a subset of key elements
(i.e., Cubature elements) such that the reduced force and reduced
Hessian can be integrated only at Cubature elements with a desig-
nated non-negative weight. Cubature has been proven effective for

1

2

3

s
s
s

 
 
 
 
 
 

1

2

3

w
w
w

 
 
 
 
 
 

sin()

sin()

softm
ax

sin(⋅)

sin(⋅)

sin(⋅)

[ ]2

Update 
Cubature set

1

2

3

w
w
w

 
 
 
 
 
 

1

2

3

M
M
M

 
 
 
 
 
 

network 

network 

Decoding
.

Fig. 6. Neural Cubature alternates between two neural networks: 𝑆 and𝑊 .
𝑆 net is a GCN and selects Cubature elements with highest scores.𝑊 net
predicts the weight of each Cubature element. We add a square activation
to ensure the non-negativeness of the output weight value. This information
is then passed back to 𝑆 for next-round selection.

linear model reduction. However, its naïve deployment for nonlinear
reduction is questionable: as the tangent space varies in nonlinear
cases, why should we stick with invariant Cubature weights?

Our neural Cubature consists of two networks as shown in Fig. 6.
The first net is in charge of selecting newCubature elements, and the
second net is responsible for predicting Cubature weights. Specifi-
cally, the first neural network outputs a “score” for each element,
and we can add multiple elements to the Cubature set based on
element’s score. After updating the Cubature set C, the second net-
work outputs the weights of all the Cubature elements based on
the input r. Neural Cubature training alternates between those two
networks. After the training, only weight prediction net participates
in the simulation i.e., given a generalized coordinate r, the neural net
outputs its weights coefficients at the simulation run time, which
are then used for the subspace integration.

5.1 Cubature Selection with a GCN
We use 𝑆 to denote the first neural network for Cubature element
selection. 𝑆 is a graph convolutional network (GCN) [Wu et al.
2020], which naturally inherits the topology of the input 3D model.
The input of 𝑆 is the fullspace displacement u followed by two
graph convolution layers. Each convolution layer produces eight
channels. After that, another two FC layers are applied. 𝑆 outputs the
probability 𝑠𝑒 for each element 𝑒 on the mesh, which is concatenated
into a global probability or score vector s. The graph convolution
operation can be written as:

ℎ
(𝑙+1)
𝑖

= sin ©­«
∑︁
𝑗 ∈N𝑖

1
𝑐𝑖 𝑗
ℎ
(𝑙)
𝑗
𝛾1(𝑙)ª®¬ , (19)

where ℎ (𝑙)
𝑖

represents the 𝑖-th vertex in the 𝑙-th neural network
layer. 𝛾 (𝑙) is the trainable parameter, and N denotes the one-ring
neighborhood of 𝑖 on the mesh. Similar to DAE, we use sin(·) for
intermediate nonlinear activations. 𝑐𝑖 𝑗 =

√︁
𝑑𝑖 · 𝑑 𝑗 is the normaliza-

tion constant of edge ⟨𝑖, 𝑗⟩, where 𝑑𝑖 is the degree of vertex 𝑖 . At the
last hidden layer, we use the softmax activation [Goodfellow et al.
2016], which assigns each element a probability score.

ACM Trans. Graph., Vol. 40, No. 4, Article 68. Publication date: August 2021.



High-order Differentiable Autoencoder for Nonlinear Model Reduction • 68:9

𝑆 is trained in the residual space. This scheme is inspired by the
original Cubature algorithm. At the beginning, the set of Cubature
elements is empty: C = ∅, and the original training set consists of
pose-force pairs. With some elements being selected, C ≠ ∅, we
compute the remaining reduced force for each training data with
current Cubature integration:

f (r) = f̃𝑖𝑛𝑡 (r) −
∑︁

𝑀𝑒 (C,w)̃f𝑒 (r) . (20)

Here, f̃𝑖𝑛𝑡 (r) is the reduced internal force projected in the column
space of J̃(r). The summation iterates all the elements on the mesh.
𝑀𝑒 (C,w) is a mask function that removes non-Cubature weights
from an input weight vector w. In other words, 𝑀𝑒 (C,w) = [w]𝑒
if element 𝑒 ∈ C or 0 otherwise. Note that the dimensionality of w
corresponds to the total number of elements on the model, and it is
the output from the current weight prediction net. f̃𝑒 is the reduced
force at the element 𝑒 . Instead of adding one Cubature element each
time, neural Cubature allows us to select multiple elements. After 𝑆
outputs scores s, we can pick𝐾 non-Cubature elements with highest
scores, and update C accordingly. We have tested 𝐾 = 5, 𝐾 = 10,
and 𝐾 = 20 and did not find much difference between them.

5.2 Weight Prediction
The weight prediction network𝑊 takes a generalized coordinate r
as well as the current Cubature set C as input, and outputs weight
coefficients for all the elements w. Specifically, r is first spanned to
u with our decoder net. Network parameters at this part are fixed
and do not participate in the training. Four additional FC layers
with sin(·) activations are followed.𝑊 is not a graph network, as
we believe the geometry and topology information of the model is
already captured in 𝑆 . Training the weight should be pure algebraic,
and several nonlinearly activated FC layers work for this purpose
well. Because𝑊 is the part of the simulation (we need to obtain w
at each time step), we also want to make sure it is light-weight and
runs feedforward efficiently. Therefore, the structure of𝑊 is plain
and straightforward. Finally, the weight coefficients of Cubature
elements should be non-negative in order to prevent extrapolation
and overfitting. To this end, we put a square operation at the last
layer to enforce the non-negative constraint.
The loss functions of both 𝑆 and𝑊 resemble each other a lot:

𝐿𝑆 =




f (r) −∑︁
𝑀𝑒 (C,w)̃f𝑒 (r)




 ,
𝐿𝑊 =




̃f (r) −∑︁
𝑀𝑒 (C,w)̃f𝑒 (r)




 . (21)

In practice, neural Cubature kicks off by setting C as few Voronoi
samples of the input model initialized with farthest point sampling.
They are passed to𝑊 to start the alternating. After w is predicted,
we feed this information to 𝑆 (i.e., updating the Cubature residual),
which in turn, updates the Cubature set C. Our neural Cubature is
more efficient and accurate than conventional Cubature methods.
Because neural Cubature picks multiple elements each time, we can
also quickly build a bigger Cubature set C.

6 EXPERIMENTAL RESULTS
We have implemented our framework on a desktop computer with
an intel i7 9700 CPU and an nVidia 2080 GPU. The simulation

0

0.005

0.01

0.015

0.02

0.025

0.03

0 15 30 45 60 75 90 105 120

Tr
ai

ni
ng

 lo
ss

Epoch

Weight Prediction Network
Cubature Selection Network

0.5

1

2

4

8

16

32

0 200 400 600 800 1000 1200 1400 1600 1800

Tr
ai

ni
ng

 lo
ss

Epoch

PCA
6 layers
10 layers
14 layers
18 layers

...
Training poses

Fig. 8. Network curves for training the bunny model. Neural Cubature is
trained by alternating 𝑆 and𝑊 nets, and we use the parameters from the
previous alternation. Adding more layer helps reduce the training error
effectively.

part is mostly on CPU but we move all the matrix-matrix and matrix-
vector computations to GPU with cuBLAS [Nvidia 2008]. The simula-
tion is implemented with C++, and some linear algebra computations
are based on Eigen library [Guennebaud et al. 2010]. Network train-
ing is initially carried out using PyTorch [Paszke et al. 2019]. After
we have all the network parameters, we port the resulting neural
network to CUDA. Network BP for computing tensor contraction is
also implemented with cuBLAS.

6.1 Training Poses Generation
We generate training poses by running a scripted simulation. At
the training stage, given a random surface vertex on the model, we
select its nearby vertices within a given radius, and apply a random
force to them (Fig. 7). All the simulation poses along this dynamic
procedure are recorded as training data.

Fig. 7. We generate training data by applying
scripted random forces to the model.

In linear model re-
duction, it is com-
mon to directly sam-
ple training datawithin
the modal space e.g.,
see [Von-Tycowicz
et al. 2015].We found
that this strategy is
not valid for nonlin-
ear model reduction.
Here, we would like
to clarify two confus-
ing concepts: pose and basis. In linear model reduction, we care more
about the basis, whose most important attribute is the direction,
and its magnitude matters little. This is not the case for nonlinear
reduction, where we essentially learn the underlying deformation
manifold. An effective training will need samples on this manifold
i.e., poses, without unnecessary scaling. Therefore, training data
should be generated via real simulation.

ACM Trans. Graph., Vol. 40, No. 4, Article 68. Publication date: August 2021.



68:10 • Shen et al

PCA GMD PMD Ours

Su
bs

pa
ce

 si
ze

 1
0

Su
bs

pa
ce

 si
ze

 1
5

Su
bs

pa
ce

 si
ze

 2
0

PCA GMD PMD Ours

Ground truth (fullspace)

Fig. 9. We compare simulation results of the dinosaur model using various model reduction methods: PCA, physical modal derivative (PMD), geometric modal
derivative (GMD), and our method. The ground truth shapes shown in the right most column. On the left, we globally bend the dinosaur, and on the right, we
try to apply local forces at its hands.

6.2 Network Training
Training poses ought not be weighted equally. In general, we prefer
to better fit poses closer to the rest shape. A slightly higher fitting
error may be acceptable for poses under large deformations. This is
also the motivation in the linear model reduction of scaling basis
vectors by their vibration frequencies [Barbič and James 2005; Von-
Tycowicz et al. 2015]. However, nonlinear eigenvalues of deformable
poses are difficult to be estimated. We found a good metric is the
elastic energy of a given pose, which nonlinearly measures how
far a deformation is away from the rest configuration. As a result,
we weight the loss value of each pose by the inverse of its elastic
energy. As discussed, our method also builds a linear subspace (i.e.,
S𝑝 ) via PCA out of the training poses. If the training data set is too
big, computing a full PCA is time-consuming. We find that a good
work-around is to randomly pick poses with smallest elastic energy
to form a more compact training set for PCA, and leave DAE to
extract nonlinear information out of the residual pose space.
We use PyTorch and Adam for all our network training. For

training DAE, we start with an initial learning rate of 0.001. After
300 epochs, we shrink the learning rate by 20%, and another 20%
after 3, 000 epochs. Normally, a training set includes 20, 000 poses
for a model. When training the neural Cubature networks 𝑆 and𝑊 ,
we stick with the learning rate of 0.001. In each alternation, we run
15 epochs for both 𝑆 and𝑊 . Depending on how many Cubature
elements we want to pick, the neural Cubature training could take
several thousand epochs. The total network training time is less
than expected, which takes ten to twenty minutes. Generating the
training poses is the most expensive part. It often needs a couple of
hours. A typical training curve is reported in Fig. 8, which is for the

bunny model. We note that the expressivity of the DAE improves
with increased depth. This can be observed from Fig. 8: if the DAE is
shallow e.g., fours layers, its performance is only marginally better
than PCA; but with a deeper DAE, the error decreases sharply. On
the other hand, as poses are generated randomly, in some cases
the lower training error may not always be reflected in the actual
animation.

6.3 Comparison I: Our Method vs. Linear Model Reduction
First, we report a comprehensive comparative experiment between
our DAE-based nonlinear reduction and other commonly seen lin-
ear reduction methods including: PCA, physical modal derivative
(PMD) [Barbič and James 2005], and geometric modal derivative
(GMD) [Von-Tycowicz et al. 2015]. Both physical and geometric
modal derivatives are based on linear modal analysis (LMA) [Pent-
land andWilliams 1989]. PMD is computed via solving a set of static
equilibria around the rest shape, while GMD constructs the sub-
space matrix by spanning each LMA basis to nine tangent directions
corresponding to its local linear transformation. In this experiment,
we first compute 50 LMA basis vectors. Based on them, we compute
50 × (50 + 1)/2 = 1, 275 PMD bases and 50 × 9 = 450 GMD bases.
Finally, we apply mass-PCA as described in [Barbič and James 2005]
to extract the subspace matrix for the linear reduction. We report the
results with a dinosaur model because of its concave and non-trivial
geometry.

In the first set of comparison, as shown in Fig. 9 (left), we fix the
feet of the model and bend the dinosaur backwards. We compare the
final poses of different reduction methods under different subspace
sizes: 10, 15, and 20. Our method adopts a mixed linear and nonlinear

ACM Trans. Graph., Vol. 40, No. 4, Article 68. Publication date: August 2021.



High-order Differentiable Autoencoder for Nonlinear Model Reduction • 68:11

subspaces superposition, the dimensionality of each subspace is set
as 𝑛𝑝 = 5, 𝑛𝑞 = 5; 𝑛𝑝 = 10, 𝑛𝑞 = 5; and 𝑛𝑝 = 10, 𝑛𝑞 = 10.
In this experiment, we can see a clear advantage of our method

over PCA-based linear reduction. We think the reason is straight-
forward, DAE is known to be more expressive than conventional
PCA especially for nonlinear data sets. In addition, we find that
PMD also gives very good results while GMD does not perform
well. We assume this is because you need to fully incorporate all 450
geometric derivative modes in GMD to first-order approximate the
derivative of LMA modes reasonably well. PMD is optimal for low-
frequency deformations like this dinosaur bending. Indeed, PMD is
exactly designed to capture such deformations, while our method is
based on a data set generated randomly. From this perspective, it is
actually encouraging to see our method yields comparable results
in PMD’s “home field”. Another common trend for all the reduction
methods is that the deformation improves with increased subspace
dimensions.
To further verify our hypothesis, we generate another set of

training poses (500 poses), where we only add random forces at
the hands of the dinosaur. This type of deformation is local and
high-frequency, which are less friendly for PMD as the bending. In
the test, we ask the dinosaur to open its arm by applying forces
to its hands outwards. All the other settings remain unchanged.
As shown in Fig. 9, the difference between our method and PMD
becomes more obvious in this experiment. The ground truth result is
shown in the right most column. Interestingly, when we narrow our
training sampling at the hands, the performance of PCA also gets
much better. We can see from the figure that PCA is very close to
our method. This is because local deformation does not necessarily
suggest higher nonlinearity. In the “opening arm” test, we only
generate 500 training poses, which can be fairly well captured by
PCA. The advantage of nonlinear reduction is more observable
when the subspace size is further condensed (e.g., when 𝑛 = 10).

Ground truth Ours Latent space dynamics

Fr
am

e 
10

Fr
am

e 
5

Fr
am

e 
10

Fr
am

e 
10

Fig. 10. Latent space dynamics [Fulton et al. 2019] uses a trimmed for-
mulation to avoid the evaluation of high-order derivative of DAE. This
simplification leads to artifacts under a high velocity.

6.4 Comparison II: Our Method vs. Latent Space Dynamics
We are not the first to leverage DAE to perform nonlinear reduction.
Latent space dynamics (LSD) [Fulton et al. 2019] is closely relevant
to our method. Both our method and LSD share the same high-level
motivation of nonlinear subspace simulation, and both choose to use
autoencoder as the machinery of the reduction in elastic simulation.
Therefore, we consider LSD our major competitor. There are several
key differences between our method and LSD. The most important
one lies in the fact that the lack of differentiability in LSD needs a

simplified formulation that ignores the fictitious force f𝑓 𝑖𝑐𝑡 (Eq. (8)).
This could lead to significant error during the simulation when the
model undergoes a high-velocity motion.

Table 1. Cubature sampling error using neural Cubature and classic Cu-
bature method. This experiment is performed on an Armadillo model with
38K elements. Neural Cubature [10] means we add 10 elements to the Cu-
bature set C based on each 𝑆 network prediction. Neural Cubature [5] adds
5 elements each time.

10 20 50 100 200
Neural Cubature [10] 91.1% 62.9% 39.1% 23.8% 16.3%
Neural Cubature [5] 87.1% 60.3% 37.1% 22.3% 15.7%
Greedy Cubature 88.4% 66.6% 47.1% 31.2% 19.2%

6.5 Comparison III: Neural Cubature vs. Classic Cubature
In the next experiment, we would like to investigate the difference
between our neural Cubature and the classic Cubature method. We
first compare the fitting error of 10, 20, 50, 100, and 200 Cubature
elements. The results are reported in Tab. 1.

Fig. 10 reports snapshots of this issue. In this test, we drag the head
of the dinosaur to left with an abrupt force. The artifact does not
appear serious at first few frames. However, once the accumulated
error reaches a certain level, the simulation diverges and cannot
be recovered even we slow down the animation later. In order to
have a fair comparison, we run our simulation fully in S𝑞 without
building the PCA space S𝑝 , and we do not use Cubature sampling
for subspace force integration to avoid other potential error sources.

Fig. 11. We drag the left leg of the Ar-
madillo. Neural Cubature with 140 ele-
ments runs the simulation robustly. We
also visualize the weight value at each
Cubature element. Higher weighted ele-
ments are brighter. Greedy Cubature fails
in this simulation.

As most dynamic sim-
ulation problems are pre-
scribed by Newton’s law of
motion, being able to eval-
uate high-order derivatives
of nonlinear model reduc-
tion is a must for a suc-
cessful deployment of this
technique. This turns out
be the key contribution of
our method. In LSD, there
are many smart strategies
used to remedy the risk in-
duced by the missed f𝑓 𝑖𝑐𝑡
such as pre PCA filtering in
the DAE network etc. They
are all compatible with our
method, but the f𝑓 𝑖𝑐𝑡 issue
does not even exist in our
framework.

We can see from listed er-
ror percentages that neural
Cubature outperforms clas-
sic Cubature method [An
et al. 2008] in the context of nonlinear reduction. The selection
network 𝑆 of neural Cubature uses a GCN, which captures the ge-
ometry and topology information of the input model, while classic

ACM Trans. Graph., Vol. 40, No. 4, Article 68. Publication date: August 2021.



68:12 • Shen et al

Cubature method is solely algebraic. Another advantage of neu-
ral Cubature is its efficiency. Neural Cubature allows us to choose
multiple Cubature elements each time when 𝑆 net predicts a score
vector. We find that the Cubature training error is not sensitive to
how many new Cubature elements we add to C every time, as long
as this is a reasonable number i.e., in dozens – picking five elements
has a higher accuracy than picking ten elements, but both are better
than greedy Cubature (Tab. 1).

In addition, we can re-use the network parameters from the pre-
vious alternation to warm start the training for a faster convergence
(e.g., see Fig. 8). With neural Cubature, we can conveniently build
a bigger C set. Under CUDA-assisted subspace integration, the neu-
ral Cubature sampling error can be effectively suppressed. This is
hardly possible with classic Cubature method as we need to solve a
non-negative least square problem with increasing size. Building C
of few hundred elements would be very expensive. Fig. 11 shows
a concrete experiment of simulating an Armadillo using greedy
and neural Cubature strategies with 140 Cubature elements. We fix
Armadillo’s hand and drag its leg downwards. Our neural Cuba-
ture with varying weights simulates this animation robustly while
greedy Cubature fails (𝑛𝑝 = 10 and 𝑛𝑞 = 10). In this experiment, one
needs to increase greedy Cubature samples to over 250 to reduce
the error in the integration, which takes a few more training hours.

6.6 Comparison IV: CSFD vs. Finite Difference
We have briefly discussed in § 4 that finite difference is not numeri-
cally robust even for first-order cases. Its applicability in nonlinear
reduction is unlikely possible. To verify this, we implement second-
and third-order differentiation by recursively applying center finite
difference. The simulation does not converge no matter how we
tweak the perturbation size ℎ: ℎ = 1𝐸 − 3, ℎ = 1𝐸 − 5, ℎ = 1𝐸 − 7,
ℎ = 1𝐸 − 9. In fact, the simulation crashes almost immediately
when finite difference is used. We believe the increased depth of
the neural net imposes more challenges for finite difference to work
probably. However, CSFD is robust and accurate even for high-order
differentiations.

6.7 Implementation Details
We first use PyTorch to test and train our neural networks (DAE, 𝑆
and𝑊 ). After the training is complete, we re-implement the net with
CUDA, which is directly implanted in our simulation framework. Our
CUDA port is CSFD-capable, i.e., the forward and backward pass of
the network also takes multi-/complex values. This could be done by
overloading the real operators with their complex or multicomplex
counterparts.
Alternatively, we choose to use the Cauchy-Riemann (CR) for-

mulation [Ahlfors 1973; Luo et al. 2019] to achieve (multi-)complex
perturbations without overloading the complex arithmetic. CR equa-
tion represents a multicomplex number in the form of a real matrix.
Suppose 𝑧1 = 𝑧0

0 + 𝑧
0
1𝑖 , its CR form is a 2 × 2 matrix:

𝑧1 = 𝑧0
0 + 𝑧

0
1𝑖 =

[
𝑧0

0 −𝑧0
1

𝑧0
1 𝑧0

0

]
, where 𝑧1 ∈ C1 and 𝑧0

0, 𝑧
0
1 ∈ C0 = R.

Here, we use the superscript (·)𝑛 to denote the order of a multicom-
plex number. The CR matrix of 𝑧𝑛 can be constructed recursively

using the CR matrices of 𝑧𝑛−1
0 and 𝑧𝑛−1

1 as:

𝑧𝑛 = 𝑧𝑛−1
0 + 𝑧𝑛−1

1 𝑖𝑛 ∈ C𝑛 =

[
𝑧𝑛−1

0 −𝑧𝑛−1
1

𝑧𝑛−1
1 𝑧𝑛−1

0

]
. (22)

Each of the 2 × 2 blocks in Eq. (22) is a (𝑛 − 1)-order multicomplex
number, which can be further expanded with (𝑛 − 2)-order multi-
complex numbers and so on. Eventually, the CR form of 𝑧𝑛 becomes
a 2𝑛 × 2𝑛 real matrix.
With CR formula, we organize each network layer into a real

layer and an imaginary layer (or multiple multicomplex layers)
other than generalizing each neuron to be a complex or multiple
quantity. All the computations are now in real, and we implement
the forward pass of the net for FC layers with cuBLAS. The CRmatrix
multiplication is carried out block-wisely, so that we do not generate
redundant multiplications corresponding to the off diagonal blocks.

8.1 2 2.4 3.2 2.4 1.8 1

Assemble stiffness matrix Neural Cubature First-order CSFD
Second-order CSFD Third-order CSFD Decoder pass

DAE differentiation (8 ms) 8.1 ms Assemble stiffness matrix
2.0 ms Neural Cubature
2.4 ms First-order CSFD
3.2 ms Second-order CSFD
2.4 ms Third-order CSFD
1.8 ms Decoder pass
1.0 ms System solve

Fig. 12. Detailed time breakdown of our DAE-in-the-loop simulation
pipeline. The timing information is for the dinosaur model with a 9-layer
decoder net.

The activation is on the other hand, directly implemented by
launching CUDA threads. Fortunately, we do not have many different
types of activations. Only the periodic activation function sin(·) is
used. To this end, we just implement its naiv̈e expression up to the
third order to maximize the performance on CUDA without recursive
variable initialization. While the expression looks verbose (e.g., se
Appendix A), computing the high-order derivative of activation
function only takes a small fraction of the network forwards. The
major computing efforts remain at FC forward and backward passes.
Fig. 12 visualizes detailed timing breakdown of our system for one
simulation time step of the dinosaur. The total computation time for
calculating first-, second-, and third-order derivatives of the DAE is
about 8 ms, which is similar to the time needed for system matrix
assembly using Cubature. There is also a 2-ms overhead to pass
the neural Cubature net. If we only check the first-order derivative,
our method has a similar time performance as Jacobian-vector trick
used in [Fulton et al. 2019].

Table 2. Time performance of our nonlinear subspace simulator. # Ele. and
# Tri. are the total numbers of elements and surface triangles on the model;
𝑛𝑝 +𝑏𝑞 reports the composition of our subspace configuration (per domain);
|C | is the number of Cubature elements used; # D. is the total number
of domains on the model; FPS is the simulation frame per second (and
speedups compared with single-core full simulation).

# Ele. # Tri. 𝑛𝑝 + 𝑛𝑞 |C| # D. FPS
Dinosaur 18K 9K 30 + 10 100 – 44 (31×)
Armadillo 40K 20K 30 + 10 140 – 30 (35×)
Bunny 16K 8K 30 + 10 100 – 45 (30×)
Cactus 233K 139K 10 + 6 6, 600 165 2.5 (56×)
Puffer ball 625K 120K 10 + 5 11, 400 321 1.4 (36×)

ACM Trans. Graph., Vol. 40, No. 4, Article 68. Publication date: August 2021.



High-order Differentiable Autoencoder for Nonlinear Model Reduction • 68:13

Fig. 13. Falling bunny. We use generalized Newton-Euler equation to couple DAE-based model reduction with large rigid body motion to simulate free-floating
objects. The subspace configuration of the bunny is 𝑛𝑝 = 30 and 𝑛𝑞 = 10.

6.8 Extensions and More Results
Our DAE-based nonlinearly reduced simulation algorithm can be
extended and integrated into other simulation frameworks at ease.
For instance, we can use the generalized Newton-Euler equation to
couple local deformation and rigid body dynamics [Kim and James
2012; Shabana 2003]. The training poses need to be generated with
rigid body motion removed as well in this case. Fig. 13 reports a
real-time simulation of a falling bunny on wooden stairs. We use
implicit penalty force to resolve the collision and self-collision.

Fig. 14. Dropping an Armadillo into cactus. We use deformation substruc-
turing [Barbič and Zhao 2011] method to build multi-level subspaces at the
cactus. Each local domain has a compact subspace of 𝑛𝑝 = 10 and 𝑛𝑞 = 6.

For geometric-complex models, the advantage of nonlinear re-
duction could be further amplified with the domain decomposition
method [Barbič and Zhao 2011; Wu et al. 2015; Yang et al. 2013] in-
stead of naiv̈ely increasing the global subspace size. To this end, we
also couple our DAE-based nonlinear reduction with deformation
substructuring [Barbič and Zhao 2011], which delivers more inter-
esting animations with DAE-enriched local details. Two examples

are reported in Figs. 1 and 14. The puffer ball is an ideal vehicle to
deliver the advantage of this generalization. It has 320 elastic strings
with the same geometry. Therefore, the network training (for both
DAE and neural Cubature) of one string can be re-used for all other
strings. Thanks to its simple and symmetric geometry, depth of DAE
can also be cut to 8. The cactus example shown in Fig. 14 is another
representative case: the tree-like structure of the cactus allows an
effective hierarchical deployment of nonlinear subspaces. Here, we
have 165 domains on the cactus, and each domain has a subspace
of 𝑛𝑝 = 10 and 𝑛𝑞 = 6. Lastly, the simulation time performance is
summarized in Tab. 2.

7 CONCLUSION AND LIMITATION
In this paper, we present a framework combining classic reduced
deformable simulation with deep learning empowered data-driven
approaches. We advance state-of-the-art reduction methods by plug-
ging a deep autoencoder into the simulation pipeline. While some
existing work has attempted this idea before, we are the first to ad-
dress the high-order differentiability of the deep neural net in order
to accurately project nonlinear dynamics of deformable solids into
the tangent space of the deformation manifold. This is made possible
by carefully re-engineering complex-step finite difference in the
context of deep learning and complementing CSFD with reverse
AD. With a CSFD-augmented BP and CSFD directional derivatives,
we can evaluate the high-order derivatives of a deep net only with
O(𝑛𝑞) network passes. Based on this, we also propose a neural Cu-
bature scheme that allows a more efficient Cubature sampling and
more accurate weighting. Without ignoring inertia forces induced
by the time-varying tangent projection, we are able to simulate
deformable objects with nonlinear model reduction in real time ro-
bustly. We believe CSFD-enabled differentiability paves the way to
an in-depth integration of deep neural network and physics-based
simulation, which could inspire many follow-up research efforts.
There are also several limitations of our framework. First, the

visual improvement of our nonlinear reductionmethod over existing
linear reduction method is not “wow”. After all, we are manipulating
a reduced simulation with only dozens of DOFs. We believe combing
neural network and other data-driven approaches used in graphics
could potentially improve this issue. For instance, if the further
deformation types are somehow known, we could use DAE to build
a more specific nonlinear subspace as in [Harmon and Zorin 2013].
Building hierarchical DAE is also a promising solution. It may be
possible to train a neural network to select multiple pre-trained

ACM Trans. Graph., Vol. 40, No. 4, Article 68. Publication date: August 2021.



68:14 • Shen et al

DAEs to locally expand the tangent space. Model reduction is a
powerful tool not only for deformable object simulation. To this
end, we will further investigate how to use nonlinear reduction
to improve other simulation problems like fluid, cloth, and sound
synthesis.

ACKNOWLEDGMENTS
We thank anonymous reviewers for their detailed and constructive
comments. Kun Zhou is partially supported by the National Key
Research & Development Program of China (2018YFB1004300), NSF
of China (No. 61890954). Yin Yang is partially supported by Na-
tional Science Foundation (NSF) under grants No. 2031002, 2011471
and 2016414, as well as Air Force Research Laboratory (AFRL) un-
der agreement number FA9453-18-0022. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. Chen-
fanfu Jiang is partially supported by NSF under grants No. 1943199,
1813624, and 2023780. Tianjia Shao is partially supported by NSF of
China (No. 61772462).

REFERENCES
Lars V Ahlfors. 1973. Complex Analysis. 1979.
Steven S An, Theodore Kim, and Doug L James. 2008. Optimizing cubature for efficient

integration of subspace deformations. ACM transactions on graphics (TOG) 27, 5
(2008), 1–10.

Johannes Ballé, Valero Laparra, and Eero P Simoncelli. 2016. End-to-end optimized
image compression. arXiv preprint arXiv:1611.01704 (2016).

Jernej Barbič, Marco da Silva, and Jovan Popović. 2009. Deformable object animation
using reduced optimal control. In ACM SIGGRAPH 2009 papers. 1–9.

Jernej Barbič, Funshing Sin, and Eitan Grinspun. 2012. Interactive editing of deformable
simulations. ACM Transactions on Graphics (TOG) 31, 4 (2012), 1–8.

Jernej Barbič and Yili Zhao. 2011. Real-time large-deformation substructuring. ACM
transactions on graphics (TOG) 30, 4 (2011), 1–8.

Jernej Barbič and Doug L James. 2005. Real-time subspace integration for St. Venant-
Kirchhoff deformable models. In ACM Trans. Graph. (TOG), Vol. 24. ACM, 982–990.

Atılım Günes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and JeffreyMark
Siskind. 2017. Automatic differentiation in machine learning: a survey. The Journal
of Machine Learning Research 18, 1 (2017), 5595–5637.

Hervé Bourlard and Yves Kamp. 1988. Auto-association by multilayer perceptrons and
singular value decomposition. Biological cybernetics 59, 4-5 (1988), 291–294.

Alain J Brizard. 2014. Introduction To Lagrangian Mechanics, An. World Scientific
Publishing Company.

H Martin Bücker, George Corliss, Paul Hovland, Uwe Naumann, and Boyana Norris.
2006. Automatic differentiation: applications, theory, and implementations. Vol. 50.
Springer Science & Business Media.

Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popović. 2002.
Interactive skeleton-driven dynamic deformations. In ACM Trans. Graph. (TOG),
Vol. 21. ACM, 586–593.

Min Gyu Choi and Hyeong-Seok Ko. 2005. Modal warping: Real-time simulation of
large rotational deformation and manipulation. IEEE Trans. on Visualization and
Computer Graphics 11, 1 (2005), 91–101.

Marco Fratarcangeli, Valentina Tibaldo, and Fabio Pellacini. 2016. Vivace: A practical
gauss-seidel method for stable soft body dynamics. ACM Transactions on Graphics
(TOG) 35, 6 (2016), 1–9.

Lawson Fulton, Vismay Modi, David Duvenaud, David IW Levin, and Alec Jacobson.
2019. Latent-space Dynamics for Reduced Deformable Simulation. In Computer
graphics forum, Vol. 38. Wiley Online Library, 379–391.

Benjamin Gilles, Guillaume Bousquet, Francois Faure, and Dinesh K Pai. 2011. Frame-
based elastic models. ACM Trans. Graph. (TOG) 30, 2 (2011), 15.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. 6.2. 2.3 softmax units for
multinoulli output distributions. Deep learning (2016), 180–184.

Gaël Guennebaud, Benoit Jacob, et al. 2010. Eigen. URl: http://eigen. tuxfamily. org
(2010).

Brian Guenter. 2007. Efficient symbolic differentiation for graphics applications. In
ACM SIGGRAPH 2007 papers. 108–es.

Amirhossein Habibian, Ties van Rozendaal, Jakub M Tomczak, and Taco S Cohen. 2019.
Video compression with rate-distortion autoencoders. In Proceedings of the IEEE
International Conference on Computer Vision. 7033–7042.

Fabian Hahn, Bernhard Thomaszewski, Stelian Coros, Robert W Sumner, Forrester Cole,
Mark Meyer, Tony DeRose, and Markus Gross. 2014. Subspace clothing simulation
using adaptive bases. ACM Transactions on Graphics (TOG) 33, 4 (2014), 1–9.

David Harmon and Denis Zorin. 2013. Subspace integration with local deformations.
ACM Transactions on Graphics (TOG) 32, 4 (2013), 1–10.

Kris K Hauser, Chen Shen, and James F O’Brien. 2003. Interactive Deformation Using
Modal Analysis with Constraints.. In Graphics Interface, Vol. 3. 16–17.

Florian Hecht, Yeon Jin Lee, Jonathan R Shewchuk, and James F O’Brien. 2012. Updated
sparse cholesky factors for corotational elastodynamics. ACM Trans. Graph. (TOG)
31, 5 (2012), 123.

Robert Hecht-Nielsen. 1992. Theory of the backpropagation neural network. In Neural
networks for perception. Elsevier, 65–93.

Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006. Reducing the dimensionality of
data with neural networks. science 313, 5786 (2006), 504–507.

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber, et al. 2001.
Gradient flow in recurrent nets: the difficulty of learning long-term dependencies.

Theodore Kim and John Delaney. 2013. Subspace fluid re-simulation. ACM Transactions
on Graphics (TOG) 32, 4 (2013), 1–9.

Theodore Kim and Doug L James. 2009. Skipping steps in deformable simulation with
online model reduction. In ACM Trans. Graph. (TOG), Vol. 28. ACM, 123.

Theodore Kim and Doug L James. 2012. Physics-based character skinning using mul-
tidomain subspace deformations. IEEE transactions on visualization and computer
graphics 18, 8 (2012), 1228–1240.

Dana A Knoll and David E Keyes. 2004. Jacobian-free Newton–Krylov methods: a
survey of approaches and applications. J. Comput. Phys. 193, 2 (2004), 357–397.

L’ubor Ladickỳ, SoHyeon Jeong, Barbara Solenthaler, Marc Pollefeys, and Markus Gross.
2015. Data-driven fluid simulations using regression forests. ACM Transactions on
Graphics (TOG) 34, 6 (2015), 1–9.

Lei Lan, Ran Luo, Marco Fratarcangeli, Weiwei Xu, HuaminWang, Xiaohu Guo, Junfeng
Yao, and Yin Yang. 2020. Medial Elastics: Efficient and Collision-Ready Deformation
via Medial Axis Transform. ACM Transactions on Graphics (TOG) 39, 3 (2020), 1–17.

Gregory Lantoine, Ryan P Russell, and Thierry Dargent. 2012. Using multicomplex
variables for automatic computation of high-order derivatives. ACM Transactions
on Mathematical Software (TOMS) 38, 3 (2012), 1–21.

Tiantian Liu, Adam W. Bargteil, James F. O’Brien, and Ladislav Kavan. 2013. Fast
Simulation of Mass-spring Systems. ACM Trans. Graph. (TOG) 32, 6 (2013), 214:1–
214:7.

Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-newton methods for
real-time simulation of hyperelastic materials. ACM Transactions on Graphics (TOG)
36, 3 (2017), 1–16.

Ran Luo,Weiwei Xu, Tianjia Shao, Hongyi Xu, and Yin Yang. 2019. Accelerated complex-
step finite difference for expedient deformable simulation. ACM Transactions on
Graphics (TOG) 38, 6 (2019), 1–16.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey.
2015. Adversarial autoencoders. arXiv preprint arXiv:1511.05644 (2015).

Sebastian Martin, Peter Kaufmann, Mario Botsch, Eitan Grinspun, and Markus Gross.
2010. Unified simulation of elastic rods, shells, and solids. In ACM Trans. Graph.
(TOG), Vol. 29. ACM, 39.

Joaquim RRA Martins, Peter Sturdza, and Juan J Alonso. 2003. The complex-step
derivative approximation. ACM Transactions on Mathematical Software (TOMS) 29,
3 (2003), 245–262.

Rajaditya Mukherjee, Xiaofeng Wu, and Huamin Wang. 2016. Incremental deformation
subspace reconstruction. In Computer Graphics Forum, Vol. 35. Wiley Online Library,
169–178.

Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus Gross. 2005.
Meshless deformations based on shape matching. In ACM Trans. Graph. (TOG),
Vol. 24. ACM, 471–478.

Przemyslaw Musialski, Christian Hafner, Florian Rist, Michael Birsak, Michael Wim-
mer, and Leif Kobbelt. 2016. Non-linear shape optimization using local subspace
projections. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1–13.

Vinod Nair and Geoffrey E Hinton. 2009. 3D object recognition with deep belief nets.
Advances in neural information processing systems 22 (2009), 1339–1347.

Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve restricted
boltzmann machines. In ICML.

HM Nasir. 2013. A new class of multicomplex algebra with applications. Mathematical
Sciences International Research Journal 2, 2 (2013), 163–168.

CUDA Nvidia. 2008. Cublas library. NVIDIA Corporation, Santa Clara, California 15, 27
(2008), 31.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. arXiv preprint
arXiv:1912.01703 (2019).

Alex Pentland and John Williams. 1989. Good vibrations: Modal dynamics for graphics
and animation. In Proceedings of the 16th annual conference on Computer graphics
and interactive techniques. 215–222.

ACM Trans. Graph., Vol. 40, No. 4, Article 68. Publication date: August 2021.



High-order Differentiable Autoencoder for Nonlinear Model Reduction • 68:15

Eric Pesheck, Nicolas Boivin, Christophe Pierre, and Steven W Shaw. 2001. Nonlin-
ear modal analysis of structural systems using multi-mode invariant manifolds.
Nonlinear Dynamics 25, 1-3 (2001), 183–205.

Salah Rifai, Grégoire Mesnil, Pascal Vincent, Xavier Muller, Yoshua Bengio, Yann
Dauphin, and Xavier Glorot. 2011a. Higher order contractive auto-encoder. In
Joint European conference on machine learning and knowledge discovery in databases.
Springer, 645–660.

Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. 2011b.
Contractive auto-encoders: Explicit invariance during feature extraction. In Icml.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. 2015.
Imagenet large scale visual recognition challenge. International journal of computer
vision 115, 3 (2015), 211–252.

Sangriyadi Setio, Herlien D Setio, and Louis Jezequel. 1992. Modal analysis of nonlinear
multi-degree-of-freedom structures. IJAEM 7, 2 (1992), 75–93.

Ahmed A Shabana. 2003. Dynamics of multibody systems. Cambridge university press.
Richard Socher, Jeffrey Pennington, Eric H Huang, Andrew Y Ng, and Christopher D

Manning. 2011. Semi-supervised recursive autoencoders for predicting sentiment
distributions. In Proceedings of the 2011 conference on empirical methods in natural
language processing. 151–161.

Rasmus Tamstorf, Toby Jones, and Stephen F McCormick. 2015. Smoothed aggregation
multigrid for cloth simulation. ACM Trans. Graph. (TOG) 34, 6 (2015), 245.

Matthew Tancik, Pratul P Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin
Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T Barron, and RenNg. 2020.
Fourier features let networks learn high frequency functions in low dimensional
domains. arXiv preprint arXiv:2006.10739 (2020).

Adrien Treuille, Andrew Lewis, and Zoran Popović. 2006. Model reduction for real-time
fluids. ACM Transactions on Graphics (TOG) 25, 3 (2006), 826–834.

Christoph Von-Tycowicz, Christian Schulz, Hans-Peter Seidel, and Klaus Hildebrandt.
2015. Real-time nonlinear shape interpolation. ACM Transactions on Graphics (TOG)
34, 3 (2015), 1–10.

Huamin Wang, James F O’Brien, and Ravi Ramamoorthi. 2011. Data-driven elastic
models for cloth: modeling and measurement. ACM transactions on graphics (TOG)
30, 4 (2011), 1–12.

Huamin Wang and Yin Yang. 2016. Descent methods for elastic body simulation on the
GPU. ACM Trans. Graph. (TOG) 35, 6 (2016), 212.

Yu Wang, Alec Jacobson, Jernej Barbič, and Ladislav Kavan. 2015. Linear subspace
design for real-time shape deformation. ACM Transactions on Graphics (TOG) 34, 4
(2015), 1–11.

Steffen Wiewel, Moritz Becher, and Nils Thuerey. 2019. Latent space physics: Towards
learning the temporal evolution of fluid flow. In Computer Graphics Forum, Vol. 38.
Wiley Online Library, 71–82.

Stephen Wolfram et al. 1999. The MATHEMATICA® book, version 4. Cambridge univer-
sity press.

Xiaofeng Wu, Rajaditya Mukherjee, and Huamin Wang. 2015. A unified approach for
subspace simulation of deformable bodies in multiple domains. ACM Transactions
on Graphics (TOG) 34, 6 (2015), 1–9.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu
Philip. 2020. A comprehensive survey on graph neural networks. IEEE Transactions
on Neural Networks and Learning Systems (2020).

Hongyi Xu and Jernej Barbič. 2016. Pose-space subspace dynamics. ACM Transactions
on Graphics (TOG) 35, 4 (2016), 1–14.

Hongyi Xu, Yijing Li, Yong Chen, and Jernej Barbič. 2015. Interactive material design
using model reduction. ACM Transactions on Graphics (TOG) 34, 2 (2015), 1–14.

Yin Yang, Dingzeyu Li, Weiwei Xu, Yuan Tian, and Changxi Zheng. 2015. Expediting
precomputation for reduced deformable simulation. ACM Trans. Graph. (TOG) 34, 6
(2015).

Yin Yang, Weiwei Xu, Xiaohu Guo, Kun Zhou, and Baining Guo. 2013. Boundary-aware
multidomain subspace deformation. IEEE transactions on visualization and computer
graphics 19, 10 (2013), 1633–1645.

Nianyin Zeng, Hong Zhang, Baoye Song, Weibo Liu, Yurong Li, and Abdullah M
Dobaie. 2018. Facial expression recognition via learning deep sparse autoencoders.
Neurocomputing 273 (2018), 643–649.

Jiayi Eris Zhang, Seungbae Bang, David I.W. Levin, and Alec Jacobson. 2020. Comple-
mentary Dynamics. ACM Transactions on Graphics (2020).

Yongning Zhu, Eftychios Sifakis, Joseph Teran, and Achi Brandt. 2010. An efficient
multigrid method for the simulation of high-resolution elastic solids. ACM Trans.
Graph. (TOG) 29, 2 (2010), 16.

Olgierd Cecil Zienkiewicz, Robert Leroy Taylor, Olgierd Cecil Zienkiewicz, and
Robert Lee Taylor. 1977. The finite element method. Vol. 36. McGraw-hill Lon-
don.

A DERIVATIVES OF NONLINEAR ACTIVATION
In this appendix, we give the analytic formula for first- and second-
order derivative of the activation function sin(·) used in our net.

The first derivative of sin(·) under (first-order) CSFD is:
sin(𝑎 + 𝑏𝑖1) = sinh(𝑎) cos(𝑏) + cosh(𝑎) sinh(𝑏)𝑖1 .

The second-order CSFD perturbation of sin(·) can be written as:
sin(𝑎 + 𝑏𝑖1 + 𝑐𝑖2 + 𝑑𝑖1𝑖2) = 𝑎′ + 𝑏 ′𝑖1 + 𝑐 ′𝑖2 + 𝑑 ′𝑖1𝑖2, where
𝑎′ = sin(𝑎) cosh(𝑏) cosh(𝑐) cos(𝑑) − cos(𝑎) sinh(𝑏) sinh(𝑐) sin(𝑑),
𝑏 ′ = sin(𝑎) cosh(𝑏) sinh(𝑐) sin(𝑑) + cos(𝑎) sinh(𝑏) cosh(𝑐) cos(𝑑),
𝑐 ′ = cos(𝑎) cosh(𝑏) sinh(𝑐) cos(𝑑) + sin(𝑎) sinh(𝑏) cosh(𝑐) sin(𝑑),
𝑑 ′ = cos(𝑎) cosh(𝑏) cosh(𝑐) sin(𝑑) − sin(𝑎) sinh(𝑏) sinh(𝑐) cos(𝑑).
Similarly, we write the third-order multicomplex perturbation of
sin(·) as:

sin(𝑎 + 𝑏𝑖1 + 𝑐𝑖2 + 𝑑𝑖1𝑖2 + 𝑒𝑖3 + 𝑓 𝑖1𝑖3 + 𝑔𝑖2𝑖3 + ℎ𝑖1𝑖2𝑖3) =
𝑎′ + 𝑏 ′𝑖1 + 𝑐 ′𝑖2 + 𝑑 ′𝑖1𝑖2 + 𝑒 ′𝑖3 + 𝑓 ′𝑖1𝑖3 + 𝑔′𝑖2𝑖3 + ℎ′𝑖1𝑖2𝑖3 .

The coefficient 𝑎′ of the real part is:
𝑎′ = sin(𝑎) cosh(𝑏) cosh(𝑐) cos(𝑑) cosh(𝑒) cos(𝑓 ) cos(𝑔) cosh(ℎ)

+ sin(𝑎) cosh(𝑏) cosh(𝑐) cos(𝑑) sinh(𝑒) sin(𝑓 ) sin(𝑔) sinh(ℎ)
+ sin(𝑎) cosh(𝑏) sinh(𝑐) sin(𝑑) cosh(𝑒) cos(𝑓 ) sin(𝑔) sinh(ℎ)
− sin(𝑎) cosh(𝑏) sinh(𝑐) sin(𝑑) sinh(𝑒) sin(𝑓 ) cos(𝑔) cosh(ℎ)
+ cos(𝑎) sinh(𝑏) cosh(𝑐) cos(𝑑) cosh(𝑒) cos(𝑓 ) sin(𝑔) sinh(ℎ)
− cos(𝑎) sinh(𝑏) cosh(𝑐) cos(𝑑) sinh(𝑒) sin(𝑓 ) cos(𝑔) cosh(ℎ)
− cos(𝑎) sinh(𝑏) sinh(𝑐) sin(𝑑) cosh(𝑒) cos(𝑓 ) cos(𝑔) cosh(ℎ)
− cos(𝑎) sinh(𝑏) sinh(𝑐) sin(𝑑) sinh(𝑒) sin(𝑓 ) sin(𝑔) sinh(ℎ)
− cos(𝑎) cosh(𝑏) sinh(𝑐) cos(𝑑) sinh(𝑒) cos(𝑓 ) sin(𝑔) cosh(ℎ)
+ cos(𝑎) cosh(𝑏) sinh(𝑐) cos(𝑑) cosh(𝑒) sin(𝑓 ) cos(𝑔) sinh(ℎ)
+ cos(𝑎) cosh(𝑏) cosh(𝑐) sin(𝑑) sinh(𝑒) cos(𝑓 ) cos(𝑔) sinh(ℎ)
+ cos(𝑎) cosh(𝑏) cosh(𝑐) sin(𝑑) cosh(𝑒) sin(𝑓 ) sin(𝑔) cosh(ℎ)
− sin(𝑎) sinh(𝑏) sinh(𝑐) cos(𝑑) sinh(𝑒) cos(𝑓 ) cos(𝑔) sinh(ℎ)
− sin(𝑎) sinh(𝑏) sinh(𝑐) cos(𝑑) cosh(𝑒) sin(𝑓 ) sin(𝑔) cosh(ℎ)
− sin(𝑎) sinh(𝑏) cosh(𝑐) sin(𝑑) sinh(𝑒) cos(𝑓 ) sin(𝑔) cosh(ℎ)
+ sin(𝑎) sinh(𝑏) cosh(𝑐) sin(𝑑) cosh(𝑒) sin(𝑓 ) cos(𝑔) sinh(ℎ).

(23)
The exact formulation of 𝑏 ′, 𝑐 ′, 𝑑 ′, 𝑒 ′, 𝑓 ′, 𝑔′, and ℎ′ can be found in
the supplementary document.

ACM Trans. Graph., Vol. 40, No. 4, Article 68. Publication date: August 2021.


	Abstract
	1 Introduction
	2 Related Work
	3 Linear and Nonlinear Model Reduction
	3.1 Linear Model Reduction
	3.2 Nonlinear Model Reduction
	3.3 A Quick Discussion
	3.4 PCA-orthogonal DAE Reduction
	3.5 Network Architecture
	3.6 The Simulation System

	4 High-order Differentiability via CSFD
	4.1 First- and High-order CSFD
	4.2 Differentiation under Tensor Contraction
	4.3 Right Contraction via Directional Derivative
	4.4 Left Contraction via Complex-step Backpropagation

	5 Neural Cubature Sampling and Weighting
	5.1 Cubature Selection with a GCN
	5.2 Weight Prediction

	6 Experimental Results
	6.1 Training Poses Generation
	6.2 Network Training
	6.3 Comparison I: Our Method vs. Linear Model Reduction
	6.4 Comparison II: Our Method vs. Latent Space Dynamics
	6.5 Comparison III: Neural Cubature vs. Classic Cubature
	6.6 Comparison IV: CSFD vs. Finite Difference
	6.7 Implementation Details
	6.8 Extensions and More Results

	7 Conclusion and Limitation
	Acknowledgments
	References
	A Derivatives of Nonlinear Activation

