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Abstract
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of W,, under a suitable normalization for two cases. They are the ultra-high dimension
case with p — oo and logp = o(n®) and the high-dimension case with p — oo and
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1 Introduction

In this paper we will study the limiting properties of a hypercubic random tensor con-
structed by high-dimensional random data. Let p > 2 be an integer and X € R? be a
random vector. The distribution of X serves as a population distribution. Let X, =
(1, -+, Trp)'s 1 < k < n, be a random sample of size n from the population distribution
generated by X, that is, X, Xy, -+ ,X,, are independent random vectors with a common
distribution. The data matrix X = (21i)1<k<n,1<i<p produces a hypercubic random tensor
T € RP**P with order m and rank n defined by

T = Zxk ® - ® Xy = (Zwmk R (1) {7}
m multzple k=1
Researchers obtain some limiting properties of tensor data defined in . By using similar
techniques to those in the random matrix theory, Ambainis and Harrow (2012) obtain a
limiting property of the largest eigenvalue and the limiting spectral distribution of random
tensors. Tieplova (2016) studies the limiting spectral distribution of the sample covariance
matrices constructed by the random tensor data. Lytova (2017) further considers the central
limit theorem for linear spectral statistics of the sample covariance matrices constructed by
the random tensor data. Shi et al. (2018) apply limiting properties of the random tensors
to a anomaly detection problem in the distribution networks.
In this paper, we will study the behavior of the largest off-diagonal entry of the random
tensor T when both n and p tend to infinity. Precisely, we will work on the asymptotic
distribution of

n
Wi | B,y | 2o et 12 ()
as n — oo and p — oo.

For fixed m > 2, when the entries of the data matrix X = (2y;)i1<k<n,i1<i<p are ii.d.
random variables, we will show that the limiting distribution of W,, with a suitable nor-
malization is the Gumbel-type distribution involved with parameter m. Two typical high-
dimensional cases are considered: the ultra-high dimension with p — oo and logp = o(n?)
and the high-dimension with p — oo and p = O(n®). In both cases we obtain the limiting
distributions of W,,, which is different from the case that m = 2.

When m = 2, the tensor T = X’X turns out to be the sample covariance matrix, which
is a very popular statistic in the multivariate statistical analysis. The largest entry of the
sample covariance matrix has been studied actively. In particular, assuming n/p — v > 0
and E|x11[?°7¢ < oo for some € > 0, Jiang (2004) proves that

W?2 — 4logp + loglogp 4, Weo (1.3) {7}



__1 ,—z/2
where random variable W, has distribution function F(z) =e vs=° | z € R. Here and

. d . C .
later the notation “—” means “converges in distribution to”.

A sequence of results are then obtained to relax the moment condition that E|z1[39t¢ <

oo. For example, Zhou (2007) shows that (1.3]) holds if
.CCGP(‘JZHle’ > a:) — 0. (1.4) {7}
Liu et al. (2008) proves that (1.3) holds provided a weaker condition is valid, that is,

n3P(|z11212) > /nlogn) — 0. (1.5) {7}

Besides the above two results, Li and Rosalsky (2006) and Li et al. (2010, 2012) further
study the moment condition for which is true. In a different direction, Liu et al.
(2008) obtains for the polynomial rate such that p = O(n®); Cai and Jiang (2011)
derive for the ultra-high dimensional case with log p = o(n®) for some «a > 0. For the
compressed sensing problems and testing problems related to W,,, one is referred to the
papers by, for instance, Cai and Jiang (2011), Cai et al. (2013), Xiao and Wu (2013) and
Shao and Zhou (2014).

In this paper, for all m > 2 we study W, from . We prove that W,, with a suitable
normalization converges to the Gumbel-type distribution. The normalizing constant and
the liming distribution all depend on m. These results will be stated in the next section
and discussions will be made afterwards.

Throughout the paper, the symbols 2 and % means convergence in probability and
convergence in distribution, respectively. We will also denote b,, = o(ay,) if lim,, 00 by /arn, =
0; the notation b, = O(a,) stands for that {|b,/an|; n > 1} is a bounded sequence; a,, ~ by,
if limy, 00 an /by, = 1.

The rest of the paper is organized as follows. The main results of the paper as well
as discussions are stated in Section 2. In Section 3, we will first present and prove some
technical lemmas, and then prove the main results.

2 Main Results

We assume that p depends on n and simply write p for brevity of notation. In case there

is a possible confusion, we will write p = p,. Review X = (21i)1<k<n,1<i<p and assume

{zki; 1 <k <n,1 <i<p} areiid. random variables with
Exy =0 and Ex?, = 1. (2.1) {2}

The quantity W), is defined as in (1.2)) with m > 2. In the following theorems the limiting
distribution is the Gumbel distribution with distribution function

Fy(z) = exp z e R. (2.2) {7}

(e
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THEOREM 1 Assume with Eetol™11l® < oo for some 0 < o < 1 and ty > 0. Let

(67

If p — oo and logp = o(n®) as n — oo, then

m > 2 be a fized integer and B =

2m—a

W2 —2mlogp + loglog p 4, 0, where 6 has distribution function Fy(z) as in .

The above theorem studies the ultra-high dimensional case, that is, the dimension p
can be at an exponential order of the size n, and the assumption of Eefol#11l® < o for
some 0 < a < 1 and ¢ty > 0 is needed to derive the limiting distribution. Next we will
consider a popular high-dimensional case in the literature such that p = p, is no larger
than a polynomial rate of n. We then get the same limiting distribution of W,, under a

much weaker moment condition.

THEOREM 2 Let a > 0 and m > 2 be constants such that E[|z11|™ log™ (1 + |z11])] < oo
with 71 = 4ma + 2 and ™ = 2ma + % If p = 00 and p = O(n®), then W2 — 2mlogp +
loglogp LN 0, where 0 has distribution function Fy(z) as in .

By the Slutsky lemma, the above theorems imply the following.

COROLLARY 1 Assume the conditions from either Theorem[1) or Theorem[Z holds. Then,

Wn p
— V2m.
Viogp

As discussed earlier, the largest entry of a sample covariance matrix have been studied
with the limiting distribution stated in (1.3). In this paper we study the same problem
for m-order random tensors, in which the setting is a more general. We find that the

normalizing constant of W2 is 2m log p—log log p and the corresponding limiting distribution
is given in ([2.2). Both quantities indeed depend on m. We now make some further comments
below.

1. Take m = 2, both Theorems [1] and [2| say
W3—4logp+loglogpi>0~F9(z):e VB ,
which is consistent with (1.3]).

2. Now, instead of studying W,, from ({1.2)), we consider

. 1 n
Wy = max S N TP B 9.3 17
" 1<i1<~~-<im<p\/ﬁ; kia ki Kim (2.3) {7}

Then, by using the same proofs except changing “|N(0,1)]” to “N(0,1)” in (3.26) and
(3.39), Theorems |1 and [2] still hold with the limiting distribution “Fp(z)” from (2.2) is
replaced by “F(z)”, where

1 —z
F(Z):exp{—me /2}, ZER
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Corollary [1| still holds without change if “W,,” is replaced by “W,,”.

3. Recently Fan and Jiang (2018) study the liming behavior of W, from with
m = 2 and with (z11,---,21p) ~ N(0,X), where 3;; = 1 for each ¢ and 3;; = p > 0 for all
i # j. The limiting distribution of W, is the Gumbel distribution if p is very small; that is
Gaussian if p is large; that is the convolution of the Gumbel and the Gaussian distributions
if p is in between. The proof is very involved. Such setting can also be extended to W
from for any m > 3 with a lengthy argument. We leave it as a future work.

4. Assume that m = 2 and that (z11,--- ,z1,) ~ N(0,X), where X is a banded matrix.
Cai and Jiang (2011) study W,, from and apply their results to compressed sensing
problems and tests of covariance structures. It will be interesting to see if similar dependent
structures can be carried out for W,, with m > 3.

5. The proofs of Theorems [I] and [2] rely on the Chen-Stein Poisson approximation
method and the moderate deviations. The major technicality comes from computing A and
bounding by appeared in Lemma The major difference between our proofs here and
those in the literature is that the evaluation of A is more involved. Furthermore, we need a
significant effort to investigate by. Due to the assumption m > 3 the dependent structure

appearing in by becomes more subtle; see Lemmas and for details.

6. Taking m = 2 and @ = 1 in Theorem [2| the required moment condition in the
theorem becomes E[|z1q|" log®®(1 + |z11])] < oo. This is stronger than . and .
In fact it is Lemma that requires the above condition. It is possible that the moment
assumption in Theorem [2] can be relaxed. We leave it as a future project.

7. In the paper, the random tensor T is constructed by the sample of a single multi-
variate population. In fact, the results of Theorems [1| and [2| can also be extended to the
tensor constructed by the samples of several populations with the same dimension p. Let
X0 e RP: [ =1,2,--- ,m be m random vectors, and the p entries of X® be iid. random
variables for each [. The probability distribution of each vector generates a population
distribution. For each 1 <1 < m, let (ac,(d), e ac,(ﬁz) k=1, ---,n, be a random sample of
size n from the population X®, We then have a data matrix X = (x;glz))lgkgn,lgigp and
we define a special hypercubic random tensor T” € RP**P with order m and rank n by

n
_ E : (1) ,.(2) (m)
T/ - ( xk‘lll‘klg ‘.xk:inm)1<i & :
1 X1, tm P

Denote the largest element of T/ by

2) (m)
wW! = ’ E b ~xp .
n 1<z1< <zm<p \/‘ kzl kio kim

By the same argument as those in the proofs of Theorems [1| and [2, the two theorems still

hold if “W,,” is replaced by “W;” and some uniform moment conditions on x(lll) , 1<l <m

are assumed.



3 Proofs

3.1 Some technical lemmas

We will start with listing some technical lemmas in our proofs. The first one is a classical
Stein-Chen Poisson approximation lemma, which is frequently used in studying behaviors
of maximum of almost mutual independent random variables. The following result is a
special case of Theorem 1 of Arratia et al. (1989).

LEMMA 3.1 Let {n,,a € I} be random variables on an index set I and {By,a € I} be a
set of subsets of I, that is, for each a € I, B, C I. For anyt € R, set A\ =3 ; P(na > t),
Then we have

}P(ma?na <t)—e" ’ < (AAXTY (b1 + ba + b3),
ac

where

by = ZZ 7]04>t 775>t>7

a€cl BEBy

by = Z Z P(na>tanﬂ>t)a
a€l a#pB€By

bs = > |p(na > tlo(nsg, B ¢ Ba)) — P(na > 1),
ael

and o(ng,B ¢ Ba) is the o-algebra generated by {ng,B ¢ Ba}. In particular, if 1o is
independent of {ng, ¢ Ba} for each o, then bz vanishes.

The following conclusion is about the moderate deviation of the partial sum of i.i.d.
random variables. It can be seen from Linnik (1961).

LEMMA 3.2 Suppose {(,(1,C2,---} is a sequence of i.i.d. random variables with zero
mean and EC? = 1. Define S, =Y | ;.
(1) If Eeld® < oo for some 0 < a <1 and to > 0, then

for any x, — oo, x, = 0(n2<20ia> ).
(2) If EetlI® < oo for some 0 < a < % and ty > 0, then

holds uniformly for 0 < x < o(nﬁ)_



Let ®(z) = \/%7 S e~"’/2dt for 2 € R. The following result is Proposition 4.5 from

Chen et al. (2013).

LEMMA 3.3 Let n;, 1 < ¢ < n, be independent random wvariables with En; = 0 and
Eelnnil < oo for some hy, > 0 and 1 < i < n. Assume that St En? =1. Then

P iimi > )
1—®(z)

=14+ Cn(l + ,1‘3)764553’7

forall0 <z < h, andy=737", E(|m\3ex‘77i|), where sup,, > |Cp| < C and C is an absolute

constant.

PROPOSITION 1 Let {£;;i > 1} be i.i.d. random wvariables with E¢; = 0, E(&2) = 1
and E(|§1]") < oo for some r > 2. Let {c, > 0; n > 1} be constants with sup,>q ¢, < 00.
Assume

1
P(lal > Vnflogn) = of s m) (3.1) {7}

asn — co. Then, P(Sy, > cpy/nlogn) ~ 1 — ®(cp/logn).

Amosova (1972) derives a similar result to Proposition (1| for independent but not nec-
essarily identically distributed random variables. If {£;;¢ > 1} are i.i.d. random variables
and lim,,_,~ ¢, = ¢, then Amosova concludes that P(S,, > ¢,v/nlogn) ~ 1 — ®(c,\/logn )
under the condition E(|¢|€+21€) < 0o for some € > 0. This moment condition implies
by the Markov inequality and hence our proposition holds. In particular, taking ¢, = ¢ > 0,
then holds if E[|§1|C2+2 log(02+3)/2(1 + [&1])] < oo. In conclusion, for the ii.d. case
Proposition [I| relaxes the condition required by Amosova.

Proof of Proposition [1, By the standard central limit theorem, as n — oo,

P(S,, > y/nx)
Zon = V) 1\ 0
weazy| 11— ®(x)

for any real numbers b > a. So, without loss of generality, we will prove the conclusion

under the extra assumption

cn/ logn — oo (3.2) {7}

as n — 0o. The proof is divided into a few steps.
Step 1: truncation. Define a; =1 and a, = y/n/logn for n > 2. Denote K = E(|&1]").
Set

io= Gl(&] < an) — ElGI(G] < an)];
7= GI(&] > an) — E[&I(&] > an)]
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for 1 <i <n. Trivially, & = & + &/, €] < 2a, and

Ble( > ]| < ==
Furthermore,
Var(€!) < BIEI(6] > o] < 5 (3.3) ()
Now
Var(§;) = Var(§;) + Var(&/) + 2Cov(&, &). (3:4) {7}

Use the formula that Cov(U — EU,V — EV) = E(UV)— (EU)EV for any random variables
U and V to see

Cov(e, &) = —E[&I(&] < an)] - E[&1(I&] > an)]
(Bl&1(&] > an)])?

E[&1(|&] > an)]
K

an
by the assumption F¢; = 0, the Cauchy-Schwartz inequality and (3.3]). This together with
(3.3) and (3.4) implies that

Var(&;) > Var(€)) > Var(&;) —

IN

IN

2

3K
5 (3.5) {7}

Set Sp,=>1" &, S, =" & and S =>"" &’ Then S, = S), + S//. Thus,

P(S, >u) < P(S), >u—v)+ P(|S]] > v). (3.6) {7}
for any u > v > 0. Moreover, S}, < S, + |S|, we see

P(S!, >u+v) < P(S, >u)+ P(|S)] > v)
for any u > 0 and v > 0. This leads to

P(S, >u) > P(S), > u+v)— P(|S]] > v). (3.7) {7}

From the definition of &, it is easy to see that sup,>; F|{}|" < 2"K. Note that

nB (a6 > a)] < nEGEI) - = = 2
Hence
PUSII> ) < P(1D o861 > a) > v - 25
< np(\zly > ap) (3.8) {7}



provided v > a’i—[fl

n

Step 2: the tail for S.,. Set 0’2 = Var(¢&}). Trivially, o/ — 1 as n — oo. Take 7; = %
Then |n;| < ﬁ. Therefore we see from Lemma [3.3| that
P S/ > /
(S = vno'z) _ Ch(1 + 2%)yet*™ (3.9) {7}

1—®(x)
where sup,,>; |[Cp| < C and C' is an absolute constant, and

n anT no’
v = n?’/2g/3‘E(‘€H362 [ ))
1

V/no'3

Use the fact sup,,>; E|¢{|" < 27K to see that sup,>; E(|¢{[*) < 27K if r > 3 by the Holder
inequality. If 2 < r < 3, then write

(/1) (¢ )

E(EP) = B4 -1E1P)
(3-1)/2
< 27 ()T Bl

by the facts that [£]| < 2a, = 2y/n/logn and that sup,~; E|¢§]|" < 2"K. In summary, if
x = O(y/n/a,) then
Y < O<%>, if2<r<3;
O(n=1?), ifr >3

as n — oo. In particular, noting a, = /n/logn, we know that v — 0 and 23y — 0 since
x = O(y/n/a,). Consequently, we have from (3.9)) that

P(S), > /no'z) ~ 1 — ®(x) (3.10) {7}

under the assumption z = O(y/n/ay,).
Step 3: the tail for S,. Take u = cpy/nlogn and v = zfﬁ Then v/u — 0 as n — oo.
We still write v and v next sometimes for short notation. By (3.6, (3.7) and (3.8),

P(S;, > cp/nlogn)
> u—v)+nP(|&] > /n/logn) (3.11) {7}

IN
3
2

and

P(S,, > cp/nlogn)
> u+v) —nP(|&] > /n/logn) (3.12) {7}

v
3
2



In what follows, we will show both P(S), > u+v) and P(S], > u—wv) are close to P(S], > u).
Since the two arguments have no difference, we will consider them simultaneously and write
u £ v for the case u + v and u — v, respectively. Noticing u + v ~ c,v/nlogn. Take

r = (u=£v)/(y/no') in (3.10). Then z = O(y/n/an) by the assumption sup,>; ¢, < co.
From (3.2),  ~ cpv/logn — oco. It follows that

, uEv
P(S, > u+v) P(N(o, 1) > \/ﬁa')

1 (u+v)?
eXp{ o 2 }
cnV/2mlogn 2no
~ 1 - 2/2 3
as n — oo, where we use the fact P(N(0,1) > x) Tama¢ /7 as x — o0, We claim
(u+v)? c2 logn

as n — oo. In fact, write (u £ v)? = u? + v? + 2uv. Then

(utv)?  Alogn

2no’? 2
B u? clogn v+ 2uw
-~ 2no”? 2 2no’?
_ cn(logn) o —1 +O<%)
2 o’? n

The assertion 1’ says that 02 - 1and 0 <1 -0 < a?;_g = O((loﬂ)(r/m_l). Also,

n n

W _o(Yrloeny _ ooty

n an

It follows that

(utv)?  c2logn . /(log n)"/?
" 2no”? 2 < n(r/2)-1 )
We then confirms (3.13)). Therefore,

1 1

/
P(S], >u+tv) ~ PG v o

By the given condition,

1
nP(|&1| > \/n/logn) = O(W).

Comparing these with (3.11)) and (3.12)), we arrive at

P(S, > cp/nlogn) ~ 1 — ®(c,/logn)

as n — oQ. (]
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3.2 Main Proofs

For 1 < s <m —1, define

2m—s
5;:) H»Tkt, 77k; H Tit, Gp = H Tt (3.14) {7}
t=s+1 t=m+1

For a number a > 0 and a sequence of positive numbers {a,} with lim, . a, = a, we
define

) (a,) = (IZ&k > anv/nlogp, | 6767 > an\/nlogp> (3.15) {7}
k=1

for any 1 < s < m — 1. The next is a result on ‘Ilgf)(an), which is a key step in the
application of the Chen-Stein Poisson approximation to prove Theorem

LEMMA 3.4 Let {a,; n > 1} be a sequence of positive numbers with lim, o a, = a > 0.
Under the assumptions of Theorem we have that maxi<s<m—1 \I';S)(an) = o(p~***) for

any € > 0.

Proof. Let u,v and w > 0 be three numbers. It is easy to check that either |u + v| > 2w
or |u—wv| > 2w if |u| > w and |v| > w. It then follows from (3.15] that

v < P16 (0 +¢)| = 200 /nlogp)
k=1
+P(I 6 (0 = ¢)] = 200+/nlogp)
k=1

— A, 4B, (3.16) {7}
For the term A,, trivially,
Bl ) + ¢ =0, g ) + P = 2. (3.17) {2}

It is elementary that
m 1 m
[Tlad*™ < =" a
t=1 M=

for all a; > 0(t =1,---,m). Thus, we get

Eexp{to!és)ﬁgs”a/m} = Eexp{toﬁ\xu\a/m}

t=1
m

t
< Eexp{—OZ]azlt|a}
t=1
m to .
= HEexp{—]mn\ }
t=1 m

3
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By assumption, Eetolrul® « oo for some 0 < a < 1 and ¢y > 0, we see that
Eexp {t0|§§8)n§8)\a/m} < 0. (3.18) {7}

Noticing 0 < a/m < 1, we have

Eexp {%to}&s) (77§S) + dS)) ’a/m}
E [exp {%t0’€§s)n§s) |a/m} - exp {%to}gls)CIS) |a/m}]

(oo {ten@em)] "2 [Bexp {1nfe o pm)]

< o0

IN

IN

2 __ in statement of Theorem

by the Cauchy-Schwartz inequality. From the notation 5 =

2m—a
we see 3 - 2_Oéé7m) = g An assumption implies that a,v/2Iogp = o(n?/?). It is easy to

see that {f,(:) (n,(j) + C,is)); 1 <k < n} are ii.d. random variables. By Lemma (1) and
(13.17]), we get that, for any sufficient small 6 > 0,

1 " s s s
P<|m;€i)(n£)+é))l > a,/2l0gp)

< 2exp{—(1 - d)a; log p}
2p(5—1)ai‘

An

IN

Since a,, — a, the above implies that, for any ¢ > 0, we have

Ap = o(p~*) (3.19) {7}
as n — oo. Similarly,

Bn = o(p~® ). (3.20) {7}
Combining (3.16)), (3.19) and (3.20]), we complete the proof. O

Proof of Theorem The asymptotic distribution of W,, will be derived by the Chen-
Stein Poisson approximation method introduced in Lemma|3.1] To do so, set Z be the set of

integers and I = {(i1, - ,im) €EZP : 1 < iy < -+ <y, < p}. Foreach a = (i1, ,im) € I,
define
1 n
Xo = %‘ ;wkn»@km e Tk | (3.21) {7}
and

B, = {(.711 >]m) €l {jla"' 7jm}m{i17"' 7’Lm} #wat (jla"' 7]m) 7&05}

12



Obviously, X, is independent of {X3; § € I\X,}. It is easy to verify that
1] = (p> and |Ba| < m2pmt (3.22) {7}
m
for each o € I. For any z € R, write

1/2
] . (3.23) {7}

1
vp = [logp - %(loglogp + 2log(m!y/mm) — z)

Notice v, may not make sense for small values of p. Since p = p, — 00 as n — oo, without
loss of generality, assume v, > 0 for all n > 1. Set ap = {1,2,--- ,m} € I. By Lemma

‘P(ma? X, <V 2myp) — e | < by + by, (3.24) {7}
ac
where by and by are as in Lemma and
Ny = (:1 )P(Xao > V2mu,)
~ %PO Zl'kll'kQ . $/§m‘ >/ 2mnup). (3.25) {7}
k=1

First, write ¥, = xp1Tr2 - Tem, 1 < k < n. Then Fyp = 0 and Ew,% = 1. The assertion
1) says that Eetolt11*’™ ~ 56, Note that =< % since 0 < a <1 and m > 2. Moreover,
V2mu, = O(V1ogp) = o(n/?). By the definition of 3, we know g = % . % Therefore
it follows from Lemma [3.22) that

P(‘ Zxklxkg . --ka’ > \/2mnup> ~ P(|N(O, 1] > \/2mup)
k=1

2 2
~ e 3.26) (2
=, (3.26) (7}
where the fact P(N(0,1) > z) ~ —=— - e /2 as 2 — 00 is used. It is easy to check that

V2r x

vp ~ +/log p;
1 1
—mvg = —log(p™) + 5(10g logp + 2log(m!\/m7r)) ~ 5%

as n — 0o. Therefore,

p" 2 —mw2 _  —z/2
)\p ~ Wm e P ==e . (327) {?}
In particular, this implies that
m! —z/2
P(Xo > V2muy,) ~ e (3.28) {7}
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as n — oo for any « € I. Consequently, we have from (3.22)) that

1
by < |- |Bal - P(Xa > vV2mu,)* = 0(5). (3.29) {7}
Now we estimate by. First,

by = Z Z P(Xa > V2muyy,, Xg > \/2myp)

acl BeEB,

m—1
= 33 Y P(Xa> Vo, X > V2muy,). (3.30) {7}

a€cl s=1 Bel:|nal=s

Fori1<s<m-1,

{Bel:|pn{1,2,---,m} = s}
= {(i1,- yim) €EZP 1<y <+ <y <, |(i1, - yim) N{L1,2,--- ,m}| = s}.

Hence, {8 €1:|N{1,2,--- ,m}| = s} = (") (™) < m*p™ *. Review the notation in

and . In particular,
v (a,) = (\Z&k 0| > any/nlog ,|Z£ 6| = any/nlogp).

Since x;;’s are i.i.d. random variables, we see that

by < |I] - Z mp™ =% 0 (ay,) (3.31) {7}
where
V2mu,,
Ap = — V2m
Viogp

as n — 0o. By Lemma [3.4] for any € > 0, we have
\117(13) (an) < p72m+e

as n is large enough. This implies that

b2 S pm . mmpm—l . p—2m+e

= mMp 't 50 (3.32) {7}

as n — oo for all € € (0,1). Combining (3.24), (3.27), (3.29) and (3.32)), we complete the
proof. a

The following two lemmas are prepared for the proof of Theorem

14



LEMMA 3.5 Letx;j’s be as in Theorem@ and v, be as in . Define ¢, = \/2m/ log nv,

and £ = 11212 - T1m. Lhen

R+ /2 flogn - P(|&1] > /n/logn) — 0 (3.33) {7}

as n — o0.

Proof. Recall 75 = 2ma + 2 and 71 = 4ma + 2 and g(z) = 2™ log™(1 + z) for x > 0.
Observe that

Eg(l&1]) = Eflzn|™ -+ [o1m|™ log™ (1 + |z11] -+ |21m])]-

Use the inequality 1+ |z11] - |z1m| < (1 4 |211]) -+ - (1 + |x1m]|) to see that

m To
log™ (1 + [zt -+ [ziml) < [ D 1og(1+ Jany )]
j=1

m
< m™ Y log™(1+ |r1))
i=1

by the convex inequality. Obviously, the given condition E|[|z11|™ log™ (1 + |z11])] < oo
implies that E(|z11|™) < co. It follows that

m
Eg(j&a) < m™» Y Eflan[™ - il log™ (1 + |z1])]
j=1
= m™2E[lzn[" log™(1 + |z1])] - (Blen ™)™
< oo (3.34) {7}

Therefore,

Bl
P(’€1‘> /lg)ég(\/m)'

Trivially, log(1 + n_) > %logn as n is sufficiently large. We then see that

logn

g(\/n/ logn) > 3*T2nT1/2(log n)727(71/2) =3 2p2metl flogn. (3.35) {7}

In summary,

nt /2 flogn - P(l&1] > /n/logn) = O(n(c%/z)—ma)

The condition p = O(n®) implies that logp < alogn + O(1). Then we have from (3.23))
that

2 2
¢, M, 1 ( 1 )
n o _ . 1 — =logl
2 logn — logn miosp 30g o8P
1 1
< — . (0@1) - = log] )
< mat g (001) - g loglogy

15



as n is sufficiently large. Hence

(2/2)-2 —ma 1 YR
nle mer < Tme e (O(l) 3 log logp) = O(nmo‘(logp)l/?’
as n — oo. The assertion (3.33)) is yielded. O

LEMMA 3.6 Let the assumptions of Theorem [§ hold. Recall vy as in (3.23). Set a,, =

V2m/logpuvy. Let NS (an) be as in . Then maxi<s<m-—1 ) (an) = O(p~2™+9) for
any 6 > 0.

Proof. It is enough to show ‘11,({9)(%) = O(p~?™+9) for each 1 < s < m — 1, where § > 0 is
given. Similar to (3.16|) we have that

v(a) < P36 () + )| = 200 /nlogp)

k=1
+P(1 367 (1 = ¢)| = 200/nlogp)
k=1
= Ant Ba, (3.36) {7}

where §£S),n,(j) and C,(CS) are as in || Define V}, = §,(f) (77,(;) + Cks))/\@ for 1 <k < n.
Then > ), 51(;) (n,(f) + Cks)) = V2> 7_, Vk. Observe that Vi’s are i.i.d. random variables
with

EVi=0 and EV?=1. (3.37) {7}

Review 7 = 2ma + 3, 71 = 4ma + 2 and g(z) = 2™ log™(1 + ) for z > 0 as in Lemma
We claim g¢(z) is a convex function on [0, c0). In fact,

oz log™ 1 (1 + 2)
1+z

d(z) =z og™ (1 + ) +

Since 7, > 2 and 71 > 2, the function 2™ 1log™ (1 + ) is increasing in z € [0, 00), and
hence its derivative is non-negative. Therefore, the convexity of g(z) hinges on whether

T To—1
h(z) = £H10e2 (40 44 iy creasing on [0, 0o). Trivially,

14+x
1 _ _ 7 log™ 2 (1 4 )
% :7[1 ( -1 Jog™ (1 1 )
(x) (EE (142)(n og”? (14+z)+ (12 — 1) T2
J1 g
Ja

—z log™ (1 + x)}

(11 — 1)z™ log™ (1 + z)
(14 x)?

v

v

0
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by using the fact J; > z and Jo > 0. Thus, g(x) is convex on [0,00). Now, by the convex
property,

26| + 2|§§S><£s>\)
2

1 s) (s s) (s
< 5[Eg(zy§§ ")) + Eg(21¢1 ¢! )I)}

= g2l

Eg(Vi)) < Eg(

Since log(1 + 2z) < 2log(1+ z) for x > 0, we have g(2x) < 2™t g(z) for z > 0. By (3.14),
5&%9 = 11212 - - T1m. Consequently,

Eg(IVi|) < 27" Eg(|z11312 -+ - T1m|) < 00

by l) This particularly implies E[g(|V1)I(|V1| > \/n/logn)] — 0. Now,

n

Ay = P(| Vi = euy/nlogn)

k=1

where ¢, := an+/2(logp)/logn. By the Markov inequality,

E[g(Vi[)I(|a] > v/n/logn)]
g(y/n/logn)
= o(g(\/n/logn)_1>.

IN

P(|Vi] > v/n/logn)

From ,
g(\/n/ logn) > 37 2p2matL flogn.

By definition, lim, s a, = v2m and a,, < v/2m as n is sufficiently large. Then

e < 2/ - (logp>l/2 :2\/%[1+0( L )}

logn logn

by the assumption p = O(n®). This implies that

n1+(c%/2)\/10ﬂ.p(|vl| > \/W) _ O(n(c%/Q)—2ma)

= O(no(l/ logn)) — 0

as n — oo. Therefore, it is seen from (3.37)) and Proposition [1| that

P<|Zn:‘/;‘ > cn\/nlogn) ~1—®(cpy/logn).
k=1

17



Noting ¢pv/logn = apyv/2logp ~ v/4mlogp and 1 — &(x) ~ \/217;5 cem /2 as = oo It
follows that

P(‘ i VZ| > cnm) = O(e*C%(logn)/Q) — O(p72m+6)
k=1

as n — oo for any § > 0. Therefore, A, = O(p~2"*9). Similarly, B, = O(p~2"*?). The
proof follows from ((3.36]). O

Proof of Theorem Set I = {(i1, "+ ,im) € ZP : 1 < i3 < -+ < iy, < p}. For each
a= (i1, -+ ,im) € I, define
1 n
Xo = %‘ kzlﬂﬁkilwkiz Tk,
and
Bq = {(]11 ,]m) €l {jla"' 7jm}m{i17"' 7’Lm} 7&@ but (jla"' 7]m) 750(}

Obviously, X, is independent of {Xg; 8 € I\X,}. Review (3.21) - (3.25)) in the proof of
Theorem |1} Set oy = {1,2,--- ,m} € I. It is seen from Lemmathat,

’P(macha <V2muyy) —e
ac

< by + b, (3.38) {7}
where by and by are as in Lemma 3.1 and
Pl
Ap ~ ﬁPO Zxklmkg . ka‘ > \/2mnyp).
) k=1
Write v2mnv, = ¢, - v/nlogn. Immediately ¢, — v2ma as n — oo by 1) Set
& = wi1Tig - Ty for 1 < i < n. Then E& =0, Var(§;) =1 and

n' /2 flogn - P(1&1] > v/n/logn) = 0

as n — oo by Lemma The assumption E[|z11|™ log™ (1 + |z11])] < oo implies that
E|z11|™ < oo, and hence E|{|™ < oo with 71 = 4dma + 2 > 2. We then have from
Proposition [I] that

P(‘ Zxklxk2-~ka‘ > \/2mnyp> ~ P(|N(O, | > \/2myp)
k=1

~ e (3.39) {7}
4dmm vy
as in (3.26]). Hence,
Ap ~ o2 —mvy _ =22
m! v/4mmlog p



Immediately,
m! _
P(Xo > V2mu,) ~ s 2/2
as n — oo for any « € I. Similar to (3.28]) and (3.29), we get
1
by = 0<7). (3.40) {7}
p

Now we work on by. Recalling (3.30)) and (3.31)) we have
m—1
I‘ . Z O ‘I’gf)(an)
s=1
where a,, := /2m/logpv, for n > 1 and
U (a,) = <|Z§k ny ‘>am/nlog , \Zg,j)g,j)\ > apy/nlog )

and §k , nks) and (lis) are as in . By Lemma

(s) —2m-+6
| Jmax W, (an) < O(p )

as n — oo for any 0 > 0. By using the fact |I| < p™, we have
by < pm . mmpm—l . p—2m+5

m

= mmp 1 0

as n — oo for any § € (0,1). This joining with (3.38))-(3.40) completes the proof. O
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