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Abstract—Independent component analysis (ICA) has been
shown as a promising means for solving the self-interference
cancellation (SIC) problem for in-band full duplex systems. This
paper presents a detailed analysis of the interference suppression
capability and computational complexity of several different ICA
algorithms, operating at either real-valued or complex-valued
domain. In addition, on the basis of the setup of the full-
duplex system, we show that a much simplified complex-valued
ICA algorithm that only performs whitening and decorrelation
processes are sufficient to separate the signal of interest from the
mixed signal. Extensive simulation results are presented in this
paper to illustrate the performance and complexity of various
ICA approaches applying to the full-duplex system.

Index Terms—In-band Full Duplex, MIMO, Self-Interference,
Independent Component Analysis (ICA)

I. INTRODUCTION

In-band full duplex wireless communication systems, where
the wireless transceiver transmits and receives data simul-
taneously using the same frequency resources, has gained
significant attention and interest due to its enhanced spectral
efficiency [1]–[3]. Moreover, the aggregation of full duplex
and Multi-Input-Multi-Output (MIMO) techniques [4] makes
it more lucrative for achieving greater spectral efficiency [4].
In the in-band full duplex system, the signal of interest (SOI)
is mixed with the self interference (SI) signal at the receiving
end of the transceiver node and leads to numerous problems
including, saturation of the front-end, non-linear effects, as
well as loss of dynamic range. Therefore, an effective scheme
for removing the SI from the mixed signal is crucial for a prac-
tical realization of the In-band full duplex system. In addition,
the self-interference cancellation (SIC) problem becomes more
critical and challenging in MIMO full duplex systems since
the dimension of the problem grows exponentially. Several
approaches have been reported to solving the SIC problem in
full duplex systems [5]–[7]. Most SIC cancellation approaches
rely on the estimation of the SI channels and removing the
inference signals based on the estimated channels. However,
the estimation of SI channels requires the utilization of training
symbols that inherently degrade spectral efficiency. On the
other hand, in [6] independent component analysis (ICA) was
proposed as a blind source separation (BSS) techniques [8]
that can be applied to separate the mixed signals in the full
duplex system without using any training data. The system
setup and the modified Fast ICA algorithm based on the real

domain were presented in [6]. Experimental results show that
the Signal to Noise Ratio (SNR) is improved by up to 6 dB
compared to another all-digital scheme based on the least-
squares (LS) interference cancellation method [7]. Various
types and modifications of ICA algorithms operating on differ-
ent dimensions of the signal space, e.g., complex vs. real have
been proposed in literature [9]–[12]. Typical ICA algorithms
depend on iterative vector and matrices computations and thus
usually lead to very-high complexity and extended latency
[13]. As a result, it is worth further investigating the trade-
offs and efficiency of different variations of ICA algorithms
for the SIC cancellation in full duplex systems.

In this paper, we investigate the application of ICA ap-
proaches towards solving the SIC problem for in-band full
duplex systems. To be specific, we analyze the performance
and complexity of different variations of ICA algorithms
operating at the either real-valued domain or complex-valued
domain. Furthermore, the trade-offs between the performance
and complexity for different ICA algorithm is studied in
this paper. In addition, we show that only conducting the
whitening and decorrelation steps in the ICA algorithm are
sufficient to separate the SOI from the mixed signals. This
approach simplifies the computational complexity of the ICA
algorithm. Extensive simulation results are presented in this
paper to illustrate the performance and complexity of various
approaches applying to the full-duplex system.

II. PRIOR WORK

The in-band full-duplex (IBFD) system transmits and re-
ceives signals at the same time, using the same frequency
band [1]. Due to the simultaneous transmission and reception,
spectral efficiency of IBFD can be doubled compared to the
half-duplex communication scheme [2], [3]. The main chal-
lenge of IBFD system lies in the cancellation of the signal of
interference (SI) caused by the transmitted signal at the receive
antenna of the same transceiver node. In order to successfully
mitigate the SI and to achieve full-duplex communication,
several IBFD system models have been proposed in literature
[1]–[3]. Specifically, an all-digital interference cancellation
scheme is presented in [7] and the IBFD system model that
is proposed therein is shown in Fig.1. In this system, during
the training phase, training symbols are transmitted and at the
receiver a least-square (LS) channel estimation approach is
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Fig. 1. The IBFD system with the LS-based SIC scheme.

performed to estimate the SI channel. The estimated channel
is then utilized in the transmission phase for cancelling the
actual SI signal. Clearly, the more training is performed,
the better the channel estimate, at the expense of reduced
data throughput. The performance of the LS-based channel
estimated is illustrated in [6].

On the other hand, the blind source separation (BSS) [8] is
a technology that is widely used for separating mixed signals.
In the BSS problem, the mixed signal Y can be formulated
as follows

Y = HX (1)

where H and X are the mixing matrix and the source
signal respectively. Furthermore, the essence of the BSS is
to generate a demixing matrix such that the source signal can
be recovered after applying to the mixed signal as shown in
the following

X̂ = WY (2)

where W is the demixing matrix and X̂ is the recovered signal
which should ideally be equal to X. A digital cancellation
scheme based on the concept of BSS is presented in [6] where
the system model is shown in Fig. 2. This system does not
require training symbols for the channel estimation as the
conventional approaches. Instead, the signal of interest (SOI)
is separated from the mixed signal by using the independent
component analysis (ICA) algorithm which is widely used in
BSS problems [8]. It is shown in Fig.2 that, in this system
setup, the received signal, containing the mixture of SOI and
SI in addition to noise, along with the direct feedback from the
digital transmitted signal are the input to the ICA algorithm.
In other words, the BSS problem can be formulated as follows[

Y si

Y mix

]
=

[
1 0

Hord Hsoi

] [
Xsi

Xsoi

]
(3)

where Y si and Y mix are the two input signals to the ICA
algorithm. Furthermore, the signal Y si is the direct input from
the SI signal Xsi and Y mix is the mixture of the SI and the
SOI signal Xsoi. Moreover, the Hord and Hsoi denote the SI
and SOI channels respectively.

To be specific, the FastICA algorithm that is originally
proposed in [9] is utilized in the work of [6]. Since the FastICA
algorithm assumes real-valued signals, the complex-valued

Fig. 2. The IBFD system based on the BSS scheme and the ICA-based SIC
algorithm presented in [6].

BSS problem expressed in Eq. (3) needs to be decomposed
into real-valued dimensions before the FastICA algorithm is
applied. The Eq. (3) is decomposed as follows

Y si
r

Y si
i

Y mix
r

Y mix
i

 =


1 0 0 0
0 1 0 0

Hord
r −Hord

i Hsoi
r −Hsoi

i

Hord
i Hord

r Hsoi
i Hsoi

r



Xsi

r

Xsi
i

Xsoi
r

Xsoi
i

 (4)

where the subscript r denotes the real part and the subscript i
represents the imaginary part of the signal. Therefore, based
on Eq. (2) and Eq. (4), the separated signals and demixing
matrix can be expressed as

X̂si
r

X̂si
i

X̂soi
r

X̂soi
i

 =


1 0 0 0
0 1 0 0

w31 w32 w33 w34

w41 w42 w43 w44




Y si
r

Y si
i

Y mix
r

Y mix
i

 (5)

The approach to addressing the ambiguity and scaling problem
is also illustrated in [6]. Figure 3 shows the simulation result
of the output SINR (OSINR) for different frame lengths
with input SINR (ISINR) = -10dB in [6]. The effect of
nonlinearity is modeled by using the third harmonic power
ratio (HPR3) and the simulation results for a typical HPR3 =
-50dB are shown in the figure. As the frame length increases
the performance of the ICA algorithm improve accordingly.
It is noted that the ICA approach is based on the concept of
BSS and no training symbol is required.

In addition, several topics related to the ICA-based SIC
cancellation for the IBFD system worth further studying.
For example, a FastICA algorithm that is operating directly
on the complex domain (C-FastICA) is proposed in [11].
Furthermore,variations of ICA algorithm have appeared in the
literature such as the recently published complex-domain ICA
through the entropy bound minimization(CICA-EBM) [12].

III. THE PERFORMANCE AND COMPLEXITY OF ICA
ALGORITHMS

The FastICA algorithm employed in [6] is conducted to
extract the desired signal from the mixed signal that are both
presented in the real-valued domain. However, the SIC prob-
lem in the IBFD wireless communication systems presented in
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Fig. 3. The OSINR with different frame lengths for FastICA and C-FastICA
algorithms.

Eq. (3) inherently contains the signals in the complex-valued
domain. As a result, the complex-valued mixing matrix in the
full duplex system is underwent a real-valued decomposition
so that the real-valued FastICA algorithm can be applied. This
inevitably increases the dimension of the problem as shown
in Eq. (3) and Eq. (4) . On the other hand, the modified
FastICA algorithm that is directly operating on the complex-
valued domain (C-FastICA) is presented in [11]. This C-
FastICA algorithm can be directly applied to the complex-
valued mixing matrix in full duplex system without performing
the real-valued decomposition. In other words, the separated
signals and demixing matrix obtained by C-FastICA can be
expressed as follows.[

X̂si

X̂soi

]
=

[
1 0

w21 w22

] [
Y si

Y mix

]
(6)

In order to compare the performance of interference can-
cellation between the real-valued FastICA algorithm and
the complex-valued C-FastICA algorithm, extensive simula-
tions are conducted. Figure 3 compares the OSINR between
the real-valued FastICA algorithm and the complex-valued
C-FastICA algorithm with different frame lengths for the
ISINR=-10dB. Furthermore, simulations results for HPR3 = -
50dB is also assumed in this figure. It can be observed from the
simulation results that the C-FastICA algorithm achieves better
OSINR than FastICA throughout different frame lengths. This
can be attributed to the fact that the C-FastICA algorithm is
applied to the complete complex-valued mixing matrix instead
of operating on the real and imaginary parts of the signal
separately.

Although the real-valued ICA algorithm can be extended
for complex signals, the additional dimension and various
distributions could lead to performance degradation. The ICA
algorithm that is specifically designed for separating complex
signals have been reported in the literature based on different
optimization objectives such as entropy bound minimization
or negentropy maximization. Specifically, a novel complex-
valued ICA algorithm by entropy-bound minimization algo-
rithm (ICA-EBM) is presented in [12]. This algorithm uses a
novel differential entropy estimator for the complex signals.
The proposed entropy estimator is adopted with the noncircu-

Fig. 4. The OSINR with different frame lengths for FastICA, C-FastICA,
abd ICA-EBM algorithms.

 

 

 

 

 

 

 

 

Algorithms FastICA C-FastICA ICA-EBM 

preprocessing stage 

Addition 3.1 10  8.6 10  8.6 10  

Multiplication 3.8 10  3.3 10  3.3 10  

Division 24 14 14 

Square Root 8 4 2 

main processing stage 

Addition 3.2 10  1.3 10  3.1 10  

Multiplication 3.3 10  1.3 10  3.0 10  

Division 2.1 10  1.1 10  7.7 10  

Square Root 3.6 10  1.1 10  5.4 10  

Log 0 0 1.6 10  

Fig. 5. Computational complexity for different ICA algorithms.

larity and the non-Gaussianity of sources. Furthermore, the
ICA-EBM algorithm exploits multiple measuring functions
during the signal separation so that the entropy for a wide
class of distributions can be approximated. The experimental
results reported in [12] show that the ICA-EBM algorithm
achieves promising performance with comparable complexity.
This ICA-EBM algorithm is applied in the IBFD system and
extensive simulations have also conducted to comparing the
performances between the FastICA, C-FastICA, and ICA-
EBM algorithms. Figure 4 illustrates the OSINR between
the real-valued FastICA algorithm, the complex-valued C-
FastICA algorithm, and complex-valued ICA-EBM algorithm
with different frame lengths. Furthermore, simulations results
for HPR3 = -20dB, HPR3 = -50dB and HPR3 = -100dB are
also illustrated in this figure. It can be observed from the
simulation results that the ICA-EBM algorithm achieves better
OSINR than other ICA algorithms. This could mainly due to
the fact that multiple cost functions are used for approximating
different variations of statistical distributions.

In addition, we analyze the computation complexity for
different ICA algorithms including FastICA, C-FastICA, and
ICA-EBM. Figure 5 compares the complexity of different ICA
algorithms with preprocessing and main processing stages.
It is noted that the complexity of ICA algorithms is higher
than the complexity of LS algorithm since iterative matrices
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and vectors operations are involved in the ICA computations.
As previous mentioned, the preprocessing stage include main
steps of centering and whitening. Furthermore, the calculations
of covariance matrix, the eigenvalue decomposition (EVD)
and the computation of whitened signals are the primary
parts in the whitening process where the EVD dominates the
computational complexity at the entire preprocessing stage.
In our evaluation, a Jacobi-based algorithm by using the
COordinate Rotation DIgital Computer (CORDIC) operator
is assumed for realizing the EVD process [14]. It can be seen
from Fig. 5 the computational complexity for the real-valued
ICA is higher than that of the complex-valued ICA. This is due
to the fact that the dimension of the received matrix is extended
in order for the real-valued ICA algorithm to be applied. This
increases the complexity of vectors and matrices operations.
In particular, it can be observed from Eq. (5) and Eq. (6) that
the ICA algorithm in the real-value decomposed problem es-
timates the demixing matrix containing more rows with more
elements in each row. In addition, it is noted that the FastICA
algorithm uses more iterations to achieve the convergence
than the C-FastICA algorithm. This more iterations along with
the extended problem dimension makes the FastICA contain
more scalar operations including addition, multiplication than
the C-FastICA algorithm. On the other hand, the C-FastICA
algorithm requires more division and square-root calculations
than the FastICA algorithms due to the utilization of more
complex cost functions. Since the realization of the division
and square-root calculation in digital circuit is challenging, this
could be a bottleneck from designing efficient VLSI circuit.
Finally, the ICA-EBM algorithm leads to higher computational
complexity since more calculations of the cnotrast functions
are contained in this approach.

IV. THE PERFORMANCE AND COMPLEXITY OF THE
C-FASTICA ALGORITHM

The main idea of the ICA algorithm is to find a demixing
matrix by exploiting the statistical independence or non-
Gaussianity of the variables. This demixing matrix is then
utilized to separate the mixed signal and to recover the desired
source signal. A typical ICA algorithm consists of steps
including preprocessing, iteratively calculating each part in
the demixing matrix, and decorrelating the outputs every each
iteration. The general flowchart of the C-FastICA algorithm
is shown in Fig.6 as an example. In particular, during the
preprocessing stage, centering the received signal to be zero-
mean and whitening the received signal are usually performed.
The centering process aims to simplify the ICA algorithm by
subtracting the observed signal vector from its mean vector,
i.e., making a zero-mean vector. Furthermore, the whitening
process results in a vector where the components are uncor-
related and with equal unity variances is obtained. In other
words, the mixing matrix and demixing matrix are converted
into orthogonal matrices through preprocessing. The whitening
process can be conducted through the eigenvalue decomposi-
tion (EVD) of the covariance matrix of the received signal.
The whitening process reduces the parameter to be estimated

No

Yes

No

Yes

Fig. 6. The flowchart of the C-FastICA algorithm.

Fig. 7. The OSINR with different frame lengths for C-FastICA and C-FastICA
without the update of the objective function.

during the ICA process and thus decreases the complexity.
In other words, after the whitening, only parameters that are
orthogonal need to be estimated. However, since the complex
matrix operations are required, the whitening process usually
incurs high complexity.

Moreover, the C-FastICA algorithm shown in Fig.6 calcu-
lates each row of the demixing matrix iteratively until the
convergence. Each time after a new vector is computed, it
needs to be decorrelated with the previous vector to avoid the
convergence on the same signal. The deflation scheme based
on Gram-Schmidt approach is usually used for calculating
the decorrelated vector. Furthermore, the targeted vector is
updated in each iteration based on the Newton iteration method
and certain objective function. This chosen objective function
is associated with the distribution of the source signal and
usually incurs high computation complexity. This process is
conducted several times until a convergence is achieved. To be
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Algorithms C-FastICA C-FastICA (decorrelation only) 

preprocessing stage 

Addition 8.6 10  8.6 10  

Multiplication 3.3 10  3.3 10  

Division 14 14 

Square Root 4 4 

main processing stage 

Addition 1.3 10  42 

Multiplication 1.3 10  32 

Division 1.1 10  16 

Square Root 1.1 10  8 

Log 0 0 

Fig. 8. Computational complexity for different ICA algorithms.

specific, one of the unique properties of the considered system
setup in this works is that one of the input to the ICA algorithm
comes from the direct input of the transmit signal and is
assumed to be known. Furthermore, due to the whitening of the
received signal during the preprocessing stage, the matrix is
converted into a whitening matrix which is an orthogonal ma-
trix. Based on this orthogonal matrix with the partially known
SI signals, the demixed SOI signals only need to be looked in
the orthogonal direction. As a result, the iteratively updating
the objective function can be omitted without sacrificing the
accuracy of the generated unmixing matrix. In other words,
only conducting the whitening and decorrelation steps in the
ICA should be sufficient to separating the SOI from the mixed
signals. This will much simplify the computational complexity
of the ICA algorithm. So we can omit the iterative equation
and only do decorrelation. In order to verify this, simulations
are conducted and the results are shown in Fig. 7. It can
be observed from the simulation results that the OSINR of
the approach where only preprocessing and decorrelation are
conducted is almost on top of the OSINR of the conventional
C-FastICA algorithm.

Furthermore, Figure 8 compares the computation complex-
ity between the C-FastICA algorithm and the simplified C-
FastICA algorithm with preprocessing and decorrelation only.
It can be seen from this figure that since the calculation of
the updated objective function is avoided, the computation
complexity can be greatly saved. Moreover, it is noted that
the convergence speed is also mush shortened. Based on
the experimental results shown in Fig.6 and 8, it can be
concluded that based on the ICA approach with preprocessing
and decorrelation only can achieve identical performance with
much reduced complexity.

V. CONCLUSION

Extensive investigates have been conducted in this paper
for the application of independent component analysis (ICA)
approaches on the self-interference cancellation (SIC) problem
in in-band full duplex systems. The detailed analyses for
the capabilities of interference suppression and computational

complexities of real-valued and complex-valued ICA algo-
rithms are presented and discussed. We also show that a
much simplified ICA algorithm that only conducts whitening
and decorrelation steps are sufficient to separate the signal of
interest from the mixed signals.
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