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Abstract

Let Xk = (xk1, · · · , xkp)′, k = 1, · · · , n, be a random sample of size n coming from

a p-dimensional population. For fixed integer m ≥ 2, consider a hypercubic random

tensor T of m-th order and rank n with

T =

n∑︂
k=1

Xk ⊗ · · · ⊗Xk⏞ ⏟⏟ ⏞
m multiple

=
(︂ n∑︂

k=1

xki1xki2 · · ·xkim
)︂
1≤i1,··· ,im≤p

.

Let Wn be the largest off-diagonal entry of T. We derive the asymptotic distribution

of Wn under a suitable normalization for two cases. They are the ultra-high dimension

case with p → ∞ and log p = o(nβ) and the high-dimension case with p → ∞ and

p = O(nα). The normalizing constant of Wn depends on m and the liming distribution

of Wn is a Gumbel-type distribution involved with parameter m.
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1 Introduction

In this paper we will study the limiting properties of a hypercubic random tensor con-

structed by high-dimensional random data. Let p ≥ 2 be an integer and X ∈ Rp be a

random vector. The distribution of X serves as a population distribution. Let Xk =

(xk1, · · · , xkp)′, 1 ≤ k ≤ n, be a random sample of size n from the population distribution

generated by X, that is, X,X1, · · · ,Xn are independent random vectors with a common

distribution. The data matrix X = (xki)1≤k≤n,1≤i≤p produces a hypercubic random tensor

T ∈ Rp×···×p with order m and rank n defined by

T =
n∑︂
k=1

Xk ⊗ · · · ⊗Xk⏞ ⏟⏟ ⏞
m multiple

=
(︂ n∑︂
k=1

xki1xki2 · · ·xkim
)︂
1≤i1,··· ,im≤p

. (1.1) {?}

Researchers obtain some limiting properties of tensor data defined in (1.1). By using similar

techniques to those in the random matrix theory, Ambainis and Harrow (2012) obtain a

limiting property of the largest eigenvalue and the limiting spectral distribution of random

tensors. Tieplova (2016) studies the limiting spectral distribution of the sample covariance

matrices constructed by the random tensor data. Lytova (2017) further considers the central

limit theorem for linear spectral statistics of the sample covariance matrices constructed by

the random tensor data. Shi et al. (2018) apply limiting properties of the random tensors

to a anomaly detection problem in the distribution networks.

In this paper, we will study the behavior of the largest off-diagonal entry of the random

tensor T when both n and p tend to infinity. Precisely, we will work on the asymptotic

distribution of

Wn := max
1≤i1<···<im≤p

1√
n

⃓⃓⃓ n∑︂
k=1

xki1xki2 · · ·xkim
⃓⃓⃓

(1.2) {?}

as n→ ∞ and p→ ∞.

For fixed m ≥ 2, when the entries of the data matrix X = (xki)1≤k≤n,1≤i≤p are i.i.d.

random variables, we will show that the limiting distribution of Wn with a suitable nor-

malization is the Gumbel-type distribution involved with parameter m. Two typical high-

dimensional cases are considered: the ultra-high dimension with p→ ∞ and log p = o(nβ)

and the high-dimension with p → ∞ and p = O(nα). In both cases we obtain the limiting

distributions of Wn, which is different from the case that m = 2.

When m = 2, the tensor T = X′X turns out to be the sample covariance matrix, which

is a very popular statistic in the multivariate statistical analysis. The largest entry of the

sample covariance matrix has been studied actively. In particular, assuming n/p → γ > 0

and E|x11|30+ϵ <∞ for some ϵ > 0, Jiang (2004) proves that

W 2
n − 4 log p+ log log p

d−→W∞ (1.3) {?}
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where random variable W∞ has distribution function F (z) = e
− 1√

8π
e−z/2

, z ∈ R. Here and

later the notation “
d−→” means “converges in distribution to”.

A sequence of results are then obtained to relax the moment condition that E|x11|30+ϵ <
∞. For example, Zhou (2007) shows that (1.3) holds if

x6P (|x11x12| > x) → 0. (1.4) {?}

Liu et al. (2008) proves that (1.3) holds provided a weaker condition is valid, that is,

n3P (|x11x12| >
√︁
n log n) → 0. (1.5) {?}

Besides the above two results, Li and Rosalsky (2006) and Li et al. (2010, 2012) further

study the moment condition for which (1.3) is true. In a different direction, Liu et al.

(2008) obtains (1.3) for the polynomial rate such that p = O(nα); Cai and Jiang (2011)

derive (1.3) for the ultra-high dimensional case with log p = o(nα) for some α > 0. For the

compressed sensing problems and testing problems related to Wn, one is referred to the

papers by, for instance, Cai and Jiang (2011), Cai et al. (2013), Xiao and Wu (2013) and

Shao and Zhou (2014).

In this paper, for all m ≥ 2 we study Wn from (1.2). We prove that Wn with a suitable

normalization converges to the Gumbel-type distribution. The normalizing constant and

the liming distribution all depend on m. These results will be stated in the next section

and discussions will be made afterwards.

Throughout the paper, the symbols
p−→ and

d−→ means convergence in probability and

convergence in distribution, respectively. We will also denote bn = o(an) if limn→∞ bn/an =

0; the notation bn = O(an) stands for that {|bn/an|; n ≥ 1} is a bounded sequence; an ∼ bn

if limn→∞ an/bn = 1.

The rest of the paper is organized as follows. The main results of the paper as well

as discussions are stated in Section 2. In Section 3, we will first present and prove some

technical lemmas, and then prove the main results.

2 Main Results

We assume that p depends on n and simply write p for brevity of notation. In case there

is a possible confusion, we will write p = pn. Review X = (xki)1≤k≤n,1≤i≤p and assume

{xki; 1 ≤ k ≤ n, 1 ≤ i ≤ p} are i.i.d. random variables with

Ex11 = 0 and Ex211 = 1. (2.1) {?}

The quantity Wn is defined as in (1.2) with m ≥ 2. In the following theorems the limiting

distribution is the Gumbel distribution with distribution function

Fθ(z) = exp
{︂
− 1

m!
√
mπ

e−z/2
}︂
, z ∈ R. (2.2) {?}
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THEOREM 1 Assume (2.1) with Eet0|x11|
α
< ∞ for some 0 < α ≤ 1 and t0 > 0. Let

m ≥ 2 be a fixed integer and β = α
2m−α . If p → ∞ and log p = o(nβ) as n → ∞, then

W 2
n − 2m log p+ log log p

d−→ θ, where θ has distribution function Fθ(z) as in (2.2).

The above theorem studies the ultra-high dimensional case, that is, the dimension p

can be at an exponential order of the size n, and the assumption of Eet0|x11|
α
< ∞ for

some 0 < α ≤ 1 and t0 > 0 is needed to derive the limiting distribution. Next we will

consider a popular high-dimensional case in the literature such that p = pn is no larger

than a polynomial rate of n. We then get the same limiting distribution of Wn under a

much weaker moment condition.

THEOREM 2 Let α > 0 and m ≥ 2 be constants such that E
[︁
|x11|τ1 logτ2(1+ |x11|)

]︁
<∞

with τ1 = 4mα + 2 and τ2 = 2mα + 3
2 . If p → ∞ and p = O(nα), then W 2

n − 2m log p +

log log p
d−→ θ, where θ has distribution function Fθ(z) as in (2.2).

By the Slutsky lemma, the above theorems imply the following.

COROLLARY 1 Assume the conditions from either Theorem 1 or Theorem 2 holds. Then,

Wn√
log p

p−→
√
2m.

As discussed earlier, the largest entry of a sample covariance matrix have been studied

with the limiting distribution stated in (1.3). In this paper we study the same problem

for m-order random tensors, in which the setting is a more general. We find that the

normalizing constant ofW 2
n is 2m log p−log log p and the corresponding limiting distribution

is given in (2.2). Both quantities indeed depend onm. We now make some further comments

below.

1. Take m = 2, both Theorems 1 and 2 say

W 2
n − 4 log p+ log log p

d−→ θ ∼ Fθ(z) = e
− 1√

8π
e−z/2

,

which is consistent with (1.3).

2. Now, instead of studying Wn from (1.2), we consider

W̃n := max
1≤i1<···<im≤p

1√
n

n∑︂
k=1

xki1xki2 · · ·xkim . (2.3) {?}

Then, by using the same proofs except changing “|N(0, 1)|” to “N(0, 1)” in (3.26) and

(3.39), Theorems 1 and 2 still hold with the limiting distribution “Fθ(z)” from (2.2) is

replaced by “F (z)”, where

F (z) = exp
{︂
− 1

2m!
√
mπ

e−z/2
}︂
, z ∈ R.
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Corollary 1 still holds without change if “Wn” is replaced by “W̃n”.

3. Recently Fan and Jiang (2018) study the liming behavior of W̃n from (2.3) with

m = 2 and with (x11, · · · , x1p)′ ∼ N(0,Σ), where Σii = 1 for each i and Σij ≡ ρ > 0 for all

i ̸= j. The limiting distribution of W̃n is the Gumbel distribution if ρ is very small; that is

Gaussian if ρ is large; that is the convolution of the Gumbel and the Gaussian distributions

if ρ is in between. The proof is very involved. Such setting can also be extended to W̃n

from (2.3) for any m ≥ 3 with a lengthy argument. We leave it as a future work.

4. Assume that m = 2 and that (x11, · · · , x1p)′ ∼ N(0,Σ), where Σ is a banded matrix.

Cai and Jiang (2011) study Wn from (1.2) and apply their results to compressed sensing

problems and tests of covariance structures. It will be interesting to see if similar dependent

structures can be carried out for Wn with m ≥ 3.

5. The proofs of Theorems 1 and 2 rely on the Chen-Stein Poisson approximation

method and the moderate deviations. The major technicality comes from computing λ and

bounding b2 appeared in Lemma 3.1. The major difference between our proofs here and

those in the literature is that the evaluation of λ is more involved. Furthermore, we need a

significant effort to investigate b2. Due to the assumption m ≥ 3 the dependent structure

appearing in b2 becomes more subtle; see Lemmas 3.4 and 3.6 for details.

6. Taking m = 2 and α = 1 in Theorem 2, the required moment condition in the

theorem becomes E
[︁
|x11|10 log5.5(1 + |x11|)

]︁
< ∞. This is stronger than (1.4) and (1.5).

In fact it is Lemma 3.6 that requires the above condition. It is possible that the moment

assumption in Theorem 2 can be relaxed. We leave it as a future project.

7. In the paper, the random tensor T is constructed by the sample of a single multi-

variate population. In fact, the results of Theorems 1 and 2 can also be extended to the

tensor constructed by the samples of several populations with the same dimension p. Let

X(l) ∈ Rp; l = 1, 2, · · · ,m be m random vectors, and the p entries of X(l) be i.i.d. random

variables for each l. The probability distribution of each vector generates a population

distribution. For each 1 ≤ l ≤ m, let (x
(l)
k1, · · · , x

(l)
kp)

′, k = 1, · · · , n, be a random sample of

size n from the population X(l). We then have a data matrix X(l) = (x
(l)
ki )1≤k≤n,1≤i≤p and

we define a special hypercubic random tensor T′ ∈ Rp×···×p with order m and rank n by

T′ =
(︂ n∑︂
k=1

x
(1)
ki1
x
(2)
ki2

· · ·x(m)
kim

)︂
1≤i1,··· ,im≤p

.

Denote the largest element of T′ by

W ′
n = max

1≤i1<···<im≤p

1√
n

⃓⃓⃓ n∑︂
k=1

x
(1)
ki1
x
(2)
ki2

· · ·x(m)
kim

⃓⃓⃓
.

By the same argument as those in the proofs of Theorems 1 and 2, the two theorems still

hold if “Wn” is replaced by “W ′
n” and some uniform moment conditions on x

(l)
11 , 1 ≤ l ≤ m

are assumed.
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3 Proofs

3.1 Some technical lemmas

We will start with listing some technical lemmas in our proofs. The first one is a classical

Stein-Chen Poisson approximation lemma, which is frequently used in studying behaviors

of maximum of almost mutual independent random variables. The following result is a

special case of Theorem 1 of Arratia et al. (1989).

LEMMA 3.1 Let {ηα, α ∈ I} be random variables on an index set I and {Bα, α ∈ I} be a

set of subsets of I, that is, for each α ∈ I, Bα ⊂ I. For any t ∈ R, set λ =
∑︁

α∈I P (ηα > t),

Then we have ⃓⃓⃓
P (max

α∈I
ηα ≤ t)− e−λ

⃓⃓⃓
≤ (1 ∧ λ−1)(b1 + b2 + b3),

where

b1 =
∑︂
α∈I

∑︂
β∈Bα

P (ηα > t)P (ηβ > t),

b2 =
∑︂
α∈I

∑︂
α ̸=β∈Bα

P (ηα > t, ηβ > t),

b3 =
∑︂
α∈I

⃓⃓
p(ηα > t|σ(ηβ, β /∈ Bα))− P (ηα > t)

⃓⃓
,

and σ(ηβ, β /∈ Bα) is the σ-algebra generated by {ηβ, β /∈ Bα}. In particular, if ηα is

independent of {ηβ, β /∈ Bα} for each α, then b3 vanishes.

The following conclusion is about the moderate deviation of the partial sum of i.i.d.

random variables. It can be seen from Linnik (1961).

LEMMA 3.2 Suppose {ζ, ζ1, ζ2, · · · } is a sequence of i.i.d. random variables with zero

mean and Eζ2i = 1. Define Sn =
∑︁n

i=1 ζi.

(1) If Eet0|ζ|
α
<∞ for some 0 < α ≤ 1 and t0 > 0, then

lim
n→∞

1

x2n
logP

(︂ Sn√
n
≥ xn

)︂
= −1

2

for any xn → ∞, xn = o(n
α

2(2−α) ).

(2) If Eet0|ζ|
α
<∞ for some 0 < α ≤ 1

2 and t0 > 0, then

P
(︁
Sn√
n
≥ x

)︁
1− Φ(x)

→ 1

holds uniformly for 0 ≤ x ≤ o(n
α

2(2−α) ).
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Let Φ(x) = 1√
2π

∫︁ x
−∞ e−t

2/2 dt for x ∈ R. The following result is Proposition 4.5 from

Chen et al. (2013).

LEMMA 3.3 Let ηi, 1 ≤ i ≤ n, be independent random variables with Eηi = 0 and

Eehn|ηi| <∞ for some hn > 0 and 1 ≤ i ≤ n. Assume that
∑︁n

i=1Eη
2
i = 1. Then

P (
∑︁n

i=1 ηi ≥ x)

1− Φ(x)
= 1 + Cn(1 + x3)γe4x

3γ

for all 0 ≤ x ≤ hn and γ =
∑︁n

i=1E
(︁
|ηi|3ex|ηi|

)︁
, where supn≥1 |Cn| ≤ C and C is an absolute

constant.

PROPOSITION 1 Let {ξi; i ≥ 1} be i.i.d. random variables with Eξ1 = 0, E(ξ21) = 1

and E(|ξ1|r) < ∞ for some r > 2. Let {cn > 0; n ≥ 1} be constants with supn≥1 cn < ∞.

Assume

P
(︁
|ξ1| >

√︁
n/ log n

)︁
= o

(︂ 1

n1+(c2n/2)
√
log n

)︂
(3.1) {?}

as n→ ∞. Then, P (Sn ≥ cn
√
n log n ) ∼ 1− Φ(cn

√
log n ).

Amosova (1972) derives a similar result to Proposition 1 for independent but not nec-

essarily identically distributed random variables. If {ξi; i ≥ 1} are i.i.d. random variables

and limn→∞ cn = c, then Amosova concludes that P (Sn ≥ cn
√
n log n ) ∼ 1− Φ(cn

√
log n )

under the condition E(|ξ1|c
2+2+ϵ) <∞ for some ϵ > 0. This moment condition implies (3.1)

by the Markov inequality and hence our proposition holds. In particular, taking cn ≡ c > 0,

then (3.1) holds if E
[︁
|ξ1|c

2+2 log(c
2+3)/2(1 + |ξ1|)

]︁
< ∞. In conclusion, for the i.i.d. case

Proposition 1 relaxes the condition required by Amosova.

Proof of Proposition 1. By the standard central limit theorem, as n→ ∞,

sup
a≤x≤b

⃓⃓⃓P (Sn ≥
√
nx)

1− Φ(x)
− 1

⃓⃓⃓
→ 0

for any real numbers b > a. So, without loss of generality, we will prove the conclusion

under the extra assumption

cn
√︁
log n→ ∞ (3.2) {?}

as n→ ∞. The proof is divided into a few steps.

Step 1: truncation. Define a1 = 1 and an =
√︁
n/ log n for n ≥ 2. Denote K = E(|ξ1|r).

Set

ξ′i = ξiI(|ξi| ≤ an)− E
[︁
ξiI(|ξi| ≤ an)

]︁
;

ξ′′i = ξiI(|ξi| > an)− E
[︁
ξiI(|ξi| > an)

]︁
7



for 1 ≤ i ≤ n. Trivially, ξi = ξ′i + ξ′′i , |ξ′i| ≤ 2an and⃓⃓
E
[︁
ξiI(|ξi| > an)

]︁⃓⃓
≤ K

ar−1
n

.

Furthermore,

Var(ξ′′i ) ≤ E[ξ2i I(|ξi| > an)] ≤
K

ar−2
n

. (3.3) {?}

Now

Var(ξi) = Var(ξ′i) + Var(ξ′′i ) + 2Cov(ξ′i, ξ
′′
i ). (3.4) {?}

Use the formula that Cov(U−EU, V −EV ) = E(UV )− (EU)EV for any random variables

U and V to see

Cov(ξ′i, ξ
′′
i ) = −E

[︁
ξiI(|ξi| ≤ an)

]︁
· E

[︁
ξiI(|ξi| > an)

]︁
=

(︁
E
[︁
ξiI(|ξi| > an)

]︁)︁2
≤ E

[︁
ξ2i I(|ξi| > an)

]︁
≤ K

ar−2
n

by the assumption Eξi = 0, the Cauchy-Schwartz inequality and (3.3). This together with

(3.3) and (3.4) implies that

Var(ξ1) ≥ Var(ξ′i) ≥ Var(ξ1)−
3K

ar−2
n

. (3.5) {?}

Set Sn =
∑︁n

i=1 ξi, S
′
n =

∑︁n
i=1 ξ

′
i and S

′′
n =

∑︁n
i=1 ξ

′′
i . Then Sn = S′

n + S′′
n. Thus,

P (Sn > u) ≤ P (S′
n > u− v) + P (|S′′

n| > v). (3.6) {?}

for any u > v > 0. Moreover, S′
n ≤ Sn + |S′′

n|, we see

P (S′
n > u+ v) ≤ P (Sn > u) + P (|S′′

n| > v)

for any u > 0 and v > 0. This leads to

P (Sn > u) ≥ P (S′
n > u+ v)− P (|S′′

n| > v). (3.7) {?}

From the definition of ξ′i, it is easy to see that supn≥1E|ξ′1|r ≤ 2rK. Note that

nE
[︁
|ξ1|I(|ξ1| > an)

]︁
≤ nE(|ξ1|r) ·

1

ar−1
n

=
nK

ar−1
n

.

Hence

P (|S′′
n| > v) ≤ P

(︂
|
n∑︂
i=1

ξiI(|ξi| > an)| > v − nK

ar−1
n

)︂
≤ nP (|ξ1| > an) (3.8) {?}
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provided v > nK
ar−1
n

.

Step 2: the tail for S′
n. Set σ

′2 = Var(ξ′1). Trivially, σ
′ → 1 as n→ ∞. Take ηi =

ξ′i√
nσ′ .

Then |ηi| ≤ 2
σ′√logn

. Therefore we see from Lemma 3.3 that

P (S′
n ≥

√
nσ′x)

1− Φ(x)
= 1 + Cn(1 + x3)γe4x

3γ (3.9) {?}

where supn≥1 |Cn| ≤ C and C is an absolute constant, and

γ ≤ n

n3/2σ′3
· E

(︁
|ξ′1|3e2anx/(

√
nσ′)

)︁
≤ 1√

nσ′3
· e2anx/(

√
nσ′) · E(|ξ′1|3)

Use the fact supn≥1E|ξ′1|r ≤ 2rK to see that supn≥1E(|ξ′1|3) ≤ 2rK if r ≥ 3 by the Hölder

inequality. If 2 < r < 3, then write

E(|ξ′1|3) = E(|ξ′1|r · |ξ′1|3−r)

≤ 23−r
(︂ n

log n

)︂(3−r)/2
· E(|ξ′1|r)

≤ 8K ·
(︂ n

log n

)︂(3−r)/2

by the facts that |ξ′1| ≤ 2an = 2
√︁
n/ log n and that supn≥1E|ξ′1|r ≤ 2rK. In summary, if

x = O(
√
n/an) then

γ ≤

⎧⎨⎩O
(︂
(logn)(r−3)/2

n(r/2)−1

)︂
, if 2 < r < 3;

O(n−1/2), if r ≥ 3

as n → ∞. In particular, noting an =
√︁
n/ log n, we know that γ → 0 and x3γ → 0 since

x = O(
√
n/an). Consequently, we have from (3.9) that

P (S′
n ≥

√
nσ′x) ∼ 1− Φ(x) (3.10) {?}

under the assumption x = O(
√
n/an).

Step 3: the tail for Sn. Take u = cn
√
n log n and v = 2nK

ar−1
n

. Then v/u → 0 as n → ∞.

We still write u and v next sometimes for short notation. By (3.6), (3.7) and (3.8),

P (Sn > cn
√︁
n log n)

≤ P (S′
n > u− v) + nP (|ξ1| >

√︁
n/ log n) (3.11) {?}

and

P (Sn > cn
√︁
n log n)

≥ P (S′
n > u+ v)− nP (|ξ1| >

√︁
n/ log n) (3.12) {?}
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In what follows, we will show both P (S′
n > u+v) and P (S′

n > u−v) are close to P (S′
n > u).

Since the two arguments have no difference, we will consider them simultaneously and write

u ± v for the case u + v and u − v, respectively. Noticing u ± v ∼ cn
√
n log n. Take

x = (u ± v)/(
√
nσ′) in (3.10). Then x = O(

√
n/an) by the assumption supn≥1 cn < ∞.

From (3.2), x ∼ cn
√
log n→ ∞. It follows that

P (S′
n > u± v) ∼ P

(︂
N(0, 1) >

u± v√
nσ′

)︂
∼ 1

cn
√
2π log n

exp
{︁
− (u± v)2

2nσ′2
}︁

as n→ ∞, where we use the fact P (N(0, 1) > x) ∼ 1√
2π x

e−x
2/2 as x→ ∞. We claim

exp
{︂
− (u± v)2

2nσ′2

}︂
· exp

{︂c2n log n
2

}︂
→ 1 (3.13) {?}

as n→ ∞. In fact, write (u± v)2 = u2 + v2 ± 2uv. Then

−(u± v)2

2nσ′2
+
c2n log n

2

= − u2

2nσ′2
+
c2n log n

2
− v2 ± 2uv

2nσ′2

=
c2n(log n)

2
· σ

′2 − 1

σ′2
+O

(︂uv
n

)︂
.

The assertion (3.5) says that σ′2 → 1 and 0 ≤ 1− σ′2 ≤ 3K
ar−2
n

= O
(︁(︁ logn

n

)︁(r/2)−1)︁
. Also,

uv

n
= O

(︂√n log n
ar−1
n

)︂
= O

(︂(log n)r/2
n(r/2)−1

)︂
.

It follows that

−(u± v)2

2nσ′2
+
c2n log n

2
= O

(︂(log n)r/2
n(r/2)−1

)︂
.

We then confirms (3.13). Therefore,

P (S′
n > u± v) ∼ 1

cn
√
2π log n

· 1

nc2n/2
.

By the given condition,

nP (|ξ1| >
√︁
n/ log n) = o

(︂ 1

nc2n/2
√
log n

)︂
.

Comparing these with (3.11) and (3.12), we arrive at

P (Sn > cn
√︁
n log n) ∼ 1− Φ(cn

√︁
log n)

as n→ ∞. □
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3.2 Main Proofs

For 1 ≤ s ≤ m− 1, define

ξ
(s)
k =

s∏︂
t=1

xkt, η
(s)
k =

m∏︂
t=s+1

xkt, ζ
(s)
k =

2m−s∏︂
t=m+1

xkt. (3.14) {?}

For a number a > 0 and a sequence of positive numbers {an} with limn→∞ an = a, we

define

Ψ(s)
n (an) = P

(︂⃓⃓ n∑︂
k=1

ξ
(s)
k η

(s)
k

⃓⃓
≥ an

√︁
n log p,

⃓⃓ n∑︂
k=1

ξ
(s)
k ζ

(s)
k

⃓⃓
≥ an

√︁
n log p

)︂
(3.15) {?}

for any 1 ≤ s ≤ m − 1. The next is a result on Ψ
(s)
n (an), which is a key step in the

application of the Chen-Stein Poisson approximation to prove Theorem 1.

LEMMA 3.4 Let {an; n ≥ 1} be a sequence of positive numbers with limn→∞ an = a > 0.

Under the assumptions of Theorem 1, we have that max1≤s≤m−1Ψ
(s)
n (an) = o(p−a

2+ϵ) for

any ϵ > 0.

Proof. Let u, v and w > 0 be three numbers. It is easy to check that either |u+ v| > 2w

or |u− v| > 2w if |u| ≥ w and |v| ≥ w. It then follows from (3.15) that

Ψ(s)
n (an) ≤ P

(︂⃓⃓ n∑︂
k=1

ξ
(s)
k

(︁
η
(s)
k + ζ

(s)
k

)︁⃓⃓
≥ 2an

√︁
n log p

)︂
+P

(︂⃓⃓ n∑︂
k=1

ξ
(s)
k

(︁
η
(s)
k − ζ

(s)
k

)︁⃓⃓
≥ 2an

√︁
n log p

)︂
:= An +Bn. (3.16) {?}

For the term An, trivially,

E[ξ
(s)
k (η

(s)
k + ζ

(s)
k )] = 0, E[ξ

(s)
k (η

(s)
k + ζ

(s)
k )]2 = 2. (3.17) {?}

It is elementary that

m∏︂
t=1

|at|α/m ≤ 1

m

m∑︂
t=1

|at|α

for all at ≥ 0 (t = 1, · · · ,m). Thus, we get

E exp
{︂
t0|ξ(s)1 η

(s)
1 |α/m

}︂
= E exp

{︂
t0

m∏︂
t=1

|x1t|α/m
}︂

≤ E exp
{︂ t0
m

m∑︂
t=1

|x1t|α
}︂

=

m∏︂
t=1

E exp
{︂ t0
m
|x11|α

}︂
.

11



By assumption, Eet0|x11|
α
<∞ for some 0 < α ≤ 1 and t0 > 0, we see that

E exp
{︂
t0|ξ(s)1 η

(s)
1 |α/m

}︂
<∞. (3.18) {?}

Noticing 0 < α/m < 1, we have

E exp
{︂1

2
t0
⃓⃓
ξ
(s)
1

(︁
η
(s)
1 + ζ

(s)
1

)︁⃓⃓α/m}︂
≤ E

[︂
exp

{︂1

2
t0
⃓⃓
ξ
(s)
1 η

(s)
1 |α/m

}︂
· exp

{︂1

2
t0
⃓⃓
ξ
(s)
1 ζ

(s)
1 |α/m

}︂]︂
≤

[︂
E exp

{︂
t0
⃓⃓
ξ
(s)
1 η

(s)
1 |α/m

}︂]︂1/2
·
[︂
E exp

{︂
t0
⃓⃓
ξ
(s)
1 ζ

(s)
1 |α/m

}︂]︂1/2
< ∞

by the Cauchy-Schwartz inequality. From the notation β = α
2m−α in statement of Theorem

1, we see 1
2 · α/m

2−(α/m) = β
2 . An assumption implies that an

√
2 log p = o(nβ/2). It is easy to

see that {ξ(s)k
(︁
η
(s)
k + ζ

(s)
k

)︁
; 1 ≤ k ≤ n} are i.i.d. random variables. By Lemma 3.2 (1) and

(3.17), we get that, for any sufficient small δ > 0,

An ≤ P
(︂⃓⃓ 1√

2n

n∑︂
k=1

ξ
(s)
k

(︁
η
(s)
k + ζ

(s)
k

)︁⃓⃓
≥ an

√︁
2 log p

)︂
≤ 2 exp{−(1− δ)a2n log p}
= 2p(δ−1)a2n .

Since an → a, the above implies that, for any ϵ > 0, we have

An = o(p−a
2+ϵ) (3.19) {?}

as n→ ∞. Similarly,

Bn = o(p−a
2+ϵ). (3.20) {?}

Combining (3.16), (3.19) and (3.20), we complete the proof. □

Proof of Theorem 1. The asymptotic distribution of Wn will be derived by the Chen-

Stein Poisson approximation method introduced in Lemma 3.1. To do so, set Z be the set of

integers and I = {(i1, · · · , im) ∈ Zp : 1 ≤ i1 < · · · < im ≤ p}. For each α = (i1, · · · , im) ∈ I,

define

Xα =
1√
n

⃓⃓ n∑︂
k=1

xki1xki2 · · ·xkim
⃓⃓

(3.21) {?}

and

Bα =
{︁
(j1, · · · , jm) ∈ I; {j1, · · · , jm} ∩ {i1, · · · , im} ≠ ∅ but (j1, · · · , jm) ̸= α

}︁
.

12



Obviously, Xα is independent of {Xβ; β ∈ I\Xα}. It is easy to verify that

|I| =
(︃
p

m

)︃
and |Bα| ≤ m2pm−1 (3.22) {?}

for each α ∈ I. For any z ∈ R, write

νp =
[︂
log p− 1

2m

(︁
log log p+ 2 log(m!

√
mπ)− z

)︁]︂1/2
. (3.23) {?}

Notice vp may not make sense for small values of p. Since p = pn → ∞ as n→ ∞, without

loss of generality, assume vp > 0 for all n ≥ 1. Set α0 = {1, 2, · · · ,m} ∈ I. By Lemma 3.1,⃓⃓⃓
P
(︁
max
α∈I

Xα ≤
√
2mνp

)︁
− e−λp

⃓⃓⃓
≤ b1 + b2, (3.24) {?}

where b1 and b2 are as in Lemma 3.1 and

λp =

(︃
p

m

)︃
P
(︁
Xα0 >

√
2mνp

)︁
∼ pm

m!
P
(︂⃓⃓ n∑︂

k=1

xk1xk2 · · ·xkm
⃓⃓
>

√
2mnνp

)︂
. (3.25) {?}

First, write ψk = xk1xk2 · · ·xkm, 1 ≤ k ≤ n. Then Eψk = 0 and Eψ2
k = 1. The assertion

(3.18) says that Eet0|ψ1|α/m
<∞. Note that α

m ≤ 1
2 since 0 < α ≤ 1 and m ≥ 2. Moreover,√

2mνp = O(
√
log p) = o(nβ/2). By the definition of β, we know β

2 = 1
2 ·

α/m
2−(α/m) . Therefore

it follows from Lemma 3.2(2) that

P
(︂⃓⃓ n∑︂

k=1

xk1xk2 · · ·xkm
⃓⃓
>

√
2mnνp

)︂
∼ P

(︁
|N(0, 1)| >

√
2mνp

)︁
∼ 2√

4πmvp
· e−mv2p , (3.26) {?}

where the fact P (N(0, 1) > x) ∼ 1√
2π x

· e−x2/2 as x→ ∞ is used. It is easy to check that

vp ∼
√︁
log p;

−mv2p = − log(pm) +
1

2

(︁
log log p+ 2 log(m!

√
mπ)

)︁
− 1

2
z

as n→ ∞. Therefore,

λp ∼ pm

m!

2√
4mπ log p

· e−mv2p = e−z/2. (3.27) {?}

In particular, this implies that

P
(︁
Xα >

√
2mνp

)︁
∼ m!

pm
e−z/2 (3.28) {?}
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as n→ ∞ for any α ∈ I. Consequently, we have from (3.22) that

b1 ≤ |I| · |Bα| · P
(︁
Xα >

√
2mνp

)︁2
= O

(︂1
p

)︂
. (3.29) {?}

Now we estimate b2. First,

b2 =
∑︂
α∈I

∑︂
β∈Bα

P
(︁
Xα >

√
2mνp, Xβ >

√
2mνp

)︁
=

∑︂
α∈I

m−1∑︂
s=1

∑︂
β∈I:|β∩α|=s

P
(︁
Xα >

√
2mνp, Xβ >

√
2mνp

)︁
. (3.30) {?}

For 1 ≤ s ≤ m− 1,

{β ∈ I : |β ∩ {1, 2, · · · ,m}| = s}
= {(i1, · · · , im) ∈ Zp : 1 ≤ i1 < · · · < im ≤ p, |(i1, · · · , im) ∩ {1, 2, · · · ,m}| = s}.

Hence, |{β ∈ I : |β ∩ {1, 2, · · · ,m}| = s}| =
(︁
m
s

)︁
·
(︁
p−m
m−s

)︁
≤ mspm−s. Review the notation in

(3.14) and (3.15). In particular,

Ψ(s)
n (an) = P

(︂⃓⃓ n∑︂
k=1

ξ
(s)
k η

(s)
k

⃓⃓
≥ an

√︁
n log p,

⃓⃓ n∑︂
k=1

ξ
(s)
k ζ

(s)
k

⃓⃓
≥ an

√︁
n log p

)︂
.

Since xij ’s are i.i.d. random variables, we see that

b2 ≤ |I| ·
m−1∑︂
s=1

mspm−s ·Ψ(s)
n (an) (3.31) {?}

where

an :=

√
2mνp√
log p

→
√
2m

as n→ ∞. By Lemma 3.4, for any ϵ > 0, we have

Ψ(s)
n (an) ≤ p−2m+ϵ

as n is large enough. This implies that

b2 ≤ pm ·mmpm−1 · p−2m+ϵ

= mmp−1+ϵ → 0 (3.32) {?}

as n → ∞ for all ϵ ∈ (0, 1). Combining (3.24), (3.27), (3.29) and (3.32), we complete the

proof. □

The following two lemmas are prepared for the proof of Theorem 2.

14



LEMMA 3.5 Let xij’s be as in Theorem 2 and νp be as in (3.23). Define cn =
√︁
2m/ log nνp

and ξ1 = x11x12 · · ·x1m. Then

n1+(c2n/2)
√︁

log n · P
(︁
|ξ1| >

√︁
n/ log n

)︁
→ 0 (3.33) {?}

as n→ ∞.

Proof. Recall τ2 = 2mα + 3
2 and τ1 = 4mα + 2 and g(x) = xτ1 logτ2(1 + x) for x ≥ 0.

Observe that

Eg(|ξ1|) = E
[︁
|x11|τ1 · · · |x1m|τ1 logτ2(1 + |x11| · · · |x1m|)

]︁
.

Use the inequality 1 + |x11| · · · |x1m| ≤ (1 + |x11|) · · · (1 + |x1m|) to see that

logτ2(1 + |x11| · · · |x1m|) ≤
[︂ m∑︂
j=1

log(1 + |x1j |)
]︂τ2

≤ mτ2−1
m∑︂
j=1

logτ2(1 + |x1j |)

by the convex inequality. Obviously, the given condition E
[︁
|x11|τ1 logτ2(1 + |x11|)

]︁
< ∞

implies that E(|x11|τ1) <∞. It follows that

Eg(|ξ1|) ≤ mτ2−1
m∑︂
j=1

E
[︁
|x11|τ1 · · · |x1m|τ1 logτ2(1 + |x1j |)

]︁
= mτ2E

[︁
|x11|τ1 logτ2(1 + |x11|)

]︁
·
(︁
E|x11|τ1

)︁m−1

< ∞. (3.34) {?}

Therefore,

P
(︁
|ξ1| >

√︁
n/ log n

)︁
≤ Eg(|ξ1|)
g
(︁√︁

n/ log n
)︁ .

Trivially, log(1 +
√︂

n
logn) ≥

1
3 log n as n is sufficiently large. We then see that

g
(︁√︁

n/ log n
)︁
≥ 3−τ2nτ1/2(log n)τ2−(τ1/2) = 3−τ2n2mα+1

√︁
log n. (3.35) {?}

In summary,

n1+(c2n/2)
√︁

log n · P
(︁
|ξ1| >

√︁
n/ log n

)︁
= O

(︁
n(c

2
n/2)−2mα

)︁
The condition p = O(nα) implies that log p ≤ α log n + O(1). Then we have from (3.23)

that

c2n
2

=
mv2p
log n

≤ 1

log n
·
(︂
m log p− 1

3
log log p

)︂
≤ mα+

1

log n
·
(︂
O(1)− 1

3
log log p

)︂
15



as n is sufficiently large. Hence

n(c
2
n/2)−2mα ≤ n−mα · exp

(︂
O(1)− 1

3
log log p

)︂
= O

(︂ 1

nmα(log p)1/3

)︂
as n→ ∞. The assertion (3.33) is yielded. □

LEMMA 3.6 Let the assumptions of Theorem 2 hold. Recall νp as in (3.23). Set an =√︁
2m/ log p νp. Let Ψ

(s)
n (an) be as in (3.15). Then max1≤s≤m−1Ψ

(s)
n (an) = O(p−2m+δ) for

any δ > 0.

Proof. It is enough to show Ψ
(s)
n (an) = O(p−2m+δ) for each 1 ≤ s ≤ m− 1, where δ > 0 is

given. Similar to (3.16) we have that

Ψ(s)
n (an) ≤ P

(︂⃓⃓ n∑︂
k=1

ξ
(s)
k

(︁
η
(s)
k + ζ

(s)
k

)︁⃓⃓
≥ 2an

√︁
n log p

)︂
+P

(︂⃓⃓ n∑︂
k=1

ξ
(s)
k

(︁
η
(s)
k − ζ

(s)
k

)︁⃓⃓
≥ 2an

√︁
n log p

)︂
:= An +Bn, (3.36) {?}

where ξ
(s)
k , η

(s)
k and ζ

(s)
k are as in (3.14). Define Vk = ξ

(s)
k

(︁
η
(s)
k + ζ

(s)
k

)︁
/
√
2 for 1 ≤ k ≤ n.

Then
∑︁n

k=1 ξ
(s)
k

(︁
η
(s)
k + ζ

(s)
k

)︁
=

√
2
∑︁n

k=1 Vk. Observe that Vk’s are i.i.d. random variables

with

EV1 = 0 and EV 2
1 = 1. (3.37) {?}

Review τ2 = 2mα + 3
2 , τ1 = 4mα + 2 and g(x) = xτ1 logτ2(1 + x) for x ≥ 0 as in Lemma

3.5. We claim g(x) is a convex function on [0,∞). In fact,

g′(x) = τ1x
τ1−1 logτ2(1 + x) +

τ2x
τ1 logτ2−1(1 + x)

1 + x

Since τ2 >
3
2 and τ1 > 2, the function τ1x

τ1−1 logτ2(1 + x) is increasing in x ∈ [0,∞), and

hence its derivative is non-negative. Therefore, the convexity of g(x) hinges on whether

h(x) := xτ1 logτ2−1(1+x)
1+x is increasing on [0,∞). Trivially,

h′(x) =
1

(1 + x)2

[︂
(1 + x)⏞ ⏟⏟ ⏞

J1

(︂
τ1x

τ1−1 logτ2−1(1 + x) + (τ2 − 1)
xτ1 logτ2−2(1 + x)

1 + x⏞ ⏟⏟ ⏞
J2

)︂

−xτ1 logτ2−1(1 + x)
]︂

≥ (τ1 − 1)xτ1 logτ2−1(1 + x)

(1 + x)2

≥ 0
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by using the fact J1 > x and J2 ≥ 0. Thus, g(x) is convex on [0,∞). Now, by the convex

property,

Eg(|V1|) ≤ Eg
(︂2|ξ(s)1 η

(s)
1 |+ 2|ξ(s)1 ζ

(s)
1 |

2

)︂
≤ 1

2

[︁
Eg

(︁
2|ξ(s)1 η

(s)
1 |

)︁
+ Eg

(︁
2|ξ(s)1 ζ

(s)
1 |

)︁]︂
= Eg

(︁
2|ξ(s)1 η

(s)
1 |

)︁
.

Since log(1+ 2x) ≤ 2 log(1+x) for x ≥ 0, we have g(2x) ≤ 2τ2+τ1g(x) for x ≥ 0. By (3.14),

ξ
(s)
1 η

(s)
1 = x11x12 · · ·x1m. Consequently,

Eg(|V1|) ≤ 2τ2+τ1Eg(|x11x12 · · ·x1m|) <∞

by (3.34). This particularly implies E
[︁
g(|V1|)I(|V1| >

√︁
n/ log n)

]︁
→ 0. Now,

An = P
(︂⃓⃓ n∑︂

k=1

Vi
⃓⃓
≥ cn

√︁
n log n

)︂
where cn := an

√︁
2(log p)/ log n. By the Markov inequality,

P
(︁
|V1| >

√︁
n/ log n

)︁
≤

E
[︁
g(|V1|)I(|V1| >

√︁
n/ log n)

]︁
g
(︁√︁

n/ log n
)︁

= o
(︂
g
(︁√︁

n/ log n
)︁−1

)︂
.

From (3.35),

g
(︁√︁

n/ log n
)︁
≥ 3−τ2n2mα+1

√︁
log n.

By definition, limn→∞ an =
√
2m and an ≤

√
2m as n is sufficiently large. Then

cn ≤ 2
√
m ·

(︂ log p

log n

)︂1/2
= 2

√
mα

[︂
1 +O

(︂ 1

log n

)︂]︂
by the assumption p = O(nα). This implies that

n1+(c2n/2)
√︁
log n · P

(︁
|V1| >

√︁
n/ log n

)︁
= o

(︁
n(c

2
n/2)−2mα

)︁
= o

(︁
nO(1/ logn)

)︁
→ 0

as n→ ∞. Therefore, it is seen from (3.37) and Proposition 1 that

P
(︂⃓⃓ n∑︂

k=1

Vi
⃓⃓
≥ cn

√︁
n log n

)︂
∼ 1− Φ(cn

√︁
log n).
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Noting cn
√
log n = an

√
2 log p ∼

√
4m log p and 1 − Φ(x) ∼ 1√

2π x
· e−x2/2 as x → ∞. It

follows that

P
(︂⃓⃓ n∑︂

k=1

Vi
⃓⃓
≥ cn

√︁
n log n

)︂
= O

(︂
e−c

2
n(logn)/2

)︂
= O(p−2m+δ)

as n → ∞ for any δ > 0. Therefore, An = O(p−2m+δ). Similarly, Bn = O(p−2m+δ). The

proof follows from (3.36). □

Proof of Theorem 2. Set I = {(i1, · · · , im) ∈ Zp : 1 ≤ i1 < · · · < im ≤ p}. For each

α = (i1, · · · , im) ∈ I, define

Xα =
1√
n

⃓⃓ n∑︂
k=1

xki1xki2 · · ·xkim
⃓⃓

and

Bα =
{︁
(j1, · · · , jm) ∈ I; {j1, · · · , jm} ∩ {i1, · · · , im} ≠ ∅ but (j1, · · · , jm) ̸= α

}︁
.

Obviously, Xα is independent of {Xβ; β ∈ I\Xα}. Review (3.21) - (3.25) in the proof of

Theorem 1. Set α0 = {1, 2, · · · ,m} ∈ I. It is seen from Lemma 3.1 that,⃓⃓⃓
P (max

α∈I
Xα ≤

√
2mνp)− e−λp

⃓⃓⃓
≤ b1 + b2, (3.38) {?}

where b1 and b2 are as in Lemma 3.1 and

λp ∼ pm

m!
P
(︂⃓⃓ n∑︂

k=1

xk1xk2 · · ·xkm
⃓⃓
>

√
2mnνp

)︂
.

Write
√
2mnνp = cn ·

√
n log n. Immediately cn →

√
2mα as n → ∞ by (3.23). Set

ξi = xi1xi2 · · ·xim for 1 ≤ i ≤ n. Then Eξ1 = 0, Var(ξ1) = 1 and

n1+(c2n/2)
√︁

log n · P
(︁
|ξ1| >

√︁
n/ log n

)︁
→ 0

as n → ∞ by Lemma 3.5. The assumption E
[︁
|x11|τ1 logτ2(1 + |x11|)

]︁
< ∞ implies that

E|x11|τ1 < ∞, and hence E|ξ1|τ1 < ∞ with τ1 = 4mα + 2 > 2. We then have from

Proposition 1 that

P
(︂⃓⃓ n∑︂

k=1

xk1xk2 · · ·xkm
⃓⃓
>

√
2mnνp

)︂
∼ P

(︁
|N(0, 1)| >

√
2mνp

)︁
∼ 2√

4πmvp
· e−mv2p (3.39) {?}

as in (3.26). Hence,

λp ∼ pm

m!

2√
4mπ log p

· e−mv2p = e−z/2.
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Immediately,

P
(︁
Xα >

√
2mνp

)︁
∼ m!

pm
e−z/2

as n→ ∞ for any α ∈ I. Similar to (3.28) and (3.29), we get

b1 = O
(︂1
p

)︂
. (3.40) {?}

Now we work on b2. Recalling (3.30) and (3.31) we have

b2 ≤ |I| ·
m−1∑︂
s=1

mspm−s ·Ψ(s)
n (an)

where an :=
√︁
2m/ log p νp for n ≥ 1 and

Ψ(s)
n (an) = P

(︂⃓⃓ n∑︂
k=1

ξ
(s)
k η

(s)
k

⃓⃓
≥ an

√︁
n log p,

⃓⃓ n∑︂
k=1

ξ
(s)
k ζ

(s)
k

⃓⃓
≥ an

√︁
n log p

)︂
and ξ

(s)
k , η

(s)
k and ζ

(s)
k are as in (3.14). By Lemma 3.6,

max
1≤s≤m−1

Ψ(s)
n (an) ≤ O(p−2m+δ)

as n→ ∞ for any δ > 0. By using the fact |I| ≤ pm, we have

b2 ≤ pm ·mmpm−1 · p−2m+δ

= mmp−1+δ → 0

as n→ ∞ for any δ ∈ (0, 1). This joining with (3.38)-(3.40) completes the proof. □
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