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Abstract—The coronavirus pandemic is altering our way of life.
As more establishments open, there is an expectation that people
will follow physical distancing guidelines. The implementation,
however, is poor; just putting up warning signs appealing the
general public to keep a distance of 6 feet from others is hardly
enough. In this paper we consider the design of a wearable
device that raises an alarm if another similar device is detected
within a set distance. It uses off-the-shelf ultra-wideband radio
technology for real-time, accurate distance estimation from others
in the vicinity. We design an one-to-all ranging protocol that is
able to accurately estimate distance to neighboring devices and
warn the user if the distance falls below a certain established
threshold within a short time. The device must compensate for
human occlusions and avoid unnecessary warnings when physical
barriers exist between devices. We implement and evaluate our
protocol in a small testbed with custom prototype hardware
as well as in simulation. Our ranging protocol is capable of
performing up to 10 distance measurements per second, while
avoiding packet collisions. The overall percentage of rangings
completed is around 65% in a 10-node network, and the distance
accuracy is around 20cm even with frequent human occlusions.
We believe this prototype will provide the first steps to ensure
physical distancing in various real-world settings.

Index Terms—physical distancing, UWB, ranging protocol,
LOS NLOS, ultra-wideband, social distancing, occlusions

I. INTRODUCTION

This paper develops a distance measurement protocol run-
ning on a custom wearable device that aids maintaining phys-
ical distancing. It is envisioned to help, for example, teams
of doctors and nurses in a hospital, coworkers in restaurants
or warehouses, and even shoppers in a mall or grocery store.
But first, we begin by motivating the need for such a device
during the current COVID-19 pandemic and beyond. A virus
is a submicroscopic infectious agent that replicates only inside
the living cells of an organism [44]. This need of a living host
cell leads to an effective strategy in slowing a viral epidemic’s
spread: prevent the virus from finding new people to infect.
Physically preventing a microorganism from infecting a new
victim is a set of non-pharmaceutical interventions that have
proved effective throughout history [32], [35], [40], [45],
by preventing a surge of patients that would inundate the
healthcare system [12], [28]. The CDC suggests [20] keeping
a 6 feet distance to thwart the possibility of infections.

Strategies such as stay-at-home encourage physical distanc-
ing, yet, many essential establishments must remain open
and functioning. The expectation from people working at
and visiting these essential establishments, such as hospitals,
pharmacies, warehouses, grocery stores etc., is that they will
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practice physical distancing. Can we ensure that people remain

at a safe distance from each other, by actively warning

them when they are too close? In this work, we consider
how to employ technology to serve as a friendly reminder—

a nudge to maintain safe distance. This paper explores the

technical hindrances of creating such technology, though a

more thorough system evaluation should include psychological

and sociological studies as well.

More specifically, we design and prototype a wearable
device that warns the user if it detects another similar device
in close proximity. When co-workers must maintain physical
distancing (e.g., in hospitals, warehouses, etc.), employees can
clip this device to pockets, much like ID cards (Fig. 1(a)).
Medical professionals can be grouped into teams enabling
intra-team contact without impediment, while cautioning when
inter-team exposure might occur (Fig. 1(b)). At grocery stores
where the general public needs physical distancing, this device
can be clamped to grocery carts or baskets (Fig. 1(c)). We call
this device, 6Fit-a-Part, since it is a “part” that can fit onto
clothing (Fig. 1(d)) or equipment. 6Fit-a-Part constantly moni-
tors the surroundings for potential “personal space” violations.
Using ultra-wideband radios and a modified wireless ranging
protocol, it performs distance measurements with its peers,
and achieves high accuracy in real-world environments.

Of course, there is no novelty in simply performing wireless
distance measurements; wireless localization already does that.
So creating such a device and the associated protocol design
might seem trivial. However, several challenges emerge when
we start considering the problem carefully:

1) Devices may arbitrarily enter and exit from each other’s
vicinity, and need to measure distance with all nearby
devices, without a central authority. This results in hun-
dreds of messages being exchanged per second crippling
existing protocols.

2) Such devices are useful only if they work reliably every
time. It is therefore important to minimize false-positive
and -negative rates—no nuisance, or missed warning.

3) Without the right context, distance measurements can often
be misleading. Two shoppers in different aisles need not be
warned even if close-by, whereas a person body-blocking
the device may cause imperfect distance estimates. An
effective solution must differentiate such contexts.
Wireless distance measurement can be based off a variety

of techniques, from WiFi channel state information (CSI),

Bluetooth signal strength, to acoustic ranging. Each of these

techniques can be easily employed on the ubiquitous smart-
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Fig. 1. O6Fit-a-Part applications: (a) co-workers at warehouses, restaurants, (b) healthcare teams at hospitals, (c) shoppers at sfores; (d) wearable prototype

phone. It is, therefore, natural to wonder if a specialized
electronic device is really necessary. However, in real-world
environments, such as inside a grocery store, or in a hospital,
each of these methods face significant hurdles. Constant sonic
chirps can be irritating to people, while inaudible ultra-sound
can raise health concerns [47]. Real-world environments are
cluttered and cause dynamically changing multipath, rendering
WiFi CSI based techniques unsuitable due to their small 20-
80MHz bandwidths. Bluetooth signal strength is unreliable
in the best of conditions, and the store environment further
exacerbates the problem. To tackle these real-world issues,
we propose to use ultra-wideband (UWB) radios, a fast-
growing technology (iPhone 11, Samsung Galaxy Note are
equipped with UWB radios) which can obtain nanosecond
receive timestamps owing to their 1GHz bandwidths. More-
over, UWB’s fine-grained channel impulse response increases
multipath resolution; path-lengths larger than ~ 30 ¢m can be
clearly differentiated. Our core contributions are:

1) Developing a peer-peer wireless ranging protocol to
efficiently determine numerous pair-wise distances between
near-by devices (measuring about 10 distances per second).

2) Analyzing the wireless channel impulse response to dif-
ferentiate clear line-of-sight measurements from human-
occluded and barrier-occluded ones, correcting distance
estimates (median accuracy less than 20cm).

3) Designing and prototyping an ID-card size device on which
to instantiate the ranging protocol. The device is low
power (53 mA transmit current), lightweight (=~ 50gms —
100gms), small (= 8cm x 5¢m), and inexpensive (=~ $50).

The rest of the paper is organized as follows. We start with
an overview of the 6Fit-a-Part system with a brief descrip-
tion of each module. We then discuss details of the peer-
peer ranging protocol including design-decisions rationale. We
then discuss the occlusion detection and correction process,
followed by device implementation details, and evaluation of
the complete system. We then discuss prior work in this area,
followed by a short discussion of future work, and conclusion.

II. SYSTEM OVERVIEW
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Fig. 2. 6Fit-a-Part System Architecture

Fig. 2 shows the overall 6Fit-a-Part architecture. The front-
end UWB RF (radio frequency) module is responsible for send-

ing and receiving ultra-wideband packets. It records precise
nanosecond-level timestamps of outgoing and incoming pack-
ets, and also extracts the channel impulse response (CIR). The
timing information is used by the ranging module to run the
6Fit-a-Part peer-peer ranging protocol. It decides how many
slots to allocate for responders in every round of the protocol,
maintains slot timings, and enables a quick retry mechanism
for colliding responders. In conjunction with the UWB RF
front-end, the ranging module produces a raw estimate of the
distance between peers. This distance estimate and the CIR
from the UWB RF module is processed inside the analysis
module to infer the context of the measurement. Specifically,
the analysis module extracts features from CIR and classifies
the obtained distance measurement into line-of-sight (LOS),
human occlusion, or barrier occlusion, (together called NLOS),
and compensates for distance errors, if required. The output
of the analysis module is this sanitized distance and an alarm
trigger, if necessary. Finally, all decision attributes are stored
by the storage unit for offline analysis and improvements.

ITII. PROTOCOL DESIGN

6Fit-a-Part is based on the core primitive of wireless dis-
tance estimation between devices. However, existing ranging
protocols assume a small number of “anchors” perform these
measurements [18], [22], [25]. Naively stretching these to
many-to-many distance measurements would be inefficient,
yielding low ranging rates. We first describe the existing stan-
dard protocol and then discuss our contributions in designing
a faster ranging protocol, in detail.

A. Wireless Ranging Primer

A robust distance estimate can be obtained by measuring the
time of flight (ToF) from a transmitter to a receiver, and then
multiplying ToF with the speed of light. ToF-based ranging
places stringent demands on the ToF precision, since, even
a small error in ToF, amplifies significantly when multiplied
with the speed of light (~ 3 x 10%m/s) leading to large
distance errors. This problem is further exacerbated when
clocks on the two devices are not synchronized and can drift
independently of each other. UWB transceivers with a large
wireless bandwidth allow precise ToF estimation. To minimize
effects of unsynchronized clocks and clock drifts, ranging
protocols, such as the symmetric two-way ranging (TWR)
protocol [25] have been devised.

Fig. 3 shows this standard TWR protocol between devices
A and B. The device A initiates distance measurement by
sending a POLL packet to another device B. On reception of
a POLL, B records the precise reception time, then turns into a
transmitter, and sends a RESP packet back to A. At this stage,
one round trip has been completed. A, on its part records the
reception time and sends the FINAL packet back to B. At this
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point, two round trips (denoted by R,) and two turn-arounds
(denoted by D) have occurred. Device B now has enough
information to calculate its distance from A, by averaging the
differences in the various transmission and reception times
(see the right side of fig. 3 for the averaging formula). Using
relative instead of absolute time, TWR eliminates clock offset
between A and B. Furthermore, it can be shown that the error
caused by the clock drifts at the two devices is minimized by
minimizing the difference in the two turn around times.

However, this requirement of minimizing the difference in
the turn-around time limits the scope of protocol modifications.
Fig. 4 shows the performance degradation of the averaging for-
mula with increasing difference in turn-around times. Instead,
an improved empirical formula has been proposed in [33],
we call it the Deca formula, making the ranging precision
independent of the difference in turn-around times. In this
formulation, ToF (p) is given by:

_ Ra-Rp—Das-Dp 0
o Ry+Rp+Dy+Dp’
Proof of this is trivial and we refer the reader to [33], [34] for

details. The key strength of this formula is in the robustness
to different turn-around times, as demonstrated mathematically
in [34]. Compared to the averaging formula, eq. (1)’s robust-
ness can be seen in fig. 4. We utilize this greater flexibility in
designing our modified one-to-many ranging protocol.

B. Peer-Peer Ranging

The above TWR protocol is suitable only for finding
distance between two designated nodes. OFit-a-Part, on the
other hand, requires all devices to range with any other device
in its vicinity, without knowing their identity a priori. We
therefore need a modified ranging protocol, that at a high level,
satisfies the following requirements: (1) Effectiveness: Each
node measures the distance from any and all devices that are
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Fig. 6. The 6Fit-a-Part one-to-many ranging protocol initiated by A.

close-by. (2) Efficiency: 6Fit-a-Part should minimize packet
collisions within the network of nodes, which would otherwise
cause performance degradation in a multi-node scenario. (3)
Realtime behavior: 6Fit-a-Part should maximize the number of
distance measurements per second to quickly raise an alarm
when two devices are too close.

The first requirement begets the question: Who is close-by?
A naive way to approach this question is by sending out a
broadcast request as a discovery process. Performed by all
devices in the vicinity, every device would know of the entire
network’s membership. This discovery step could be followed
by a series of node-wise TWR operations. However, for a net-
work with n mobile nodes, such a protocol would first require
n discovery messages, and then all nodes will have to perform
the TWR protocol followed by a distance report message with
n — 1 other nodes, for a total of n +4n(n —1)/2 =2n% —n
messages. With frequent message exchanges, uncontrolled
pair-wise transmissions incur significant collisions. Fig. 5
shows the impact of frequent collisions: the number of usable
rangings falls short of the theoretical maximum. Further, it is
difficult to guarantee fairness, where all nodes perform equal
number of rangings, due to potential capture effect.

We propose below a protocol to satisfy the requirements in
such a multi-node scenario. Overall, the 6Fit-a-Part protocol
can be summarised as follows: (i) A more efficient message
exchange scheme that reduces the total number of message
exchanges to n?+4n, (~ 2x improvement); (ii) A slotted time
division multiple access scheme with real-time slot adaptation
to reduce RESP collisions; and (iii) A two-step scheme allow-
ing RESP re-transmission while a collision occurs. The core
benefit in the 6Fit-a-Part protocol comes from the exploitation
of the broadcast nature of wireless channels, which is further
enhanced by piggybacking information pertaining to multiple
nodes on a single wireless packet. Next, we describe the
proposed 6Fit-a-Part protocol, but relegate justification of the
design choices to section III-C.

Fig. 6 shows the flow of messages in 6Fit-a-Part protocol.
Since every device is equivalent and each of them runs
exactly the same protocol, there is no master device or central
controller. Each device runs a simple state machine shown
in fig. 7. For ease of explanation, we consider the protocol
from the perspective of one particular device, called A and
first follow the “POLL-Path” in fig. 7. A has (n) neighbors
Bi, Bs,--- , B, at a given instance. These nodes follow the
“RESP-Path” in fig. 7.
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Basic round: The protocol starts with A sending a broadcast
POLL packet, (packet structures are shown in fig. 8). Within
the POLL, A declares the number of slots, s, available to
any B, for sending RESPs. Every slot is defined as a non-
overlapping short period of time starting from the reception
of the POLL packet. After sending the POLL, A changes to
being a receiver and records every response it receives. This
process will last for s slots. It then waits an additional short
period o as a guard interval. On reception of the broadcast
POLL, each receiving device B, must randomly choose one
among the s slots, and send its RESP packet in that slot. Since
the propagation delay is much smaller than the transmission
delay, POLL arrives almost simultaneously at all B;, ensuring
the non-overlapping property of slots at different B; nodes.
After sending the RESP, B; enters the FINAL expecting state,
waiting for the FINAL from A.

There are three possibilities for each slot that A has given:
(1) no responding device chose that particular slot, (ii) only
one of B;_,, devices transmitted in that slot, (iii) two or more
devices send RESP in the same slot (a collision occurred),
which may produce an error in the reception. After dutifully
waiting for s time, A builds a set {B] ,,,} which contains the
type (ii) RESPs above. A then assembles the reception times
and node IDs in { B’} as well as other information that will be
used by the B’ devices to calculate their own distance from A,
(message format is shown in fig. 8). Meanwhile, based on the
number of empty or collision slots observed, A dynamically
adapts the distributed slots s in every turn to efficiently
trade-off between minimizing the time delay and reducing the
collisions. In general, higher occupation rate indicates that a
larger s is required to avoid collisions. More details on the
slot adaptation are in section III-C. On receiving the FINAL
from A, every B; checks if B; € B’. If it is a member, it

calculates the distance from A. Otherwise, B; participates in
the respond-again (RESP-again) round described below.

Respond-again round: While the basic round reduces the
collisions through slotting and slot adaptation, a fraction of
packets are still lost due to collisions. For instance, as shown
in fig. 9, when there are 5 nodes, the packet reception ratio
is approximately 80% even when distributing slots with 4x
the number of nodes—increasing number of slots provides
diminishing returns. To mitigate this issue, we propose the
respond-again scheme. Specifically, for nodes who are not in
B’, it is allowed to send another RESP randomly choosing
among further s’ slots after A’s FINAL is received. The
number s’ is given in the FINAL packets (and also in POLL
packets to avoid certain corner cases) sent by A. This allows
A to receive a new set of RESPs and send another FINAL
to these nodes denoted as B”. Nodes already present in B’
do not participate in this round, and instead sleep for a short
time saving power. A’s POLL to FINAL, is called one run.

At this point, a total of |B’ U B”| = n’ devices have
calculated their distance from A. Revisiting the state diagram,
A has completed POLL-path, while the B;’s have completed
the RESP-path. A itself, despite having initiated the process,
does not receive any distance estimates. Next, A starts a
timer Ty,, and enters the POLL-expect state of RESP-path
during which it waits for a POLL from another node. While it
waits, A may go back to sending a POLL with an increasing
probability p,.;; as time passes. If it does receive a POLL, it
freezes T,,, and enters the RESP-path flipping its role and
behaving like a B node. The Ty, timer remains frozen until
the current full round (both basic and respond-again parts)
finish, after which T, starts running freely once again. This
process repeats until Ty, runs out: once again node behavior
flips, A enters the POLL-path and initializes a new POLL.

C. Design Decisions

None of the choices in this protocol are arbitrary. In this
section, we discuss the motivation for the design choices made
in the 6Fit-a-Part peer-to-peer protocol, through comprehen-
sive simulation and experiments. The focus is on 6Fit-a-Part’s
robustness and efficiency in a multi-node setting.

1) Benefit of the two-round RESP strategy: We show that
adding more slots to the basic round, instead of having a two-
round RESP, does not reduce collisions. Adding slots provides
more nodes a contention-free chance of sending the RESP
packet to A. However, every slot consumes valuable time that
reduces the ranging rate. Hence, we must carefully choose the
number of slots made available to B;. Suppose the proportion
of nodes not experiencing a contention iS pcjeqn With s slots.
The proportion Pcjeqrn is a function of both the number of
available slots s and the number of nodes n:

Pclean = F(S, TL) (2
Fig. 9 shows the percentage of contention-free nodes given
a certain number of available slots. Increasing the number
of slots available to the whole network produces diminishing
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returns. In a 20-node network, 50% nodes (i.e. 10 nodes) will
enjoy contention free slots if 30 slots are available. However,
even if an additional 30 slots are made available to the whole
network, only 70% nodes will have enjoyed contention free
slots. Instead, if we first present only 30 slots, and then present
another 30 slots to the previously un-represented nodes, a total
of 85% nodes will have sent a RESP (10/20 in the basic round,
7/10 in the respond-again round). Therefore, a 2-stage strategy
is beneficial over a single-stage strategy.

2) Guidance for the choice of s: The number of available
slots is dynamically adapted to avoid bandwidth wastage. Our
choice of the number s during every round has a significant
impact on the overall packet reception ratio. Fig. 9 provides
an intuition about s, but we will formalize it here. Ideally, we
want to choose s based on our best guess of the number of
nodes currently present in the vicinity (network size), which
can be inferred from the slot occupancy in the previous RESP-
expect state. As an example, fixing the number of maximum
slots to 20, fig. 10 shows the probability of the number of
occupied slots as the number of nodes in the network changes.
Evidently, the space of the most likely network size is small
once the number of occupied-slots is known. 6Fit-a-Part uses
fig. 10 as a look-up table for network size inference Z. Given
that s,.. slots were occupied in the previous run, a particular
row in fig. 10 will be relevant. Pick the cell in that row
which has the highest probability, resolving ties by preferring
the higher number of nodes. This is the best estimate of the
number of nodes in the network. Then, with estimated number
of nodes, 6Fit-a-Part uses fig. 9 to obtain the value of s such
that a preset percentile pjeqn Of those nodes will receive a
contention free slot. In our protocol, we empirically set it to
be higher than 80% between the basic and RESP-again rounds.
This choice of s is calculated at every run independently by
every node. Given our lookup table approach, we use the
inverse function of eq. (2) to update the slots:

s = F_l(pclean>I(Sprev7 Socc))- (3)

3) Choice of s': The choice of s’ is tightly coupled with the
choice of s and how exactly s was chosen. Overall, the goal
is to achieve ranging with higher than a certain percentage of
nodes. Therefore, if s was chosen at the 50%, s’ will have to
be larger than if s was chosen at 80%, for example. However,
the choice of s’ can be made, without loss of generality, at
the same time that s is chosen. This is particularly beneficial
in ensuring that overhearing neighbors remain frozen for the
entire duration of the current run, as will become clear in
section III-C7, where we discuss multiple collision domains.

nodes and number of occupied slots.

collisions, but increases wasted time.

4) Choice of inter-POLL time T,,,: After sending the
FINAL, message, the node will wait for Ty,,, before initial-
izing another POLL. Since distance is calculated at the nodes
who receive the FINAL, sending a POLL is altruistic. Smaller
Tyap brings little benefit, but increases the POLL collision
rate. POLL-collision occurs when two (or more) nodes A;
and A send a POLL almost simultaneously. In that case,
both nodes will miss the other’s POLL and enter the RESP
expected state making no progress. In addition, too frequent
POLLs would also drain the battery quickly. Therefore, from
A’s perspective, it is better-off sending the least number of
POLL messages, and giving others a chance to send their
POLLs. On the other hand, since all devices are peers, A
cannot entirely stop sending POLLs, otherwise no rangings
will occur in the network. 6Fit-a-Part sets the T},, based on
the following principles:

1) Incessant POLLs from A do not add new information.
2) T4y should allow other nodes to send their POLLs.
3) Tyap should minimize POLL collisions.

4) Tyap should enable conserving battery.

Drawing from these principles, the value of the inter-POLL
gap Ty, is probabilistic. A tunable parameter « dictates
the rate at which py.; increases with the time since last
POLL. Fig. 11 shows «’s impact on PRC and MRT, providing
guidance about selecting the design parameter «. In addition,
to avoid fast battery drain, A does not POLL for a short time
(150ms in our experiment). If A is alone in the network, it
will wait for at least 150ms before sending another POLL.
After that, A would send out a POLL with slowly increasing
probability pporr when it is in the POLL-expect state. Any
time A is responding to another node’s POLL message, A will
be in any state in RESP-path except POLL-expect state and
will not initiate its own POLL.

5) Choice of freezing inter-POLL timer: O6Fit-a-Part
freezes the timer Ty,, when it accepts a POLL from others.
Had we not frozen the timer, when another node B; sends
a POLL, A will send a RESP but still keep counting down
on its Ty,p,. At the same time, other nodes such as B; which
might have a counter value close to A will also count down.
Suppose A reaches zero first, but cannot transmit because it
has to wait for the current By run to complete. While A is
waiting on zero, B; will also reach 0 and wait for B; to finish.
At that instant, A and B;’s POLL packets will collide. By
introducing the timer freeze, we ensure that only empty slots
are counted reducing the collision probability to only those
nodes who were at the same count simultaneously. This idea
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can create a logjam where, once two nodes start colliding,
they will always collide. A small random backoff at the Ti,,
prevents this. Nodes respect other POLLs and freeze during
that time, staying on the small backoff.

6) Slots vs continuous time for RESP back-off: The 6Fit-
a-Part protocol suggests all B nodes pick a random slot from
1..s and transmit in that slot. Instead, it is also possible
to treat time as continuous and allow nodes to choose at
much finer time-scales. Slots are naturally more efficient at
avoiding collisions (see comparison in fig. 12). The only
drawback of slotted back-off is the requirement of a globally
synchronized time. In any other wireless system, this would
be a major hurdle. Fortunately, the reception of the broadcast
POLL packet and accurate time-stamping available on UWB
devices already provides a uniform way to synchronize all
B nodes!. Since node-synchronization comes for free, slotted
back-off behavior is naturally preferable for 6Fit-a-Part.

7) Multiple collision domains: While the wireless channel
is broadcast, it does not spread out to infinity. In a large space,
it will be easily possible to have more than one collision
domain; nodes too far to hear A’s POLL packets. If such a
node, say C is far enough to not have any interactions with
A’s neighbors (B’s), then C' can POLL simultaneously with
A. In general, however, C' may be far enough to not hear
the POLL, but still hear B’s RESPs. In such a case, C' may
unintentionally interfere with B. To avoid this interference,
if C detects an unsolicited RESP packet during its POLL-
expect state, C' freezes for the amount of time that A — B
communication is expected to continue. Every RESP packet
contains s, and s’, to help C determine the freezing time.

IV. OCCLUSION AWARE DISTANCE COMPENSATION
A. Challenges Due to Occlusions

In dynamically changing environments, as the ones we
expect at hospitals, warehouses, and grocery stores, the 6Fit-
a-Part peer-peer ranging protocol is essential to quickly detect
presence of others in close vicinity. However, the protocol
alone is insufficient; our ultimate aim is to create an alarm
system to warn of potential safe distance violations. Whether
or not to raise an alarm for a specific distance can depend on
the context. For example, two devices in two different rooms
must not trigger an alarm even if they are indeed close-by,
since they are separated by a physical wall; a false positive
case. On the contrary, two devices occluded by humans, may
appear to be farther away than they actually are, since the
direct signal path is blocked, while a stray reflection (longer
path) might arrive at the receiver, providing a false sense of

IThe slight difference in arrivals due to propagation delay is a few
nanoseconds and can be safely absorbed within slot guard-bands

security, since the devices will register a longer-than-actual
distance; a false negative case. Avoiding such problems needs
us to handle distances differently based on the context.

1) Detecting Physical Barriers: The general problem of
detecting barriers is not simple to solve in its entirety. Wireless
signals, unlike light, are not completely blocked by brick walls,
wooden panels, and other obstacles. Meaning, a device pair
may still be in wireless range even when they are separated
by a brick wall. We will obtain a range from such a pair, and
our task is to look at this measurement, use any auxiliary
information available, and determine if this measurement
corresponds to LOS link, or a physical barrier was present.

2) Detecting Body Blocking: Signal absorption by the hu-
man body creates unique challenges for distance estimation
since the direct signal is attenuated significantly, causing
diffraction or a reflection from a nearby object to be misiden-
tified as the first path. This results in an overestimation
of the actual distance. Fig. 13(a), borrowed from [19] (and
slightly modified for explanation here), closely demonstrates
this effect, including occlusions at different angles. UWB
device A, is surrounded by several other UWB devices Bs
with some of them occluded due to body-blocking (a person
standing between A and By, Bs). The distance measurements
made by A with each of these devices are plotted as green
or red dots in fig. 13(a). The devices that have clear line-
of-sight with A obtain consistent measurements, whereas the
occluded devices within about 30°cone behind the person (Bs,
Bs ) obtain wildly fluctuating estimates (the red streaks). This
toy example illustrates the issues 6Fit-a-Part will face when
occluded by people—a common scenario in any public space.

We ask: Is it possible to distinguish between human occlu-
sions and physical barriers? Is it possible to obtain accurate
distance estimates despite human occlusions?

B. Classification Opportunities

To answer these questions, we need to first understand the
process by which UWB devices decide the packet reception
time and other auxiliary information that might be useful. The
UWSB receiver performs a cross correlation of incoming phys-
ical layer preamble with a known pseudo-random sequence.
This correlated signal is then convolved with the known
transmission pulse to obtain a high-bandwidth CIR, which
captures the signal strengths and time delays between echoes.
The resolution of this “impulse” is limited by the signal’s
bandwidth, but since UWB devices use a large bandwidth,
we obtain a few nanosecond resolution in the CIR? with
every CIR point associated with a timestamp. An internal
leading edge (LDE) detection algorithm analyzes this signal,
and determines the first instance when the signal amplitude
exceeds a previously set LDE threshold. That timestamp is
reported as the packet reception time.

Ideally, this receive timestamp should be accurate irrespec-
tive of whether the devices currently have a clear LOS between
them or not. However, environmental factors can lower this

2 A 1GHz bandwidth allows 1ns resolution. Practically, path-lengths 3—4 n.s
apart can be clearly distinguished. 1ns = 1foot difference in path lengths.
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accuracy. The LDE threshold is calibrated to provide consis-
tent results during line-of-sight operations. Walls and other
barriers attenuate wireless signals, so for the same distance, a
barrier-occluded signal’s first path will have lower amplitude
than their line-of-sight counterparts. Fig. 13(b) shows a CIR
with wall occlusions. In contrast, when the first path is body-
occluded, the attenuation can be so severe that its amplitude
can lie below the LDE threshold. Such a first peak will be
missed completely (fig. 13(c)). We believe careful analysis of
the CIR presents an opportunity to correct distance estimates.

This knowledge of the packet reception process leads us to
two key observations to detect and classify occlusions.
Observation 1: Occluded signals (through walls, or humans),
are attenuated more than LoS signals at the same distance.
Observation 2: Human occlusion distorts the shape of the
peak with closely-coupled multipath, causing the wrong peak
to be selected as first path.

Next, we discuss our classification and distance correction
approach based on these key observations.

C. Classification And Distance Correction Methodology

Our goal is to create a module that takes a CIR and
measured distance as input, and first classifies it into LOS,
wall-occlusion, or human-occlusion. For the final case, the
module also computes a distance correction. Several CIR
features will prove useful in this endeavor: Fig. 14 provides
a glimpse into these features. Three regions are marked: (1)
the region before the first path (Pre FP), (2) the region during
the first path (FP), (3) the region after the first path (post FP).
One important feature is that if we have missed capturing the
first path, then the “Pre FP” region contains attenuated signals,
and not noise, elevating the signal strength in that region. If no
line-of-sight path exists in this CIR, then we expect the “Post
FP” region to have similar signal strengths as the “FP” region
since all paths are only reflected paths. A weak or slowly rising
first path pulse will have a smaller slope than a quickly rising
LOS first path. Each of these properties affect the computed
“Rx Timestamp”, which we intend to correct. Our features
will be based off these “if-this-then-that” observations.

One might be tempted to approach the occlusion classi-
fication problem using a fine-grained deep learning model.

Label | Feature Importance (DST/RGT)
x1 FP to Pre-FP power ratio (pr/Ppre) 1.69% / 1.67%
x2 First Peak Index 2.34% / 0
x3 Slope of best-fit line at FP 22.9% | 51.13%
x4 Pre-FP Power (Ppre) 0/234%
x5 FP Power (Pyp) 6.97% / 6.33%
x6 Raw distance measurement* NA / NA
x7 FP to post-FP power ratio (pr/Ppost) 11.02% / 14.0%
x8 Pulse shape (Correlation coefficiency) 4.24% / 0
x9 Receive signal power (Precy) 50.84% / 24.53%

TABLE I

FEATURES USED IN CLASSIFICATION AND REGRESSION TREE

However, 6Fit-a-Part is based on a small embedded micro-
controller with just 32KB of RAM and without Internet con-
nectivity. These severe resource constraints preclude the use of
sophisticated deep learning algorithms. However, since we use
UWB radios, we do obtain a fine-resolution multipath profile
of the environment providing us opportunities to simplify the
classification algorithm. Therefore, based on the “if-this-then-
that” nature of the solution described above, we argue that
a decision tree is a suitable model for both classification
and distance compensation. Although distance compensation
should ideally be a continuous value, and a regression tree only
provides a small set of values, we still find it beneficial. Table I
describes the features used for fitting the two trees. Signal
attenuation (x9) due to obstructions is the most important
feature to distinguish between occlusions and LOS. The FP
Slope is indicative of distance errors for human occlusions
(fig. 13(c)). Some features incorporate the raw distance (¥)
using Friis transmission formula [39] to avoid over-fitting.

A classification tree (DST: 50% split, 3% error) and a
regression tree (RGT: 25-75% train-test split, 2.8,7.7,18.8 cm
resubstitution error at 50, 75, 90%ile) were trained on Table I’s
features (fig. 15) using data collected in three environments
including: low multipath (open driveway, medium multipath
(large living room), and high multipath (busy kitchen area).
Fig. 16 demonstrates the effectiveness of distance compensa-
tion in the human occlusion case. CIR and ranging data was
collected at multiple distances (letters A, B, C, D in fig. 16)
with and without human occlusion. The LOS CDFs are shown
as solid-black lines, whereas red lines show the corresponding
raw human-occluded ranges. Post compensation, the human-
occlusion CDFs (blue dotted lines) closely mimic LOS ranges.

X9 x3
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x8 x5 x7

Human Wall LoS Dist1 Dist2
Fig. 15. (a) Classification DST, (b) Distance compensation RGT.
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In summary, every range measurement is first classified
into LOS, wall-occlusions, or human-occlusions, and only
compensate the distance for human-occlusions.

V. IMPLEMENTATION DETAILS
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Fig. 17. (a) Protocol evaluation testbed: 10 UWB nodes (b) Occlusion testbed:
UWB nodes on movable luggage (c) 6Fit-a-Part hardware prototype.

The 6Fit-a-Part protocol has been completely imple-
mented, in C, on a UWB development platform, Decawave
TREK1000 [6]. All protocol evaluation in section VI has
been performed on this platform operated at 4 GHz center
frequency, with 6.8 Mbps data rate. A 10 node testbed used
for evaluating the protocol is shown in fig. 17(a). Distance cal-
culations occur on the TREK 1000 nodes. Some of these nodes
are connected over a USB-serial port to a Dell Inspiron laptop,
with an Intel Core i7 microprocessor, running Matlab R2019a
on Windows 10. The laptop collects distance estimates, timing
information, and node IDs, for detailed evaluation.

In the NLOS testbeds (fig. 17(b)), the laptop also collects
CIR data from the nodes, useful for obtaining LOS, human
occlusion, and wall occlusion data in various environments.
The distance compensation RGT is run in Matlab on the
laptop (post processing). However, we have deliberately kept
the prediction logic simple so that it can be ported to the
embedded platform and run in real-time.

Finally, fig. 17(c) shows our hardware prototype that inte-
grates the Decawave DW1000 chip [7] ($18) with Adafruit
Feather MO [2] which runs the Atmel ATSAMD21G18 ARM
Cortex MO processor [4] ($20), with a 32KB RAM, and
256KB of program memory. We over-provision this hardware
platform using Adalogger Featherwing [3] ($9) which supports
writing CIR information to an SDCard ($3). The platform is
powered using a 1200mAh battery ($9) and is expected to
last about 10 hours [7]. This research prototype runs the 6Fit-
a-Part protocol, including distance compensation, and stores
CIR data for debugging. The final product, sans the logger
module, will cost $50. The software and hardware design files
are available at: https://github.com/Whisper-Cao/6Fit-a-part

VI. EVALUATION
A. Overall Network Efficiency

In a distributed peer-peer protocol with no central coordi-
nator, packet collisions cause reduction in efficiency as the
number of nodes in the network increases. Using the protocol
evaluation testbed, we inspect the percentage of rangings
completed (PRC). Fig. 18(a) shows the change in PRC as
we sequentially increase the number of nodes in the network.
To collect enough data packets, the network is run long
enough for a minimum of 500 rangings from every node.

Our implementation of the 6Fit-a-Part protocol supports a 10-
node network with PRC at about 65%. Note that the PRC is
different from, and usually much lower than, the network’s
packet reception rate, since for a ranging to complete, the
whole set POLL-RESP-FINAL must be received. The 6Fit-a-
Part protocol involves slotting for responses, random backoff,
and a RESP-again strategy. As a baseline, we implement
another protocol, called arbitrary TWR (A-TWR), where a
node receiving a POLL immediately responds. The only
modification in A-TWR to the standard TWR is broadcasting
POLLs and FINALs, and including all receive times in the
FINAL packets. In this case, multiple responses collide, and
typically the initiator only receives one of those responses (a
manifestation of the capture effect). As a result, A-TWR’s
PRC falls quickly with increase in network size.

The PRC directly affects the rate of acquiring distance
measurements from others, which we investigate next: How
long would it take for any node to receive one ranging from all
of its peers? We average the time between successive FINAL
packets from the same node obtained over all the rangings
received, which approximates the network’s mean ranging time
(MRT). Fig. 18(b) compares the increase in the MRT for 6Fit-
a-Part vs that for A-TWR as the network grows from 2 to 10
nodes. 6Fit-a-Part has a 10-node MRT of about 1second (on
an average, every node receives ranges from 9 other nodes in
1 second.) In comparison, A-TWR performs extremely poorly.
In fact, beyond 6 nodes A-TWR rarely completes ranging with
all nodes. Our results for the 10-node network are promising;
in the real-world this translates to 10 shopping carts in vicinity,
or teams of 10 medical staff in close proximity receiving
distance estimates from everyone, every second.

B. Micro-benchmarks

1) Tail Latency: The MRT shown in section VI-A fails to
capture the worst case behavior of the network even with error-
bars. However, in our use-case, not receiving a range from one
of the nodes for a long time means no alarm is raised even
when such a node violates the 6-feet rule. Fig. 19 shows an
inverted CDF of the ranging time for networks of various sizes.
Compared to A-TWR, 6Fit-a-Part protocol manages to keep
the tail latency low. The 99% (95%) MRT for 6Fit-a-Part is
3.6 seconds (2.2 seconds) for a 10-node network, whereas it
is 24.7 seconds (13.3 seconds) for the A-TWR protocol.

2) Fairness: In a peer-peer network, being fair entails
making a similar number of distance measurements with every
other node. We demonstrate 6Fit-a-Part’s fairness in fig. 20 and
compare it with A-TWR for a modest 6-node network>. Every
node in 6Fit-a-Part performs approximately the same number
of total distance measurements, and each node ranges with all
other nodes approximately the same number of times.

3) Selection of Slotting Threshold: As mentioned before,
slot adaptation is based on the estimation of nodes in the
network. Yet, we rely on presetting the expected proportion
of successful distance measurements pjeqn, Used in the basic
round. We evaluate the percentage of ranging that completed

3Every node must collect fairness data, logistically limiting to fewer nodes.
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when different p.c,, values are employed and the results are
shown in fig. 21(a). As expected, offering more slots provides
diminishing returns. And the flip side of a higher pcjeqn can
be observed from the increase in ranging time in fig. 21(b).
Note that while the % of rangings completed is probabilistic,
the increase in mean ranging time is deterministic—the trend
is therefore easier to observe in fig. 21(b).

4) Effect of Slot Adaptation, RESP-again: Evaluation of
slot adaptation scheme and turning the RESP-again on/off
is difficult on a real test-bed. Therefore we evaluate these
parameters in a trace-driven simulation environment. Similar
to fig. 18, we show the PRC and MRT for the simulation
in fig. 22. When testing without slot-adaptation, we set the
number of slots to the maximum available slots (the upper
bound of what 6Fit-a-Part protcol can choose). RESP-again
scheme is left on for this case. Observe in fig. 22(a) that 6Fit-
a-Part protocol achieves almost the same PRC as when using
fixed maximum slots. The cost we pay by fixing the number
of slots is an increased MRT (see green line in fig. 22). If
we turn off the RESP-again scheme, PRC reduces but we do
not gain too much on the MRT dimension. This shows that
the overhead of RESP-again scheme is minimal. We are thus
better-off using both RESP-again and slot adaptation.

5) Dynamic Network Size: Fig. 23 show the network’s PRC
and MRT as the number of nodes in the network is changed. It
shows that the network adapts to the increased network size in
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real-time and restores prior performance on removal of nodes.
Fig. 23 also shows the observed variability in PRC and MRT
metrics, precluding the need for error-bars in fig. 18.

6) Occlusion Classification: We test 6Fit-a-Part’s classifi-
cation accuracy in three environments with increasing multi-
path: an open area, a living room with sparse furniture, and a
kitchen with severe multipath. Fig. 24(a) shows representative
CIRs in these environments. Experiments are performed at
distances 1—4 m between two UWB devices (1 m granularity)
for line-of-sight, wall occlusion, and human occlusion in these
environments. Fig. 24(a) shows that OFit-a-Part accurately
classifies in low-multipath environments. The accuracy de-
grades with increasing multipath, yet the overall accuracy is
93% (85%) for medium- (high-) multipath scenarios.

7) Human-Occlusion Distance Compensation: We evaluate
the regression tree described in section IV-C by varying
tree depths in fig. 24(b). The median distance error, without
compensation, and independent of tree depth, is shown as the
red dashed line (shaded pink region shows the 10" — 90*"
percentile error). As we change the tree depth, 6Fit-a-Part
achieves different median errors shown by the black line
(shaded gray region is the 10*"* — 90" percentile errors). We
select the tree depth that leads to a low median and low 90%
around 20 cm, (marked rectangle). Fig. 25(a) demonstrates
6Fit-a-Part’s distance compensation for measurements made
by a cart moving from 5m to about 1m from another cart,



while being pushed by a person (human occlusion). Efficacy
of the distance compensation is shown in fig. 25(b) for other
environmental scenarios; errors experienced before compensa-
tion (red lines) are reduced after compensation (black lines).
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VII. RELATED WORK

Ranging approaches: Ranging-oriented RF sensing has
been investigated for its use in diverse applications such
as localization, navigation and SLAM [21], [30]. Common
ranging approaches include WiFi [27], [37], RFID [38], [43]
and mmWave [13]. However, bandwidth limitations, degrade
WiFi-based ranging precision. On the other hand, mmWave
suffers from fast attenuation. As an alternative, 802.15.4 based
ultra-wideband radios [25] strikes a good balance between
ranging precision and longer range with 1 GHz bandwidth.
UWRB radios are already present in iPhone 11 and Samsung
Galaxy Note—a trend that we expect to grow. Existing UWB
ranging works include [24], [29], [31], [41], which employ
TWR as the protocol backbone. 6Fit-a-Part extends TWR to a
peer-peer protocol, enhancing utility of any UWB hardware.

Multi-user ranging: Collision is a fundamental problem
in wireless networks. In spite of extensive efforts on the
design of collision-aware protocols [10], [11], [46], collisions
in TWR protocol have not been explored until recently. [15]
proposes using the time difference among peaks in CIR to
estimate the distance of all responders, which is based on
the observation that the highest power packet is still likely
to be decoded. However, it is inapplicable in the real-world
because of its inability to identify the responder. To solve
the identification problem, SnapLoc [23] assigns an individual
delay in the nanosecond range to each node. Chorus [16]
uses both the pulse shape and response position to encode
the identification of a node. However, both SnapLoc and
Chorus cannot support dynamic network membership, and
peer-peer measurements. Instead, 6Fit-a-Part solves the multi-
user ranging in the MAC layer by dynamically allocating slots
to each responder. Compared to the existing works, 6Fit-a-
Part is more flexible in that (i) 6Fit-a-Part stays stable even
as nodes enter and leave and (ii) every node switches its role
periodically. Hence every node in the network can perform
ranging with others.

Contact Tracing: Multiple COVID-19 contact tracing ap-
plications exist [1], [S], [8], [9]. At their core, these apps create
a mobile phone proximity database, which is consulted when
a person is diagnosed positive. Others who might have come
in close contact with this person are warned. Instead of such
contact-backtracking after potential exposure, 6Fit-a-Part aims
to prevent all unnecessary contact with strangers in real-time.

Thus, 6Fit-a-Part is distinctly different from contact tracing,
though both can simultaneously co-exist.

LOS/NLOS classification: Classification of obtained sig-
nals into LOS/NLOS buckets has been previously performed
in various contexts [17], [36], [42], [48]. The general idea is to
exploit the CSI to infer channel conditions, thereby determine
whether a signal is LOS. Recently, machine learning based
LOS/NLOS is proposed to improve the classification accuracy.
For instance, [14] takes a series CSI estimates, and runs a
RNN structure for classification. Since 6Fit-a-Part is designed
for lightweight embedded devices, running deep learning algo-
rithms is unrealistic. 6Fit-a-Part uses simple decision trees and
bases its classification and distance compensation on features
from the channel impulse response.

VIII. DISCUSSION AND FUTURE WORK

Further improvements would be required to transform 6Fit-
a-Part into a product, though this work tackles the fundamental
problems of multi-user ranging and occlusion-aware sensing.

Multiple Collision Domains: Our current evaluation of
6Fit-a-Part focuses only on a single collision domain i.e,
all nodes can hear each other. When overlapping collision
domains exist, the measurement frequency degrades for the
overlapping regions. We leave this exploration for future work.

Generality of Decision Tree Approach: While 6Fit-a-Part
is designed, implemented, and evaluated in a small testbed
mimicking the real-world, we do not claim that occlusion-
aware compensation is perfect. Recent works in wireless
sensing [26] shine some light on achieving generality in
such cases through machine learning approaches. Adapting
those for our tiny embedded device would be an interesting
future challenge. section VI tests OFit-a-Part using dry-walls
as physical barriers. 6Fit-a-Part does not detect thin acrylic
glass barriers or single plywood sheets.

Beyond COVID-19: Physical distancing, as a principle, is
an effective prevention strategy against propagation of any
infectious disease. Continued use of 6Fit-a-Part at hospitals
and clinics can effectively keep infections localized and pre-
vent outbreaks. As a general peer-peer distance measurement
system, OFit-a-Part offers benefits beyond COVID-19.

IX. CONCLUSION

This paper shows the technical feasibility of performing
peer-peer ranging to obtain pairwise distances in real-world
environments with multiple peers in the vicinity. We have
developed a small wearable device that can be worn as an
armband or a badge, or attached to shopping carts, etc. The
benefit of deploying OFit-a-Part is immediate even if one
grocery store or hospital adopts the idea. We believe 6Fit-
a-Part will provide the right tools today, and continue to
remain valuable in the future, enabling a fundamental distance
measurement capability, with utility beyond COVID-19.
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