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Abstract

Understanding the forces that drive the dynamics of adaptive evolution is a goal of

many subfields within evolutionary biology. The fitness landscape analogy has served as

a useful abstraction for addressing these topics across many systems, and recent

treatments have revealed how different environments can frame the particulars of

adaptive evolution by changing the topography of fitness landscapes. In this study, we

examine how the larger, ambient genotypic context in which the fitness landscape being

modeled is embedded affects fitness landscape topography and subsequent evolution.

Using simulations on empirical fitness landscapes, we discover that genotypic context,

defined by genetic variability in regions outside of the locus under study (in this case,

an essential bacterial enzyme target of antibiotics), influences the speed and direction of

evolution in several surprising ways. These findings have implications for how we study

the evolution of drug resistance in nature, and for presumptions about how biological

evolution might be expected to occur in genetically-modified organisms. More generally,

the findings speak to theory surrounding how “difference can beget difference” in
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adaptive evolution: that small genetic differences between organisms can greatly alter

the specifics of how evolution occurs, which can rapidly drive even slightly diverged

populations further apart.

Author summary

Technological advances enable scientists to engineer individual mutations at specific 1

sites within an organism’s genome with increasing ease. These breakthroughs have 2

provided scientists with tools to study how different engineered mutations affect the 3

function of a given gene or protein, yielding useful insight into genotype-phenotype 4

mapping and evolution. In this study, we use engineered strains of bacteria to show how 5

the dynamics (speed and direction) of evolution of drug resistance in an enzyme 6

depends on the species-type of that bacterial enzyme, and on the presence/absence of 7

mutations in other genes in the bacterial genome. These findings have broad 8

implications for public health, genetic engineering, and theories of speciation. In the 9

context of public health and biomedicine, our results suggest that future efforts in 10

managing antimicrobial resistance must consider genetic makeup of different pathogen 11

populations before predicting how resistance will occur, rather than assuming that the 12

same resistance pathways will appear in different pathogen populations. With regard to 13

broader theory in evolutionary biology, our results show how even small genetic 14

differences between organisms can alter how future evolution occurs, potentially causing 15

closely-related populations to quickly diverge. 16

Introduction 17

The fitness landscape analogy has undergone a subtle makeover in recent years, with 18

larger data sets and improved methods (laboratory and computational) greatly 19

increasing the scope of systems and questions that the analogy can be used to 20

responsibly address. For example, recent studies have examined how environments 21

change adaptive landscape topography [1, 2], employed methods to construct adaptive 22

landscapes in natural populations [3, 4], and conducted large scale examinations of 23

epistasis acting across fitness landscapes [5–10]. Other examinations have extracted new 24
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information out of empirical fitness landscapes, including how landscapes changes in 25

shape during adaptive evolution [11], how indirect pathways are traversed during 26

evolution [12], and how features of a landscape determine the speed of some adaptive 27

trajectories relative to others [13]. The theme across many of these recent 28

breakthroughs is a growth in our understanding of how various contexts can frame our 29

expectations for how evolution will occur, and render it challenging to predict [14–17]. 30

This is of particular importance in studies utilizing empirically determined fitness 31

landscapes to understand the evolution of drug resistance, where the hope is to one day 32

understand how the evolution of resistance occurs such that disease can be treated more 33

effectively [18–20] 34

Importantly, specific portions of the genome that are the object of study in model 35

systems (e.g., a single gene encoding a single protein) do not function in genetic 36

isolation in natural settings. Rather, findings affirming that mutations and loci 37

throughout the genome often interact (sometimes in a non-linear fashion) can now be 38

considered the norm in modern evolutionary genetics. Thus, it is very likely that 39

portions of the genome that are not the object of study (i.e., those defining the broader 40

“genotypic context” of the organism) can alter the portion of the empirical fitness 41

landscape under study. And insofar as genotypic context complicates 42

genotype-phenotype mapping in general, it may also play a role in crafting how 43

adaptive evolution occurs. We can quickly recapitulate this intrigue with a simple 44

question: if we engineer the same mutation into two different strains of an organism, 45

how would we expect the genetic differences between these organisms to influence 46

downstream evolution to a common stressor in each strain? 47

In this study, we directly examine empirical fitness landscapes constructed for the 48

study of antimicrobial resistance in dihydrofolate folate reductase (DHFR), an essential 49

bacterial enzyme. Specifically, we employ a data set whereby three orthologous 50

mutations associated with drug resistance were engineered (in all eight possible 51

combinations) into DHFRs from three species of bacteria (Escherichia coli, Listeria 52

grayi, and Chlamydia muridarum). In addition, each of these alleles were then 53

engineered into background bacterial strains containing three different protein quality 54

control (PQC) profiles: wild type, GroEL chaperonins overexpression (GroEL+), and 55

Lon protease knockout (∆lon) [21]. This amounts to nine different genotypic contexts 56
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for the eight possible genotypes for these three DHFR loci associated with drug 57

resistance. IC50 values were measured for the drug Trimethoprim (an anti-folate drug 58

that targets DHFR) resulting in nine distinct empirical fitness landscapes. Using 59

inferred growth rates based on the laboratory-derived IC50 values (see Materials and 60

methods), we simulate evolution across all landscapes, identifying which paths are 61

preferred in each landscape, measuring how many generations are required for the 62

terminal genotype to become dominant (Td) and calculating the within-path 63

competition (Cw), a metric that has been shown to govern the speed of evolution across 64

a trajectory [13] under standard assumptions of replicator dynamics [22]. Our findings 65

are striking beyond the basic observation that genotypic context frames adaptive 66

evolution. We show that the speed of adaptation differs drastically between contexts, 67

and in a pattern that defies our intuition. For example, in modeling the evolution of 68

resistance to Trimethoprim, we find that off-target mutations influence the landscape as 69

much or more than those within the actual drug target. We discuss these findings with 70

regard to how they speak to our efforts at modeling drug resistance, and more generally, 71

how they affect our understanding of which forces craft how populations diverge. 72

Materials and methods 73

Empirical Fitness Landscapes 74

We utilized data that were previously generated to determine the biophysical 75

components of a fitness landscape for resistance [21]. From it, we utilized IC50 values 76

for the antibiotic Trimethoprim, for the eight genotypes with or without each of three 77

mutant alleles (L28R, A26T, and P21L) in the DHFR gene, in three species of bacteria 78

(E. coli, L. grayi, C. muridarum), each with three PQC profiles (wild type, GroEL+, or 79

∆lon) [21]. Although the number of replicate measurements for each genotype varied 80

from two to six, for consistency we averaged only the first two replicates for each 81

genotype, and report these values in Tables 1,2,3. We then inferred bacterial growth 82

rates at high dosages of Trimethoprim from these IC50 values, as follows. We first 83

verified that IC50 values are strongly correlated with growth rates at very high drug 84

dosage by regressing published growth rates [2, 13] for 16 genotypes of P. falciparum 85
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DHFRexposedtohigh(105µM)dosagesofPyrimethamineandCycloguanilagainst 86

theirpublishedIC50values[23,24]andobservedaverystrongcorrelation 87

(R2>0.99,p<1035). Wethenusedtheresultingregressionequationtoinferrelative 88

growthratesat105µMofTrimethoprimfromtheIC50averages,asshowninTables 89

1,2,3.Eachoftheseninesetsofeightinferredgrowthrates(fortheeightgenotypesofa 90

givenspeciesinagivenPQCgeneticprofile)compriseafitnesslandscape,asillustrated 91

inFig.1.Notethatfouroftheseninesmallfitnesslandscapescontainsuboptimal 92

peaks,reflectingthehighlyepistaticinteractionsbetweenthethreemutations[21]. 93

Table1. E.colidata.MeasuredIC50values(inµg/ml)andinferredgrowthrates
(r)forE.coliexposedto105µMofTrimethoprim.

E.coli wildtype GroEL+ ∆lon
Genotype IC50 r IC50 r IC50 r

Wt 51.00 0.0212 46.85 0.0201 76.50 0.0273
L28R 1545.50 0.1740 788.50 0.1149 1000.00 0.1331
A26T 126.50 0.0372 29.50 0.0151 47.80 0.0204
A26T,L28R 1440.50 0.1667 861.00 0.1213 1866.50 0.1955
P21L 260.00 0.0580 206.50 0.0503 328.50 0.0670
P21L,L28R 1541.00 0.1737 644.50 0.1015 1348.50 0.1600
P21L,A26T 713.00 0.1080 952.50 0.1291 742.50 0.1107
P21L,A26T,L28R 1021.50 0.1348 1327.62 0.1585 2176.50 0.2150

Table2. L.grayidata.MeasuredIC50values(inµg/ml)andinferredgrowthrates
(r)forL.grayiexposedto105µMofTrimethoprim.NAmeansthedatawerenot
available.

L.grayi wildtype GroEL+ ∆lon
Genotype IC50 r IC50 r IC50 r

Wt 10.35 0.0079 29.80 0.0152 45.50 0.0198
L28R 15.75 0.0103 149.00 0.0411 126.50 0.0372
A26T 5.59 0.0054 20.30 0.0120 36.50 0.0173
A26T,L28R 61.00 0.0237 188.50 0.0475 204.00 0.0499
P21L 41.84 0.0188 108.00 0.0337 96.35 0.0314
P21L,L28R 31.73 0.0158 38.10 0.0177 189.00 0.0476
P21L,A26T 13.62 0.0094 71.90 0.0262 NA NA
P21L,A26T,L28R 10.50 0.0080 111.50 0.0344 29.00 0.0150

Simulation Model 94

Wesimulatedevolutiononthe9empiricalfitnesslandscapesdescribedaboveusing 95

DARPS(DiscreteAsexuallyReproducingPopulationSimulator).DARPSwas 96

specificallydesignedtoflexiblyandefficientlysimulateasexualreproductionand 97

evolutionoflargepopulationsofmicrobesoncomplexlandscapes.Duringeachdiscrete 98
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Table3. C. muridarumdata.MeasuredIC50values(inµg/ml)andinferred
growthrates(r)forC.muridarumexposedto105µMofTrimethoprim.

C.miridarum wildtype GroEL+ ∆lon
Genotype IC50 r IC50 r IC50 r

Wt 3.15 0.0038 5.29 0.0052 9.28 0.0074
L28R 43.69 0.0193 118.50 0.0357 127.00 0.0373
A26T 4.43 0.0047 13.29 0.0093 13.60 0.0094
A26T,L28R 29.45 0.0151 174.00 0.0452 116.50 0.0353
P21L 2.15 0.0030 4.83 0.0050 4.40 0.0047
P21L,L28R 8.30 0.0069 21.25 0.0124 33.20 0.0163
P21L,A26T 2.43 0.0032 8.50 0.0070 11.65 0.0085
P21L,A26T,L28R 9.85 0.0077 19.75 0.0118 143.50 0.0402

Fig1.Fitnesslandscapes.Empiricalfitnesslandscapesforthethreespecies(rows)
withthreegeneticbackgrounds(columns)exposedto105µMofTrimethoprim.Nodes
representthegenotypesindicatedintheupperleftdiagram,whereedgesconnect
single-mutationalneighbors.Nodediametersandshadingareproportionaltothe
logarithmofthegrowthratesshowninTables1-3(nogrowthrateswereavailablefor
thesquarenodelabeledNA).Simulations(e.g.,asshowninFig.2)startingfromthe
wildtype(WT,circledingreen)followthe1-3steptrajectoriesshownbythethickblue
edges;eachedgeislabeledwiththewithin-pathcompetition(Cw)forthatstepandthe
Cwfortheentiretrajectoryisshownaboveeachlandscape.Eachtrajectoryterminates
ateithertheoptimalgenotype(i.e.,thatwiththemaximumgrowthrate,circledinred)
orasuboptimalpeak(circledincyan).

timestep,thenumberofindividualsofeachgenotypegrowsexponentiallyaccordingto 99

itsgrowthratewithstochasticsinglelocusmutation,andthentheentirepopulationis 100

reducedtothecarryingcapacitybyfrequencyproportionateselection. Wenotethatthe 101

classic Wright-Fishermodel[25,26]isaconstantpopulationsizeabstractionofthe 102

processimplementeddirectlyinDARPS.DARPSisdescribedinmoredetailin[13]and 103

opensourcecodeisavailableat[27]. 104

Forthesimulationresultsreportedhere,mutationrateswereassumedtobe 105

approximately1×1010perlocusperreplication.InourDARPSmodel,the 106

probabilityofmutationPm referstoonemutationinanyofthe3locibeingstudiedper 107

replication,soweusedPm =3×10
10.Bacterialpopulationcarryingcapacitywasset 108

toK=1010.Eachsimulationwasinitializedwithawildtypepopulationatcarrying 109

capacity,andallowedtorunforupto105timesteps,orfor1000timestepsafterTd(the 110

timestepinwhichthegenotypewiththefastestgrowthratebecamedominant), 111

whichevercamefirst. Wethenanalyzedtracesoftheevolutionarydynamicsto 112

determine(i)whichterminalgenotypethepopulationconvergedon,(ii)what 113

evolutionarytrajectorywasfollowedfromthewildtypetotheterminalgenotype,(iii) 114
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when the terminal genotype dominated over 50% of the population (Td), and (iv) when 115

the terminal genotype became “fixed” (Tf ), which we defined to be when it exceeded 116

99% of the population (due to ongoing mutational events, the terminal genotype will 117

never comprise 100% of the population). We ran 1000 stochastic replicates of each 118

simulation on the nine fitness landscapes. 119

Within-path competition 120

We quantified the amount of within-path competition (Cw) along the evolutionary 121

trajectory followed in each of the simulations using the equation derived in [13], as 122

follows: 123

Cw =
m∑
i=1

1

ri+1 − ri
(1)

where ri represents the growth rate of genotype i along a trajectory comprising m steps 124

from the genotype 1 (the wild type) to genotype m+ 1 (the terminal genotype). 125

Results 126

The topographies of all nine unique fitness landscapes are illustrated in terms of relative 127

growth rates in Fig. 1, where the global peaks (fastest bacterial growth rates) are 128

outlined in red and suboptimal peaks are outlined in cyan. Simulations of evolution on 129

these DHFR landscapes demonstrate large differences in both the direction and speed of 130

adaptive evolution, depending on the larger genotypic context. Although prior work on 131

DHFR landscapes for the malaria parasite revealed that the “greediest” paths are not 132

always those preferred by evolution [13], in these simulations we found that the 133

greediest paths (shown by the thick blue trajectories in Fig. 1) were followed in all of 134

the 1000 stochastic evolutionary simulations on each of these nine small landscapes. 135

One representative simulation for each landscape is shown in Fig. 2. Below, we point 136

out several notable findings in these results. 137
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Fig 2. Simulation results. Representative evolutionary simulations on the nine
empirical fitness landscapes for the three species (rows) with three genetic backgrounds
(columns), starting from the wild type (WT). The vertical grey dashed line indicates the
timestep at which the terminal genotype exceeded 50% of the population (Td) and the
rightmost timestep shown is when it exceeded 99% of the population (Tf ). The legend in
panel A applies to all panels. Note that the x-axes are scaled differently for each panel,
and that y-axes are logarithmically scaled so that low-frequency genotypes are visible.

Simulations of evolution demonstrate large differences in the 138

direction of adaptive evolution across the nine fitness 139

landscapes. 140

Effect of PQC genotypic context on direction in E. coli landscapes. 141

Within the E. coli landscapes (Figs. 1-2, top row, left to right), we observe that 142

landscape topography changes across PQC backgrounds. In the wild type (WT) and the 143

GroEL+ backgrounds, the population rapidly becomes fixed at the L28R optimal peak, 144

which is only one mutational step from the initial (WT) genotype. In contrast, in the 145

∆lon PQC deletion background, the location of the optimal peak has shifted to 146

P21L:A26T:L28R and evolution follows the 147

WT→L28R→A26T:L28R→P21L:A26T:L28R pathway. 148

Effect of PQC genotypic context on direction in L. grayi landscapes. 149

An intriguing pattern emerges in the L. grayi landscapes (Figs. 1-2, middle row, left to 150

right). While all three PQC environments (WT, GroEL+ and ∆lon) have the same 151

optimal peak at P21L:A26T:L28R, only the GroEL+ and ∆lon deletion landscapes 152

reach this optimum, following the WT→L28R→A26T:L28R→P21L:A26T:L28R 153

pathway. In the L. grayi/WT-PQC landscape, evolution instead takes the greedier step 154

to the suboptimal peak of P21L, which becomes fixed. That is, despite the fact that all 155

of the evolution is occurring on the same DHFR species backbone (L. grayi), the 156

presence of the WT-PQC genomic background changes the topography, conferring a 157

much different evolutionary outcome than the GroEL+ or ∆lon genomic backgrounds. 158

Also note, that the two L. grayi/GroEL+-PQC and L. grayi/∆lon-PQC landscapes 159

have different suboptimal peaks (P21L for GroEL+; P21:L28R for ∆lon), which may 160

not affect the preferred direction of evolution in these simulations, but might lead to 161
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different evolutionary outcomes under different conditions (environment, population 162

genetic settings, etc.). 163

Effect of PQC genotypic context on direction in C. muridarum landscapes. 164

In C. muridarum landscapes (Figs. 1-2, bottom row, left to right), the topography 165

changes rather dramatically, with all three PQC landscapes having different optimal 166

peaks. For the C. muridarum/WT-PQC landscapes, evolution proceeds along the 167

single-step path to the optimal peak at L28R genotype. In the C. muridarum/∆lon 168

landscape the population also becomes fixed on the L28R genotype, but in this case this 169

is a suboptimal peak that prevents evolution from reaching the optimal peak at 170

P21L:A26T:L28R. In contrast, in C. muridarum/GroEL+ the population follows a 171

two-step path to the optimal peak of A26T:L28R. 172

Effect of species-background on the direction of evolution. 173

Just as the PQC genotypic context impacts the direction of evolution within each 174

species (rows of Figs. 1-2), so does the species genotypic context impact the direction of 175

evolution for each PQC profile (columns of Figs. 1-2). Note how the locations of the 176

global peaks, the existence and location of suboptimal peaks, and the trajectories 177

followed change across the landscapes as you look top to bottom within each column of 178

Fig. 1. 179

Simulations of evolution demonstrate differences in the speed of 180

adaptive evolution across the 9 fitness landscapes. 181

We illustrate the average number of simulated timesteps it took for the terminal 182

genotype to become dominant in the population (Td) in Fig. 3, due to the topographic 183

differences if the landscapes shown in Fig. 1. Note that evolution to the terminal 184

genotype is universally slower in the L. grayi DHFR background than the other two 185

species backgrounds, but that the relative evolutionary speeds in E. coli and C. 186

muridarum depend on the PQC genotypic context. 187

188

It is also important to note how the overall growth rates of the genotypes in a 189
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Fig 3. Speed of evolution. The number of timesteps required for the terminal
genotype to exceed 50% of the population (Td) varies greatly for different PQC
genotypics contexts and different species.

landscape do not govern the speed of evolution across a landscape. For example, 190

although the E. coli growth rates are much higher than those of L. grayi and C. 191

muridarum across all PQC backgrounds (Fig. 1 and Table 1), evolution does not always 192

proceed fastest along these landscapes (Fig. 3). This is an important reminder that the 193

speed of evolution is not a function of the fitness of individual genotypes, but is largely 194

governed by the differences in fitnesses of adjacent genotypes in an evolutionary 195

trajectory [13], as quantified by the within-path competition (Cw) shown in Eq. (1). 196

For example, in these simulations Td is shown be a slightly sublinear function of Cw 197

(Fig. 4, R2 > 0.99, p ≈ 0). Despite the stochastic nature of these simulations, Td can be 198

seen to be very consistent across the 1000 repetitions of each simulation of these very 199

large populations (Fig. 4) . The competition values along each individual step of the 200

trajectories followed are shown in blue in Fig. 1, with the total Cw for each trajectory 201

shown above each landscape in Fig. 1. 202

Fig 4. Within-Path competition governs evolutionary speed. The amount of
within-path competition (Cw) governs the number of timesteps required for the terminal
genotype to exceed 50% of the population (Td).The asterisks represent observations
from 1000 simulations on each of the 9 fitness landscapes, and the best-fit curve was
determined by regressing log(Td) vs. log(Cw).

203

Discussion 204

Genotypic context alters fitness landscape topography. 205

In this study, we have identified that genotypic context alters fitness landscape 206

topography for antibiotic resistance, which in turn influences 3 aspects of evolutionary 207

dynamics: (i) the distribution of optimal and suboptimal peaks on a fitness landscape, 208

(ii) the “preferred” direction of adaptive evolution and (iii) the speed at which said 209

evolution occurs. 210
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Species differences in protein backbone alters the speed and 211

direction of evolution. 212

Evolutionary simulations on these landscapes illustrate how evolution occurs differently 213

across species. With regard to the evolution of drug resistance, these findings indicate 214

that even subtle differences in the amino acid sequence for otherwise conserved enzymes 215

can have a powerful effect on how evolution occurs (both speed and direction). This 216

implies that we cannot assume that even closely related microbial pathogens will evolve 217

resistance to drugs using the same evolutionary trajectory, as the fitness landscape 218

underlying resistance may be different. This might be complicating news for the 219

burgeoning field of resistance management: instead of being able to adopt a 220

one-size-fits-all approach to managing resistance, we may have to engineer our 221

managements to very specific genotypic contexts. 222

Differences in protein quality control alter the speed and 223

direction of evolution. 224

Two thirds of the landscapes with PQC modifications had longer evolutionary 225

trajectories than in the wild type, and in L. grayi they even had different initial 226

directions. This supports the idea that global protein quality control regulation may 227

have prescribed ways of altering the landscape, maybe related to the way they influence 228

the lifetime and performance of enzymes in a cell [21,28]. In this setting, mutations may 229

alter resistance patterns not because they affect the way a drug binds but because they 230

affect the interaction between a protein effector and the PQC machinery. This would 231

suggest a mechanism for how resistance in microbes can be so biochemically and 232

biophysically diverse, even in well-characterized systems like DHFR and antifolates: an 233

enzyme might avoid the effects of a drug through altering its interaction with other 234

genes maybe even in lieu of altering the binding of a antibiotic drug. 235

General note on the speed of evolution. 236

The speed of evolution from the wild type genotype to the terminal genotype in 237

evolutionary simulations is shown to vary greatly across different genotypic contexts, 238

and in a manner that is not related to the absolute fitnesses of the nodes in the 239
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respective landscapes. More broadly, this study affirms the relationship between 240

within-path competition (Cw, defined by Eq. (1)) and the speed of evolution 241

(determined via simulation) [13]. As a general observation, studies that examine the 242

speed of evolution have been all but ignored in the study of empirical fitness landscapes, 243

although it has recently been demonstrated to be an important property of evolutionary 244

dynamics [13]. In particular, discussions that invoke empirical fitness landscapes in 245

discussing how one might better prevent or manage drug resistance in plant and animal 246

infectious disease should be especially mindful of the speed of evolution: True resistance 247

management should not only consider which pathways evolution will traverse towards 248

maximal resistance, but how fast certain pathways might occur relative to others. 249

Our findings highlight that, like the “preferred” direction of evolution, the speed of 250

evolution should be considered in any study that examines how and why fitness 251

landscape topography determines evolutionary outcomes. 252

Conclusions 253

In closing, we have revealed how an under-appreciated determinant of the topography of 254

an adaptive landscape – the larger genotypic context outside the specific target genes 255

being studied – influences the speed and direction of adaptive evolution using empirical 256

data and computer simulations. The findings of this study have broad implications for 257

public health, technology, and theory regarding speciation and evolvability. In the 258

context of public health and biomedicine, our results imply that even subtle genetic 259

differences between microbial populations can be sufficient to drive different 260

evolutionary outcomes, both in terms of the predicted speed and direction of evolution. 261

This suggests that future efforts at “resistance management” need to consider very 262

specific genomic and genetic details about the population being managed before 263

rigorous and effective management strategies are engineered. 264

In addition, our results highlight how particular “off target” mutations (in our study, 265

PQC modifications) can have powerful influences on evolutionary outcomes. 266

Consequently, genomic screens for “resistance mutations” should focus on potential 267

signals across the genome, rather than a singular focus on genes that are the 268

presumptive target of therapy. Our results illustrate that there are multiple ways to 269
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subvert the effects of a drug, sometimes involving genes and gene networks that are not 270

intuitively (or biophysically) linked to the phenotype of interest (in this case, protein 271

quality control genes having no specific connection to DHFR activity). Similarly, our 272

results underscore the potential perils of engineering mutations associated with a given 273

phenotype into different genomic backgrounds, as in CRISPR-mediated genetic 274

engineering. In such scenarios, differences in genomic background of strains in which a 275

given SNP is being engineered can not only influence the effect of the mutation being 276

introduced, but also, the downstream evolution of different populations. 277

Lastly, our results speak to the notion that small genetic differences between 278

populations may be sufficient to induce larger downstream divergence, eventually 279

leading to speciation. Specifically, our study is consistent with the expectation that 280

reproductive isolation arises rapidly in rugged fitness landscapes (e.g., in a 281

Bateson-Dobzhansky-Muller framework [29], or holey landscape [30]). By examining 282

genetic differences at various scales (single nucleotide polymorphisms in target 283

resistance genes, species-specific differences in genetic background, and changes to 284

off-target genes), we demonstrate how “difference can beget difference” in Darwinian 285

evolution, affecting both the degree and rate of divergence. 286
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