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Abstract

Understanding the forces that drive the dynamics of adaptive evolution is a goal of
many subfields within evolutionary biology. The fitness landscape analogy has served as
a useful abstraction for addressing these topics across many systems, and recent
treatments have revealed how different environments can frame the particulars of
adaptive evolution by changing the topography of fitness landscapes. In this study, we
examine how the larger, ambient genotypic context in which the fitness landscape being
modeled is embedded affects fitness landscape topography and subsequent evolution.
Using simulations on empirical fitness landscapes, we discover that genotypic context,
defined by genetic variability in regions outside of the locus under study (in this case,
an essential bacterial enzyme target of antibiotics), influences the speed and direction of
evolution in several surprising ways. These findings have implications for how we study
the evolution of drug resistance in nature, and for presumptions about how biological
evolution might be expected to occur in genetically-modified organisms. More generally,

the findings speak to theory surrounding how “difference can beget difference” in
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adaptive evolution: that small genetic differences between organisms can greatly alter
the specifics of how evolution occurs, which can rapidly drive even slightly diverged

populations further apart.

Author summary

Technological advances enable scientists to engineer individual mutations at specific
sites within an organism’s genome with increasing ease. These breakthroughs have
provided scientists with tools to study how different engineered mutations affect the
function of a given gene or protein, yielding useful insight into genotype-phenotype
mapping and evolution. In this study, we use engineered strains of bacteria to show how
the dynamics (speed and direction) of evolution of drug resistance in an enzyme
depends on the species-type of that bacterial enzyme, and on the presence/absence of
mutations in other genes in the bacterial genome. These findings have broad
implications for public health, genetic engineering, and theories of speciation. In the
context of public health and biomedicine, our results suggest that future efforts in
managing antimicrobial resistance must consider genetic makeup of different pathogen
populations before predicting how resistance will occur, rather than assuming that the
same resistance pathways will appear in different pathogen populations. With regard to
broader theory in evolutionary biology, our results show how even small genetic
differences between organisms can alter how future evolution occurs, potentially causing

closely-related populations to quickly diverge.

Introduction

The fitness landscape analogy has undergone a subtle makeover in recent years, with
larger data sets and improved methods (laboratory and computational) greatly
increasing the scope of systems and questions that the analogy can be used to
responsibly address. For example, recent studies have examined how environments
change adaptive landscape topography [1,2], employed methods to construct adaptive
landscapes in natural populations [3,4], and conducted large scale examinations of

epistasis acting across fitness landscapes [5-10]. Other examinations have extracted new
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information out of empirical fitness landscapes, including how landscapes changes in
shape during adaptive evolution [11], how indirect pathways are traversed during
evolution [12], and how features of a landscape determine the speed of some adaptive
trajectories relative to others [13]. The theme across many of these recent
breakthroughs is a growth in our understanding of how various contexts can frame our
expectations for how evolution will occur, and render it challenging to predict [14-17].
This is of particular importance in studies utilizing empirically determined fitness
landscapes to understand the evolution of drug resistance, where the hope is to one day
understand how the evolution of resistance occurs such that disease can be treated more
effectively [18-20]

Importantly, specific portions of the genome that are the object of study in model
systems (e.g., a single gene encoding a single protein) do not function in genetic
isolation in natural settings. Rather, findings affirming that mutations and loci
throughout the genome often interact (sometimes in a non-linear fashion) can now be
considered the norm in modern evolutionary genetics. Thus, it is very likely that
portions of the genome that are not the object of study (i.e., those defining the broader
“genotypic context” of the organism) can alter the portion of the empirical fitness
landscape under study. And insofar as genotypic context complicates
genotype-phenotype mapping in general, it may also play a role in crafting how
adaptive evolution occurs. We can quickly recapitulate this intrigue with a simple
question: if we engineer the same mutation into two different strains of an organism,
how would we expect the genetic differences between these organisms to influence
downstream evolution to a common stressor in each strain?

In this study, we directly examine empirical fitness landscapes constructed for the
study of antimicrobial resistance in dihydrofolate folate reductase (DHFR), an essential
bacterial enzyme. Specifically, we employ a data set whereby three orthologous
mutations associated with drug resistance were engineered (in all eight possible
combinations) into DHFRs from three species of bacteria (Escherichia coli, Listeria
grayi, and Chlamydia muridarum). In addition, each of these alleles were then
engineered into background bacterial strains containing three different protein quality
control (PQC) profiles: wild type, GroEL chaperonins overexpression (GroEL+), and

Lon protease knockout (Alon) [21]. This amounts to nine different genotypic contexts
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for the eight possible genotypes for these three DHFR loci associated with drug
resistance. IC5g values were measured for the drug Trimethoprim (an anti-folate drug
that targets DHFR) resulting in nine distinct empirical fitness landscapes. Using
inferred growth rates based on the laboratory-derived ICjo values (see Materials and
methods), we simulate evolution across all landscapes, identifying which paths are
preferred in each landscape, measuring how many generations are required for the
terminal genotype to become dominant (7;) and calculating the within-path
competition (C,,), a metric that has been shown to govern the speed of evolution across
a trajectory [13] under standard assumptions of replicator dynamics [22]. Our findings
are striking beyond the basic observation that genotypic context frames adaptive
evolution. We show that the speed of adaptation differs drastically between contexts,
and in a pattern that defies our intuition. For example, in modeling the evolution of
resistance to Trimethoprim, we find that off-target mutations influence the landscape as
much or more than those within the actual drug target. We discuss these findings with
regard to how they speak to our efforts at modeling drug resistance, and more generally,

how they affect our understanding of which forces craft how populations diverge.

Materials and methods

Empirical Fitness Landscapes

We utilized data that were previously generated to determine the biophysical
components of a fitness landscape for resistance [21]. From it, we utilized IC5o values
for the antibiotic Trimethoprim, for the eight genotypes with or without each of three
mutant alleles (L28R, A26T, and P21L) in the DHFR gene, in three species of bacteria
(E. coli, L. grayi, C. muridarum), each with three PQC profiles (wild type, GroEL+, or
Alon) [21]. Although the number of replicate measurements for each genotype varied
from two to six, for consistency we averaged only the first two replicates for each
genotype, and report these values in Tables 1,2,3. We then inferred bacterial growth
rates at high dosages of Trimethoprim from these ICyg values, as follows. We first
verified that ICsg values are strongly correlated with growth rates at very high drug

dosage by regressing published growth rates [2,13] for 16 genotypes of P. falciparum
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DHFR exposed to high (10°uM) dosages of Pyrimethamine and Cycloguanil against
their published IC5g values [23,24] and observed a very strong correlation

(R? > 0.99,p < 10 3°). We then used the resulting regression equation to infer relative
growth rates at 10°uM of Trimethoprim from the ICso averages, as shown in Tables
1,2,3. Each of these nine sets of eight inferred growth rates (for the eight genotypes of a
given species in a given PQC genetic profile) comprise a fitness landscape, as illustrated
in Fig. 1. Note that four of these nine small fitness landscapes contain suboptimal

peaks, reflecting the highly epistatic interactions between the three mutations [21].

Table 1. E. coli data. Measured IC5p values (in ug/ml) and inferred growth rates
() for E. eoli exposed to 10°uM of Trimethoprim.

E. coli wild type GroEL+ Alon
Genotype ICsq T ICs5 T ICs5o T
Wt 51.00 | 0.0212 46.85 | 0.0201 76.50 | 0.0273
L28R 1545.50 | 0.1740 788.50 | 0.1149 | 1000.00 | 0.1331
A26T 126.50 | 0.0372 29.50 | 0.0151 47.80 | 0.0204
A26T,L28R 1440.50 | 0.1667 861.00 | 0.1213 | 1866.50 | 0.1955
P21L 260.00 | 0.0580 206.50 | 0.0503 328.50 | 0.0670
P21L,L28R 1541.00 | 0.1737 644.50 | 0.1015 | 1348.50 | 0.1600
P21L,A26T 713.00 | 0.1080 952.50 | 0.1291 742.50 | 0.1107
P21L,A26T,L28R | 1021.50 | 0.1348 | 1327.62 | 0.1585 | 2176.50 | 0.2150

Table 2. L. grayi data. Measured ICsp values (in pg/ml) and inferred growth rates
() for L. grayi exposed to 105uM of Trimethoprim. NA means the data were not
available.

L. grayi wild type GroEL+ Alon
Genotype ICsq T ICso T ICs5 T
"Wt 10.35 | 0.0079 29.80 | 0.0152 45.50 | 0.0198
L28R 15.75 | 0.0103 | 149.00 | 0.0411 | 126.50 | 0.0372
A26T 5.59 | 0.0054 20.30 | 0.0120 36.50 | 0.0173
A26T,L28R 61.00 | 0.0237 | 188.50 | 0.0475 | 204.00 | 0.0499
P21L 41.84 | 0.0188 | 108.00 | 0.0337 96.35 | 0.0314
P21L,L28R 31.73 | 0.0158 38.10 | 0.0177 | 189.00 | 0.0476
P21L,A26T 13.62 | 0.0094 71.90 | 0.0262 NA NA
P21L,A26T,L28R | 10.50 | 0.0080 | 111.50 | 0.0344 29.00 | 0.0150

Simulation Model

We simulated evolution on the 9 empirical fitness landscapes described above using
DARPS (Discrete Asexually Reproducing Population Simulator). DARPS was
specifically designed to flexibly and efficiently simulate asexual reproduction and

evolution of large populations of microbes on complex landscapes. During each discrete
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Table 3. C. muridarum data. Measured ICsg values (in pg/ml) and inferred
growth rates (r) for C. muridarum exposed to 10°uM of Trimethoprim.

C. miridarum wild type GroEL+ Alon
Genotype ICy, T ICy, T ICy, T
TWt 3.15 | 0.0038 | 529 | 0.0052 | 9.28 | 0.0074 |
L28R 43.69 | 0.0193 | 118.50 | 0.0357 | 127.00 | 0.0373
A26T 443 | 0.0047 | 13.29 | 0.0093 | 13.60 | 0.0094
A26T L28R 20.45 | 0.0151 | 174.00 | 0.0452 | 116.50 | 0.0353
P21l 2.15 | 0.0030 | 4.83 | 0.0050 | 4.40 | 0.0047
P21L L28R 8.30 | 0.0060 | 21.25 | 0.0124 | 33.20 | 0.0163
P21L,A26T 2.43 | 0.0032 | 8.50 | 0.0070 | 11.65 | 0.0085
P21L,A26T,L28R | 9.85 | 0.0077 | 19.75 | 0.0118 | 143.50 | 0.0402

Fig 1. Fitness landscapes. Empirical fitness landscapes for the three species (rows)
with three genetic backgrounds (columns) exposed to 10°uM of Trimethoprim. Nodes
represent the genotypes indicated in the upper left diagram, where edges connect
single-mutational neighbors. Node diameters and shading are proportional to the
logarithm of the growth rates shown in Tables 1-3 (no growth rates were available for
the square node labeled NA). Simulations (e.g., as shown in Fig. 2) starting from the
wild type (WT, circled in green) follow the 1-3 step trajectories shown by the thick blue
edges; each edge is labeled with the within-path competition (C,) for that step and the
Cy, for the entire trajectory is shown above each landscape. Each trajectory terminates
at either the optimal genotype (i.e., that with the maximum growth rate, circled in red)
or a suboptimal peak (circled in cyan).

timestep, the number of individuals of each genotype grows exponentially according to
its growth rate with stochastic single locus mutation, and then the entire population is
reduced to the carrying capacity by frequency proportionate selection. We note that the
classic Wright-Fisher model [25,26] is a constant population size abstraction of the
process implemented directly in DARPS. DARPS is described in more detail in [13] and
open source code is available at [27].

For the simulation results reported here, mutation rates were assumed to be

0 !9 per locus per replication. In our DARPS model, the

approximately 1 x 1
probability of mutation P, refers to one mutation in any of the 3 loci being studied per
replication, so we used P, = 3 x 10 °. Bacterial population carrying capacity was set
to K = 1019, Each simulation was initialized with a wild type population at carrying
capacity, and allowed to run for up to 10° timesteps, or for 1000 timesteps after Ty (the
timestep in which the genotype with the fastest growth rate became dominant),
whichever came first. We then analyzed traces of the evolutionary dynamics to

determine (i) which terminal genotype the population converged on, (ii) what

evolutionary trajectory was followed from the wild type to the terminal genotype, (iii)
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when the terminal genotype dominated over 50% of the population (T,), and (iv) when
the terminal genotype became “fixed” (T), which we defined to be when it exceeded
99% of the population (due to ongoing mutational events, the terminal genotype will
never comprise 100% of the population). We ran 1000 stochastic replicates of each

simulation on the nine fitness landscapes.

Within-path competition

We quantified the amount of within-path competition (C,,) along the evolutionary
trajectory followed in each of the simulations using the equation derived in [13], as

follows:
i 1
Co=) —— (1)

where r; represents the growth rate of genotype ¢ along a trajectory comprising m steps

from the genotype 1 (the wild type) to genotype m + 1 (the terminal genotype).

Results

The topographies of all nine unique fitness landscapes are illustrated in terms of relative
growth rates in Fig. 1, where the global peaks (fastest bacterial growth rates) are
outlined in red and suboptimal peaks are outlined in cyan. Simulations of evolution on
these DHFR landscapes demonstrate large differences in both the direction and speed of
adaptive evolution, depending on the larger genotypic context. Although prior work on
DHFR landscapes for the malaria parasite revealed that the “greediest” paths are not
always those preferred by evolution [13], in these simulations we found that the
greediest paths (shown by the thick blue trajectories in Fig. 1) were followed in all of
the 1000 stochastic evolutionary simulations on each of these nine small landscapes.
One representative simulation for each landscape is shown in Fig. 2. Below, we point

out several notable findings in these results.
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Fig 2. Simulation results. Representative evolutionary simulations on the nine

empirical fitness landscapes for the three species (rows) with three genetic backgrounds
(columns), starting from the wild type (WT). The vertical grey dashed line indicates the
timestep at which the terminal genotype exceeded 50% of the population (7;) and the
rightmost timestep shown is when it exceeded 99% of the population (7). The legend in
panel A applies to all panels. Note that the x-axes are scaled differently for each panel,
and that y-axes are logarithmically scaled so that low-frequency genotypes are visible.

Simulations of evolution demonstrate large differences in the
direction of adaptive evolution across the nine fitness

landscapes.
Effect of PQC genotypic context on direction in E. coli landscapes.

Within the E. coli landscapes (Figs. 1-2, top row, left to right), we observe that
landscape topography changes across PQC backgrounds. In the wild type (WT) and the
GroEL+ backgrounds, the population rapidly becomes fixed at the L28R optimal peak,
which is only one mutational step from the initial (WT) genotype. In contrast, in the
Alon PQC deletion background, the location of the optimal peak has shifted to
P21L:A26T:L28R and evolution follows the
WT—L28R—A26T:L28R—P21L:A26T:L28R pathway.

Effect of PQC genotypic context on direction in L. grayi landscapes.

An intriguing pattern emerges in the L. grayi landscapes (Figs. 1-2, middle row, left to
right). While all three PQC environments (WT, GroEL+ and Alon) have the same
optimal peak at P211L:A26T:L28R, only the GroEL+ and Alon deletion landscapes
reach this optimum, following the WT—L28R—A26T:L28R—P211.:A26T:L.28R
pathway. In the L. grayi/WT-PQC landscape, evolution instead takes the greedier step
to the suboptimal peak of P21L, which becomes fixed. That is, despite the fact that all
of the evolution is occurring on the same DHFR species backbone (L. grayi), the
presence of the WT-PQC genomic background changes the topography, conferring a
much different evolutionary outcome than the GroEL+ or Alon genomic backgrounds.
Also note, that the two L. grayi/GroEL+-PQC and L. grayi/ Alon-PQC landscapes
have different suboptimal peaks (P21L for GroEL+; P21:L28R for Alon), which may

not affect the preferred direction of evolution in these simulations, but might lead to
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different evolutionary outcomes under different conditions (environment, population

genetic settings, etc.).

Effect of PQC genotypic context on direction in C. muridarum landscapes.

In C. muridarum landscapes (Figs. 1-2, bottom row, left to right), the topography
changes rather dramatically, with all three PQC landscapes having different optimal
peaks. For the C. muridarum/WT-PQC landscapes, evolution proceeds along the
single-step path to the optimal peak at L28R genotype. In the C. muridarum/Alon
landscape the population also becomes fixed on the L28R genotype, but in this case this
is a suboptimal peak that prevents evolution from reaching the optimal peak at
P21L:A26T:L28R. In contrast, in C. muridarum/GroEL+ the population follows a
two-step path to the optimal peak of A26T:L28R.

Effect of species-background on the direction of evolution.

Just as the PQC genotypic context impacts the direction of evolution within each
species (rows of Figs. 1-2), so does the species genotypic context impact the direction of
evolution for each PQC profile (columns of Figs. 1-2). Note how the locations of the
global peaks, the existence and location of suboptimal peaks, and the trajectories
followed change across the landscapes as you look top to bottom within each column of

Fig. 1.

Simulations of evolution demonstrate differences in the speed of

adaptive evolution across the 9 fitness landscapes.

We illustrate the average number of simulated timesteps it took for the terminal
genotype to become dominant in the population (7,) in Fig. 3, due to the topographic
differences if the landscapes shown in Fig. 1. Note that evolution to the terminal
genotype is universally slower in the L. grayt DHFR background than the other two
species backgrounds, but that the relative evolutionary speeds in F. coli and C.

muridarum depend on the PQC genotypic context.

It is also important to note how the overall growth rates of the genotypes in a
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Fig 3. Speed of evolution. The number of timesteps required for the terminal
genotype to exceed 50% of the population (7)) varies greatly for different PQC
genotypics contexts and different species.

landscape do not govern the speed of evolution across a landscape. For example,
although the E. coli growth rates are much higher than those of L. grayi and C.
muridarum across all PQC backgrounds (Fig. 1 and Table 1), evolution does not always
proceed fastest along these landscapes (Fig. 3). This is an important reminder that the
speed of evolution is not a function of the fitness of individual genotypes, but is largely
governed by the differences in fitnesses of adjacent genotypes in an evolutionary
trajectory [13], as quantified by the within-path competition (Cy,) shown in Eq. (1).
For example, in these simulations Ty is shown be a slightly sublinear function of Cw
(Fig. 4, R? > 0.99,p ~ 0). Despite the stochastic nature of these simulations, T; can be
seen to be very consistent across the 1000 repetitions of each simulation of these very
large populations (Fig. 4) . The competition values along each individual step of the
trajectories followed are shown in blue in Fig. 1, with the total C,, for each trajectory

shown above each landscape in Fig. 1.

Fig 4. Within-Path competition governs evolutionary speed. The amount of
within-path competition (C,,) governs the number of timesteps required for the terminal
genotype to exceed 50% of the population (7;).The asterisks represent observations
from 1000 simulations on each of the 9 fitness landscapes, and the best-fit curve was
determined by regressing log(Ty) vs. log(Cy).

Discussion

Genotypic context alters fitness landscape topography.

In this study, we have identified that genotypic context alters fitness landscape
topography for antibiotic resistance, which in turn influences 3 aspects of evolutionary
dynamics: (i) the distribution of optimal and suboptimal peaks on a fitness landscape,
(ii) the “preferred” direction of adaptive evolution and (iii) the speed at which said

evolution occurs.
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Species differences in protein backbone alters the speed and

direction of evolution.

Evolutionary simulations on these landscapes illustrate how evolution occurs differently
across species. With regard to the evolution of drug resistance, these findings indicate
that even subtle differences in the amino acid sequence for otherwise conserved enzymes
can have a powerful effect on how evolution occurs (both speed and direction). This
implies that we cannot assume that even closely related microbial pathogens will evolve
resistance to drugs using the same evolutionary trajectory, as the fitness landscape
underlying resistance may be different. This might be complicating news for the
burgeoning field of resistance management: instead of being able to adopt a
one-size-fits-all approach to managing resistance, we may have to engineer our

managements to very specific genotypic contexts.

Differences in protein quality control alter the speed and

direction of evolution.

Two thirds of the landscapes with PQC modifications had longer evolutionary
trajectories than in the wild type, and in L. grayi they even had different initial
directions. This supports the idea that global protein quality control regulation may
have prescribed ways of altering the landscape, maybe related to the way they influence
the lifetime and performance of enzymes in a cell [21,28]. In this setting, mutations may
alter resistance patterns not because they affect the way a drug binds but because they
affect the interaction between a protein effector and the PQC machinery. This would
suggest a mechanism for how resistance in microbes can be so biochemically and
biophysically diverse, even in well-characterized systems like DHFR and antifolates: an
enzyme might avoid the effects of a drug through altering its interaction with other

genes maybe even in lieu of altering the binding of a antibiotic drug.

General note on the speed of evolution.

The speed of evolution from the wild type genotype to the terminal genotype in
evolutionary simulations is shown to vary greatly across different genotypic contexts,

and in a manner that is not related to the absolute fitnesses of the nodes in the
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respective landscapes. More broadly, this study affirms the relationship between
within-path competition (C,,, defined by Eq. (1)) and the speed of evolution
(determined via simulation) [13]. As a general observation, studies that examine the
speed of evolution have been all but ignored in the study of empirical fitness landscapes,
although it has recently been demonstrated to be an important property of evolutionary
dynamics [13]. In particular, discussions that invoke empirical fitness landscapes in
discussing how one might better prevent or manage drug resistance in plant and animal
infectious disease should be especially mindful of the speed of evolution: True resistance
management should not only consider which pathways evolution will traverse towards
maximal resistance, but how fast certain pathways might occur relative to others.

Our findings highlight that, like the “preferred” direction of evolution, the speed of
evolution should be considered in any study that examines how and why fitness

landscape topography determines evolutionary outcomes.

Conclusions

In closing, we have revealed how an under-appreciated determinant of the topography of
an adaptive landscape — the larger genotypic context outside the specific target genes
being studied — influences the speed and direction of adaptive evolution using empirical
data and computer simulations. The findings of this study have broad implications for
public health, technology, and theory regarding speciation and evolvability. In the
context of public health and biomedicine, our results imply that even subtle genetic

differences between microbial populations can be sufficient to drive different

evolutionary outcomes, both in terms of the predicted speed and direction of evolution.

This suggests that future efforts at “resistance management” need to consider very
specific genomic and genetic details about the population being managed before
rigorous and effective management strategies are engineered.

In addition, our results highlight how particular “off target” mutations (in our study,
PQC modifications) can have powerful influences on evolutionary outcomes.
Consequently, genomic screens for “resistance mutations” should focus on potential
signals across the genome, rather than a singular focus on genes that are the

presumptive target of therapy. Our results illustrate that there are multiple ways to
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subvert the effects of a drug, sometimes involving genes and gene networks that are not
intuitively (or biophysically) linked to the phenotype of interest (in this case, protein
quality control genes having no specific connection to DHFR activity). Similarly, our
results underscore the potential perils of engineering mutations associated with a given
phenotype into different genomic backgrounds, as in CRISPR-mediated genetic
engineering. In such scenarios, differences in genomic background of strains in which a
given SNP is being engineered can not only influence the effect of the mutation being
introduced, but also, the downstream evolution of different populations.

Lastly, our results speak to the notion that small genetic differences between
populations may be sufficient to induce larger downstream divergence, eventually
leading to speciation. Specifically, our study is consistent with the expectation that
reproductive isolation arises rapidly in rugged fitness landscapes (e.g., in a
Bateson-Dobzhansky-Muller framework [29], or holey landscape [30]). By examining
genetic differences at various scales (single nucleotide polymorphisms in target
resistance genes, species-specific differences in genetic background, and changes to
off-target genes), we demonstrate how “difference can beget difference” in Darwinian

evolution, affecting both the degree and rate of divergence.
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