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Abstract

One of the long-standing holy grails of molecular evolution has been the ability to predict an
organism’s fitness directly from its genotype. With such predictive abilities in hand,
researchers would be able to more accurately forecast how organisms will evolve and how
proteins with novel functions could be engineered, leading to revolutionary advances in
medicine and biotechnology. In this work, we assemble the largest reported set of experi-
mental TEM-1 B-lactamase folding free energies and use this data in conjunction with previ-
ously acquired fitness data and computational free energy predictions to determine how
much of the fitness of B-lactamase can be directly predicted by thermodynamic folding and
binding free energies. We focus upon B-lactamase because of its long history as a model
enzyme and its central role in antibiotic resistance. Based upon a set of 21 B-lactamase sin-
gle and double mutants expressly designed to influence protein folding, we first demonstrate
that modeling software designed to compute folding free energies such as FoldX and PyRo-
setta can meaningfully, although not perfectly, predict the experimental folding free energies
of single mutants. Interestingly, while these techniques also yield sensible double mutant
free energies, we show that they do so for the wrong physical reasons. We then go on to
assess how well both experimental and computational folding free energies explain single
mutant fitness. We find that folding free energies account for, at most, 24% of the variance
in B-lactamase fitness values according to linear models and, somewhat surprisingly, com-
plementing folding free energies with computationally-predicted binding free energies of
residues near the active site only increases the folding-only figure by a few percent. This
strongly suggests that the majority of B-lactamase’s fitness is controlled by factors other
than free energies. Overall, our results shed a bright light on to what extent the community is
justified in using thermodynamic measures to infer protein fithess as well as how applicable
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modern computational techniques for predicting free energies will be to the large data sets
of multiply-mutated proteins forthcoming.

Introduction

The ability to predict how an organism’s fitness is influenced by mutations is central to being
able to project and, in some cases, steer the course of natural evolution [1-3], engineer protein
sequences with novel biological functions [4, 5], and treat genetic disorders [6]. Nevertheless,
to this day, such predictions remain far from routine. Only in rare instances can a mutation’s
effect on an organism’s fitness be directly tied to a single phenotypic consequence, such as a
protein’s fitness for performing a specific function. Yet, even in those rare instances, even the
simplest protein’s fitness is influenced by a wide variety of factors [7] including protein and
gene expression levels [8], interactions with chaperones [9-11], protein folding stability [12-
15], protein folding dynamics [16, 17], and proteolytic susceptibility [18]—as well as many
complex factors yet to be uncovered or understood. Unfortunately, many of these even well-
understood factors are often difficult, if not impossible, to model in vitro or in silico [19], limit-
ing their overall utility. Given this backdrop, simple, calculable indicators that can predict phe-
notypes, and ultimately, organismal fitness, are of high value and in high demand.

One experimentally accessible set of phenotypic predictors for the effects of nonsynon-
ymous mutations are protein biophysical measures, such as proteins’ thermodynamic stabili-
ties [6, 14, 20, 21]. As nearly all biological processes and structures involve proteins, one would
expect that proteins’ abilities to properly fold, catalyze small-molecule substrates, or bind to
partners are highly correlated with their proper function, and by extension, organisms’ abilities
to survive and reproduce. How these abilities are influenced by mutations may be quantified
by the thermodynamic predictors AAGy,4, the change in a protein’s folding free energy upon
mutation relative to the wild type, and AAGy;,.4, the change in a protein’s binding free energy
for a given substrate upon mutation relative to the wild type. Negative AAG values indicate
that proteins are stabilized by a mutation, while positive values indicate that they are destabi-
lized (see the Supporting Information for further details). Most proteins have an optimal ther-
modynamic regime in which they function, as being too stable can also compete with their
ability to function [22]. Indeed, past research has shown that most globular proteins have
AGy,4 values in the range of -5 to -15 kcal/mol and that most mutations are accompanied by
AAGy,4 values of -4 to 10 kcal/mol, meaning that many mutations possess AGy,;; values
roughly equal to zero and therefore exist at the edge of stability [23]. AAGy,4 values may be
experimentally determined via circular dichroism [24], differential scanning calorimetry [25,
26], or single-molecule fluorescence techniques [27], while AAGy,;,,; values may be determined
via isothermal titration calorimetry [28] or surface plasmon resonance [29]. Although
advances in saturation mutagenesis for producing a plurality of mutations [30] and deep
sequencing for rapid sequencing large numbers of mutants [31] have accelerated aspects of
these techniques, measuring protein free energy changes remains a comparatively low-
throughput and time-intensive process, largely owing to the time it takes to express and purify
hundreds to thousands of proteins. Thus, while past Herculean experiments on single mutants
have produced a smattering of free energy data [32-37] and more recent quasi-exhaustive
approaches have shed light on distributions of fitness effects by directly measuring fitness [38-
41], even higher throughput means of estimating the free energy changes of proteins’ full
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complement of mutations are needed to forge a more complete picture of the correlation
between biophysical predictors and organismal phenotypes.

A key tool that has emerged for accelerating the estimation of these predictors is computa-
tion. Thermodynamic quantities such as the free energies discussed above may be calculated
via equilibrium statistical mechanical simulations of the underlying proteins. While molecular
dynamics [42, 43] and Monte Carlo [44] simulations that attempt to fully sample proteins’
degrees of freedom based upon judiciously parameterized force fields are most accurate for
estimating these quantities, these simulations are often orders of magnitude too slow to sepa-
rately model each of a protein’s thousands of distinct single, nevermind multiple, mutants.
Indeed, conventional molecular dynamics simulations of just a handful of mutants remains
state-of-the-art [45]. What has therefore transformed the field by making the prediction of free
energies of large numbers of mutations not only viable, but routine, is the development of
empirical effective free energy function techniques [46, 47], which take in the conformations
of proteins and ligands, and directly estimate their AAGy,;; and AAGy;,q values using functions
parameterized on large databases of protein free energies. Such simulations have enabled a
number of previously inconceivable comparisons between mutant free energy changes and
organismal measures of fitness, such as minimum inhibitory concentrations (MIC) in bacteria
[39] or the viability of viral plaques [15]. One of the primary messages to arise from these stud-
ies has been that fitness often falls off precipitously as a proteins’ AG value surpasses 0 and
therefore that large, positive AAG values correlate with low fitness, but not necessarily vice-
versa [6, 48]. Despite these seminal findings, much remains to be understood not only about
the accuracy with which empirical free energy functions predict individual proteins’ free
energy changes upon mutation, but the finer relationships between free energies and fitness.

In this work, we experimentally determine the folding free energies of 21 TEM-1 $-lacta-
mase single and double mutants and compare them with computational results for the AAG
values of folding from a variety of empirical free energy function techniques. As our data set of
experimental 3-lactamase folding free energies is the largest currently available, it has granted
us the unique opportunity to make apples-to-apples comparisons between computational and
experimental folding free energies, unlike previous works which have been constrained to
apples-to-oranges comparisons of folding free energies to fitness [38, 49]. We then analyze
how predictive these experimental and computational free energies are of TEM-1 S-lactamase
fitness. The TEM-1 f-lactamase protein is a model enzyme [50] that hydrolyzes such essential
B-lactam drugs as penicillins (including the ampicillin modeled here) and cephalosporins, and
is therefore directly responsible for the evolution of many common forms of bacterial drug
resistance (see the Supporting Information for further information about S-lactamases, includ-
ing TEM-1) [51, 52]. Beyond basic research interest, being able to predict the fitness of TEM-
I’s many possible mutants is therefore also helpful for predicting and ultimately combating the
mutants that will lead to the next-generation of drug-resistant, “superbug” bacteria. To com-
pute AAG values of folding and binding, we employ FoldX (and MD+FoldX) [53], PyRosetta
[54], PoPMuSiC [55], and AutoDock Vina'Please note that PyRosetta and AutoDock Vina uti-
lize a combination of empirical and physical free energy contributions by weighting physi-
cally-inspired terms based upon fits to larger data sets. They are therefore not strictly empirical
free energy function techniques. [56]. These programs were selected from numerous possible
packages [57] because of the balance of computational expediency and accuracy they bring to
the problem of predicting single mutant free energies. We find that PyRosetta, in particular,
accurately reproduces the experimental folding free energies of the single, and less methodi-
cally, double mutants studied. Using these reasonably accurate single-mutant free energies of
folding, we then studied how correlated folding free energies are with -lactamase fitness. We
demonstrate that the overall low predictive capacity of folding free energies alone can be

PLOS ONE | https://doi.org/10.1371/journal.pone.0233509 May 29, 2020 3/26


https://doi.org/10.1371/journal.pone.0233509

PLOS ONE

Predicting the viability of beta-lactamase

boosted by supplementing them with information about binding free energies. Nevertheless,
as may be expected given the complexity of the overall transcription, translation, and post-
translation processes, we demonstrate that thermodynamic descriptors only explain a small
fraction of B-lactamase fitness results. Overall, our findings shed light not only on the accuracy
of high-throughput approaches for estimating protein thermodynamic predictors, but also on
just how predictive of organismal fitness these measures can be anticipated to be for an impor-
tant model protein.

Materials and methods
Experimental determination of folding free energies

We began by experimentally determining the folding free energies of 21 TEM-1 f-lactamase
mutants, informally known as the ‘Wylie’ mutants (see Fig 1 for a listing and Fig 2 for an illus-
tration of the relative locations of the Wylie mutants), and wild type TEM-1 using circular
dichroism.

In order to do so, the Wylie mutants were first sub-cloned into a pBAD202 expression vec-
tor available in the pBAD directional TOPO expression kit (Invitrogen). The native leader pep-
tide sequence of the B-lactamase gene was retained to achieve periplasmic transport for proper
folding of the enzyme. Since TEM-1 has a weak intrinsic affinity for metal ions, no purification
tag was added to the protein. The plasmids carrying the gene of each mutant were then trans-
formed into TOP10 (Invitrogen) E. coli strains and 25 ml LB media starter cultures were

Wylie Mutant Data Set
Single Mutants
A172P G218V L199F
A213G G283C R93S
D163Y 1142F R241H
E212K K234Q R275G
G144E L57H S70G
Double Mutants
A172P/G283C  D163Y/R93S  G144E/L199F
A213G/L57H  E212K/G218V  K234Q/R241H

Method Data Set
Circular Dichroism for A AGfd Wylie Mutants
FoldX for A AGfu All Single, Select Higher-Order Mutants
PyRosetta for A AGpid Wylie Mutants
PopMusic for A AGld All Single Mutants
Autodock Vina for A AGbind All Mutants < 8 A from the Active Site

Fig 1. (Top) Table of the 15 single and 6 double TEM-1 mutants that constitute the Wylie mutant data set. Note that
in naming the mutants, we first specify the wild type residue abbreviation, followed by the Ambler residue number,
and end with the mutant residue abbreviation. (Bottom) The mutant data sets produced or analyzed using the
different experimental and computational methods described in this manuscript.

https://doi.org/10.1371/journal.pone.0233509.g001
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Fig 2. A cartoon representation of the TEM-1 f-lactamase protein (PDB ID: 1xpb) and its ampicillin ligand after
the wild type protein has been relaxed and ampicillin docked to it. The positions of many of the residues mutated in
this work, including S70 and G144, are indicated in red.

https://doi.org/10.1371/journal.pone.0233509.9002

grown overnight at 37°C using kanamycin as a selection marker. The next morning, the cells
were transferred to 800 ml of fresh LB culture supplemented with kanamycin and protein
induction was achieved by the addition of 0.1% arabinose at culture ODgg - 0.6. The culture
was then grown overnight at 18°C and spun at 4000 rpm in a Sorvell RC5 centrifuge. The
supernatant medium was next discarded and the cell pellet was suspended in sucrose buffer
(30 mM TRIS, 20% Sucrose; pH 8.0). The suspension was spun at 6000 rpm and the superna-
tant was again discarded. The resultant cell pellet was subsequently gently resuspended in
MgSO, buffer (5 mM MgSO,; pH 7.0) to induce osmotic shock and incubated at 4°C for 30
minutes for maximum release of the enzyme from the periplasm. The protein was separated
from the cells by spinning at 14000 rpm. This periplasmic extract was then incubated with 5
ml Ni-NTA beads (Qiagen) at 4°C for 15 minutes and the resin slurry was packed on an open
chromatography column. The flow-through from the column was discarded and the column
was generously washed with binding buffer (50 mM potassium phosphate, 100 mM NaCl; pH
7.5). The protein was eluted using 10 column volumes of elution buffer (50 mM potassium
phosphate, 100 mM NaCl, 15 mM imidazole; pH 7.5). The sample was afterwards concentrated
to < 5 ml using an Amicon Ultra-15 centrifugation device with a membrane with a 10 KDa
molecular weight cutoff. The sample was then passed through a Superdex-75 16/600 size exclu-
sion column connected to a GE Akta FPLC using the storage buffer (200 mM potassium phos-
phate, 4% glycerol, pH 7.0). The purity of these samples was ascertained using SDS-PAGE and
the protein concentration was determined using 280 nM absorbance with an UV spectropho-
tometer. The samples were flash frozen in liquid nitrogen and stored at -80°C. Our typical
yields were 2-20 mg purified B-lactamase per liter of LB media.

The thermodynamic stability of each allele was determined by circular dichroism (CD) on a
Jasco J-815 spectrometer in a 200 mM potassium phosphate pH 7.0 with 4% glycerol buffer.
Briefly, 15 uM of each enzyme was subjected to increasing temperature at the rate of 2°C/min
in 2 mm cuvettes. The relatively slow temperature ramp and small cuvettes helped to ensure
that the samples attained equilibrium at each temperature. Changes in the ellipticity at 223 nM
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were recorded from 20 to 90°C. The experiment was performed in triplicate and the melting
temperature (T,,) and van’t Hoff enthalpy (AH) were calculated by fitting resultant data to a
two-state transition as described in previous work (see S1 Table in S1 File for a summary of

the circular dichroism data obtained) [24, 50].

Computing free energies of folding with FoldX

As a computational starting point, the folding free energies (AAGy,4) of all 4978 (= 262 resi-
dues x 19 possible mutations per residue) TEM-1 fB-lactamase single missense mutants and
specific double mutants were calculated using the FoldX 4.0 algorithm [47, 53]. FoldX was
selected to accomplish this necessarily high throughput task due to its relatively high accuracy
among fast algorithms—the algorithm has been demonstrated to achieve correlation coeffi-
cients as large as 0.7 on a mix of ProTherm [58] and the 1088 Guerois mutants [47], outper-
forming several alternative algorithms based on both empirical and physical force fields [57]—
at minimal computational expense. Of relevance to this work, FoldX is especially designed to
model single mutants and has been trained on the select set of S-lactamase mutants found in
the ProTherm database, but has been infrequently applied to multi-point mutants [59].

In order to obtain folding free energy differences for 5-lactamase, we initialized our FoldX
calculations with the 1xpb Protein Data Bank f-lactamase structure [60]. The structure file was
first modified to remove everything but TEM-1 S-lactamase and crystal structure water mole-
cules. To match the experimental residue numbering, the residues between 51 and 58 were
renumbered sequentially.

FoldX simulations were performed on structures with and without prior molecular dynam-
ics relaxation of the initial wild type conformation. In the following, we term those simulations
in which molecular dynamics relaxation was performed before FoldX free energies were com-
puted MD+FoldX simulations. Past studies performed by our team have shown that relaxing
the wild type structure before introducing mutations can significantly improve the predictive
capacity of FoldX on proteins, such as TEM-1, on which FoldX was not explicitly trained [61,
62]. In our MD+FoldX simulations, the final clean structure file was used to carry out atomis-
tic molecular dynamics simulations using the protocol reported in our previous studies [61,
62]. Briefly, the GROMACS 2018.4 software package was used to perform the MD simulations
with the AMBER99SB*-ILDN force field [63]. Final production simulations were carried out
for 100 ns and snapshots were preserved every 1 ns resulting in 100 snapshots of each TEM-1
B-lactamase structure. Either the MD snapshots or cleaned PDB structures were then repaired
using the RepairPDB function six times in succession to minimize and converge the potential
energy [64]. During this procedure, FoldX searches for residues with poor torsion angles due
to incorrect rotamer assignment, and after calculating interactions with neighboring atoms,
replaces them with the correct rotamer assignment. FoldX subsequently performs a local
optimization of the side chains to mitigate van der Waals interactions. Lastly, FoldX identifies
residues with high free energies and samples new rotamer combinations composed of these
residues and their neighbors to pinpoint new free energy minima.

After optimizing the original 3D structures, all mutant structures were generated using the
FoldX BuildModel command [64]. Subsequently, FoldX selects the rotamer with the optimal
placement. Mutant free energy changes are lastly calculated based upon these final structures
using the FoldX free energy function [53]. Given their previous success reproducing experi-
mental free energy changes [57], in this work, the FoldX weights in its free energy function
were set to their default values. In order to compute AAG values, the difference between the
AG of each mutant and the wild type was taken. In many cases, this leads to fortuitous error
cancellations, particularly involving difficult to evaluate free energies of the unfolded proteins,
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that improve the overall accuracy of the predictions. For the MD+FoldX calculations, the final
AAGy, 4 values for each mutant were obtained by averaging the FoldX results across all individ-
ual snapshot estimates.

Computing free energies of folding with PyRosetta

In order to improve upon the accuracy of our FoldX calculations, we also employed PyRosetta
to compute free energies of folding. PyRosetta is an independent Python-based implementa-
tion of the Rosetta molecular modeling package that enables users to design and implement
structure prediction and design algorithms using its underlying Rosetta sampling and scoring
functions [54]. Because PyRosetta possesses more robust ways of relaxing mutant structure
side chains than FoldX, it is expected to yield more accurate predictions than FoldX, particu-
larly for mutants in which more compact or weakly charged wild type residues are substituted
with more voluminous or highly charged mutant residues. Recent work by Kellogg et al. has
demonstrated that PyRosetta can achieve correlation coefficients in excess of 0.5 against data-
bases of experimental folding free energies [65].

In this work, we used PyRosetta-4 [54] to capture the difference in Rosetta score directly in
experimentally comparable units of kcal/mol [66] between each mutant structure and wild
type TEM-1 represented by the PDB 1xpb structure [60]. During our PyRosetta simulations,
we first repacked all 1xpb side chains by sampling from the 2010 Dunbrack rotamer library
[67], and then used Monte Carlo (MC) sampling coupled with energy minimization to opti-
mize the wild type structure based upon the Rosetta REF2015 scoring function [66]. Next, we
introduced each missense mutation and repacked all residues within a 10 A distance of the
mutated residue’s center, followed by a linear minimization of the backbone and all side
chains. As part of our protocol, we performed five independent simulations of 300,000 Monte
Carlo cycles each, and the predicted AAGy,;; value was taken to be the average of the two lowest
scoring structures of the five. During each simulation, each mutant structure was perturbed,
and accepted or rejected based upon the Metropolis criterion. We selected a 10 A repacking
radius as it served as a reasonable compromise between achieving accurate relaxation without
getting caught in metastable minima and computational expediency [38], although other radii
could in principle be selected. Because PyRosetta performs Monte Carlo sampling and mini-
mization, it is significantly more computationally expensive than FoldX. We therefore primar-
ily applied it to the Wylie mutant data set and mutants for which FoldX predictions seemed
questionable relative to other experimental and simulation predictions.

Computing ampicillin binding free energies with AutoDock Vina

As residues nearest the active site are expected to most influence binding free energies (for
exceptions, see Stiffler et al. [41]), ampicillin docking simulations were performed on residues
within an 8 A distance of the active site. Ampicillin was chosen as a substrate so as to be consis-
tent with the ampicillin-based minimum inhibitory concentration (MIC) and fitness experi-
ments described below. Docking was performed using AutoDock Vina (ADV) 1.1.2 [56]. As
with PyRosetta, AutoDock uses physically-inspired scoring functions that intake protein and
ligand conformations weighted to reproduce experimental binding free energies [56]. With
this scoring function, ADV determines the lowest free energy protein-ligand conformations
by taking a sequence of steps consisting of a proposed change in conformation followed by an
optimization performed by the Iterated Local Search global optimizer algorithm [68, 69]. The
performance of the AutoDock and ADV scoring functions were compared with that of 29
other functions during the CASF-2013 benchmark, which assessed the performance of scoring
functions [70]. These benchmarks illustrated that ADV outperforms AutoDock and 75% of
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other tested methods. ADV therefore represents a useful compromise between speed and accu-
racy for the purposes of high-throughput calculations.

For our ADV simulations, the ligand PDBQT input file was prepared by first downloading
the ampicillin pdb file from PubChem (https://pubchem.ncbi.nlm.nih.gov/compound/6249).
Because of ampicillin’s low pKa of 2.5, all ampicillin carboxylic acid groups were modeled as
carboxylates in our ADV simulations. 6 out of 32 bonds in the ligand were made rotatable.
Then, all hydrogens were added to the ligand using AutoDockTools, Gasteiger charges were
computed, and the non-polar hydrogens were merged. As there is no co-crystal of ampicillin
with TEM-1 publicly available, before performing docking calculations on mutants, prelimi-
nary docking calculations had to first be performed on wild type TEM-1 to identify a reliable
ampicillin docked pose (see S9 Fig in S1 File). After finding that pose, all 12 residues that were
within an 8 A distance of the alpha carbon of residue 70 (representative of the active site) were
selected for binding affinity calculations. First, PyRosetta was used to introduce each missense
mutation and relax each mutant structure. Then, to prepare each receptor PDBQT file, Auto-
DockTools was used to first add polar hydrogens to the macromolecule and then to assign
Kollman United Atom charges. To create a configuration file, a grid box with a size of 24 A x
26 A x 24 A was generated and centered on the a-carbon of residue 70. We chose to employ a
relatively small grid box so as to reduce the chance that ampicillin binds to a non-active site
region of the enzyme, which is undesirable. We set num_modes to 5 and exhaustiveness to 8.
The remaining docking parameters were kept at their default values. At the conclusion of each
docking calculation, the predicted binding affinity in kcal/mol of the best mode was selected
among the 5 generated binding modes and reported in the figures below.

Experimental measures of fitness

There are numerous ways of characterizing organismal fitness, even within the same organism.
As this study focuses on mutations to the TEM-1 enzyme that confer antibiotic resistance, we
have chosen to gauge the fitness of bacteria containing TEM-1 mutants based upon how resis-
tant they remain to one of the primary S-lactam antibiotics, ampicillin. This resistance may be
quantified by minimum inhibitory concentrations (MIC), which are the lowest concentrations
of, in this case, ampicillin, that prevent all detectable bacterial growth. While we have deter-
mined the MIC values of the Wylie mutant data set (see the Supporting Information, including
S6 and S7 Figs in S1 File, for further information), here, we overwhelmingly employ the more
comprehensive set of fitness values acquired by Firnberg et al. in our analyses (see Fig 1) [38].
Firnberg et al. quantified each mutant’s fitness by taking an average of the number of copies

of the mutant alleles weighted by the range of ampicillin concentrations at which they were
grown and normalizing this by the wild type average [38]. We have verified that the Firnberg
fitness values correlate well (> > 0.7) with our previously determinted MIC values as well as
other data sets we have acquired, thus validating their use here (see S6 Fig in S1 File).

Results

The Wylie mutant data set: Direct comparisons between computational
and experimental free energies of folding

Accuracy of single mutant predictions. In order to first assess how accurately computa-
tional techniques predict the AAGy,; values of S-lactamase, we begin by comparing our experi-
mentally-determined folding free energies to our computational predictions from both MD
+FoldX and PyRosetta. Note that throughout the remainder of this paper, ‘free energy changes’
will refer to AAG values for brevity. Because experimentally determining folding free energies
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https://doi.org/10.1371/journal.pone.0233509.9003

is inherently low throughput, we focused our experimental efforts on the Wylie mutant data
set (see Fig 1 for a detailed list of these mutants). The residues within this set are all greater
than 6 A from the active site and were purposefully selected because, at these distances, they
were expected to have potentially significant effects on folding, but limited effects on binding
and kinetics, allowing us to mostly attribute their influence on fitness to folding changes. The
one exception is the S70G mutant, as residue 70 resides in the heart of the binding site and

transforming f-lactamase’s primary catalytic serine into an inert glycine is known to markedly
decrease the enzyme’s catalytic efficiency, yet markedly increase its folding stability [71, 72]. In
Fig 3, we plot experimentally-determined folding free energies against computationally-pre-
dicted free energies for the single mutants. We have shaded the first and third quadrants in this
figure to ease identification of the mutants whose experimental and computational free ener-
gies are of the same sign. It is thus gratifying to see that both MD+FoldX and PyRosetta free
energies of folding positively correlate with the experimentally determined values for these
mutants: more positive experimental values are matched by more positive computational pre-
dictions, while more negative experimental values are matched by more negative computa-
tional predictions (see S1 Fig in S1 File for purely FoldX predictions, which parallel the MD
+FoldX results). Indeed, as can be determined by counting the number of mutants in the
shaded regions, MD+FoldX correctly predicts the signs of 14 out of 15 mutants, while PyRo-
setta does so for 11 out of 15 mutants. In general, both MD+FoldX and PyRosetta predict the
majority of the mutants to lie in the same relative places on these plots (see S2 Fig in S1 File for
a direct comparison of MD+FoldX and PyRosetta predictions). It is moreover pleasing to see
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that PyRosetta predicts S70G, which is known to be stabilizing and is thus in some sense a con-
trol, to have a negative AAGy,q value; MD+FoldX fortunately also yields a reasonably accurate,
although not fully stabilizing, prediction for this mutant. In concurrence with the results for
free energy distributions presented in the next section, even this relatively small data set dem-
onstrates that the majority of mutants destabilize folding. The AGy,;; value for B-lactamase that
we determined via experiment is -8.4 kcal/mol. As mutants lose their folding stability as their
AGg,4 values approach 0 and AGpq mutant = AGfoidwitdtype™ AAGfold mutan» many of the muta-
tions we have studied that have AAGy,4 values nearing 8 kcal/mol lie on the verge of unfolding
the protein.

Despite the qualitative agreement between the Fig 3 panels, however, they do differ quan-
titatively. First and foremost, the range of PyRosetta folding free energies is significantly
larger than the range of MD+FoldX folding free energies. Much of this difference in range
may be attributed to PyRosetta’s strongly negative AAGy,4 values for the S70G, E212K, and
K234Q mutants. Without these mutants, PyRosetta’s ability to predict the experimental data
would significantly decline. MD+FoldX also seems less able to discern experimentally stable
from unstable mutants, as it predicts many mutants to be less stable than they are in reality.
In combination, these factors contribute to PyRosetta being more strongly correlated with
the experimental data, as evidenced by its 0.44 coefficient of determination relative to MD+-
FoldX’s 0.071 coefficient. Indeed, PyRosetta’s correlation coefficient of 0.67 for B-lactamase
is among the highest PyRosetta correlation coefficients for proteins published in the litera-
ture [73, 74]. To complement our regression analysis, we additionally computed Spearman’s
rank correlation coefficients [75] for our Experiment vs. MD+FoldX and Experiment vs.
PyRosetta data sets. Spearman’s rank correlation coefficients assess how correlated the rank
order, here based upon AAGy,;; magnitudes, is between two lists. In concurrence with our
regression results, we obtain a rank correlation coefficient of 0.22 for MD+FoldX and 0.44
for PyRosetta, which corroborates the fact that PyRosetta more accurately captures the
experimental data, even beyond a simple linear model. Overall, these results suggest that,
while current computational tools are not perfect, they can qualitatively predict single
mutant free energy trends.

PyRosetta likely outperforms FoldX at quantifying the folding free energies of the Wylie
single mutants because the majority of these mutants are solvent accessible (see S5 Fig in S1
File). Past work comparing the accuracies of PyRosetta and FoldX on a combination of Guer-
ois [47] and ProTherm database mutants [76] demonstrated that Rosetta performs best, while
FoldX performs worst on mutants involving solvent exposed residues compared with other
classes of mutants [57, 74]. This is because FoldX often implausibly favors placing hydrophobic
residues on protein surfaces.

Accuracy of double mutant predictions. Given their ability to predict folding free energy
trends of single residue mutants, for which they were largely designed, we next explored how
well these computational techniques performed on double mutants constructed from Wiley
data set constituent single mutants. While many multiply-mutated proteins are known to pos-
sess free energies of folding that are simply the sums of their constituent single mutation free
energies because their constituent mutations act largely independently, some of the most bio-
physically intriguing mutations possess non-additive free energies and thus lead to epistatic
effects that can dictate the course of protein evolution [77-79]. The right-most panel of Fig 4,
which plots the folding free energies directly measured for double mutant structures against
those obtained by adding the free energies of the constituent single mutants, illustrates that
three of the Wiley double mutants, K234Q/R241H, A172P/G283C, and E212K/G218V, possess
essentially additive folding free energies, while three others, the A213G/L57H, G144E/L199F,
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and D163Y/R93S mutants, possess non-additive free energies according to experiment (see S4
Fig in S1 File for a tabulation of the underlying quantitative data). Despite being limited, this
set of mutants is thus ripe for benchmarking how predictive computational techniques are for
multiply-mutated proteins. Interestingly, we find that, regardless of whether experiment pre-
dicts the mutants to be additive or non-additive, FoldX and MD+FoldX always yield additive
predictions (middle panel of Fig 4). The additivity of MD+FoldX, even when supplemented
with MD relaxation of the original wild type structure, may be anticipated based upon the fact
that it does not globally relax mutant conformations. In contrast, PyRo-setta generally yields
non-additive predictions (left-most panel of Fig 4). It is because of this non-additivity that
PyRosetta outperforms FoldX in predicting the folding free energies of the Wylie double
mutants, as depicted in Fig 5. Nevertheless, the fact that PyRosetta’s double mutant free energy
predictions are always superadditive, likely because it is unable to fully relax double mutant
structures, also makes its predictions questionable.

This said, it is noteworthy that both PyRosetta and MD+FoldX are more accurate at pre-
dicting the folding free energies of this set of double mutants than the single mutants presented
above (see S3 Fig in S1 File for a scatterplot of all of the Wylie mutants). This is likely an artifact
of the small double mutant sample size, but it is disconcerting that MD+FoldX achieves this
larger double mutant correlation based upon the incorrect assumption of additive free energies
and that PyRosetta does so based upon consistently superadditive predictions. All in all, these
results call for the development of improved fast, yet accurate techniques that pair a computa-
tionally expedient amount of relaxation with empirical, if not optimally physical, functions
also parameterized to account for multiply-mutated proteins.
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Firnberg mutant dataset: Analyzing the correlation between free energies
of folding and fitness

Folding free energy distributions. Encouraged by our computational predictions for the
Wylie mutant data set, we next utilized simulation to predict the free energy trends of all -lac-
tamase single mutants with the ultimate aim of characterizing their influence on S-lactamase
fitness. We find that the shape of f-lactamase’s folding free energy distribution according to
FoldX may best be fit by a gamma distribution®A gamma distribution (denoted as I'(e, f)) is
characterized by its shape parameter a, which determines whether the distribution is exponen-
tially-shaped (for & < 1) or mounded (for o > 1; the greater o is above one, the less skewed the
distribution is), and its rate parameter 5, which determines how slowly the distribution decays,
with distributions with larger values of 3 decaying more slowly than those with smaller values
[80]. (see Fig 6), which can capture the right skew of the distribution due to the substantial
number of mutants predicted to have AAGy,;; > 10 kcal/mol. Interestingly, we find only very
slight differences between the FoldX and MD+FoldX distributions. MD relaxation of the wild
type structure simply shifts some of the probability for observing large free energy mutants to
observing more low free energy mutants. The fact that the overall form of the distribution is
preserved with and without MD suggests that it is most strongly influenced by the FoldX scor-
ing function. Subsequently, we compared this distribution to that obtained by Firnberg et al.
with PyRosetta as well as with our own PoPMusSiC results. PoOPMuSiC is a popular web server
for protein stability prediction (see the Supporting Information for further details regarding
the PoPMuSiC algorithm). While the shape of the PyRosetta distribution may also be
described by a gamma distribution with a slightly larger right skew, the PoPMuSiC

PLOS ONE | https://doi.org/10.1371/journal.pone.0233509 May 29, 2020 12/26


https://doi.org/10.1371/journal.pone.0233509.g005
https://doi.org/10.1371/journal.pone.0233509

PLOS ONE

Predicting the viability of beta-lactamase

o ©
&) o

o
~

o
N

Probability Distribution Function for Folding

0.0

Bl PopMusic ~ N(u=0.745, 0=0.905)
Hl FoldX ~ '(a=2.06, 5=4.09)

Bl PyRosetta ~ I'(a=0.00635, 3=4.12)
Bl MD+FoldX ~ '(a=4.09, f=1.40)

AAGfold(kcaI/moI)

Fig 6. The probability distribution functions of folding free energies based upon PoPMuSiC, FoldX, PyRosetta, and MD+FoldX results. The
curves depicted are histograms of the data, while the parameters given in the legend are based off of smooth fits. The PoPMuSiC distribution is
significantly more peaked and less skewed than the other distributions, making it most consistent with a Gaussian distribution. FoldX, MD+FoldX, and
PyRosetta all possess more right-skewed distributions with significant high free energy tails such that their distributions are best captured by I'-

distributions [80].

https://doi.org/10.1371/journal.pone.0233509.9006

distribution was best described by a normal distribution. This is because PoPMuSiC neither
considers mutations that destabilize the structure by more than 5 kcal/mol nor those involving
a proline, which are likely to induce significant structural modifications [55]. Many of the
mutants predicted by FoldX and PyRosetta to be accompanied by large free energy changes
stem from these expedient methods’ inability to fully relax the structures of mutants in which
tryptophans or other volumetrically bulky residues replace volumetrically smaller amino acids
(for an illustration, see Fig 8). While experiments find that, in certain cases, tryptophans do in
fact grossly destabilize the enzyme [59], in other cases, FoldX and PyRosetta strongly overesti-
mate tryptophan-induced clashes and their related free energies. The key point that may be
garnered from this comparison of distributions is that, while disparate computationally-expe-
dient techniques may differ in their predictions for specific mutant free energies, they yield
similar free energy trends overall, particularly for mildly destabilizing mutants.

As a further physical check on MD+FoldX’s predictions, we additionally analyze its pre-
dicted folding free energies as a function of residue number. S-lactamase crystal structures
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reveal that S-lactamase is composed of two domains, comprised of a total of 5 3-sheets and 9
o-helices [60, 81]. Mutations that disrupt how well these secondary structures form are thus
most likely to significantly alter S-lactamase’s folding free energy. In Fig 7, we depict the fold-
ing free energies as a function of mutant residue number and color the residues according to
the secondary structures they form. It is evident from this plot that many of the largest pre-
dicted folding free energy changes occur in regions with stabilizing -sheet or a-helical charac-
ter. Since previous work has shown that FoldX predicts AAGy,; values essentially as accurately
for helix and sheet regions as for all other residues [57], the large free energy changes observed
in these regions are likely due to the disruption of secondary structure and therefore serve to
validate the predictive capacity of this method.

Correlation between firnberg fitness data and folding free energies. With these model-
ing considerations in mind, we then returned to our original goal of understanding how pre-
dictive free energies of folding are of protein fitness by comparing our folding free energies
against Firnberg et al.’s [38] fitness data. This said, from the left-hand panel of Fig 8 and S2
Table in S1 File, it is clear that folding free energies are reasonable predictors of fitness: many
(2175) mutants predicted to be stable with AAGg,;; < 5 kcal/mol are in fact fit, possessing fit-
ness values greater than 0.5 (so-called ‘true positives’). We note that the AAGy,;; and fitness
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cutoffs used in these definitions are somewhat arbitrary, but a AAGq of 5 kcal/mol was
selected for the folding free energy because at 8 kcal/mol, beta-lactamase unfolds and thus,
above 5 kcal/mol, it is expected to be unstable. There are additionally many (506) mutants pre-
dicted to be unstable, with AAGy,4 > 5 kcal/mol, that are unfit, possessing fitness values less
than 0.5 (so-called ‘true negatives’), also as one would hope. As can be inferred from the
labeled residues toward the right of the left-hand panel of Fig 8, most of these large free energy
mutants involve substitutions of volumetrically smaller residues, such as glycine and alanine,
with larger, bulky residues, such as tryptophan and tyrosine, which dramatically raise the free
energy contributions associated with steric clash. Remarkably, our plots manifest strikingly
few (22) cases for which mutants with large folding free energies (>5 kcal/mol) possess high
fitness (>0.5), which we term false negatives. Even though this is heartening, there neverthe-
less exist numerous (2079) false positives: mutants that exist in the lower left corner of the plot
whose small folding free energy differences (<5 kcal/mol), which one would expect to corre-
spond to high fitness values (>0.5), nonetheless map to low fitness values (<0.5). It is also
clear from the right-hand panel of Fig 8 that small (< 5 kcal/mol) changes in folding free ener-
gies which destabilize the protein, but do not unfold it (based upon its AGy,; ~ —8 kcal/mol),
lead to a wide range of fitness values and are therefore not strongly correlated with fitness.
Putting these factors together, we find that roughly 22% of the variance in -lactamase fitness
can be explained by linearly fitting a regression line to the MD+FoldX data points with -5 <
AAG,1q < 10 kcal/mol (to remove the influence of large free energy outliers on a linear fit).
Better fits that account for mutants with larger folding free energies may be obtained by fitting
non-linear functions to the data. As we discuss in the Supplemental Information, the full data
set may best be modeled by the offset Duncan Equation, f(x),,, = % +0.871

with a correlation coefficient of r = 0.647, an improved correlation coefficient, but still one
that struggles to accommodate for the problematic false positives.
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To better understand the origin of these many false positives, we have colored mutations
within 8 A of the active site and those involving tryptophan, proline, or glycine in Fig 8. It is
well-known that FoldX predictions for mutants containing proline and glycine are often incor-
rect, as they both disrupt protein secondary structure and glycine side chains are so minimal
that replacing them with most other amino acids will result in prohibitive levels of steric clash
[57]. As already discussed and clearly indicated by the labeled residues in the figure, substitu-
tions to tryptophans often generate aberrantly large folding free energies. Moreover, mutants
located near the active site are more likely to significantly contribute to changes in fitness by
affecting enzyme catalysis than protein folding. This has been borne out in one previous study
in which the predictive capacity of FoldX for B-lactamase MIC values was increased from 0.15
to 0.19 by excluding active site residues from consideration [39]. Discarding all of these differ-
ent mutant classes removes roughly 12% of the false positives, here defined to be mutants hav-
ing a fitness between 0 and 0.5 and a AAGy,4 value between -5 and 10 kcal/mol. This boosts the
percent of variance in fitness explained by our MD+FoldX calculations based upon linear fit-
ting to 23.8%, a slight, but not profound, improvement over our previous fit.

Correlation between firnberg fitness and experimental folding free energies. Given the
inability of computational folding free energies to fully explain fitness, one may ask if our lack
of predictive power stems from modeling errors. To address this point, in Fig 9, we plot fitness
vs. our experimental Wylie free energies. Keeping in mind the limitations of this small data set,
we see that there appears to be virtually no correlation between experimental folding free ener-
gies and fitness over this small range of folding free energy values. AAGy,; values less than 5
kcal/mol may, again, simply not be large enough to induce the structural changes needed to
clearly impact fitness. The fact that the same conclusion may be drawn based upon experimen-
tal and computational data adds credence to our computational results. While a larger experi-
mental free energy data set may end up manifesting a stronger correlation between fitness and
folding free energies, these results lead one to wonder whether taking other potential thermo-
dynamic predictors, such as binding free energy changes, into account may improve matters.

Improving fitness predictions with binding calculations

Since many of the mutants whose fitness values cannot be well explained by their AAGy,; val-
ues reside near the active site, going beyond all previous works, we lastly considered these
mutants’ computational free energies of binding, AAGy,;,,.. Based upon our ADV docking cal-
culations, we indeed find that many of the mutations that occur within 8 A of the alpha carbon
of $70 significantly increase their mutants’ binding free energies. Plotting these 8 A mutants’
fitness against both their folding and binding free energies as in Fig 10 shows that a larger frac-
tion of B-lactamase fitness can be explained by a combination of AAGy,; and AAGy;,,4 data.
Based upon non-linear fits to the functional forms given in Fig 10 (see the Supporting Infor-
mation for fitting details), the fit 7-values increase from 0.244 for folding alone and 0.304 for
binding alone to an r-value of 0.360 when both folding and binding are accounted for. The
larger r-value for binding than folding furthermore supports our assumptions about the more
important influence of binding on fitness for residues neighboring the active site.

Interestingly, we find that, given f-lactamase’s structure, mutants that affect folding are
overwhelmingly independent of mutants that affect binding, as can be seen from the limited
number of mutants that cluster around the AAGy,14-AAGy;ng diagonal in Fig 10 (we leave the
correlation between folding and binding suggested in Fig 7 for the residues neighboring S70,
S130, and K234 to future work). We would expect this situation to vary for proteins whose
folding and binding mechanisms are more intimately intertwined or that have a more deeply
concealed active site.
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As with folding, we can also analyze the form of the fitness vs. free energy of binding curve.
As shown in Fig 11, the probability distribution associated with the change in free energies of
binding also exhibits a precipitous decline beyond a AAGy,;,,; value of roughly 0.25 kcal/mol, a
comparatively tight threshold. Thus, the binding distribution may also be characterized by a
gamma distribution with a significant right skew. Although we have computed binding free
energies for a small set of mutants and a larger set may manifest different trends, we further-
more find that a comparatively small fraction seem to exhibit negative AAGy;,,; values. S8 Fig
in S1 File, which labels the largest AAGy,;,,; points in Fig 11 with their corresponding mutants,
additionally demonstrates that the majority of the mutants that most affect binding alter the
critical catalytic residues 70 and 130, as well as several of the residues known to influence catal-
ysis in the 230 range.

Conclusion

In closing, in this work, we have analyzed how predictive thermodynamic biophysical indica-
tors can be of organismal fitness, focusing in particular on how well protein folding and bind-
ing free energies can predict the fitness of f-lactamase mutants. As a prelude to our fitness
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Fig 10. B-lactamase fitness values as measured by Firnberg et al. vs. MD+FoldX predictions of the folding free energy and Autodock Vina
predictions of the binding free energy for residues within 8 A of the active site. Using a combination of folding and binding free energies as
predictors of fitness significantly improves their predictive capability beyond using them individually by accounting for both of the largely independent
(as may be gleaned from the plot) effects of folding and binding. Indeed, the r-value of 0.244 of the folding data alone and the r-value of 0.304 of the
binding data alone are improved to 0.360 when utilizing both data sets to explain the fitness. This data was fit by the two- and three-dimensional non-

linear functions provided on the plot.
https://doi.org/10.1371/journal.pone.0233509.g010

studies, we first presented the largest published data set of experimental S-lactamase AAG,q
values for mutants purposefully selected to predominantly affect folding. We subsequently
demonstrated that trends in these values can be reasonably predicted using high-throughput
modeling techniques such as MD+FoldX and PyRosetta. More specifically, we find that while
FoldX and PyRosetta can both qualitatively match experimental results, PyRosetta with its
more robust conformational sampling algorithms can more quantitatively predict the folding
free energies of surface-exposed S-lactamase single mutants. Interestingly, we find that both
MD+FoldX and PyRosetta are capable of making sensible predictions of double mutant free
energies of folding, even though they are not explicitly designed to do so and often do so for
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Fig 11. Scatterplot of the fitness vs. binding free energies produced using AutoDock Vina of f-lactamase mutants whose mutated residues are
within 8 A of the active site. The distribution is best captured by a I" distribution with & = 2.39 and 8 = 0.268.

https://doi.org/10.1371/journal.pone.0233509.9011

the wrong physical reasons. Using MD+FoldX predictions and previously acquired f3-lacta-
mase fitness data, we moreover demonstrated that large, positive AAGy,4 values are highly pre-
dictive of low fitness, but that AAGy,4 values only account for, at most, 24% of the variance in
B-lactamase fitness based on linear models. Adding credence to our simulation results, this
low overall predictive capacity was also borne out by comparisons among fitness and experi-
mental folding free energies. Lastly, going beyond previous work, we demonstrated that, for a
select set of mutants, the fraction of the fitness that can be accounted for by thermodynamic
measures can be improved by including binding free energy information. Nevertheless, the
fact that all combinations of our thermodynamic indicators consistently predict a small frac-
tion of the variance in S-lactamase fitness points to the fact that, to achieve its ambition of pre-
dicting fitness landscapes, the community must redouble its efforts to develop and analyze the
predictive capacity of other potential predictors of organismal fitness. Even though it is likely
that the techniques used here fail to correctly capture some fraction of the variance in the fit-
ness due to their inherent approximations, these techniques have been shown to perform as
well as many of the best empirical effective free energy function methods available and thus
our results point more to the deficiencies of thermodynamic predictors than to the deficiencies
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in our modeling. Indeed, our results strongly suggest that, at least for f-lactamase, non-ther-
modynamic measures play a central role in determining fitness.

Although the community’s understanding is still evolving, recent research points to the sig-
nificant impact the kinetics of catalysis [50], protein quality control [10], protein aggregation,
degradation, and interactions with other proteins more generally [6], and post-translational
modifications [82], among other non-thermodynamic factors, have on fitness. Accurately
modeling protein kinetics still represents a formidable challenge for simulators as doing so
either requires the ability to simulate out to long enough times to capture all relevant protein
dynamics or models that can reliably project out to these long times [83]. Despite the modeling
challenges at hand, it may be worthwhile to explore how much of even the short-time dynam-
ics of proteins can predict their fitness, as dynamical fingerprints of proteins have recently
been used to uncover new inhibitors [84] and understand allostery [85]. In fact, recent molecu-
lar dynamics simulations and NMR experiments performed on a select set of proteins and
their mutants have shown that mutations can have “propagatory effects” that can influence the
conformation and dynamics of residues up to 25 A away from them [86-88]. It would be fasci-
nating and worthwhile to eventually be able to relate such propagatory effects to fitness land-
scapes. Relatedly, seeing which aspects of recent, cutting-edge kinetic models of 3-lactamase
[89] can be used to predict fitness would be a next intriguing step. Sufficient progress has also
been made toward modeling post-translational modifications that one can readily imagine the
incorporation of these effects into high-throughput computational methodologies for mutants
in the very near future [90]. The computational modeling of protein quality control and tran-
scriptional and translational dynamics, however, remain in their infancy owing to the difficulty
of experimentally determining the strengths and frequencies of the protein-protein and pro-
tein-nucleic acid interactions involved which can be used to parameterize reaction network
models [91]. Given the wealth of information these models could yield, these represent an
exciting frontier that needs significantly more researcher attention moving forward.

Shy of achieving these blue sky ambitions, our results strikingly exemplify the nearer-term
need for computational techniques capable of predicting correlations among mutants, which
we will loosely term epistatic effects here. Although we studied a limited set of double mutants
and their constituent singles using a select set of computationally-expedient techniques, the
methods explored tended to yield sensible fits to double mutant data but for the wrong rea-
sons: MD+FoldX implicitly assumed that all double mutants possessed additive free energies,
whereas PyRosetta calculated all double mutants to possess superadditive free energies, regard-
less of whether the mutant experimental free energies were additive or not. Based on previous
literature, it is likely that other empirical effective free energy techniques will perform similarly
and that many techniques that more completely sample each mutant’s conformation space will
be too costly to bring to bear on the results of saturation mutagenesis experiments. This glar-
ingly limits our understanding of epistasis to the few, painstakingly obtained complete sets of
mutants available, making it difficult, if not impossible, to enunciate just how prevalent epi-
static effects are and what ultimate impact they have on evolution across species. While it is
true that the FoldX and PyRosetta free energy functions are parameterized on data sets over-
whelmingly comprised of single mutants and therefore can certainly be improved via machine
learning or better fitting to predict the folding free energies of proteins containing multiple
mutations, our data suggest that most of the inadequacies of these techniques stem from their
inability to fully relax mutant conformations. All-atom molecular dynamics or Monte Carlo
techniques are designed to realize such full relaxation, but typically at costs prohibitive for the
high-throughput studies of mutants necessary for understanding fitness landscapes. Thought
must therefore be dedicated to how best to relax the regions directly surrounding and connect-
ing mutations while maintaining efficiency. Possible paths to achieving the relaxation needed

PLOS ONE | https://doi.org/10.1371/journal.pone.0233509 May 29, 2020 20/26


https://doi.org/10.1371/journal.pone.0233509

PLOS ONE

Predicting the viability of beta-lactamase

may include using umbrella sampling [92], Hamiltonian-exchange-like techniques [93], or
simply resolving relaxation protocols compatible with FoldX and PyRosetta that can reliably
be used to relax the majority of multiply-mutated proteins.

Even though our results are limited to the S-lactamase protein, a protein exceptional in that
its catalytic function may be directly tied to organismal fitness in bacteria, there is significant
evidence that our findings are generalizable across many protein families [23]. We therefore
hope that our results motivate the community to develop the beyond-free energy computa-
tional tools that will be central to once-and-for-all seizing the holy grail of rapidly and accu-
rately predicting organismal fitness from molecular principles.

Supporting information

S1 File. Supplemental information file of supporting discussion and figures. Contains all
supporting discussion regarding f-lactamase and methods, as well as two supporting tables
and nine supporting figures.
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