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ABSTRACT Rapidly improving high-throughput sequencing technologies provide unprecedented opportunities for carrying out
population-genomic studies with various organisms. To take full advantage of these methods, it is essential to correctly estimate allele
and genotype frequencies, and here we present a maximum-likelihood method that accomplishes these tasks. The proposed method
fully accounts for uncertainties resulting from sequencing errors and biparental chromosome sampling and yields essentially unbiased
estimates with minimal sampling variances with moderately high depths of coverage regardless of a mating system and structure of the
population. Moreover, we have developed statistical tests for examining the significance of polymorphisms and their genotypic
deviations from Hardy–Weinberg equilibrium. We examine the performance of the proposed method by computer simulations and
apply it to low-coverage human data generated by high-throughput sequencing. The results show that the proposed method improves
our ability to carry out population-genomic analyses in important ways. The software package of the proposed method is freely
available from https://github.com/Takahiro-Maruki/Package-GFE.
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THE estimation of allele and genotype frequencies is fun-
damental in population-genetic studies. Most evolution-

ary inferences inpopulationgenetics, includingthoseconcerned
with population demography and natural selection, start with
this sort of information. When we study the relationship
between genotypes and phenotypes in a population, proper
inferences on genotype frequencies are also essential. There-
fore, it is crucial to correctly estimate allele and genotype fre-
quencies in population-genetic studies.

High-throughput sequencing technologies enable the ex-
tension of population-genomic analyses to a wide variety of
organisms, which will improve our ability to draw evolution-
ary inference in severalways. First, rapidly declining sequenc-
ing costs enable researchers to sequence many individuals in
a population. One of the major findings of recent population-
genomic studies is the discovery of polymorphic sites harbor-
ing rare alleles and their importance in genotype–phenotype
relationships. For example, Nelson et al. (2012) sequenced

202 drug-target genes in a sample of 14,002 human individ-
uals and found that rare alleles likely associated with disease
are abundant. Second, genome-wide analyses of polymor-
phisms provide a basis for much more accurate inferences
of natural selection and population demography than can
be obtained with more limited data (Luikart et al. 2003).
Finally, because most models for inferring population demog-
raphy assume neutral evolution, exclusion of sites that are
targets of natural selection is desirable, and this is substan-
tially easier to accomplish with whole-genome sequence
data.

Despite the promise, high-throughput sequencing technol-
ogies have two disadvantages: high sequence error rates,
which typically range from 0.001 to 0.01 with commonly
used sequencing platforms (Glenn 2011; Quail et al. 2012);
and genotypic uncertainties resulting from random chromo-
some sequencing. Because sequencing occurs randomly
among sites, individuals, and chromosomes within diploid
individuals, depths of coverage vary among them, and this
can introduce biases in subsequent population-genetic anal-
yses unless accounted for in a proper statistical framework
(Pool et al. 2010).

To overcome the above difficulties in estimating allele and
genotype frequencies fromhigh-throughput sequencing data,
several statistical methods have been recently developed
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(Hellmann et al. 2008; Johnson and Slatkin 2008; Jiang et al.
2009; Li et al. 2009b; Lynch 2009; Hohenlohe et al. 2010;
McKenna et al. 2010; DePristo et al. 2011; Kim et al. 2011;
Keightley and Halligan 2011; Li 2011; Le and Durbin 2011;
Nielsen et al. 2012; Vieira et al. 2013; Lynch et al. 2014).
Among these, Lynch (2009) developed a maximum-likelihood
(ML)method for estimating site-specific allele frequencies and
error rates from high-throughput sequencing data, assuming
Hardy–Weinberg equilibrium (HWE).

In this study, we generalize the ML allele-frequency
estimator to allow application to diploid organisms with
an arbitrary mating system and population structure. Spe-
cifically, we relax the assumption of HWE by adding to
the model parameters the site-specific disequilibrium co-
efficient (Weir 1996), which measures the deviation of
genotype frequencies from their HWE expectations. Fur-
thermore, we develop statistical tests for the significance
of polymorphisms and deviations from HWE. Examination
of the performance of the proposed method with computer
simulations reveals the generation of essentially unbiased
estimates of allele and genotype frequencies with moder-
ately high depths of coverage under general genetic
conditions. As an example application to empirical data,
we apply the proposed method to low-coverage, high-
throughput sequencing data of 81 individuals from the
CEU (Utah residents with ancestry from Northern and
Western Europe) population generated in the human
1000 Genomes Project (1000 Genomes Project Consortium
et al. 2012).

Methods

In the following, a maximum-likelihood (ML) method is de-
veloped for estimating the genotype frequencies at a site,
using high-throughput sequencing data from a diploid pop-
ulation, which need not be in Hardy–Weinberg equilibrium.
This is achieved by estimating three parameters from a pop-
ulation sample of observed site-specific sequence read data:
the major-allele frequency p, disequilibrium coefficient DA;

and the error rate per read per site e. The proposed method
assumes that the attribution of sequence reads to specific
individuals is known, e.g., by uniquely tagging the DNA from
each individual prior to sequencing. The two most abundant
nucleotides in the population sample are considered to be
candidates for alleles at the site.

For each individual i, the log-likelihood of the observed set
of site-specific sequence reads is

ln Li ¼ ln
X3
g¼1

ggPg
�
niM; nim; nie1 ; nie2

�2
4

3
5; (1)

where gg denotes genotype frequencies, with g1 ¼ p2 þ DA;

g2 ¼ 2fpð12 pÞ2DAg; and g3 ¼ ð12pÞ2 þ DA; and niM; nim;
nie1 ; nie2 are the observed number of reads of the most abun-
dant nucleotide (major allele) M (e.g., C), the second-most

abundant nucleotide (minor allele) m (e.g., T), and other
nucleotides e1 and e2 (e.g., in this case A and G), respec-
tively. PgðniM ; nim; nie1 ; nie3Þ is the probability of the specific
observed set of nucleotide reads given genotype g. Given
a total depth of sequence coverage at the site in individual
i, niT ¼ niM þ nim þ nie1 þ nie2 ; PgðniM ; nim; nie1 ; nie2Þ is calcu-
lated using the following formula for the multinomial
distribution,

Pg
�
niM; nim; nie1 ; nie2

�

¼ niT !
niM!nim!nie1 !nie2 !

PgðMÞniM PgðmÞnim Pgðe1Þnie1 Pgðe2Þnie2 ;

(2)

where PgðMÞ is the probability of observed nucleotide readM
with genotype g. PgðMÞ is a function of e and is obtained by
summing conditional probabilities of observed nucleotide
read M, given the true nucleotide on the sequenced chromo-
some chosen from the pair (Table 1). For example, when
g = 2 (Mm), the probability of nucleotide read M is
P2ðMÞ ¼ ð1=2Þð12 eÞ þ ð1=2Þðe=3Þ; the second term aris-
ing because we assume a random distribution of sequenc-
ing error types. In practice, because the multinomial
coefficient in Equation 2 is constant regardless of the
values of the parameters to be estimated, for computa-
tional efficiency, we reduce the preceding expression to

Pg
�
niM; nim; nie1 ; nie2

�¼ PgðMÞniM PgðmÞnim Pgðe1Þnie1 Pgðe2Þnie2 :

(3)

The ML estimates of the major-allele frequency, disequilib-
rium coefficient, and error rate are found by maximizing the
log-likelihood of the observed site-specific reads in the entire
population sample, which is calculated by summing the log-
likelihood (Equation 1) over N individuals:

ln L ¼
XN
i¼1

ln Li: (4)

To accurately and rapidly estimate the parameters, we take
two steps. We first analytically estimate the allele frequencies
and error rate and then conditioned on these approximations
estimate the disequilibrium coefficient by a grid search. In the
second step, we refine the preliminary ML estimates, using
Equation 4. The preliminary estimates of the major-allele
frequency and error rate are

p̂ ¼ 2nM 2 ne
2ðnM þ nm2 neÞ; (5)

ê ¼ 3
2
� ne
nT

; (6)

(Appendix), where nM ; nm; ne; and nT are the read counts of
the candidate major allele, minor allele, other nucleotides,
and their sum, respectively, in the population sample.
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A preliminary estimate of the disequilibrium coefficient
D̂A is obtained by substituting p̂ and ê into Equation 4 and
finding the value of DA that maximizes the likelihood of the
observed data. The minimum and maximum possible val-
ues of DA; DAmin and DAmax ; are functions of the allele-
frequency estimates and can be derived by noting that all
of the three genotype frequencies need to be between zero
and one,

DAmin ¼ max
h
2p̂2; 2 ð12p̂Þ2

i
(7)

DAmax ¼ p̂ð12 p̂Þ (8)

(Weir 1996). Because the maximization is now reduced to
a one-dimensional problem, D̂A is rapidly found by a search
over the span of possible DA with interval size 1=N:

Although the preliminary genotype-frequency esti-
mates are reasonable for many cases, in situations involv-
ing small numbers of individuals and/or high variance in
coverage among individuals, unnecessarily high estima-
tion variance can arise. To overcome this limitation, we
iteratively adjust the parameter estimates by examining
whether the set of parameter estimates yields a local
maximum in the likelihood surface, iterating by a localized
grid search. Specifically, for each current estimate of
major- and minor-homozygote frequency estimates ĝ1
and ĝ3; we evaluate the likelihood of all adjacent pairs
of estimates deviating by 1=N;where N is the sample size.
This procedure is repeated until no deviations from the
current ML estimate yield further increases in the
likelihood.

If the final ML estimate of the major-allele frequency p̂ is
less than one, the ML disequilibrium coefficient estimate D̂A

and inbreeding coefficient estimate f̂ are calculated as

D̂A ¼ ĝ1 2 p̂2 (9)

f̂ ¼ 2 � p̂ð12 p̂Þ2 ĝ2
2 � p̂ð12 p̂Þ ; (10)

where ĝ2 is the ML estimate of the heterozygote frequency.

Statistical test of candidate polymorphisms

To avoid false-positive polymorphisms, we statistically test
the significance of candidate polymorphisms by a likelihood-
ratio test (Kendall and Stuart 1979). Letting LLp and LLm
denote the maximum log-likelihood of the observed site-
specific data under the assumptions of polymorphism and
monomorphism, respectively, the likelihood-ratio test statis-
tic LRTp is

LRTp ¼ 2
�
LLp2 LLm

�
; (11)

where LLp is the maximum value of the log-likelihood given
by Equation 4. LLm is calculated as

LLm ¼
XN
i¼1

ln Lim; (12)

where the log-likelihood of the observed data for individual i
under the assumption that the population is fixed for the
major allele is

Lim ¼ 12 êmð ÞniM
êm
3

� �niT2niM

; (13)

where êm is the ML estimate of the error rate, and the mul-
tinomial coefficient is again ignored. êm is analytically found
by taking the derivative of the likelihood function with re-
spect to em and setting it equal to zero, yielding

êm ¼ nT 2nM
nT

; (14)

where nT and nM are the total number of nucleotide reads
and number of the most abundant nucleotide read, respec-
tively, in the population sample. LRTp is expected to be as-
ymptotically x2 distributed with 2 d.f.

Statistical test of Hardy–Weinberg equilibrium deviation

When a site is considered to be polymorphic by the preceding
test, the deviation from HWE can also be statistically evalu-
ated with a likelihood-ratio test, in this case using

LRTHWE ¼ 2ðLL2 LLHWEÞ; (15)

where LL is the maximum log-likelihood of the observed site-
specific data under the full model, calculated using Equation
4. LLHWE is the corresponding maximum log-likelihood of the
observed site-specific data assuming HWE, calculated by
substituting p̂ and ê into Equation 4 with D̂A set to zero.
LRTHWE is expected to be asymptotically x2 distributed with
1 d.f.

Sampling variance of the genotype-frequency estimates

If genotypes could be inferred from all individuals without
error, the sampling variances of the ML estimates of the
major-allele frequency p̂; major-homozygote frequency ĝ1 ;

and minor-homozygote frequency ĝ3 would be

Table 1 Probability of an observed nucleotide read as a function of
the individual genotype and error rate e

Nucleotide on a sequence read

Genotype M M e1 e2

1 (MM) 12 e
e

3
e

3
e

3

2 (Mm)
1
2
� ð12 eÞ þ 1

2
� e
3

1
2
� e
3
þ 1
2
� ð12 eÞ e

3
e

3

3 (mm)
e

3
12 e

e

3
e

3

M and m denote candidate alleles (the two most abundant nucleotide reads in the
population sample, e.g., C and T) and e1 and e2 denote other nucleotide reads (e.g.,
in this case A and G).
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Varð p̂Þ ¼ 1
2N

�
pþ g1 2 2p2

�
(16)

Varðĝ1Þ ¼
1
N
g1ð12 g1Þ (17)

Varðĝ3Þ ¼
1
N
g3ð12 g3Þ (18)

(Weir 1996). The sampling variances of the ML estimates by
the proposed method are expected to asymptotically ap-
proach these values with high depths of coverage.

However, in high-throughput sequencing data, depths of
coverage vary among sites, individuals, and chromosomes
within individuals. Therefore, Equations 16–18 need to be
modified. We do so by assuming that the depth of coverage
at each site per individual is Poisson distributed with mean m

and considering the effective numbers of sampled chromo-
somes and individuals (Maruki and Lynch 2014), defined
here at a single locus, and substituting them for 2N and N
in Equations 16–18. The effective number of sampled chro-
mosomes Nc is equivalent to the expected number of sampled
chromosomes covered by at least one sequence read, and that
of sampled individuals Ni is equivalent to the expected num-
ber of sampled individuals for which both alleles are covered
by at least one sequence read. These are given by

Nc ¼ 2N
�
12 e2m=2

�
(19)

Ni ¼ N 12
�
2em=2 2 1

�
e2m

� 	
: (20)

We substitute Nc for 2N in Equation 16 and Ni for N in Equa-
tions 17 and 18 to obtain the expected asymptotic sampling-
variance formulas.

Generation of high-throughput sequencing data by
computer simulations

To examine the performance of the proposed genotype-
frequency estimator, we generated high-throughput
sequencing data for N diploid individuals by computer sim-
ulations and applied the proposed method to the simulated
data. In the simulations, the probability of sampling an indi-
vidual with a particular genotype was equal to its relative fre-
quency. The frequencies of major and minor homozygotes
were specified by g1 and g3; respectively. The depths of cov-
erage were assumed to be Poisson distributed with mean m

among the individuals and were specified as

cðX;mÞ ¼ ðmÞXe2m

X!
; (21)

where X is a particular value of the coverage for an individ-
ual and c is a probability mass function of X. The sequences
from each individual were randomly chosen from the pair of
alleles. Sequence errors were randomly introduced at rate e
from the true nucleotide to one of the other three nucleo-

tides. A C++ program for simulated data analysis (Support-
ing Information, File S1) and its README (File S2) are
available.

Application to empirical data

To further examine the performance of the proposed method
whenapplied toactualdata,weanalyzed low-coverage(mean
43 ) phase I data of the 1000 Genomes Project Consortium
(1000 Genomes Project Consortium et al. 2012). Specifically,
we analyzed chromosome 6 data of individuals from the
CEU population. We downloaded BAM files of the Illumina-
sequencing read data from the Web site ftp-trace.ncbi.nih.
gov/1000genomes/ftp/phase1/data/. There were a total of
81 such files (File S3).We also downloaded the corresponding
reference genome (GRCh37) used for mapping the sequence-
read data from theWeb site ftp.1000genomes.ebi.ac.uk/vol1/
ftp/technical/reference/.

Then, we generated mpileup files of the position-based
sequence data, using SAMtools (Li et al. 2009a). The quartets
of nucleotide read counts at each position necessary for the
analyses were generated from thempileup files, using sam2pro
(http://guanine.evolbio.mpg.de/mlRho/sam2pro_0.6.tgz). To
minimize mismapping of sequence reads, we excluded sites
with the total depth of coverage in the population sample
(sum of the coverage over the individuals) greater than
twice the mean before subsequent analyses. Furthermore,
we excluded sites involved in putative repetitive sequences
predicted by RepeatMasker (http://www.repeatmasker.
org/) before subsequent analyses. We used the repeat-
masked GRCh37 reference genome downloaded from the
Ensembl Web site, ftp.ensembl.org/pub/release-75/fasta/
homo_sapiens/dna/ for this purpose. To avoid estimating
the parameters from only a few individuals, we required
that the total depth of coverage in the population sample
be at least 81.

To examine the spatial patterns of polymorphisms char-
acterized by the proposed method, we carried out sliding-
window analyses of the per-site heterozygosity estimates ĥ
[using 2p̂ð12 p̂Þ; where p̂ is the major-allele frequency es-
timate] and inbreeding coefficient estimates f̂ : To describe
fine spatial patterns of polymorphisms, we calculated the
weighted mean of ĥ or p̂ in each window (Hohenlohe et al.
2010). The sliding windows have a center position x (in
base pairs) and width 6w (in base pairs) and the center
position moves by a step of size s (in base pairs) (x ¼ i � s;
i ¼ 1; 2;⋯:). The weight was given by exp½2ðy2xÞ2=2w2�;
where y is a position of each site (in base pairs). In addi-
tion, to examine the potential confounding effect of mis-
assembly and mismapping on the spatial patterns of
polymorphisms, we also calculated the weighted means
of the depths of coverage and error rate estimates in the
same way. We used s ¼ 100; 000 and w ¼ 150; 000 in the
analyses. To examine the annotations in regions of inter-
est, we downloaded a GTF file on GRCh37 from the
Ensembl Web site, ftp.ensembl.org/pub/release-75/gtf/
homo_sapiens/.
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Comparison with other recently developed methods

To compare the performance of the proposed method with
that of other recently developed methods, we analyzed the
chromosome 6 data of 81 CEU individuals, using ANGSD
(Korneliussen et al. 2014). To make fair comparisons, we
made a list of sites analyzed by the proposed method and
supplied it to ANGSD so that both approaches were applied
to the same set of sites.

We estimated the allele frequencies from the BAM files of
the 81 individuals, using the method by Kim et al. (2011) and
Samtools (Li 2011) or GATK (McKenna et al. 2010) genotype
likelihoods, and compared their allele-frequency estimates to
those by the proposed method.

We estimated the folded site-frequency spectrum from the
BAM files of the 81 individuals, using the method by Nielsen
et al. (2012), and compared this to the results using the pro-
posed method. We calculated the site-allele-frequency likeli-
hood, assuming Hardy–Weinberg equilibrium, using Samtools
or GATK genotype likelihoods.

We estimated per-site inbreeding coefficients from the
BAM files of 81 individuals, using the method by Vieira
et al. (2013) and Samtools genotype likelihoods. We examined
the statistical significance of polymorphisms by the likelihood-
ratio test described in Kim et al. (2011). Using per-site inbreeding
coefficient estimates conditionedon significant polymorphisms at
the 5% level, we carried out their sliding-window analysis in the
way described above and compared the results with those using
the proposed method.

Data availability

The software package of the proposed method is available
from https://github.com/Takahiro-Maruki/Package-GFE.
File S1 contains a C++ program for simulated data analysis.
File S2 contains the README of the program. File S3 contains
names of the analyzed BAM files of Illumina-sequencing read
data of 81 individuals from the CEU population, which
are available from the Web site ftp-trace.ncbi.nih.gov/
1000genomes/ftp/phase1/data/.

Results

The performance of the proposed genotype-frequency es-
timator was examined using computer simulations described
above.Toexamine the results for theworst situations,weused
0.01 as the error rate, which is typically the upper bound in
commonly used sequencing platforms. We evaluated the
behavior of the proposed method under HWE and two
extreme conditions, where the inbreeding coefficient f
is minimized or maximized given a minor-allele frequency
q. Specifically, the frequencies of major homozygotes, heter-
ozygotes, and minor homozygotes are 12 2q; 2q; and 0,
respectively, when f is minimized. When f is maximized, the
frequencies of major homozygotes, heterozygotes, and minor
homozygotes are 12 q; 0, and q, respectively. The means of
the ML estimates of the allele frequencies were essentially

Figure 1 ML estimate of the minor-allele frequency as a function of its
true value. The inbreeding coefficient f is (A) minimized, (B) equal to zero
(Hardy–Weinberg equilibrium), and (C) maximized, given a minor-allele
frequency (MAF). The mean and standard deviation of the estimated MAF
are shown by the symbols and bars (shaded for mean 33 and solid for
mean 103), respectively. The diagonal line and the curves surrounding
the line represent the ideal situation where the ML estimate is equal to
the true value and theoretical asymptotic sampling standard deviation
(calculated as the square root of Equation 16), respectively. Number of
sampled individuals N = 100, error rate e = 0.01. A total of 10,000
simulation replications were run for each set of parameter values.
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unbiased under all three examined conditions, although fre-
quencies of rare alleles were slightly overestimated with low
depths of coverage, due to sequence errors (Figure 1). The
sampling standard deviations of the estimates became lower
and approached the theoretical minimum values with higher
depths of coverage under all conditions.

Themeansof theMLestimatesof the inbreeding coefficient
were somewhat biased when the mean depth of coverage m

was low and allele frequencies were extreme (q,0:1) (Fig-
ure 2). Specifically, they were upwardly biased when f
was minimized or equal to zero, due to sequencing just one
of the two alleles from heterozygous individuals. On the
other hand, they were downwardly biased when f was max-
imized, due to sequence errors. However, they were nearly
unbiased when q$0:1 even when m was low (3), and when
m was moderately high (10), they were essentially unbiased
under all of the examined conditions. We note that the biases
in the inbreeding coefficient estimates with low depths of
coverage are relatively large because they are ratios measur-
ing relative deviation of genotype-frequency estimates from
their HWE expectations. In fact, the corresponding biases in
the disequilibrium coefficient estimates are small (Figure
S1).

The means of the ML estimates of major-homozygote
frequencies were essentially unbiased even with low depths
of coverage (Figure S2, A, C, and E). On the other hand, the
means of the ML estimates of minor-homozygote frequencies
were slightly biasedwhenmwas low (3) (Figure S2, B, D, and
F). Specifically, they were slightly overestimated when f
was minimized or equal to zero. When f was maximized,
they were slightly underestimated. These biases in minor-
homozygote frequency estimates can be understood by
considering the interplay among the parameter estimates
(Table 2). In particular, they are closely related to the
biases in the inbreeding coefficient estimates. The sam-
pling standard deviation of the ML estimates of genotype
frequencies became lower and approached the theoretical
minimum values with higher depths of coverage under all
of the examined conditions.

We examined the power of the proposed method for
detecting true polymorphisms as a function of themean depth
of coverage m, rejecting the null hypothesis of monomor-
phism at a site at the 5% significance level (when LRTp in
Equation 11 was .5.991). Overall, the false-positive rate of
polymorphism detection was low and decreased with higher
m (Figure 3A).

Because the statistical power of polymorphism detection
should be dependent on theminor-allele frequency q at a site,
we also examined the false-negative rate of polymorphism
detection as a function of q (Figure 3, B–D). When q was
low, the false-negative rate was high, especially with low
depths of coverage. We note that this is because of the in-
herent limitations resulting from sampling only one of the
alleles and not because of faults of the proposed method.
The false-negative rate declined with higher q and m and
became zero when q$ 0:1 even when m ¼ 3 under all of

Figure 2 ML estimate of the inbreeding coefficient. The ML estimate of
the inbreeding coefficient f as a function of the minor-allele frequency is
shown when f is (A) minimized, (B) equal to zero (Hardy–Weinberg equi-
librium), or (C) maximized. The results are conditioned on significant
polymorphism at the 5% level. The mean and standard deviation of
the estimated f are shown by the symbols and bars (shaded for mean
33 and solid for mean 103), respectively. The curve in A represents the
ideal situation where the ML estimate is equal to the true value. The true
value of f is zero (shown by the line) and one in B and C, respectively.
Number of sampled individuals N = 100, error rate e = 0.01. A total of
10,000 simulation replications were run for each set of parameter values.
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the conditions. These results indicate that the proposed
method both is conservative and has reasonably high power
for detecting polymorphisms with minor-allele frequencies
$ 0:1:

In carrying out power analysis of the HWE-deviation de-
tection by the proposedmethod as a function ofm, we rejected
the null hypothesis of HWE at a site at the 5% significance
level (when LRTHWE in Equation 15 was .3.841). Because
we carry out the statistical test of HWE deviation only when
the site is considered to be polymorphic, and the power for
detecting polymorphisms depends on minor-allele frequen-
cies, we examined false-positive and -negative rates of HWE-
deviation detection as a function of q (Figure 4). Overall, the
false-positive rate was close to or below the specified signif-
icance level (0.05) with examined parameter values (Figure
4A). When m was low (3), the false-positive rate had
its minimum when q = 0.1. This pattern can be understood
by considering the sampling effects. When q , 0.1, the fre-
quency of minor homozygotes is low (,   0:01), and most
minor alleles exist in heterozygotes. When m is low, only
one of the alleles can be sequenced from heterozygotes, lead-
ing to excess of homozygotes and false deviation from HWE.
When q . 0.1, the frequency of heterozygotes becomes rel-
atively high, and they can be sampled more often than
expected, leading to excess of heterozygotes and false devi-
ation from HWE.

The false-negative rate of the HWE-deviation detection
decreasedwith increased q andm both when fwasminimized
and when f was maximized (Figure 4, B and C). The false-
negative rate was high when f was minimized and q was low
(q# 0:1) (Figure 4B). However, when q $ 0.3, the false-
negative rate was reasonably low both when m ¼ 3 and
m = 10. On the other hand, when f was maximized, the
false-negative rate was reasonably low (Figure 4C). In par-
ticular, when q$ 0:1; the false-negative rate was essentially
zero even when m ¼ 3: The much higher false-negative rate
with minimum f compared to that with maximum f, espe-
cially when q is low, is not due to faults of the proposed
method but due to the following factors. First, the deviation
of genotype frequencies from HWE, which can be measured
as the absolute value of f, is small with low q when f
is minimized compared to that when f is maximized.
When f is minimized, f ¼ q=ðq21Þ (Weir 1996) and
j f j ¼ q=ð12 qÞ; which is small when q is low. On the other
hand, when f is maximized, jf j is always equal to one, regard-
less of q. Second, only one of the alleles from a heterozygote
can be sampled when m is low. These make detecting the

excess of heterozygotes much more difficult compared to
detecting the deficit of heterozygotes.

Our evaluation of the performance of the proposedmethod
with the low-coverage (mean 43 ) sequencing data on chro-
mosome 6 for 81 individuals revealed 8,528,190 sites
with minor-allele frequency (MAF) estimates . 0; implying
potential polymorphisms. The vast majority (92%) of these
were singletons or doubletons, with the number of sites de-
creasing with increasing minor-allele count estimates (Figure
5A). Of these potential polymorphisms, 452,577 were signif-
icant at the 5% level, and 33% of these were singletons or
doubletons. These numbers are much less than the corre-
sponding values for the entire pool of sites with MAF esti-
mates . 0; reflecting both the difficulty with distinguishing
rare alleles from sequence errors and the limited power of the
statistical test for finding significant polymorphisms involv-
ing rare alleles with low depths of coverage. However, the
site-frequency distribution at significantly polymorphic sites
was nearly identical to that for the entire pool of sites with
MAF estimates . 0; provided theminor-allele count estimate
was .16 (MAF estimates . 0:1). In fact, the fraction of sig-
nificantly polymorphic sites is $ 95% when MAF estimates
are . 0:1 (Figure 5B), which is consistent with the simula-
tion results showing that the power of the method is high
with MAF . 0:1 even when depths of coverage are low.

We compared the performance of our allele-frequency
estimation with that by ANGSD (Korneliussen et al. 2014).
We estimated allele frequencies at each site, using the
method by Kim et al. (2011), and compared their allele-
frequency estimates with ours (Figure S3). Their allele-
frequency estimates with both Samtools and GATK genotype
likelihoods were similar to ours except when they were close
to zero or one. When allele-frequency estimates were close to
zero or one, their estimates were closer to zero or one than
ours.

Wecompared the site-frequency spectrumestimatedby the
proposed method with that by Nielsen et al. (2012). Of the
sites analyzed, 0.54% were significantly polymorphic at at
the 5% level by the proposed method. The fraction of poly-
morphic sites by Nielsen et al.’s method was similar to ours
but varied, depending on the genotype-likelihood model
used, 0.39% with the Samtools model and 0.51% with the
GATK model.

Consistent with the findings by Korneliussen et al. (2014),
the site-frequency spectrum (SFS) by ANGSD also varied,
depending on the genotype-likelihood model used (Figure
S4). Specifically, the SFS with the GATK model showed more

Table 2 Interplay among the parameter estimates as a function of the inbreeding coefficient f when the minor-
allele frequency q is low (q < 0.1) and depth of coverage is low (e.g., mean 33)

f q̂ f̂ Q̂

Minimized Slightly overestimated Somewhat overestimated Slightly overestimated
Zero (HWE) Slightly overestimated Somewhat overestimated Slightly overestimated
Maximized Slightly overestimated Somewhat underestimated Slightly underestimated

Q denotes minor-homozygote frequency, and the circumflex above a symbol denotes an estimate.
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polymorphic sites with lowminor-allele frequencies than that
with the Samtools model. The corresponding SFS by the pro-
posed method was more similar to Nielsen et al.’s (2012) SFS
with the GATK model than to that with the Samtools model.
Interestingly, our SFS showed more singletons and double-
tons and was smoother than either of SFSs estimated by
ANGSD. Furthermore, our SFS showed an excess of single-
tons and doubletons compared to the theoretical prediction
in a population with constant size (Ewens 2004), which is
consistent with previous results reporting that many human
populations show an excess of rare variants as a result of
recent population growth (e.g., Coventry et al. 2010; Keinan
and Clark 2012). These results indicate that the proposed
method may enable more accurate description of the SFS
and powerful detection of rare variants than the currently
widely used methods.

To evaluate the deviation of genotype frequencies from
HWE, we examined the inbreeding coefficient estimates as
a function of MAF estimates at the significantly polymorphic
sites (Figure 6A). The majority of the sites had inbreeding
coefficient estimates close to zero, and the mean estimate
(0.038) was also close to zero. Of the 452,577 significant
SNPs, only 18,595 (4%) significantly deviated from HWE.

These results are consistent with previous studies estimating
small amounts of inbreeding in human populations (e.g.,
Weir et al. 2004). When MAF estimates were low (,0.05),
the inbreeding coefficient estimates were relatively high, pre-
sumably due to the upward biases when MAFs are extreme
and depths of coverage are low. In fact, only a small fraction
(2%) of significant SNPs with MAF estimates ,0.05 signifi-
cantly deviated from HWE (Figure 6B). When MAF estimates
were intermediate (between 0.1 and 0.4), the mean of the
inbreeding coefficient estimates fluctuated around 20.01,
which is close to the intrinsic downward bias of the inbreed-
ing coefficient of 1/(2N 2 1) when ML methods are applied
to populations in HWE (Weir 1996).

Interestingly, when MAF estimates approached 0.5, the
inbreeding coefficient estimates suddenly dropped, anda sub-
stantial fraction (21%) of significant SNPs significantly de-
viated fromHWE. Because our inbreeding coefficient estimates
are essentially unbiasedwhenMAFs arehigh, this is not due to
an artifact of the proposed method. To examine the cause of
this observation, we examined the spatial patterns of poly-
morphisms on chromosome 6 by sliding-window analyses
(Figure 7). Consistent with previous studies (Garrigan and
Hedrick 2003; Solberg et al. 2008), heterozygosity was highly

Figure 3 Power analysis of poly-
morphism detection by the pro-
posed method. The significance
of the polymorphism test is set
at the 5% level. (A) The false-pos-
itive rate of polymorphism detec-
tion as a function of the mean
depth of coverage is shown. The
false-negative rate of polymor-
phism detection as a function of
the minor-allele frequency q is
shown when the inbreeding co-
efficient is (B) minimized, (C)
equal to zero (Hardy–Weinberg
equilibrium), or (D) maximized.
The solid curve in B–D represents
the theoretical minimum of the
false-negative rate, which is due
to sampling only one of the
alleles and calculated as (1 2
2q)N, (1 2 q)2N + q2N, and (1 2
q)N + qN, respectively, where N
denotes the number of sampled
individuals. N = 100, error rate e =
0.01. A total of 10,000 simula-
tion replications were run for
each set of parameter values.
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elevated in the region around 33107 bp, where many hu-
man leukocyte antigen (HLA) genes are clustered (Figure
7A). However, inbreeding coefficient estimates in the HLA
region (28,477,797–33,448,354 bp) were not very different
from those in the other regions (Figure 7C).

The heterozygosity was also highly elevated compared to
the others in the region around 5:743 107; but here the in-
breeding coefficient estimates were highly negative com-
pared to those in the other regions. The unusual excess of
heterozygote frequency estimates in this region was also seen
by sliding-window analysis of the disequilibrium coefficients,
which were highly negative in this region but close to zero in
themajority of the other analyzed regions (Figure S5A). Con-
trary to our analyses, the corresponding inbreeding coeffi-
cient estimates by the method of Vieira et al. (2013) were
close to zero in this region, implying HWE (Figure S5B). In
fact, Vieira et al.’s method estimated no negative inbreeding

Figure 5 Polymorphisms on human chromosome 6 characterized by the
proposed method. (A) The distribution of polymorphic sites in terms of
their minor-allele count estimates. The vast majority of sites with nonzero
MAF estimates are singletons and doubletons (5,923,034 and 1,951,233
sites, respectively) and these results are not shown. All results are shown
for significant (at the 5% level) SNPs. (B) The fraction of significantly
polymorphic sites as a function of their minor-allele count estimates.

Figure 4 Power analysis of the detection of deviation from Hardy–Weinberg
equilibrium by the proposed method. The results are conditioned on signif-
icant polymorphism at the 5% level. The significance of the Hardy–Weinberg
equilibrium (HWE) deviation test is also set at the 5% level. (A) The false-
positive rate of HWE-deviation detection as a function of the minor-allele
frequency (MAF) is shown. (B and C) The false-negative rate of HWE-
deviation detection as a function of MAF is shown when the inbreeding
coefficient is (B) minimized or (C) maximized. Number of sampled indi-
viduals N = 100, error rate e = 0.01. A total of 10,000 simulation
replications were run for each set of parameter values.
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coefficients. Although the error rate estimates in this region
were not very different from those in the other regions
(Figure S5C), depths of coverage in this region were some-
what higher compared to those in the others (Figure 7, B and
D), raising the possibility of misassembly and subsequent
mismapping. In addition, the overall error rate estimates
were positively correlated with depths of coverage outside
this region, which is consistent with recent findings that error
rates in genotype calling increased with higher depths of
coverage with Illumina sequencing data (Wall et al. 2014).

The peak of negative inbreeding coefficients was at the
PRIM2 gene, which has been suggested to be a putative target
of balancing selection by some researchers (e.g., Hodgkinson
and Eyre-Walker 2010; DeGiorgio et al. 2014). Because the
elevation of the coverage in the region around the PRIM2
gene is not very extreme and the gene is functionally impor-
tant, distinguishing the two hypotheses (balancing selection

vs. misassembly) for the unusual polymorphism estimates
around the gene is not easy. However, a recent study
(Genovese et al. 2013) found evidence of misassembly in
the region around the PRIM2 gene and the existence of “cryp-
tic” segmental duplicates missing from the reference genome.

Discussion

The rapidly declining cost of high-throughput sequencing
provides unprecedented opportunities for carrying out pop-
ulation-genomic analyses in various organisms. To take full
advantage of these opportunities, it is essential to accurately
estimate allele and genotype frequencies without assuming
HWE. Although HWE is often assumed in previous allele-
frequency estimators (e.g., Lynch 2009; Keightley and
Halligan 2011; Kim et al. 2011), this condition is certainly
violated in some organisms and environmental/sampling
settings. Some loci deviate from HWE even in randomly
mating populations due to, for example, natural selection.

Our ML method relaxes the assumption of HWE in the
allele-frequency estimator of Lynch (2009) and estimates
site-specific allele frequencies and error rates directly from
sequence-read data. Because sequencing error rates are
known to vary among sites (Nakamura et al. 2011), estimat-
ing site-specific error rates is useful for factoring out
confounding effects on allele-frequency estimation. By esti-
mating error rates from the data themselves, and not relying
on ad hoc estimates, our method factors out errors beyond
those resulting from sequencing processes, e.g., those intro-
duced during sample preparation and others that cannot be
inferred from read quality scores alone. Because there is
growing interest in carrying out population-genomic analyses
using time-series data (e.g., Franssen et al. 2015), where
errors may be introduced during long storage periods or error
rates may change owing to technological changes, our
method should have an advantage over others that rely sim-
ply on read quality scores (e.g., Li et al. 2009b; DePristo et al.
2011; Li 2011).

Another advantage of our method is the incorporation
into the likelihood function of uncertainties in individual
genotypes and sampling of parental chromosomes in diploid
organisms. Because of the random sequencing of parental
chromosomes, confident inference of genotypes of diploid
individuals is difficult to achieve when the depth of coverage
is low, and many other methods use an arbitrary coverage
cutoff to avoid this problem. However, the latter procedure
can lead to the loss of substantial information, and recent
studies have shown that allele frequencies directly estimated
from mapped sequence reads using ML methods are un-
biased, whereas those obtained via genotype calling are
biased when the depth of coverage is low (e.g., Kim et al.
2011; Han et al. 2014).

In addition to yielding allele-frequency estimates, the pro-
posed method enables estimation of genotype frequencies,
which is necessary for examining HWE deviations, and hence
can be applied to populations with arbitrary mating systems

Figure 6 Inbreeding coefficient estimates on human chromosome 6.
Results are conditioned on significant polymorphism at the 5% level.
(A) The midpoint value of the minor-allele frequency (MAF) estimate
and mean (symbols) 6 SE (bars) of inbreeding coefficient estimates are
shown in each of the MAF bins with equal size of 0.02. The mean and
standard error of the inbreeding coefficient estimates among all signifi-
cant SNPs are 0.038 and 0.00037, respectively. (B) The fraction of signif-
icant SNPs significantly (at the 5% level) deviating from Hardy–Weinberg
equilibrium (HWE), as a function of their MAF estimates.
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and/or internal population structure. Using computer simu-
lations, we showed that our method yields essentially un-
biased estimates of allele and genotype frequencies with
moderately high depths of coverage. Furthermore, the sam-
pling variances of our estimates asymptotically approach the
theoretically minimum values at high depths of coverage,
indicating that the method maximally exploits the informa-
tion in samplingdata. Finally,weprovide systematic statistical
tests, which are conservative and have reasonably high power
for testing the significance of polymorphisms and HWE devi-
ations. Althoughwe focused on analyzing diploid populations
in this study, the allele-frequency estimation and significance
test of polymorphisms can be similarly made for haploid
populations.

We examined the performance of the proposed method by
applying it to low-coverage (mean 43 ), high-throughput
sequencing data of 81 humans. The abundance of rare alleles
in our site-frequency spectrum of significant SNPs indicates
that the proposed method has reasonably high power for
detecting polymorphic sites harboring rare alleles even with
low depths of coverage. Although the vast majority of the
examined SNPs did not significantly deviate from HWE, by
examining the distribution of the estimated inbreeding coef-
ficients of the SNPs and statistically testing the significance of
their deviations from HWE, we found a region most likely to
be misassembled in the reference genome (GRCh37). Our
statistical framework for identifying SNPs deviating from
HWE is especially useful for finding unreliable regions due
to misassembly and also carrying out subsequent population-
genetic analyses identifying putative targets of natural selec-
tion. To promote the use of our method with other data sets,

we uploaded its software package at https://github.com/
Takahiro-Maruki/Package-GFE.

To find the optimal sequencing strategy for estimating
genotype frequencies under limited research budgets, we
examined the root mean-square deviation (RMSD) of the
inbreeding coefficient estimates as a function of the mean
depth of coverage m, fixing the product of m and N (the num-
ber of sampled individuals) at 1000, using computer simula-
tions (Figure S6). Unless the focus is on genotypes at sites
with extreme frequencies (minor-allele frequency ,0.05),
the smallest RMSD is generally achieved when the mean
depth of coverage is somewhere between 43 and 103. Be-
cause the variability of the depth of coverage in real data is
higher than the Poisson expectation (Quail et al. 2012),
which we relied upon in simulations, we recommend a mean
of �   103 as the optimal depth of coverage for population-
genomic studies examining genotype frequencies.

The proposedmethod greatly enhances our ability to carry
out subsequent population-genomic analyses. For example,
by incorporating genotype-frequency estimates in genotype
calling using Bayes’ theorem, the accuracy of genotype calls
can be improved (e.g., Martin et al. 2010; Nielsen et al. 2012).
Another useful application involves the estimation of Wright’s
fixation indexes. The proposed method enables accurate and
rapid estimation of allele frequencies in a population regard-
less of its mating system and population structure, which is
necessary for estimating FST: Genotype-frequency estimates
not only enable better estimation of FST but also enable esti-
mation of FIS (Nei and Chesser 1983; Weir 1996), which is
important for improving our ability to identify putative targets
of natural selection (Black et al. 2001). Finally, the accurate

Figure 7 Sliding-window analyses
of polymorphisms on human chro-
mosome 6. (A and B) Weighted
means of the per-site heterozy-
gosity estimates and depths of
coverage in the population sam-
ple among sites with data in each
window. (C and D) Weighted
means of the inbreeding coeffi-
cient estimates and depths of
coverage in the population sam-
ple among significantly (at the
5% level) polymorphic sites in
each window. s = 100,000 (bp)
and w = 150,000 (bp), used for
defining the step size and width
of the windows, respectively.
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and rapid estimation of allele frequencies by the proposed
method greatly reduces the computational demands in esti-
mating linkage disequilibrium at the population level (Maruki
and Lynch 2014). In all of these applications, our systematic
statistical tests can play useful roles in avoiding the down-
stream analysis of false polymorphisms.
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Appendix

PreliminaryMLestimates of themajor-allele frequency and error rate can be analytically found in the followingway. LetfM ;fm;

and fe denote the probability of the observed major-allele read count, minor-allele read count, and read count of the other
nucleotides, respectively. Then, each of these is calculated by summing the probability of the observed read over the three
genotypes:
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The log-likelihood of the observed set of site-specific sequence reads for individual i, lnLi; is

ln Li ¼ niM lnfM þ nim lnfm þ nie lnfe;

where nie ¼ nie1 þ nie2 : The preliminaryML estimates of themajor-allele frequency p̂ and error rate ê are obtained by taking the
derivative of the log-likelihood with respect to p and e, summing each of the derivatives over the individuals, and equating
them to zero,

p̂ ¼ 2nM 2 ne
2ðnM þ nm 2neÞ;

ê ¼ 3
2
� ne
nT

;

where nM ; nm; ne; and nT are the read counts of themajor allele, theminor allele, other nucleotides, and their sum, respectively,
in the population sample. These estimators are identical to those that we derived for pooled-sample high-throughput sequenc-
ing data (Lynch et al. 2014).
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Figure S1   ML estimate of the disequilibrium coefficient.  The ML estimate of the disequilibrium coefficient DA as a function of 
the minor-allele frequency is shown when DA is A) minimized, B) equal to zero (Hardy-Weinberg equilibrium), or C) maximized.  
The results are conditioned on significant polymorphism at the 5% level.  The mean and standard deviation of the estimated DA 
are shown by the point and bar (gray for mean 3⨯ and black for mean 10⨯), respectively.  A, C) The curve represents the ideal 
situation where the ML estimate is equal to the true value.  B) The true value of DA is zero (shown by the line).  Number of 
sampled individuals N = 100, error rate ε = 0.01.  A total of 10,000 simulation replications were run for each set of parameter 
values. 
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Figure S2   ML estimates of the genotype frequencies.  The ML estimates of the A, C, E) major-homozygote frequency and B, D, 
F) minor-homozygote frequency as functions of the minor-allele frequency are shown when the inbreeding coefficient is A, B) 
minimized, C, D) equal to zero, or E, F) maximized.  The mean and standard deviation of the estimates are shown by the points 
and bars (gray for mean 3× and black for mean 10×), respectively.  The middle curve represents the ideal situation where the 
estimate is equal to the true value.  The upper and lower curves represent the theoretical asymptotic sampling standard 
deviation from the mean (calculated as the square root of Equation 17 or 18).  Number of sampled individuals N = 100, error 
rate ε = 0.01.  A total of 10,000 simulation replications were run for each set of parameter values.   
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Figure S3   Comparison of the allele-frequency estimates on human chromosome 6 by different methods.  The allele 

frequencies estimated using the method by Kim et al. (2011) (ANGSD) and the A) Samtools or B) GATK genotype likelihood 

model is compared to those estimated using the proposed method.  The points and bars represent the mean and standard 

deviation of the ANGSD allele-frequency estimates in each bin of the allele-frequency estimates of size 0.05 by the proposed 

method.  
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Figure S4   Comparison of site-frequency spectra on human chromosome 6 estimated by different methods.  The site-frequency 
spectrum estimated using the method by Nielsen et al. (2012) (ANGSD) and the Samtools or GATK genotype likelihood model is 
compared to that estimated using the proposed method.  The theoretical prediction is in a population with constant size, and is 

given by [1/j + 1/(162-j)]/[∑ 1/𝑘]161
𝑘=1  for 1 ≤ j < 81 and (1/j)/[∑ 1/𝑘]161

𝑘=1  for j = 81, where j is the minor-allele count (Ewens 
2004).    
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Figure S5   Sliding-window analyses of parameter estimates on human chromosome 6.   A) Sliding-window analysis of the 
disequilibrium coefficient estimates by the proposed method.  B) Sliding-window analysis of the per-site inbreeding coefficients 
estimated by the method by Vieira et al. (2013).   C) Sliding-window analysis of the error rate estimates by the proposed 
method.  A, B) Results are conditioned on significant polymorphism at the 5% level.  C) Results are based on all sites with 
sequence-read data.  s = 100,000 (bp) and w = 150,000 (bp) used for defining the step size and width of the windows, 
respectively.    



 T. Maruki and M. Lynch 7 SI 

0 5 10 15 20

R
M

SD
 (

In
b

re
e

d
in

g 
C

o
ef

fi
ci

e
n

t 
Es

ti
m

at
e)

0.0

0.1

0.2

0.3

0.4

0.5

MAF 0.01

MAF 0.05

MAF 0.1

MAF 0.3

A

 

0 5 10 15 20

R
M

SD
 (

In
b

re
e

d
in

g 
C

o
e

ff
ic

ie
n

t 
Es

ti
m

at
e

)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

MAF 0.01

MAF 0.05

MAF 0.1

MAF 0.3

B

 

Mean Coverage

0 5 10 15 20

R
M

SD
 (

In
b

re
e

d
in

g 
C

o
e

ff
ic

ie
n

t 
Es

ti
m

at
e

)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

MAF 0.01

MAF 0.05

MAF 0.1

MAF 0.3

C

 

Figure S6   Root mean square deviation of the inbreeding coefficient estimates, as a function of the mean depth of coverage, 
estimated from a fixed number of total sequence reads.  The product of the mean depth of coverage 𝜇 and number of sampled 
individuals N is fixed at 1,000 such that a two-fold increase in  𝜇 resulted in a two-fold decrease in N.  The root mean square 
deviation (RMSD) when the inbreeding coefficient is A) minimized, B) equal to zero (Hardy-Weinberg equilibrium), or C) 
maximized is shown.  Results are conditioned on significant polymorphism at the 5% level.  The error rate ε = 0.01.  A total of 
10,000 simulation replications were run for each set of parameter values.      

 



8 SI T. Maruki and M. Lynch   

File S1 

Computer program for simulated data analysis. 

File S1 is available as a text file at www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.179077/-/DC1. 



 T. Maruki and M. Lynch  9 SI 

File S2 

README of the computer program for simulated data analysis. 

File S2 is available as a PDF file at www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.179077/-/DC1. 
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File S3 

Names of the analyzed BAM files of the Illumina-sequencing read data of 81 individuals from the CEU population. 

File S3 is available as a PDF file at www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.179077/-/DC1. 
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