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Fig. 1. Our unified constitutive model can simulate both Newtonian and non-Newtonian viscous liquids. (Left) Liquid rope c

2n 120

oiling with Newtonian viscosity

(top), and asymmetric buckling for non-Newtonian shaving cream (bottom). (Middle) Symmetric buckling with Newtonian chocolate (top), and buckling with
shear-thickening for non-Newtonian cream (bottom). (Right) Object interaction with Newtonian ketchup bunnies (top), and 3D printing of shapes (bottom).

We assume that the viscous forces in any liquid are simultaneously local and
non-local, and introduce the extended POM-POM model [McLeish and Larson
1998; Oishi et al. 2012; Verbeeten et al. 2001] to computer graphics to de-
sign a unified constitutive model for viscosity that generalizes prior models,
such as Oldroyd-B, the Upper-convected Maxwell (UCM) model [Sadeghy
et al. 2005], and classical Newtonian viscosity under one umbrella, recov-
ering each of them with different parameter values. Implicit discretization
of our model via backward Euler recovers the variational Stokes solver
of [Larionov et al. 2017] for Newtonian viscosity. For greater accuracy,
however, we introduce the second-order accurate Generalized Single Step
Single Solve (GS4) scheme [Tamma et al. 2000; Zhou and Tamma 2004] to
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computer graphics, which recovers all prior second-order accurate time
integration schemes to date. Using GS4 and our generalized constitutive
model, we present a Material Point Method (MPM) for simulating various
viscoelastic liquid behaviors, such as classical liquid rope coiling, buckling,
folding, and shear thinning/thickening. In addition, we show how to couple
our viscoelastic liquid simulator with the recently introduced non-Fourier
heat diffusion solver [Xue et al. 2020] for simulating problems with phase
change, such as melting chocolate and digital fabrication with 3D print-
ing. While the discretization of heat diffusion is slightly different within
GS4, we show that it can still be efficiently solved using an assembly-free
Multigrid-preconditioned Conjugate Gradients solver. We present end-to-
end 3D simulations to demonstrate the versatility of our framework.
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Fig. 2. Our unified constitutive model can generate the classical liquid rope coiling effect (top) for Newtonian viscosity [Larionov et al. 2017], and also

asymmetric coiling and elastic effects for non-Newtonian liquids (middle and bottom) such as Oldroyd-B [Ram et al. 2015] and Pom-Pom [Bishko et al. 1997].
A columnar structure is first generated by high-frequency coiling, which collapses at a certain point and the process repeats - showcasing secondary coiling.

The average At during simulations for each case is At = 10™°s

1 INTRODUCTION

Viscous behaviors are exhibited by a wide range of everyday materi-
als [Krishnan et al. 2010], such as oil, honey, mud, molasses, manu-
facturing materials such as melting polymer in 3D printers [Tymrak
et al. 2014], many foods and additives [Ding et al. 2019], and bodily
fluids (e.g., blood) [Miiller et al. 2004]. Thus, there is a strong demand
for formulating a generalized constitutive model that can capture
various viscous behaviors, such as shear thinning/thickening, and de-
veloping tools that can reproduce these behaviors for animation and
visual effects, such as spilling honey and melting/solidifying poly-
mer. Proper constitutive modeling for viscosity requires accurate
quantification of the relationship between material elongation and
shear stresses. Classical Newtonian models [Batchelor and Batche-
lor 2000] undergo strain rates that are linearly proportional to the
applied shear stress. In contrast, non-Newtonian models [Larson
1999] do not follow this restriction and have more variants.

In this paper, we revisit the relationship between shear stress
and strain from the viewpoint of non-local modeling [Eringen 1992;
Sobolev 2014] and develop a generalized constitutive model for
viscosity with memory effects (i.e., temporal non-locality) that cap-
tures some of the most characteristic rheological fluid behaviors.
Our approach draws inspiration from the non-Fourier diffusion
model of [Xue et al. 2020], since we assume that the viscous forces
in any fluid are simultaneously local and non-local. We introduce
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the extended POM-POM model [McLeish and Larson 1998; Oishi
et al. 2012; Verbeeten et al. 2001] to computer graphics to formulate
the time scale of this (first order) non-local viscosity. The resulting
constitutive model for viscosity generalizes previous models, such
as Oldroyd-B [Oldroyd 1950], the Upper-convected Maxwell (UCM)
model [Sadeghy et al. 2005], and classical Newtonian viscosity.
Numerical discretization of viscosity is challenging because of
strongly non-linear terms present in both the viscous stress and its
coupling with other physics, such as rigid bodies [Aanjaneya et al.
2019; Takahashi and Batty 2020; Takahashi and Lin 2019], free sur-
face pressure [Larionov et al. 2017], or temperature [Goldade et al.
2019]. We first show that our method combined with a backward
Euler discretization on staggered MAC grids recovers the variational
Stokes solver in [Larionov et al. 2017] for Newtonian viscosity. For
greater accuracy, however, we introduce the unified, second order
accurate, time integration scheme Generalized Single Step Single
Solve (GS4) [Tamma et al. 2000; Zhou and Tamma 2004] to computer
graphics, which recovers all prior second order accurate time inte-
gration schemes to date, such as Crank-Nicholson, Newmark family,
generalized-a, etc., and has controllable numerical dissipation to
smooth high frequency numerical oscillations. We formulate an
implicit discretization with GS4 that requires a single linear solve
and is computationally equivalent to a first order backward Euler
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Time instants from left to right: t = {0.02708,0.03021, 0.03646, 0.06042,0.15104}s
Fig. 3. Our unified constitutive model for viscosity based on non-local modeling can simulate Newtonian and non-Newtonian viscous liquids with different

parameter values. A Newtonian cube (F, = 1) spreads on the floor when dropped (row 1), while non-Newtonian cubes (F, = 0.01) rebound due to
shear-thickening viscous forces. As the Weissenberg number W, decreases, the solid-like behavior of the viscous cube becomes more significant. Rows 2-4:
W, = {10,1,0.1}. The average At during simulation is 5 x 10™%s for each case with an impact speed 50m/s. Specific parameters are given in Table 4(rows 1-4).

discretization, while providing the benefits of second order accu-
racy. The primary unknowns in our implicit non-Newtonian system
include velocity, pressure, the local (Newtonian) portion in the total
viscous stress, and the additional non-local (non-Newtonian) por-
tion in the total viscous stress, which are fully coupled together.
This makes it challenging to design an effective preconditioner for
iterative Krylov solvers, such as preconditioned Conjugate Gradi-
ents. Thus, we also show how GS4 can be used to derive an explicit
discretization that is straightforward to parallelize, and is stable for
the high resolution 3D examples that we demonstrate in Section 7.
Furthermore, we show how GS4 and our unified constitutive model

can be integrated with the Material Point Method (MPM) to provide
a computational framework for simulating various viscous liquid
behaviors, such as classical liquid rope coiling, buckling, folding,
and shear thinning/thickening.

Finally, we show how our method can be coupled with heat
transfer to simulate viscoelastic materials undergoing phase change,
such as melting chocolate, or additive manufacturing of polymer
during 3D printing. For this purpose, we employ the non-Fourier
diffusion solver of [Xue et al. 2020], as its theoretical underpinnings
are also based on non-local modeling, similar to our present work.
Our numerical discretization is slightly different than [Xue et al.
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Fig. 4. Our method captures rich interactions and surface details as eight bunnies made of Newtonian ketchup are dropped one by one on top of each other.

The average At during simulation is 5 X 107%s with an impact speed of 30.7m/s.

2020], as it is derived within the framework of GS4, providing second
order accuracy in time (in contrast to [Xue et al. 2020] which is only
first order accurate in time). However, we show that our method
still leads to a Poisson-style elliptic system for the temperature
that can be efficiently solved using an assembly-free Multigrid-
preconditioned Conjugate Gradients solver.

To summarize, our main contributions are the following:

(1) introduction of non-local modeling for generalized rheology to
computer graphics and development of a unified constitutive
model for Newtonian and non-Newtonian viscous liquids,

(2) a unified numerical discretization for rheology that recovers

the variational Stokes solver of [Larionov et al. 2017] for

Newtonian viscosity, and a variety of non-Newtonian models,

such as the extended Pom-Pom model [McLeish and Larson

1998; Oishi et al. 2012, 2011; Verbeeten et al. 2001], Oldroyd-B,

and the Upper Convective Maxwell (UCM) model,

introduction of the unified second order accurate Generalized

Single Step Single Solve (GS4) [Tamma et al. 2000; Zhou and

Tamma 2004] time integration scheme to computer graphics,

and its use in implicit/explicit discretizations of our unified

constitutive model with the Material Point Method (MPM),

integration of our method with the non-Fourier diffusion
solver of [Xue et al. 2020] within the second-order GS4 frame-
work for coupled simulation of phase change problems, and

(5) end-to-end 3D simulations of classical liquid rope coiling,
buckling, droplet impact, shear thinning/thickening, and poly-
mer melting/solidification during 3D printing, demonstrating
the various characteristics of general viscoelastic liquids.

—
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2 RELATED WORK

Since the pioneering work of Terzopoulos and Fleischer [1988], the
simulation of rate-dependent physics has always attracted attention
from computer graphics researchers. Representative behaviors in-
clude viscosity, viscoelasticity, and viscoplasticity. Viscosity is most
frequently incorporated for fluids [Bridson 2015], but sometimes it
is also used as a damping model for solids to stablize elastic oscilla-
tions [Brown et al. 2018; O’brien and Hodgins 1999]. Efficient and
effective discretization schemes of Newtonian viscous fluids have
been explored with particles through Smoothed Particle Hydrody-
namics (SPH) [Band et al. 2018; Bender and Koschier 2017; Bender
et al. 2020; Peer et al. 2015; Takahashi et al. 2015; Weiler et al. 2018],
constrained dynamics [Barreiro et al. 2017] or the Material Point
Method (MPM) [Ram et al. 2015], finite difference methods [Batty
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and Bridson 2008; Goldade et al. 2019; Larionov et al. 2017], fi-
nite volume methods [Batty and Houston 2011], and Lagrangian
meshes [Batty et al. 2012; Bergou et al. 2010]. Fluids become non-
Newtonian when viscosity depends on strain rate, exhibiting either
shear thinning or shear thickening. Such complex fluids have been
simulated with grids [Goktekin et al. 2004], particles [Paiva et al.
2009; Yue et al. 2015] and meshes [Wojtan and Turk 2008; Zhu et al.
2015].

2.1 Phase Change Phenomena

Heat transport for simulating melting and solidification effects has
been popular in computer graphics since the early work of [Carlson
et al. 2002; Stora et al. 1999]. Since then, impressive animations have
been generated for thermoelastic solid-liquid phase change with
dynamically changing Lagrangian meshes [Clausen et al. 2013], par-
ticle methods [Iwasaki et al. 2010], and hybrid Lagrangian-Eulerian
schemes such as MPM [Ding et al. 2019; Gao et al. 2018; Stomakhin
et al. 2014]. All these prior works employ Fourier’s law, where the
heat flow depends linearly on the temperature gradient, and use the
coupling between heat transfer and material transport, where the
material properties change according to the temperature. In con-
trast, our work builds upon the generalized diffusion solver of [Xue
et al. 2020] and is coupled to the temperature, providing richer sim-
ulations for phase change phenomena, such as polymer melting and
solidification during additive manufacturing.

2.2 Comparison to Prior Art

Prior works on MPM simulations of viscous materials are based on
finite strain solid mechanics, using constitutive models that relate
the deformation strains to the viscous forces [Fang et al. 2019; Ram
et al. 2015; Yue et al. 2015]. An Oldroyd-B visco-plastic model was
proposed in [Ram et al. 2015] to simulate foams and sponges, while
a similar non-Newtonian Herschel-Bulkley fluid model was used to
formulate a visco-plastic model for dense foams in [Yue et al. 2015].
A finite strain integration scheme for general viscoelastic solids
and non-equilibrated flow was proposed for MPM in [Fang et al.
2019]. In general, these formulations rely on the discretization of the
upper-convected derivative of the right Cauchy Green strain [Bonet
and Wood 1997] and require considerable effort to integrate them
with existing MPM schemes that evolve the deformation gradient
tensor [Stomakhin et al. 2013]. The implementation of MPM for
multi-physics coupling problems, such as phase change [Stomakhin
et al. 2014] and baking [Ding et al. 2019], has also been investigated
in this finite stain framework. In contrast, our constitutive model
directly provides the expression of the Cauchy stress for viscosity
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Fig. 5. A non-Newtonian bunny bounces back instead of collapsing when dropped on the ground, displaying the shear-thickening effect of viscoelastic liquids.
The average At during simulation is 5 X 107’s for each case with an impact speed of 29m/s.

and alleviates the need for updating/evaluating the deformation gra-
dient tensor as well as the right Cauchy Green strain. Our GS4-MPM
discretization utilizes standard MPM for communicating material
information between particles and grids and for approximating gen-
eral differential operators, such as divergence and gradient, existing
both in the governing equations of motion and the diffusion model.
Thus, all coupled equations are discretized in a consistent manner.

3 OVERVIEW OF NON-LOCAL MODELING

In recent decades, there has been a significant upswing on the use
of non-local theories for the modeling of material behaviors [Shaat
et al. 2020; Srinivasa and Reddy 2017]. Such theories were of in-
terest since the earliest days of finite deformation continuum me-
chanics [Eringen 1992; Eringen and Edelen 1972; Kréner 1967], but
have not received much attention from the computer graphics com-
munity. In fact, some of the most attractive material behaviors,
which are of great interest to computer graphics, such as shear
thinning/thickening in viscous fluids, viscoelasticity in solid me-
chanics [Fang et al. 2019], and non-Fourier diffusion [Xue et al. 2020],
demonstrate non-local effects in both space and time, and they can
be recast within the unified framework of non-local theory, instead
of individually modeling each one of them (see Section 4). In general,
classical (local) models for a certain space-time physical field consist
of the first gradients of primary variables and its time derivatives.
For example, classical continuum mechanics relies on the first gra-
dient of displacement (deformation gradient) and time derivatives
of displacement (acceleration and velocity). In the context of non-
local theory, higher order spatial gradients (spatial non-locality) and
higher order time derivatives (temporal non-locality) are included to
describe the material behaviors at different scales of space and time,
including viscoelasticity, composite mixtures, and dislocations. See
Section 4.1 for an illustration of how the non-local theory unifies
the classical model with new models. In Table 1, we compare some
of the well-known constitutive models in continuum mechanics and
diffusion in terms of their non-locality.

Our motivation for choosing non-local modeling is that it pro-
vides us a wide range of design variables, specifically for viscous
behaviors in fluids. Our constitutive model for viscous fluids emanat-
ing from this concept is shown to recover the classical Newtonian
viscous model (local) and the 1st-order temporally non-local models,

Table 1. Comparison between existing models. NL: non-locality, ¢: pri-
mary state variables that refer to displacement and temperature in contin-
uum mechanics and diffusion; V¢: the first order spatial derivative of ¢
which drives the physics to evolve, such as the deformation gradient and
heat flux. GE: Green’s elasticity [Ogden 1997]; MVE: Maxwell viscoelas-
ticity [Fligge 2013]; NV: Newtonian viscosity [Batchelor and Batchelor
2000]; OB: Oldroyd-B viscosity [Oldroyd 1950] ; UCM: the Upper-convected
Maxwell model [Sadeghy et al. 2005]; F: classical Fourier diffusion [Fick
1855; Fourier 1878]; C: Cattaneo diffusion [Cattaneo 1948]; J: Jeffery’s diffu-
sion [Joseph and Preziosi 1989]; and C-F: C-F diffusion [Xue et al. 2020].

GE MVE NV OB UCM F C J C-F
othNLp v V V V V J / / V/
0thNLVYy v vV V V / S S/
IstNLy X X X v X X X vV V
ItNLV$ X X X v Vv X / /

including Oldroyd-B and UCM. Our methodology of non-local mod-
eling paves the way for achieving various kinds of viscous liquid
behaviors, while being straightforward to implement.

4 GOVERNING EQUATIONS

In this section, we first introduce the concept of non-local mod-
eling using diffusion as an example, and then derive our unified
constitutive model for thermo-viscosity using this formulation.

4.1 Unified Non-local Constitutive Model

Non-local modeling is known to be more general than the traditional
local theory [Eringen 1992; Tzou 2014], as described below.

4.1.1  Non-local Methodology. Let ¢(x, t) be a sufficiently smooth
scalar field depending only on the local space-time coordinates x
and ¢. By introducing the characteristic scales of length (A) and time
(), a non-local definition for ¢ can be given as ¢(x + A,t + 7). If
the position x can vary continuously, then the expression for ¢ can
be expanded using the Taylor series. For the sake of simplicity, we
show the Taylor expansion assuming both x and A are scalar:
p(x+At+71) = d(x t)+/1% L +/1282—¢ +/1r82—¢ 294

’ ’ ax ot ox? oxot atzl)
By doing this, non-locality can be classified into the following three
kinds:

ACM Trans. Graph., Vol. 40, No. 4, Article 119. Publication date: August 2021.
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Fig. 6. Our method captures symmetric buckling patterns of Newtonian chocolate (top) and buckling with shear thickening for non-Newtonian cream (bottom).
The average At during simulation is 10™*s for Newtonian chocolate and 10~°s for non-Newtonian cream.

(1) 0-th order non-locality: Only the 0-th order of A and 7 are

considered, providing the traditional local model. That is:
lim ¢(x+At+7)=¢(x,t)
AT—0

(2) 1-st order non-locality: The characteristic scale is the most
significant one to demonstrate non-locality. Thus, we only
focus on the following 1-st order non-local expression:

99

or

(3) higher order non-locality: The characteristic scale is the n-
th power of A, 7, where n is the non-local order. As n increases,
the characteristic scales become smaller, as A, 7 < 1, i.e.,

d(x+ A t+71) z¢(x,t)+/‘l%+f

A>A2 > o> A r>tfs.o>?

Non-locality in space plays a significant role when the characteristic
length scale A is roughly at the same (or smaller) scale as the atomic
mean free path length. Since our focus is on macroscopic simulations
for computer graphics applications, we ignore non-locality in space,
and only consider the following 1-st order non-locality in time:

P(x,t+7) = Pp(x,t) +T%(x, t) (2)

For spatial non-locality, one can refer to the diffusive Johnson-
Segalman model [Lu et al. 2000] for effects such as shear banding.
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4.2 lllustration of Non-Local Diffusion Modeling

To understand equation (2) and its implementation, we briefly show
the non-local modeling for diffusion proposed in [Tzou 2014]. Con-
sider the diffusion problem in its 0-th and 1-st order non-local forms:

DT
E+V~q(x,t+fq)=Q

q(x,t+19) = —kVT(x,t + 77)

®)

where k and Q represent the diffusive coefficient and external
source/sink, 74 and 71 represent the characteristic time scale with
respect to the heat flux q and temperature T. One can treat —kVT as
the total energy driven by the difference of temperature such that:

(1) 0-th order flux and temperature (rg = 77 = 0):
q(x,t) = =kVT(x,t)

This choice recovers classical Fourier diffusion [Fick 1855;
Fourier 1878], which is a local model in both space and time.
(2) 1-st order flux (rg # 0, 77 = 0):
aq(x,t
q(x.b) + m% = —kVT(x,1) (@)
Ignoring the non-locality in temperature (i.e., Ay = 0), gives
the Cattaneo diffusion model [Cattaneo 1948].
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(3) 1-st order flux and temperature (4 # 0, 77 # 0):

aq(x t) VT (x,t)

=k |VTGet) + o =

q(x,t) + 14 (5)
If we consider A # 0, 7 # 0, with simple mathematical manip-
ulations, one can derive Jeffery’s diffusion model [Joseph and

Preziosi 1989] and the C-F diffusion model [Xue et al. 2020].
4.3 Non-local Modeling for Viscosity

We now present how the non-local concept unifies the existing
viscous models for recovering both Newtonian flow (local model)
and non-Newtonian flow (non-local model), such as Oldroyd-B and
UCM. To the best of our knowledge, our derivations below are novel
and point out the ability of non-local modeling to unify different
constitutive models for viscosity. The total viscosity force emanates

from the shear deformation tensor D = (VuT + Vu) /2, where u
denotes the fluid velocity, and the temporally non-local viscous
shear stress o, can be expressed as follows:

O'U(xa L+ TO') = ZIJD(X, t+ TD)a (6)

where 75, 7p represent the characteristic time scales of shear stress
and shear stain, and y is the coefficient of viscosity. The following
three cases arise depending on the values of 7, and zp:

(1) 76 = 0 and 7p = 0 (local shear stress):
oy(x,t) = 2uD(x, t).
This choice recovers the standard Newtonian viscous stress.
(2) 76 # 0 and p = 0 (UCM):
This choice directly leads to the upper-convected Maxwell
(UCM) model [Sadeghy et al. 2005]. Note that for accom-

modating large deformations, the time derivative should be
replaced by the upper-convected time derivative. Specifically:

doy 1560 do
v _,Z7v

0 T
=—+u-Vo, - (Vu)' -0y -0y (Vu),
ot Dt ot u o= (Vu) v o (Vu) )
Do
TUD—tU + 0y =2uD(x, t).
(3) 7o # 0 and 7p # 0 (1-st order non-local shear stress):
Doy(x, 1) DD(x, 1)
22 b6y =2p [D(x, 1) + Ty ——— 8
ST Dt 0y =24 |D(x,t) +1p Di ®)

Equation (8) provides the definition for the Oldroyd-B viscous
model (see equation (59) in [Oldroyd 1950]), and it can also
be seen as a first-order expansion including elastic effects in
colloidal suspensions [Frohlich and Sack 1946]. By assuming
both local and 1-st order temporally non-local terms to exist
concurrently, o, = oL + oMV, 4 = yp + pnp, and p =
ULTs, Tg = T, equation (8) can be rewritten as follows:

ou(x,1) = oL (x,1) + oL (x, 1),

ag(x, t) = 2upD(x, t), 9)
e
Dt

Note that the time scale 7 is independent of the shear stress
oN L and equation (9) is a linear constitutive model [Fang

Do
af,\”‘(x, H+1 =2uN1D(x, t).

etal. 2019] that can only be used to describe the shear thinning
process, as shown in [Nagasawa et al. 2019].

4.4 Unified Constitutive Model for Viscosity

To further enhance the non-local viscous model in equation (8)
and its degenerated equation (9), we introduce a time scale tensor
TU(UN Ly following [Verbeeten et al. 2001], which is a function of

NL

the non-local viscous shear stress o,’* and which allows us to

investigate the nonlinear temporal non-locality, as shown below:

ok t)+ o (x, 1), oL(xt) = 2F,uD(x,1),

(10)
NL)D"D—t(xt) 2 (1 — Fy) uD(x, t),

oy(x,t) =

NL(x 1)+ 1y(0

where F, € [0, 1] is a user-controlled parameter to adjust the amount
of locality and non-locality in the total viscous shear stress o,. To
investigate the non-linear shear behavior, we introduce the polymer
material properties [McLeish and Larson 1998; Verbeeten et al. 2001],
and define the time scale tensor rv(alz}’ Ly as follows:

-1
7o = A {C%Oai,“ + F(oYH 4+ Go [ £(alH) 7| (ai“)*}

1 NLi-1 2 ( 1) 1 alse

—f(o =—1-=|+—[1-—=]],

Abf (75 As Al ApA? 3G2 (11)
Iy 2

A=y 1+ =2, A =Agge " AD p= 2

3Gy’ ’ 0
Iy = trace(o Ly Ije = trace(aNL ZI,VL),
where a < 0 is the anisotropy, A and Ay, Ags are the backbone tube
stretch and the relaxation times of backbone tube orientation and
stretch used in long-chain branched polymers [McLeish and Larson
1998], v is a user-defined parameter, v = 2/Q, where Q is the amount
of arms at the end of a backbone, and Gy is the plateau modulus.

4.4.1 Unification of viscous model. As shown in equation (11), the
tensor 7,(oYL) leads to a strongly non-linear formulation, and
tuning the various parameters leads to different viscous models:

(1) f(af,\”“) =1 and « = 0: Oldroyd-B model.
(2) Fy, =0, f(a{,\”“) =1and a = 0: UCM model.
(3) Fy = 1: classical Newtonian model.

4.4.2  Shear Thinning and Thickening. Despite unifying existing
viscosity models, to further quantify how the different parameters
affect non-Newtonian viscous behavior, we define a novel non-
dimensional and non-local Weissenberg number (W,), based on
the relaxation time A; as W, = )L , where As = Agse” v(A-1) The
traditional W, can be defined in various ways [Pakdel and McKinley
1996]. Our definition of W, allows to readily test the shear thinning
and thickening behaviors. A lower value of W, postpones the shear
thinning behavior, while the shear thickening behavior is obtained
when W, < 1(As > Ap) [Clemeur and Debbaut 2007] (see Figure 3).

4.5 Governing Equations for Unified Viscous Flow

We use the unified constitutive model for viscous shear stress defined
in equation (10) inside the Navier-Stokes equations as follows:
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<

-
b < o D

Fig. 7. (Top) The droplet impacting ground using co = 1 suffers from severe volume loss, while the case with ¢y = 10 shows good volume preservation. The A¢

for both cases are 2 x 107°s with an impact speed of 46m/s.

D D
D_€+pv.u:0, pD—l: =V. [_PI+UU(x3u)]+pb’

oo(x. 1) = ok (x,t) + oL (x, 1),

a{j(x, t) = 2F,uD(x, t),

Dol (x,1)
Dt

(12)

ol (x,t) + 7o =2(1 - Fy) uD(x, 1),

where p is the density, u is the velocity, o, is the viscous stress
tensor, p is the pressure, and b is the body force density.

4.6 Phase Change of Polymer Materials

As the role of additive manufacturing grows, demands for reliability
are likely to increase. During 3D printing, a polymer filament is
heated and deposited from a moving nozzle in a controlled fash-
ion, forming layers of a specific shape. To simulate this process,
we propose a novel formulation for themo-visco-elastic coupling
using our unified constitutive model for viscosity coupled with the
generalized diffusion model proposed in [Xue et al. 2020]:

D .
24V = p05(x - x5),
Du

ZT V. (= 13
Po =V (=pl + o) + pb, (13)

DT .
PCDy =-V.-q+V-(~pu+o-u)+u-b+pcTip;05(x - xs),

where §(x — x;) represents a delta function located at x5, Q is the
volume source modeling the 3D printer nozzle located at x5, and Tj,
is the temperature at x;. If the flow is assumed to be incompressible,
the conservation of mass and energy equations in equation (13) can
be simplified as follows:

Vous= Q5(x_xs),

DT . (14)
pcD_t =-V-q+u-b+pcTin;Q5(x — xs),

Since latent heat is an integral part of phase change [Voller and
Swaminathan 1991], we introduce the solidus temperature T, where
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the phase transition occurs, and index function I as shown below:

I =0 T>=Ty
1l =1 T<Tyn

Fluid,
Solid,

and define the Cauchy stress tensor as a linear combination:
o=(01-I)of+Isos, (15)

where o ¢ and s represent the deviatoric stresses in the fluid and
solid phases, respectively. For o, we utilize the neo-Hookean elastic
solid model o5 = G]_5/3B' — pl, where G is the shear modulus,
B=FF,B’ =B - 1/3trB, J = det(F), and F is the deformation
gradient tensor. For o f» We use our unified constitutive model for
viscosity coupled together with the C-F diffusion model recently
proposed by [Xue et al. 2020],

L NL L NL
q=q°+q 7, 09y =0, +t0, ",

qF = —kFyVT, ok = 2F,u(T)D,

DNt Do NL
T th +qNL =—k(1-Fp)VT, 1, D‘; + gg’L =2(1-F,) u(T)D,

where the specific upper-convected derivative is given in equa-
tion (7). Note, in particular, that we also use the upper-convected
derivative for the non-local heat flux ¢V7 to preserve the material-
invariant formulation [Christov 2009; Mustafa 2015]. The heat influ-
ence on materials is revealed by the temperature-dependent viscos-
ity coefficient value y(T). Our proposed themo-visco-elastic cou-
pling model allows a wide range of applications involving phase-
change phenomena. By tuning parameters Fy, Fr, and Is, one can
readily get:

(1) Newtonian and non-Newtonian viscous fluid behavior,

(2) Fourier and non-Fourier heat transfer

(3) various combinations of temperature-dependent viscous fluid
behaviors, and

(4) various combinations of phase change models.
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5 TIME DISCRETIZATION

In this section, we first derive a generalized viscous solver using a
backward Euler discretization, and show that it recovers the varia-
tional Stokes solver of [Larionov et al. 2017]. Next, for better accu-
racy, we introduce the GS4 time integration scheme [Tamma et al.
2000; Zhou and Tamma 2004] and use it to derive a second order
accurate time discretization for viscosity. Though the GS4 time inte-
grator has been implemented to various engineering problems, such
as thermal interface [Xue et al. 2018], heat transfer [Xue et al. 2016],
and multi-body dynamics [Shimada and Tamma 2012], to the best
of our knowledge, ours is the first work to use GS4 time integration
to develop a second-order accurate numerical discretization of our
unified constitutive model for viscous fluids.

5.1 Semi-implicit Backward Euler Scheme

We follow the splitting-scheme of [Stam 1999] to discretize equation
(12) on a Cartesian grid [Harlow and Welch 1965], i.e., we first
explicitly update the convection-related terms as shown below:

U, —u
*A—tn +u,- Vun =0,
oNL _ gNL (16)
* AT L +un~VanNL:(Vun)T~a],:]L+al,YL-(Vun),
followed by an implicit projection solve:
pl AtDT AtDT AtG] [ups Atb + pu,
—2F,D I 0 0 [|oL, | _ 0 (17)
-2(1 - F,)AtD 0 (to+ADT 0 | |oNE| T | 7,0NE
-GT 0 0 0 P 0

where I is the identity matrix, G is the gradient operator for pressure,
and D is the discrete deformation rate operator for the velocity (i.e.,
D(u)=1/2 (Vu + (Vu)T)), The negative transposes of G and D give
us the discrete vector and tensor divergence operators, respectively.
For fast numerical solutions using a Conjugate Gradients solver,
a positive-definite formulation of equation (17) is provided in the
appendix by applying the Schur-complement method. After solving
for Uﬁﬂ, crlryfl, and pp+1, Un+1 can be computed from equation (17).
Once we set F, = 1, equation (54) recovers the variational Stokes
solve in [Larionov et al. 2017] for Newtonian viscosity.

5.2 Second order Semi-implicit GS4 Time Integration

Next, we show the generalized viscous solve using the second order
accurate time integration scheme GS4 [Tamma et al. 2000; Zhou
and Tamma 2004]. In contrast to first order accurate Euler schemes,
the algorithmic time step f,4w; = (n + Wj)At is introduced in
equation (12), the divergence-free condition for the velocity u, and
all associated auxiliary equations. We follow the time-splitting on a
Cartesian MAC grid for updating the following unknowns :

Ait = Aty + Nitsw,  AGNE = AN + AGDNE

(18)

where A, and A[Tiv L are evaluated explicitly, while Aiy and
AGNL are evaluated implicitly. Specifically, we explicitly update
the convection and upper-convection terms as follows:

(1 + WiAgAiry) + up - Vuy, =0,

(eff,}’L + WIAGA(';S,}’L) +1an - VoL = (Vup)T - 6N 4+ 6L - (Vuy),

119:9

to compute A, and AN, Subsequently, we use these values to
compute the following quantities as shown below:

e = 1ip + Wi Ag A,

*NL . .
g, = O’,I:]L + WlAéAo’iVL,

iy = up + WiAgit, At + WoAs A, At,
&L = 2F, G, (19)
N = oL L WiV EAL + WoAsAGYE AL,

where Wi Ag, WAy, WoAs, A4, A5 are parameters defined in equation
(46). Next, we formulate the algorithmic projection step as follows:

p ({4* + W1A6Ai4**) +Vp-V. (&{; + r]WlAa];*)
-v. (&i"L + r,sz;,AdﬁLAt) =0

(&f + qwlAa{;*) = 2FuuD (ity + nWaAsAitsy AL) (20)
(&i\’L + vvaS;yAai‘{,LAt) +1o (&f’L + W1A6A6*N*L)

= 2(1 = Fy) D) (it + nWaAs Nitye At)

V - (it + nWalAsAitgnA) = 0

and our viscous solve is given by the following linear system:

PWiAgl nw;DT nWaAsAtDT G| [ Adtas
—2F,unWaAsAtD wil 0 of| Aok,
—2(1 = Fp) unWa As AtD 0 (gWaAsAL + T,WiAg)T 0| |A&NE
nWeAsAtGT 0 0 0 P
—pit, - DT &L - DT &NE
2uF,Dit, — &L
(21)

= i ~ +NL
2p(1 — F,)Digy — (af’L +10, )

-GTi,

where 7 is a user-defined parameter. Setting = 0 makes this step
explicit for Ait., AoL,, and AGNL. We transfer equation (21) to its
positive-definite form (see Appendix C), and after solving for the
unknowns Aaﬁ*, Adi\{kL, p, the increment in velocity Al can be
computed by equation (21), and the total increment by equation (18)
to update the state to time t"*! as follows:

Uny1 = Up + AU
Uni1 = Up + Agitny At + AsAUAt

< NL _ - NL - NL
nt1 = %n +Ao

(22)

oL = o+ QN EAL + 206N A

5.3 Second-order Partitioned and Explicit GS4 Scheme
Setting 1 = 0 in equation (21), the monolithic GS4 solve becomes:
pWiAeIAits + Gp = —pit, — DT 6L — DT 6N

*NL
*

(23)
ToWiAAGNE = 24(1 — Fy)Diity — (aﬁ:’L + 1

In order to formulate a Poisson equation for p, we take the diver-
gence of the update for u,41 in equation (22) as follows:

Glups1 = GT (uy + Mattn At + A5Aits At) +250tGT Aitgr = 0 (24)

Known Value
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Setting GTun41 = 0, taking the divergence of the first equation in
(23) and substituting GT Aty from equation (24) yields:

pWiAGT Aitys + GTGp = ~GT (p&* +DT5L 4 DT&iVL) (25)

and the Poisson equation for p in the GS4 framework is given by

WiA MWiAg — A
Wi GGTun+p( 4Wihe S)GTizn

AsAt As (26)

-6™p" (ak+ &M,

The structure of the above GS4-based Poisson equation is the same as
that of the pressure Poisson equation in incompressible flow (albeit
with a different right hand side), and can be readily incorporated
into existing solvers. For further simplicity, one can also use the

weakly compressible condition [Batchelor and Batchelor 2000] to
evaluate the pressure at t,,,1y,, which leads to a fully explicit scheme:

~ POC(Z) pp\Y
pp=— |7 -1
Y Po

where ¢ is the sound speed, py is the reference density, y = 7, and
pp is the density at particle locations. The pressure evaluation is
given in Appendix D. We use equation (57) to integrate with MPM
for fluid simulations (see Section 6), and Section 7 compares the
influence of ¢y on the volume loss of the droplet (see Figure 7).

G'Gp=

(27)

5.4 Boundary Conditions

We use the no-slip boundary condition (u = 0) to handle interac-
tions between the solid and the fluid, which can be readily imple-
mented with MPM [Fang et al. 2019]. The free surface boundary
condition for non-local viscous flow is given by:

n-o-nf =0 (28)

where 6 = —pI + o + oV denotes the total stress and n repre-

sents a unit vector that is normal and external to the surface. For
three-dimensional Cartesian coordinates, equation (28) leads to the
following boundary condition for the free surface pressure:

2 2
P = (0p)xxny + (O'D)yyny +2(00)xynxny
+ (G'U)xxn)zc + (U'U)zzn;z,; + Z(O'U)xznx”z (29)
+ (Uv)zzng + (Uv)yyni +2(0p)zynzny

where o, = oL + o)L, To implement the above in our GS4-based
Poisson system (equation (26)), we treat the free surface as a non-
zero Dirichlet boundary condition using the value in equation (29).
To integrate with MPM, the pressure on particles located at the free
surface can be directly evaluated using equation (29).

6 INTEGRATION WITH MPM

We now describe the integration of our GS4 discretization from
Section 5 with the Material Point Method (MPM) for simulating the
polymer melting/solidification process in equation (13). In contrast
to the traditional MPM with first-order Euler scheme, our method
uses the GS4 explicit scheme for the dynamics while the GS4 semi-
implicit solve (see Appendix B) is used for non-Fourier thermal
processes. To the best of our knowledge, our integration of GS4-
MPM is novel and has not been explored in prior work. We reserve
subscripts p, g, r for quantities stored on particles, and i, j, k for
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Table 2. Physical quantities stored on particles and grid nodes.

Particle Description Grid
Xp position xj
vp velocity v;
ap acceleration a;
Fy deformation gradient —
cr]l; local viscous stress —

G}; L non-local viscous stress olN L
oy solid stress —
Tp temperature T;
45 local diffusion flux q{.‘

qp L non-local diffusion flux qg\] L
— force fi
Vo volume -
mp mass m;
Jp volume change —
Pp pressure —_—

quantities stored on grid nodes. Table 2 summarizes the various
quantities stored on particles and grid nodes.

6.1 Algorithm Description
We now describe our method in detail. Figure 8 gives a high-level
overview. At the beginning of each time step, we evaluate algorith-

mic qualities J?P, {'P’ &p, f‘p, TP’ and (jg[ L as follows:

a, = az, bp = UZ + W1A4aZAt,
i‘p = xz + WlAleAt + WzAza;Atz, (30)

T, =Ty, Tp = Ty + WA Ty At,

where Wi A1 and W2 A3 are given in equation (46) in Appendix A.
Based on the particle location X, we evaluate the quadratic B-spline
weight w;, and its gradient Vw;;, of particle p at grid node i at time
tn+w, - We rasterize qualities mp, @y, 0p, and fp at time t, 4y, and
ap, o, (6", (o)™, T, T, (gh")", and g'" at time £, from
particles to grids. my, is first rasterized as m' = ZP mpwip. Then,
the remaining quantities are rasterized according to the following
normalization during the interpolation step as shown below:

1
A= — ZApmvaip for A; at t, and tp4w, (31)
i

where A; is a generalized variable. We also have pr = Zp fiVﬁ/ip,
Vo, = ;i 9;Vwip and Va, = 3.; @;Vwip. The deformation gradient
tensor F can then be computed at particle locations as follows:

Fy = (1+ WiA1 AtV + WpAo AtV ) P (32)

We use equation (27) to evaluate the pressure p,. Next, we evalu-

. .. ~ - +NL . - .
ate the physical quantities qﬁ, 0’2, Gy s O’g L and qg L at particle
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Deformation gradient, pressure Local and nonlocal flux

Phase change
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Temperature-dependent
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gradient & non-local stress
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Fig. 8. Overview of our proposed method in conjunction with the Material
Point Method (MPM) for phase change problems. Our method benefits
from the interplay of grids and particles. We rasterize all algorithmic quan-
tities from particles to grids and use GS4 schemes to solve mechanical and
thermal systems, respectively. We consider the coupling where the stress
is temperature-dependent in the dynamic system (left column) while the
thermal evolution (right column) provides the temperature distribution and
determines when and where the phase change happens.

locations as follows:

h = -FrkV,, &5 = Fou(T,) |Vop + (V{’p)T]

*NL . .

6y = (on")p + Wiks(AYH),,

*NL . .

& = @YD, + Wins(AgYD),, (33)
ot = (") + WiAsAt(a)h)p + WahsAt(AGYT),,

ap" = (g + WiAsAL(gy™")p + WeAsAtA(GY )y,

where

1
Ad NL) _
( i r Wilg

NL) 1 - \T =NL , =NL _ (vs \_ (4NL
(Aq* )P_WIAG [(va) 4 +aqy - (Vop) - (@n )p]

[(W’p)T oyt apt - (Vop) - (ff}ryL)p]
(39)

and the viscosity coefficient y(fp) is evaluated as per the tempera-
ture Tp based on the following Cross-WLF model [Bilovol 2003]:

20.194(T, — 100)
T, —48.4

_ Ho _
T 14 5.66 % 103 (o) 075 10

I 3.32x10° exp [—

where y is the shear rate, calculated as y = 4/2(Du) : (Du). After this

. . e~ ~ +NL NL .
step, we rasterize the resultlng quantities q’Ij, G’Ij, ap S qp s ag L s

and qf,}’ L at time tnew, from particles to grids. Next, we evaluate
Aa; and A&lN L using the explicit GS4 scheme, and AT; and Aq{\’ L
using the semi-implicit GS4 scheme (see Appendix B).

6.1.1  Explicit scheme for dynamics simulation. The stresses at time
tnsw;, are computed as follows:

~] _ _z ~L , ~NL
= ke gy )
&p = (1- )&} + 1,5}

where & is computed using F p according to the stress evaluation
in standard MPM [Stomakhin et al. 2013]. Then, the internal stress-
based force per grid node is computed as f; = = X, V6 Vwip, and
used to update the nodal acceleration as shown below:

(Aa); = — (f"+g—a;?), (36)

Wike \ my

where g is the acceleration due to gravity. We compute Ac'rgv L as:

*NL

AGNL = [zp(f)(l ~ Fy)Vit; — 6NE — 7,5, ] (37)

! WiAeTy

where the nonlinear term of 7, is given by equation (11) at time
tnsw; - We update all physical quantities on grids nodes as follows:

a! =a? + Aa;
o™ = ot + M4Ata? + AsAtAa;

(38)
(6’5\]L)n+1 — (O,{V'L)n +Ao~_{\]L

(oM™ = (M) + A4Art6] + AsAtAG N
Collisions with objects are treated following [Stomakhin et al. 2013].

6.1.2  Implicit scheme for non-Fourier heat transfer. We compute AT;
and Aqﬁv L using a modification of the non-Fourier solve from [Xue
et al. 2020] (see equations (51) and (53) in Appendix B), as follows:

AtWaAs(FrWiAg + AtWaA ,
WiAGT — 2 A5 (FrTWiAg > S)kVZ AT =
(VVzAsAt+W1A6T)
+NL . .
(FokV® - 1y + 24 )i + (V- gND)i + (1 = Fp)kV2T; (39)
T i (WaAsAt + WiAgr)

(Vg + (V- (5p - 0p)), +0i- g +Si
where S; represents the external heat source/sink on grid nodes.
After solving for AT;, we compute Aqf\] L as follows:

*NL ~
AQNL _ _T4; +(1- FT)]CVTI.>k
! (I]W2A5At+W1A6T)

(40)
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where "f* = T; + WaoAsAtAT;. We compute Ti"H, Ti"“, (qg\’L)"“

NL)n+1

and (q; as follows:

Tin+1 — Tin + ATi, (qNL)n+1
T.”“ =T+ /14AtTl.” + AsAtAT;,

@V = (gVE)" 4 1ant (N + AsatagNE

(ALY A
(41)

NL)n+1

We update aZ“ and (g, consid-

ering the PIC and FLIP components as follows:
(1) PIC update (xlg’;ré)
- Z n+1 -~ Wip,

n+l _ n+1 ~ n +1
ap = Z a Wlp, »

1 1

T;;l+1 Z Tn+1 ~ Tn+1 Z Tn+1W1p,

(qp L)n+1 Z(qNL)n+1 ~ l (qNL)n+l Z(qi\fL)n+l
(2) FLIP update (x71)

FLIP
n+tl _ n .
a,” =a,+ Z Aaijwip,
i

n+1
Yp

1 Fn+l 1 -NL 1
v$+ ’Tn+ ’T;+ , (qp )n+

(42)

= U; + /14Ataz + AsAt Z Aaiﬁ/ip,

i
_ fn Fn+l ~
—Tp +ZTI Wip,
i

, . (43)
=T+ AT + AsAt Z T %5,

n+1
TP

(q;fL)’H—l (qPL)n+ZAql Wlps
(@5 = (gh")" + Mant(gy™)" + st Y| AGN iy,
i

and the final updated formula is given by:

n+1

K= (1-0a) K’PIC + K p (44)

where « is a generalized variable, and the parameter a € [0, 1] allows
for transitioning between fully PIC and FLIP update formulas. Once
post-collision velocities ug” have been computed, we use them to

update the particle positions xg”

za; + /13At2 Z Aal—ﬁ/,-p
i

Fitl = (I+ L AtVol + At Val + A3 At® Z Aa;Viwip)Fp
1

as follows:

and F ZH

n+l _ _n n
xp =X+ )LlAtvp + Ao At

(45)

; ~n+1 n+1
Once x, is updated, one can also use Vwip to update Fi*".

6.2 Geometric Multigrid Solver

We follow the same strategy as outlined in [Xue et al. 2020] for
the non-Fourier solve. The implicit system in equation (51) (see
Appendix B) is still elliptic [Trottenberg et al. 2001]. However, it is
much better-conditioned than a traditional Poisson system because
of the presence of a scaled identity term on the diagonal. This allows
iterative Krylov solvers such as preconditioned Conjugate Gradients
(PCG) to converge in relatively fewer iterations. To allow for even

ACM Trans. Graph., Vol. 40, No. 4, Article 119. Publication date: August 2021.

Haozhe Su, Tao Xue, Chengguizi Han, Chenfanfu Jiang, and Mridul Aanjaneya

Width of drop (cm)

phase change problems by setting Fr = 1, k = 0.01, and T;;, = 0.1.
4.5 ' ' 4.5 '

faster convergence rates, we design a geometric Multigrid precon-
ditioner, closely following the description in [McAdams et al. 2010].
Specifically, the restriction and prolongation operators are the same
as those described in [McAdams et al. 2010] for pressure projection.
For implementing the smoother, we pass down all constants, such as
7, At, Fr, Wi, Wa, As, Ag and k to all levels in the Multigrid hierarchy
for multiplying a vector with the system matrix in equation (51).

7 RESULTS

Accompanying this article, we open-source our code for running
3D examples with our unified constitutive model for viscosity. The
noteworthy advantage emanating from such a unified model is the
practicality and convenience of using the same numerical imple-
mentation when simulating different viscous fluids without having
to switch from one model to another. In all our 3D examples, we
utilize the fully explicit GS4 scheme for fluid simulations, while the
semi-implicit GS4 non-Fourier solve (see Appendix B) is coupled for

w oW e
o

Width of drop (cm)
Do
w

oo

0 1 2 3 4 5
t

Fig. 9. Width of a droplet vs. time. (Left) Newtonian droplet at R, = 5.0
and F, = 2.26. (Right) non-Newtonian droplet at Re = 5.0 using semi-
implicit GS4 (red circle), partitioned GS4 (blue up-triangle), fully explicit
GS4 (green down-triangle), and the method of [Oishi et al. 2012] (black
square). Comparing the width of the droplet during impact confirms that
the present study quantitatively matches the results in [Oishi et al. 2012].

7.1

7.1.1  Validation. To validate our proposed method, we computed
the width of the Newtonian and non-Newtonian fluid droplets ob-
tained using the proposed fully explicit GS4 scheme and the method
of [Oishi et al. 2012]. Figure 9 shows that our results are in good
agreement with the results published in [Oishi et al. 2012]. Besides,
by setting (poo = p3, = 1), our proposed partitioned GS4 scheme
recovers the numerical method in [Oishi et al. 2012], which is the
Crank-Nicolson scheme for integrating the solution forward in time.

Quantitative Numerical Evaluation

7.1.2 Volume preservation. We ran several simulations of falling
droplets to compare our implementation based on different values
of ¢p in the Tait’s pressure equation (explicit GS4 schemes), and with
partitioned and semi-implicit GS4 schemes. We measure the total
volume on grids by V = 3}; m;/p;, where p; is updated at each time
step. Figure 10 shows a severe volume loss in cases with small ¢y,
while the case with ¢y = 10 preserves its volume fairly close to the
reference. Figure 7 shows the comparison of droplet deformations
with ¢p = 1 and ¢y = 10. The volume of the droplet with small ¢y
decreases and increases depending on the impact, while the case
with large ¢p = 10 maintains a fairly constant volume. As evident
from Figure 10, the partitioned and semi-implicit GS4 schemes are
much better in terms of their volume preservation ability.
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Fig. 10. Volume preservation of the falling droplet with different algorithms.
Solid black guidance line indicates ideal volume preservation. Explicit GS4
(solid lines): ¢y = 0.1: blue line; ¢y = 0.5: red line; ¢ = 1: green line,
and ¢y = 10: purple line. Partitioned GS4 (dotted lines): tolerance= 1073:
black line and tolerance= 107*: blue line. Semi-implicit GS4 (dotted lines):
tolerance= 1073: red line and tolerance=10"*: green line. The volume of the
droplet with explicit GS4 (co = 10), partitioned GS4, and semi-implicit GS4
schemes preserve its volume. (Right): Zoom-in over t € [0.08, 0.1]

7.1.3  Time accuracy. We quantitatively evaluate the temporal ac-
curacy of our method on a falling droplet (see accompanying code)
by varying the time step At. We utilized numerical results with
At = 1078 as the benchmark solution and ran sampling examples
with At =107 i € {1,...,6} up to a total simulation time of 2s, so
that the absolute difference between the benchmark solution and
the sampling solution provided us with the error value. Figure 11
shows the convergence plots for the particle displacement and ve-
locity for the semi-implicit backward Euler scheme, fully explicit
and semi-implicit GS4 schemes, as described in Section 5. In general,
high-order time integration schemes can produce more accurate
simulations than first-order accurate Euler-based schemes with the
same time step. Our discretizations using GS4 exhibit lower error
and higher convergence order than semi-implicit backward Euler.
We observe that the fully explicit GS4 scheme loses these advantages
with large At since it requires a time step restriction for stability.
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3D, where n is the number of degrees of freedom. In contrast, the
partitioned scheme (26) only needs to solve an n X n Poisson equa-
tion for pressure and the fully explicit scheme does not require any
solve. In all our 3D examples, we observed that the fully explicit GS4
scheme was stable. Table 3 summarizes the specific timings for all
examples, and the parameters used are listed in Table 4. At is chosen
in an adaptive manner restricted by the CFL conditions [Caiden
et al. 2001] At = 0.5min{At;, At }, where Atq|umax|/Ax < 1 and
Aty [Z,u/(prz) + |umax|/Ax] < 1, where u;qx is the maximum
fluid velocity.

7.2 Droplet Impact of Shear Thickening Liquids

Our method produces an appealing shear thickening behavior, simi-
lar to the observed behavior in the real world! via tuning the Weis-
senberg number (W,) and non-local effect (F,). At the moment of
impact, the rate of shear strain increases abruptly, which triggers
different mechanisms of viscosity. The classical Newtonian cube
shows linear relationship between the shear stress and shear strain
such that it expands smoothly and becomes a thin layer, as shown in
Figure 3(top). In contrast, the non-Newtonian cube (see Figure 3(bot-
tom)) oscillates due to the increased elastic portion of the viscous
stress and rebounds back immediately since viscosity increases with
the rate of shear strain, exhibiting solid-like behavior. Moreover, as
W increases, we observe stronger solid-like behavior of the viscous
cube. We also simulated a falling Stanford bunny (see Figure 5),
showing the bouncing back due to shear thickening viscous forces.

Table 3. All simulations were run on Machine 1: Intel(R) Core(TM) i7-8565U
CPU @ 1.80 GHZ and Machine 2: Intel(R) Xeon(R) CPU E5-1620 v4 @
3.50GHz. Simulation time is measured in average seconds per time step.
Grid: The number of occupied voxels in the background sparse grid. Parti-
cle: The total number of MPM particles in the simulation.
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Fig. 11. Log-log plots of Ly error (labelled E3) vs. time interval size At. (Left)
L, error of the displacement. (Right) L, error of the velocity using semi-
implicit backward Euler (red circle), fully explicit GS4 (blue triangle), and
semi-implicit GS4 (green square). Solid and dotted guide lines indicate ideal
first and second order slopes. Comparing the slopes and solution accuracy
confirms that the second-order GS4 schemes significantly improve the
convergence and solution accuracy for cases with small At.

7.1.4  Efficiency. We use the same droplet falling case to evaluate
the cost of each scheme. We use At = 0.001 in the backward Eu-
ler/GS4 semi-implicit schemes and At = 0.0001 in the fully explicit
GS4 scheme, and run each case for the same target simulation time.
As shown in the first three rows of Table 3, the computational cost
of the semi-implicit schemes is significant because of the size of
the linear systems in equations (54) and (55), which is 2197n° in

Simulation Time Machine Grid Particle
Droplet (Euler Semi-implicit) 9.05 1 8K 57K
Droplet (GS4 Semi-implicit) 12.28 1 8K 57k
Droplet (GS4 Explicit) 1.25 1 8K 57K
Cube impact(Fig.3(1st row)) 0.147 2 2M 35K
Cube impact(Fig.3(2nd row)) 0.153 2 2M 35K
Cube impact(Fig.3(3rd row)) 0.159 2 2M 35K
Cube impact(Fig.3(4th row)) 0.155 2 2M 35K
Coiling 1 (Fig.2 (top)) 0.225 2 524K 190K
Coiling 2 (Fig.2 (middle)) 0.191 2 524K 188K
Coiling 3 (Fig.2 (bottom)) 0.272 2 524K 188K
Buckling 1 (Fig.6 (top)) 33679 2 33M  2.4M
Buckling 2 (Fig.6 (bottom)) 3.0178 2 33M 2.8M
Ball impact 1 (Fig.7 (top)) 0.232 2 2M 562K
Ball impact 2 (Fig.7 (bottom)) 0.229 2 2M 562K
Bunny impact (Fig.5) 0.1715 2 33M 52K
Hourglass 1 (Fig.12 (left)) 0.2165 2 2M 82K
Hourglass 2 (Fig.12 (right)) 0.1939 2 2M 82K
Bunny piling (Fig.4) 0.5758 2 33M 420K
Stamping bunny (Fig.1 (top right)) 1.0448 2 33M 420K
Bunny melting 1 (Fig.14 (top)) 0.0928 2 2M 26K
Bunny melting 2 (Fig.14 (bottom)) 0.0918 2 2M 26K
3D printing (Fig.15) 00013 2 42M 156K

Lhttps://www.youtube.com/watch?v=0l6bBB3zuGc&ab_channel=BarryBelmont
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Fig. 12. Under the effects of gravity, a Newtonian liquid flows out uniformly (left), while a non-Newtonian liquid exhibits viscoelasticity, forming clumps. The

average At during simulations is 1075s.

Table 4. We provide a list of the main parameters used in the simulations. In
the Newtonian case (Fy = 1), Ap, Aos, Go, @, and Q are dummy parameters.

Simulation F, A Aos 1] Gy a Q
Cube impact 1 1 N/A N/A 49 N/A N/AN/A
Cube impact2  0.01 0.98 0.8820 4.9 4.95 100 8
Cube impact3  0.01 0.098 0.0882 4.9 495 100 8
Cube impact 4  0.01 0.0098 0.0088 4.9 495 100 8

Ball impact 0.01 0.0098 0.0088 4.9 495 100 8

Bunny impact  0.01 0.613 0.0551 306.25 4950 1 8

Coiling 1 1 N/A N/A 6125 N/A N/A N/A
Coiling 2 0.02 12.25 12.25 3063 245 0 16
Coiling 3 0.02 12.25 11.025 3063 245 1 16
Buckling 1 1 N/A N/A 30625 N/A N/A N/A
Buckling 2 0.01 3.0625 2.7563 3063 990 0.01 16
Hourglass 1 1 N/A N/A 049 N/A N/AN/A

Hourglass 2 0.01 196 1764 49 2475 1 16
Bunny piling 1 N/A N/A N/A N/A N/AN/A

Stamping bunny 1 N/A N/A 1.225 N/A N/A N/A
Bunny melting1 1 N/A N/A 0 N/A N/A N/A
Bunny melting2 1 N/A N/A 392 N/A N/A N/A
3D printing 05 392 392 196 0 0 1

7.3 Jet Coiling and Buckling

We simulated the jet buckling of different materials using our gener-
alized constitutive model, as described in Section 4. By varying the
non-local effects, we can control the fluidity of the simulated matter.
Figure 2 (top) shows that our method successfully reproduces the lig-
uid rope coiling effect for classical Newtonian viscous liquids, such
as honey, using our generalized viscous model with local viscosity
(Fp = 1). In contrast to the Newtonian viscous liquid, our model also
reproduces the vivid coiling behavior of viscoelastic liquids, such
as shaving cream (see Figure 2 (middle) and (bottom)). Moreover,
our video shows the secondary coiling phenomenon in the non-local
coiling cases. In particular, the non-local viscous flow first performs
a rapid coiling rope up to a great height, forming a fluid columnar
structure whose length greatly exceeds the rope diameter. When the

ACM Trans. Graph., Vol. 40, No. 4, Article 119. Publication date: August 2021.

height of the column exceeds a critical value, it collapses under its
own weight, and the process then repeats itself with a well-defined
period that greatly exceeds the coiling period [Habibi et al. 2006]. To
further highlight differences due to non-local effects, we simulated
a layer of viscous sheet folding onto a wafer, as shown in Figure 6.
Our method captures the characteristic folding behaviors for differ-
ent materials. The local model (F, = 1) produces smooth merging
and symmetric buckling patterns of liquids such as chocolate (see
Figure 6 (top)). However, the non-local models F, # 1 introduce
elasticity which tends to cause lager folds and retains the change of
shapes for fluids such as ice cream (see Figure 6 (bottom)).

v

Fig. 13. A closer view of die swell in the shear thinning liquid example from
Figure 12. After exiting the throat of hourglass, the shear thinning stream
swells (right), while the Newtonian liquid (left) does not. The average At
during simulations is 1073s.

7.4 Die Swelling

To demonstrate the shear thinning behavior, we simulated the vis-
cous liquid hourglass. Gravity forces extrude the viscous liquid
through the narrow throat of the hourglass, as shown in Figure 12.
Our non-local viscous stream (see Figure 13 (right)) demonstrates the
appealing die swell [Tanner 1970] where the stream “swells” back to
the former shape substantially over a period of time after the shear
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stress has been removed, while the classical Newtonian viscous
stream (which is local and non-elastic) does not show any swelling.
This is a typical shear thinning phenomena since the viscosity de-
creases as the shear strain increases. Moreover, our generalized
non-local viscosity can also exhibit Bingham-Plastic behavior [Zhu
et al. 2015], showcasing the break-up of a fluid stream, such as
ketchup (see here? for a real Bingham-Plastic flow).

7.5 Stamping Bunny

We first dropped eight copies of the viscous Stanford bunny with
random orientations into a pile, as shown in Figure 4. Our MPM-
GS4 method can easily handle the moving boundary problem while
preserving fine details. Once bunnies are piled up, the bunny pile
was stamped by a scripted moving SIGGRAPH label (see Figure 1(top
right)). A standard no-slip condition applied to the discrete viscosity
equations forces the fluid velocity to match that of the solid, causing
the viscous liquid to be dragged alongside moving solids. During
simulations, the average At is 5 x 107%s.

7.6 Melting Bunny

Next, we melt a bunny over a hot pan, showcasing our phase change
computational framework. We simulated heat transfer and fluid dy-
namics simultaneously using our proposed MPM-GS4 scheme, as
described in Section 6. The viscosity coefficient is defined as a func-
tion of the particle temperatures and heat diffusion is also affected
by the dissipation due to viscous stress. Our careful treatment of

Fig. 14. Simulation of a chocolate bunny melting over a hot pan. An inviscid
bunny (top) melts smoothly showing wave-like spread while a viscous bunny
(bottom) melts slowly and gradually, exhibiting high viscosity at the end.
The average At during simulations is 107%s.

phase transition allows our method to maintain sharp, yet stable,
interfaces between the solid and fluid phases, as shown in Figure 14.
We observe wave-like spread and micro ripples of the fluid phase in
the inviscid bunny melting example (see Figure 14(top)), while the
viscous bunny melts slowly, turning tacky and then liquid over a
fairly broad temperature range (see Figure 14(bottom)).

https://www.youtube.com/watch?v=X_cLJvUBlxw&t=31s&ab_channel=
NathanPalmer

7.7 3D Printing

Our method can also be used to simulate realistic additive manu-
facturing, such as 3D printing. As shown in Figure 1(bottom right),
a polymer filament is heated and deposited from a moving nozzle
along a pre-designed path [Gajjar et al. 2017] of the SIGGRAPH
logo. Our non-local viscous model captures the vivid viscoelastic
behavior of polymer melts. The melting polymer filament solidifies
gradually on the cold platform. Once a layer has been completed,
the nozzle is raised, and another layer is laid down, thus building
attractive layered shapes. After each layer completely solidifies, we
drop the logo exhibiting its elasticity and solidity (see Figure 15). We
also 3D printed the SIGGRAPH letters (in simulation) and dropped
them on the printer bed, as shown in Figure 16. The letters exhibit
different dynamic responses upon hitting the ground, highlighting
that the material stiffness is a function of the printing process.

Fig. 15. Our method allows for realistic simulation of additive manufactur-
ing. The 3D printed SIGGRAPH logo from Figure 1(bottom right) deforms
when dropped on the printer bed, demonstrating its elasticity and solidity.
The average At during simulations is 5 x 10™s.

8 CONCLUSION AND FUTURE WORK

We proposed a unified second order accurate in time MPM formu-
lation for simulating viscous phenomena from the perspective of
non-local modeling, which is a strict generalization of Newtonian
viscosity. To simulate the proposed model on Cartesian MAC grids,
we introduced the second-order accurate GS4 schemes [Tamma et al.
2000; Zhou and Tamma 2004] to computer graphics for greater ac-
curacy. Our method easily integrates with MPM and phase change
modeling, and allows for realistic simulation of 3D printing.

Our method presents a non-local perspective of the basic viscous
phenomena in nature, which leads to the unification of different
models. We demonstrated that our method captures a wide range of
viscoelastic liquid behaviors, such as liquid rope coiling, buckling,
shear thinning/thickening, melting/solidification processes and pro-
duces more detailed and realistic effects in practical applications
than the classical Newtonian (local) model, such as die swelling
effect and solid-like elasticity of a liquid droplet during impact.

Future work can explore many interesting avenues. A lot of our
parameters were tuned by hand, and it would be interesting to
calibrate them to measured models. We also neglected interactions
with the air while modeling phase change, which are important for
investigating the leathery behavior of polymers [Borisenkova et al.
1982]. It would also be interesting to extend our work by considering
non-locality in both space and time. This would undoubtedly allow
for a wider range of rheologies, such as shear banding [Lu et al.
2000]. Due to the high complexity of our unified constitutive model,
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Fig. 16. (Top) The individual letters of SIGGRAPH were 3D printed (in simulation) using our method that provides a unified framework for thermo-viscoelastic

effects. (Bottom) The letters deform differently when dropped on the printer bed, illustrating that the material stiffness depends on the fabrication process.

The average At during simulations is 6 X 1075s.

we only briefly investigated a fully implicit treatment of the second
order accurate solve in Section 5. While we did not experience a
need for excessively small time steps given the low stiffness of the
materials we considered, melting materials with high wave speed,
such as steel, could benefit from a fully implicit discretization of
phase change. Besides, another interesting direction for future work
would be to investigate the influence of setting the parameter F, # 1
in the non-Fourier solve in equation (51), which may be important
for simulating practical phase change problems, such as micro-
scale solidification during casting of copper. Finally, while our focus
was on second-order temporal accuracy, it would be interesting
to investigate second-order spatial accuracy, as in practice, this is
much more crucial in 3D, and not self-evident for MPM approaches.
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A ALGORITHMIC PARAMETERS IN GS4 INTEGRATOR

3+ Poo + P — PP 1 1
WiAe = PP p;D , 1= , WiAg = ,
2(1+ poo) (1+p3,) 1+ poo 1+ peo
WyAs = ! Wid; = Wiks, WA, = 1A (46)
2 5_(1+pw)(1+pgo)) 1431 = 1434, 2432 = 2 >
W25 1 1 1
W3A3 = As=—— =1L 3=—, =, 41 =1,
3433 2 5 1+pgo 4 3 AS 2 2 1

where (p3, < poo) are the principal and spurious roots at the high
frequency limit satisfying 0 < p$, < peo < 1. All algorithms in the
GS4 framework are second-order accurate, unconditionally stable,
zero-order overshoot, and controllable numerically dissipative, with
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the option of the selective control feature, which is a practically
useful new feature to yield physically representative solutions of
both variables. The existing and new algorithms contained in this
framework is given in Table 5.

Table 5. The new and existing algorithms contained in the GS4 framework

No. Parameters Algorithms

1 Poo = psy =1  Crank-Nicolson method

2 Poo = P3, =0  Gear’s method/BDF2

3 Poo = P Existing algorithms without selective control feature
4 Poo # Poo New algorithms with selective control feature

B SECOND-ORDER GS4 NON-FOURIER SOLVER

Follow the GS-4 framework, we now revise the Non-Fourier solver
in Section.5, we first explicitly update the convection terms

(T + WiAAT,) + up - VT, = Wy,
(N + WaneAgN™) + un - Vg™ =0, )
and solving for AT, and AGS enables us to get
T, = T+ WIAGAT,, T, = Ty + WiAs T AL + WaAspAT.AL,
G = at +WineAGYE,  §h = -FrkVT, (48)
GV = gNE s WA g At + WoAsnAGN AL,
followed by an implicit projection solve:
(. + WineAT) + 9 - (G + wonsnaghFae+ gh) = o,
7 (& + WiaAGNE) + (G + nwaasAragE) (49)
+(1-Fr)kV (i + r]W'ZAsAtAT**) =0.

where (jf* = —FrkVv (YN; + r]WgA5AtAT**). Taking the divergence
of equation (49); gives us the followings equations:
(Wins = nWoAsALErkVE) AT, +qWahs ALY - (AGNE)
= (FrkV? - 1)T. - Vv - gNE, 50)
(TWahsAt + WiAgT) V - (AGND) + nWaAsAt (1 - Fr) kVZ(AT.)
=V -GN - v gVE - (1 - Pk VP

After mathematical manipulations, we have the following expres-
sion for AT,
AtnWaAs (FTTWiAg + AtnWaAs)

WiAeI — kV?| AT, =
136 (nWaAsAt + WiAeT) -
1
*NL . ~
(FrkV2 = DT, — v . gNL ¢ 29 +V- g+ (1= Fp)k VT,
T T (NWoAsAL + WiAgr) :
n

which can be efficiently solved with PCG. After solving for AT,
we compute AGNE based on the second equation in (49).

AGNL _ _Tde + (1= FkVE.,

T T T WahsAL+ Wiker) 2
where 7:** = 7~1 + r]WgAsAtAT**.
Finally, we update T and ¢gNT at t = t,41 as follows:
AT = AT, + AT, AGNE = AGNE + A GNE,
Tn+1 = 7“n +AT, qlr:]fi = q]ryL + AqNL’ (53)

Tns1 = Ty + A4AtTy, + AsALAT,

gL = gNE £ anegNE + AsnengNE
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C SCHUR COMPLEMENTS COMPUTATION

C.1  Semi-implicit Backward Euler Scheme

Eliminating velocity in equation (17) by applying a Schur-complement
to the center block yields a smaller SPD linear system as follows:

A A Ap][ ot B;
AL Ay Apl||oNE = (B2 (54)
T T
Aj; Ay Ass P Iy B3
where
Aqp = 1+DD?, A;; =DD?, A;;=DG,
11 ZFUAt 12 13
+ At

Ap=DDT + T2t AD 1 DG Ay =GTG,
2(1 - Fp)At?

Bi=Db+ X Du, Bi=—2 N Db+ LpDu,

At 2(1 - Fy)At? At

B;=G'b+ 26T u..
At
C.2  Second Order Semi-Implicit GS4 Time Integration

Eliminating velocity Ailss from equation (21) by applying a Schur-
complement yields a smaller SPD linear system as follows:

Ay Az A][ Aok, By
Al Ay Agl|AcNE| =B, (55)
AL AL Ass P B3
where
pmA6W12’7 21T 2 T
A= ——— L1+ (pWy)*DDT, Ay = Wi WhAsADDT,
e TR, (nWh) 12 =N"WiWaAs
Wil (WiAg + AtnWoA
A = (Atqw2ns)?DDT 4 PR Wil + AmWsAs)
2(1-Fy)
Az = I]MDG, Agz = At}]VVzAsDG, Asz = GTG,
- ~ T pWiW1Ag . T
B, = —nW; (DD" 6} + DD’ &Y% + pDi,) - S ATWiAL (6% - 2F,yDit,),
5. _ PWilks(2u(Fy = DD + 5" + A
z- 2(Fy — 1)
— nAtWyAs (DD 6L + DDT 6L + pDil,),
pPWiAsGT it T-L T ~NL z
=2 _*_(6p’sl+GD + pGity).
3 T]At‘/VzA5 ( [ [ P u*)

D PRESSURE EVALUATION

We use the Tait’s equation (equation (27)) for pressure evaluation.
The proposed GS4 time integration is also used to discretize the
following continuity equation for the evaluation of density:

Dp
— +pV-v=0. 56
Dr FPVe (56)

Following the GS4 framework, we can formulate the solve for p as:
(WiAeAp + WoASALY - i) Ap = —fn—(pn + WiAspAL) V-it, (57)
where @1 = u, + Wi A4Atuy, and solving for Ap yields:

Pt = P+ 0P, Pne1 = pn + AaAtpn + AsAtAp.  (58)
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