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Abstract
The number of published manufacturing science digital articles available from scientific journals and the broader web have 
exponentially increased every year since the 1990s. To assimilate all of this knowledge by a novice engineer or an experi-
enced researcher, requires significant synthesis of the existing knowledge space contained within published material, to find 
answers to basic and complex queries. Algorithmic approaches through machine learning and specifically Natural Language 
Processing (NLP) on a domain specific area such as manufacturing, is lacking. One of the significant challenges to analyzing 
manufacturing vocabulary is the lack of a named entity recognition model that enables algorithms to classify the manufactur-
ing corpus of words under various manufacturing semantic categories. This work presents a supervised machine learning 
approach to categorize unstructured text from 500K+ manufacturing science related scientific abstracts and labelling them 
under various manufacturing topic categories. A neural network model using a bidirectional long-short term memory, plus a 
conditional random field (BiLSTM + CRF) is trained to extract information from manufacturing science abstracts. Our clas-
sifier achieves an overall accuracy (f1-score) of 88%, which is quite near to the state-of-the-art performance. Two use case 
examples are presented that demonstrate the value of the developed NER model as a Technical Language Processing (TLP) 
workflow on manufacturing science documents. The long term goal is to extract valuable knowledge regarding the connec-
tions and relationships between key manufacturing concepts/entities available within millions of manufacturing documents 
into a structured labeled-property graph data structure that allow for programmatic query and retrieval.

Keywords  NER · Technical language processing · TLP · Word2Vec · Topic modeling

Introduction

Over the past decade, the plethora of manufacturing pro-
cesses developed across a range of application domains are 
considerable. Yet, much of the knowledge linking product 
design with manufacturing resides within the minds of 
experienced professionals or documented in the form of 
books, magazines, scientific articles and multi-media. For 
untrained professionals, searching for specific informa-
tion about design and manufacturing will require online 
search through multiple digital media formats. Since most 
search engines do not understand the context surrounding 
manufacturing related query terms, results produced by the 

search engines rely on pure text-based indexing (Gusen-
bauer, 2019). Users must manually parse through tens of 
hundreds of search results links to find the information they 
seek. With the exponential rise in number of manufacturing 
related articles and associated digital resources available on 
the web, searching for and extracting valuable information 
is challenging. Finding specific concepts or related concepts 
from within scientific articles and other digital media require 
manual processing by domain experts to synthesize. Even 
then, such manual processing requires tedious parsing across 
multiple forms of available media to make informed deci-
sions. As opposed to parsing natural language text, this sub-
discipline within NLP, would be considered as Technical 
Language Processing (TLP) (Brundage et al., 2021), i.e., 
the process of extracting useful information and knowledge 
from technical documents.

Such automated information and relationship extraction 
(Zheng et al., 2017) is critically important to a wide variety 
of users. This includes manufacturing focused researchers, 
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young engineers and non-technical professionals. New 
modes of interactions with technical content can broaden 
the inclusion of those that are involved in the product design 
and manufacturing space, specifically non-technical entre-
preneurs and physical product focused startups. The system 
can also benefit businesses seeking to diversify product sup-
ply chains (Shahzad & Hadj-Hamou,2013; Sharma et al., 
2020; Zuzarte & Proença, 2019), employ chatbot (Chatbot, 
2007), hire required workforce (Mittal et al., 2020), plan 
hazard management (Brewer et al., 1999; Kung et al., 2020) 
automatically analyze patent literature (Abiodun et al., 2018) 
for new recommendations and even targeting custom adver-
tisements relevant to the content of a digital magazine (Shah 
et al., 2020). None of the existing natural language process-
ing techniques is suitable to extract relevant information 
from the manufacturing context domain. Existing techniques 
are either trained on general text for identifying informa-
tion such as Person, place, organizations, location etc. or on 
domain specific texts such as Legal, Bioscience, and Finance 
etc. Besides beyond just named entity recognition applica-
tions, automatic analysis of manufacturing literature can 
also power Question-Answering (QA) systems in manufac-
turing education (Cui et al., 1903; Lende & Raghuwanshi, 
2016), power chat bots specific to manufacturing business 
data (Kassner et al., 2017) and troubleshoot technological 
problems (Alfeo et al., 2021).

This research work is mainly focused towards extract-
ing information from manufacturing process science text 
abstracts using Named Entity Recognition (NER), as a text 
mining technique on a large corpus of scientific manufactur-
ing process science abstracts. The developed model learns 
to identify manufacturing process science keywords within 
a sentence in a scientific abstract and maps them to specific 
manufacturing topic categories. To the best of our knowl-
edge, no previous NER model has been built to classify 
manufacturing process science text. Our work describes the 
annotation of the data, techniques to tag the data and the 
necessary training of word embeddings and associated neu-
ral network architectures. Two use cases of the NER model 
is presented that demonstrates the value of NER towards 
technical language processing.

Related work

Named entity recognition (NER) is one of the important 
text-mining subtasks towards information extraction. Exist-
ing standard methods for NER focus on extraction of general 
entities such as persons, organizations, locations etc. from 
within a sentence (Nadeau & Sekine, 2007). One of the best 
applications of NER is the article recommendation systems 
by leveraging the entities appearing in the current article, 
and then finding similar articles that have similar number 

of entities (Li et al., 2020a). NER has quite varied applica-
tions in every domain, and the potential use cases of it are 
being studied across diverse domains such as material sci-
ence (Weston et al., 2019), biomedical sciences (Leaman 
& Gonzalez, 2008), chemical science (Rocktäschel et al., 
2012), cybersecurity (Gasmi et al., 2018), maintenance 
(Navinchandran et al., 2021) and forensic science (Studi-
awan et al., 2018). Using NER, one can extract entities in 
a sentence to understand the context of the sentence topic 
without the prior knowledge. NER is also one of the criti-
cal steps towards development of a Knowledge Graph, and 
among the reasons on why it has become quite popular 
(Costa et al., 2016; Kejriwal, 2019).

The standard NER model would not be able to identify 
the terms and concepts for a specific domain such as manu-
facturing. Domain-specific NER has been quite prevalent, 
and it has been applied to many diverse domains but these 
models have not been tested against the corpora of words/
phrases utilized within the manufacturing process science 
text. Previously, work by Weston et. al. focused on Named 
entity recognition for material science which claimed to 
extract the summary level information from research papers, 
and extraction of material and entities in seven categories. 
They have used a neural network model consisting of a 
recurrent neural network (RNN) architecture i.e. BiLSTM 
along with CRF model for word and character-level feature 
recognition. A chemical named entity recognition by Safaa 
et. al. mentions different methods of NER approach such as 
dictionary-based, rule-based and hybrid forms in identifying 
chemical substances (Eltyeb & Salim, 2014). In other similar 
work in this domain by Jiaguan et al., the authors mention 
the 10 different types of entity extraction of chemical reac-
tions from patents (Nguyen et al., 2020). A work related to 
medical knowledge graph (Li et al., 2020b) talks about the 
application of NER in Electronic medical records (EMR) 
processing algorithm, and identification of medical entities 
such as medicines, diseases and symptoms, from within the 
records. NER finds its application in mechanical engine fault 
knowledge extraction (Chen et al., 2020) as well as replacing 
the traditional research methods of using structured data to 
process recognition of engine fault related knowledge from 
unstructured text. The work by Hehua (Yan et al., 2020) 
is a close work related to manufacturing NER, but it lacks 
concrete mention of the specific entities categorization. For 
NER extraction, they have opted a machine learning based 
method along with CRF model. Lastly, Orcun proposes 
that NER can improve the semantic question answering for 
smart factory domain (Oruç & Aßmann, 2020) by assisting 
in extracting the entity-relationship pair.

In our current analysis, there is no comprehensive study on 
building an NER model to automatically classify manufactur-
ing process science text, particularly at a large scale. Such an 
NER is critical to interlinking manufacturing concepts and to 
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integrate new knowledge concepts to existing knowledge. Such 
NER models are also critical to building technical language 
processing of manufacturing text related to asset management, 
product design and manufacturing, quality inspection, criti-
cal safety reports and developing factory-based chat bots spe-
cifically to aid the manufacturing workforce. For those trying 
to understand a new manufacturing process domain, such as 
metal additive manufacturing, it would be extremely useful 
for researchers and industry practitioners to ask questions of 
a meta-analysis nature from all published scientific literature, 
such as—“which academic universities work on copper as a 
metal additive manufacturing process” or “what materials have 
been studied for use in metal additive manufacturing, and fil-
ter out those that have been studied in the context of medical 
implants”. Answers to these queries require humans to tedi-
ously parse through hundreds and thousands of articles, before 
an answer can be produced, even after text based indexing per-
formed by scientific article publishing companies. However, 
by building algorithms to analyze the entire corpus of available 
manufacturing process science literature, it is possible to rep-
resent published articles to unique database identifiers, which 
then can be programmatically queried to retrieve answers to 
such user queries.

In this work, we build an NER model for large-scale infor-
mation extraction from the manufacturing process science 
literature. This NER model is capable of parsing through 
more than 500K + relevant scientific abstracts and classify 
recognizable entities within the abstract as belonging to 12 
categories—material, process, machine/equipment, applica-
tion, engineering features, mechanical properties, process 
characterization, enabling technology, concept/principles, 
manufacturing standards and biomedical. We have focused 
building and testing the model on text available within scien-
tific abstracts primarily due to two reasons—ease of accessi-
bility as those mode available by Web of Science and second 
due to the concise representation of words to convey the 
scientific study represented in the paper. The NER model is 
a neural network model trained using 1200 + hand-annotated 
abstracts. We have obtained an overall f1 score accuracy of 
88%. We demonstrate how this trained NER model can be 
used as a topic extraction exercise from a given paragraph 
of manufacturing process text and how similar and related 
words can be grouped together based on a query term of 
interest. In addition, the dataset containing hand-annotated 
datasets of various manufacturing terms classified under the 
12 categories is made available to the community.

Methodology

The overall architecture of the work is shown in Fig. 1. Each 
step of the process is described in detail, along with the 
analysis of the extracted results in the two specific use cases 

of the model. Machine learning models used in this work 
were built using open source libraries through scikit-learn, 
gensim, Tensorflow and keras libraries.

Data collection and pre‑processing

This work focuses on the large-scale text mining of the 
manufacturing process science abstracts. A total of 500K+ 
abstracts were obtained from Web of Science through 
known journals available in manufacturing process science 
research. These include—Journal of Manufacturing Pro-
cesses, J. Manufacturing Systems, Additive Manufactur-
ing, Rapid Prototyping, Advanced Materials, Int. Journal of 
Adv. Manufacturing Technology, ASME J. Manufacturing 
Science etc. In addition, manufacturing keywords were also 
used to gather abstracts within the manufacturing process 
domain. Abstracts were selected between the year 2000 and 
2020. Abstract retrieval using search terms such as “3D 
printing”, “Additive manufacturing”, “Titanium alloy”, 
“Machining”, “Welding” etc. were used along with domain 
specific journals to ensure that the corresponding article 
would help generate enough abstracts within a domain. More 
abstracts could have been collected but were limited due to 
access and download restrictions. Since our initial collection 
yielded sufficient results to help train the NER model, col-
lecting more abstracts may not add significant value to the 
training and inference process. The reason behind addition 
and accumulation of abstracts in the corpus was to take the 
gist of research papers in a brief text that will provide qual-
ity and enough vocabulary variability. Short and important 
domain specific text helps in improvement of overall quality 
of the corpus, and removal of clutters. It was demonstrated 
by Tshitoyan et al. (2019) that models trained on unrelated 
text performs poorly on word embedding related activities 
such as fetching similarities/analogies of words.

Manufacturing text categorization

The extraction of specific types of entities can assist in 
knowing the overall context/summary of any given text. 
For every word, there were categories/entity labels defined 
namely Material (MATE), Manufacturing Process (MANP), 
Application (APPL), Features (ENGF), Mechanical Prop-
erties (MECHP), Characterization (PROC), Parameters 
(PROP), Machine/Equipment (MACEQ), Enabling Tech-
nology (ENAT), Concept/Principles (CONPRI), BioMedi-
cal (BIOP) and Manufacturing Standards (MANS). The 
category names and descriptions are given in Table 1.

Tagging process (tokenization)

To generate the manufacturing keywords to be annotated 
by humans and labelled under the 12 categories, multiple 
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sources were utilized to cover the breadth of the manufactur-
ing process science text. The indices behind two textbooks, 
keywords from the manufacturing domain research papers 
and vocabulary words from 75 manufacturing process sci-
ence abstracts were utilized for the human labeling process. 
Four graduate students with an appropriate background in 
manufacturing process science were selected for the human 
labelling process.

The abstract papers and review paper terms were 
tokenized one line per sentence, and textbook index were 
taken in a separate file having one entity per line. The 

annotation process began first by utilizing the keyword 
indices available in the manufacturing textbooks to yield 
a dictionary of labeled entities. In the second stage, the 
annotation was carried out on tokenized sentences from the 
75 abstracts and the entire words list available in selected 
review articles. While tokenizing each line per sentence, 
the entities that appeared in textbook index dictionary were 
automatically labeled. The remaining words were divided up 
among the human labelers. Even though some terms were 
automatically tagged due to its appearance during index term 
tagging, it was important to go through every token to check 

Fig. 1   Methodology for named entity recognition involves (i) col-
lection of abstracts and preprocessing them to develop a corpus of 
cleaned data, (ii) tokenization of every word in a small subset of the 
corpus and manually labeling of entities in respective category for 

developing training data, (iii) use of word2vec skipgram technique for 
(iv) creating context based embeddings on whole corpus, (v) training 
the neural network model using the embedding and (vi) finally extrac-
tion of named entities
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if the dictionary word precedes or supersedes with another 
entity, as it will change the tagging of the respective entity. 
For ex., if textbook index had the term ‘sand’ which was 
automatically tagged for one token of material category, 
but if another term in the tokenized sentence from research 
papers that follows is ‘casting’ which is a manufacturing 
process, the words ‘sand casting’ would make it classified 
under a completely different category—which is a “manu-
facturing process” category. Once each labeler completed 
their individual assigned annotation tasks, the categorization 
was verified by another human. We recorded the number of 
instances in which a discrepancy was obtained between the 
initial annotator and the verifier. One noted challenge was 
that vocabulary words that consistently re-appeared in the 
text had to fall under the same category or else this would 
introduce errors in the neural network training process. Any 
such discrepancies were removed before the training pro-
cess had begun. The token-based approach was tedious and 
time-consuming.

Tagging process (vocabulary extraction)

An alternate approach is based on vocabulary-based splitting 
of sentences to account for words that appear in sentences 
within the various available datasets assigned for training 
purposes. The challenge here is to extract the vocabulary 
words automatically in the first place for the annotation pro-
cess. We chose parsing of research articles and utilized the 
method described by Michael et. al. (2019) to identify terms 
with corresponding part-of-speech (POS) tags, chunked 
noun and verb phrases using the NLP tool SpaCy (Hon-
nibal & Johnson, 2015). We then performed this method 
by developing a corpus of 1200+ abstracts and 20 review 
articles, and a separate index from 3 textbooks. This meth-
odology was quite effective in terms of filtering clutters 
and narrowing down the entities phrase from review papers 
upon removing the duplicate terms that were extracted from 

textbooks and research paper keywords. Later, the entity 
phrases were edited and verified with human supervision 
to avoid overseeing of any important entity. Following this, 
we were able to gather 11,000+ uniquely related entities, 
which were then subsequently annotated by humans to fall 
under the 12 categories. These entities are the manufacturing 
dictionary words following the procedure mentioned above. 
An error drop of about 8% was observed following this new 
method when compared to the token-based annotation. 
Table 2 mentions the number of entities that were incor-
rectly annotated and how that dropped when vocabulary-
based method was adopted.

BIOES tagging scheme

The task of named entity recognition is to assign every word 
in a sentence to a named entity label. All the terms were 
compiled in a dictionary, and for each token in the corpus, 
annotation was performed in all categories along with the 
output tag in ‘BIOES’ format: B=Beginning, I-Intermedi-
ate, O=Outside, E=End, S=Single. This format assists in 
accounting for manufacturing related phrases such as ‘Metal 
Additive manufacturing’ or ‘Casting’. Here, Metal Additive 
manufacturing will be labeled as ‘Metal: B-MANP; Addi-
tive: I-MANP; Manufacturing: E-MANP’ where B denotes 

Table 1   Named entity 
categories and descriptions

S no Categories Example

1 Material Such as stainless steel, titanium alloy
2 Manufacturing process Such as additive manufacturing, forming, shaping, joining
3 Machine/equipment Such as lathe, CNC machine, grinding machine, confocal sensor
4 Application Such as industry—aerospace, automotive, medical, pharma etc
5 Engineering features Such as cut, extrude, slots, sweep, loft, radius, fillet
6 Mechanical properties Such as corrosion resistance, yield strength, hardness
7 Process characterization Such as CT scan, x ray diffraction or any other measurement technique
8 Process parameters Such as cutting speed, spindle speed, laser power, MRR
9 Enabling technology Such as blockchain, MT connect, CAD, OPC/UA
10 Concept/principles Such as abrasion theory of friction, Smart Manufacturing
11 Manufacturing standards Such as STEP, STL, ISO classification, ANSI, DIN, ASTM etc
12 Biomedical Such as trabecular bones, scaffolds, starch, tendons etc

Table 2   Entities annotation accuracy

Entities annotation type Total entities Annotation 
discrepancy

% Annota-
tion dis-
crepancy

Initial textbook index 
words

280 27 9.64

Initial tokenized annota-
tion

3534 345 9.76

Final vocabulary annota-
tion and verification

11,432 201 1.76
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the beginning of the phrase, ‘E’ is the end of the phrase and 
‘I’ is everything that is within ‘B’ and ‘E’, and the word 
‘Casting’ will be labeled as ‘S-MANP’. The BIOES tag-
ging scheme has been documented to outperform (Rati-
nov & Roth, 2009) others, such as BIO which stands for 
‘B=Beginning I=Intermediate O=Others’. BIOES notation 
gives more detailed description of every token position in 
the entities. In the matched entry, BIOES also indicates the 
token’s location. In other words, B or E will not appear in a 
partial match with only a suffix. These human labelled anno-
tations assist in training algorithms to understand the context 
and the sequence of words used. Existing tagging methods 
in natural language processing (NLP) such as regexner from 
the Stanford coreNLP (Manning et al., 2014) was not used 
since the technique did not support tagging across schemes 
that support the BIOES or BIO tagging format. In domain 
specific language such as in manufacturing, it is common to 
find bi-gram or even tri-gram words which convey a mean-
ing that is quite different if these n-gram words are split to 
individual words. Examples, such as ‘Metal Additive Manu-
facturing’ or ‘Titanium alloy’ refers to a specific manufac-
turing process and material respectively. However, if these 
n-grams were to be split into individual words, they convey 
a completely different meaning, which can lead to existing 
tagging methods to improperly tag them, which eventually 
leads to ambiguous results.

With the expanded vocabulary covering most of the 
terms, the customized vocabulary extraction algorithm 
was used to automatically label the corpus in BIOES for-
mat. Once done, experiments were performed to check the 
ratio of ‘O’ label with respect to the length of the sentence. 
Any sentence with a ratio of 0.9 or less was kept intact 
and filtering out the ones above this value. This ratio is the 

representation that out of 10 words in any given sentence, at 
least one is labeled as a non ‘O’ category. This will ensure 
that there are quality of sentences having tags provided as 
training to the neural network. Sentences that do not have 
a non- ‘O’ category is not helpful in model training. The 
ratio was varied from 0.85, 0.8, 0.75, 0.7, 0.65 and 0.6 but 
even though decreasing the ratio increases the quality of 
sentences with NER, it starts decreasing the variation of 
entities that are tagged due to some entities being lost due to 
it appearing in sentences with a lesser ratio. Figure 2 shows 
how the number of entities vary with respect to ratio of ‘O’ 
labels and number of words in sentence. Using the method 
mentioned above, in total we compiled a manufacturing text 
document of 350,000 + words for training the neural network 
for NER. The entire annotated dataset is made available as 
Supplemental Material (Kumar & Starly).

While automatically tagging of entities with respective 
tags, there were inconsistent tagging in some token words. 
This limitation of vocabulary-based tagging method was in 
the form of variations in usage of a single term such as the 
manufacturing process—‘wire and arc additive manufac-
turing’ was mentioned in the corpus in different ways, for 
ex. Wire + arc + additive manufacturing, or ‘wire and arc 
additive manufacturing’. To counter this, we implemented 
Levenshtein distance between every two strings/phrase 
while automatically tagging entities in our algorithm (Hal-
dar & Mukhopadhyay, 2011). The distance of Levenshtein 
between two strings is the number of deletions, insertions, 
or substitutions needed to convert the source string into the 
target string. Various threshold Levenshtein distances were 
experimented with, starting with a maximum of 2 and 3. 
This metric enabled us to capture terms such as ‘additive 
manufacture’ and ‘additive manufacturing’ or variations of 

Fig. 2   Ratio of tag ‘O’ and 
sentence length versus number 
of entities appearing in training 
data
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‘wire and arc additive manufacturing’. However, terms such 
as ‘range’ which is a tagged entity ‘parameter’ got matched 
with a phrase ‘a range’ due to 2 Levenshtein distance. Simi-
larly, every entity that was accompanied by a determiner 
or verb or adverb was being captured. To rectify this, we 
filtered out any words such as ‘a, an, the’ while calculating 
Levenshtein distance between tokens using regex (regular 
expressions library).

Neural network architecture

For this work, the architecture devised by Lampe et al. 
(2016), with a focus on bidirectional long-short term mem-
ory (LSTM) network and conditional random fields (CRF) 
was employed. This type of model relies on two informa-
tion sources: 1) character-based representation of words 
learned from the supervised corpus, and 2) unsupervised 
representation of words learned from the un-annotated cor-
pora. The corpus of manufacturing text was split in a ratio 
of 80:10:10 for training, validation and test set respectively. 
The objective of training the model using the architecture 
(BiLSTM + CRF) is to be able to recognize the words in 
the context of the manufacturing such that the model will 
provide us with the desired categories of the named enti-
ties. For instance, words such as maraging steel and PLA 
are marked as materials, while machining and nanofinishing 
(Kumar et al., 2019) lies in the category of manufacturing 
process. There are three key aspects of information which 
are important to train a model for the identification/recog-
nition of named entities for specific category. These are (a) 
representation of word (b) context of sentence around the 
word (c) representation of character.

Word embeddings for representation of words

It is often said that the words are known by the company 
they keep, which is based on a distributional hypothesis 
(Goldberg & Levy, 2014) that the words appearing in a 
similar context have identical meanings. In natural language 
processing, the words in a text corpus are represented as 
numerical vectors in a high dimensional space such that 
their syntactic and semantic relationships remain intact. 
This representation technique is termed as vector space 
modeling or word embeddings. Word2vec, Glove (Penning-
ton et al., 2014), ELMo (Peters et al., 2018), BERT (Devlin 
et al., 2018) are one of the most famous word embeddings 
methods.

To train the word embeddings, a corpus for manufactur-
ing related text was created and processed as mentioned in 
the previous section. Once the text was collected and pre-
processed, we used the skip-gram variation of Word2vec 

to our text corpus while training the word embedding on 
300-dimensional vector space. The word embeddings upon 
training on additive manufacturing text corpus ensures 
that all words that are in vicinity to the target word in the 
corpus will produce vectors in a way that the cosine dis-
tance (Levy & Goldberg, 2014) between the words such 
as “stainless steel” and “sl316” would be very near i.e. 
closer to 1 (where 1 corresponds to same vector), while the 
word “polymer” will be comparatively farther away. The 
target terms ’stainless steel’ and ’maraging steel’ are rep-
resented as vectors of ones at their respective vocabulary 
indices and zeros everywhere else. These one-hot encoded 
vectors are used as inputs for a single linear hidden layer 
neural network (for example, 300 neurons) that is trained 
to predict all words from the given target word within a 
certain distance (context words). Table 3 shows all the 
parameters along with their explanations that were used 
to train the word embedding model via the python based 
‘gensim’ library (Řehůřek & Sojka, 2011).

Various vector operations such as addition or subtrac-
tion of vectors can be performed to analyze how different 
words are related to one another. Domain specific analo-
gies can be obtained just similar to what is depicted in 
the methodology of validating the word vectors (Mikolov 
et  al., 2013). In the Word2vec model, such analogies 
are represented and solved by seeking the closest word 
to the outcome of addition and subtraction operations in 
the embeddings. For example, addition of ‘drilling’ and 
‘micromachining’ gives ‘microdrilling’ as the result which 
is correct, as microdrilling is the drilling performed at a 
micro level. Another example, addition of ‘welding’ and 
‘stainless steel’ gives ‘tungsten inert gas welding’ that is 
correct as TIG welding is mainly used for welding of stain-
less steel.

To validate the word embeddings, experiments were 
performed by separating some common acronyms used 
within the manufacturing process and materials processing 
literature. We took a random acronym set of about 70 enti-
ties, which mainly contained a set of manufacturing pro-
cesses, materials, property, and other entities category. Out 
of 70, 52 were found by the word similarity method within 
the top 5 similar results while 5 were not found, as shown 
in Table 4. Out of the terms not found, the acronym ‘mig’, 
having abbreviation ‘metal_inert_gas’, was not found near 
to each other in any sentence in the corpus while doing 
keyword-based search. Similarly, for the acronym of ‘saw’ 
as ‘submerged_arc_welding’, results related to ‘sawing’ 
and ‘saws’ were observed. The reason behind any acronym 
not showing as a top 5 result is mainly because of the acro-
nyms not appearing near to their abbreviation or being not 
present at all in the corpus. The entire acronym similarity 
validation data is made available as Supplemental Material 
(Kumar and Starly 2021).
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Context of words in a sentence

For any sentence having n words, where words are repre-
sented in the form of word embedding, the input into the 
model is given as the sequence of words, and the algorithm 
is trained by considering the local context of every word. 
In this work, long short-term memory networks (LSTMs) 
were adopted. LSTMs incorporates a memory cell that deals 
with the long-term dependencies issue. Bi-directional LSTM 
(BiLSTM), a variant of LSTM, computes the representation 
of sentence context from forward as well as backward direc-
tion. In other words, two layers of LSTMs works in opposite 
direction, where one reads the sentence in forward direction, 
while the other in the backward direction. The results are the 
concatenation of left–right representation of context. The 
representation of the model is shown in the Fig. 3.

Character level embedding

To get the shape of the word, character-level features are 
introduced which enables generation of word embedding of 
a word through the characters. Every character having its 
own corresponding embedding is used in a similar fashion 
as words are used for sentences. Character embeddings were 
learnt during model’s training, unlike word embeddings 
which were pretrained on a custom manufacturing corpus.  

As like word-BiLSTM, the character embeddings are used 
in forward and backward propagation through BiLSTM, 
which is further concatenated to predict a word. For exam-
ple, Ti6Al4V is a type of titanium alloy that has a feature 
consisting of characters and numerals in a sequence, and it is 
recognized as ‘material’ category. For the output layer of the 
neural network model, we have employed conditional ran-
dom fields (CRF) instead of the common softmax layer. CRF 
outperforms softmax in capturing and producing the valid 
sequence of output labels and their interdependencies (Lam-
ple et al., 2016). Various hyperparameters such as learning 
rate, learning rate method, learning rate decay, batch size, 
dropout, number of epochs affects the result of the model. 
To obtain good performance of NER model hyperparam-
eters are needed to be optimized by training the model using 
random values (Bergstra & Bengio, 2012). The final hyper-
parameters, as mentioned in Table 5, were selected based 
on highest accuracy obtained during the development and 
testing set.

Results

Precision‑recall for NER performance

Upon training the NER model on the corpus of manufac-
turing literature, named entity extraction was performed on 
unlabeled manufacturing text, and the model was able to 
perform information extraction accurately. In Fig. 3, it is 
shown that a text from the manufacturing literature has been 
taken and ran through the NER model. Figure 4 shows a 
representation of the NER classifier results, which demon-
strates that it has correctly predicted named entities in nearly 
every category. The assessment of precision, recall and f1 
score are key indicators for measurement of performance 
in a quantitative manner and the expressions for each one 

Table 3   Word embedding training pertinent parameters for word2vec model

Parameter name Value Explanation about parameter

Sentences Tokens of sentences are given as input. Tokenization was done using NLTK
Size 300 This represents dimension of the vectors
Window 10 This is the distance between predicted and current word in a sentence
Minimum count 5 This is a threshold below which all words will be neglected during training of embeddings
Workers 4 This is mainly used to split the processing between cores while training of model, for faster processing
SG 1 Keeping this as ‘1’ enables skip-gram, else utilizes CBOW
Negative 10 It is usually kept between 5–20. Zero negative sampling means no negative sampling has been used
Alpha 0.01 This is the learning rate. Higher learning rate could cause the convergence in the model quickly 

towards suboptimal solution, and lower could lead the process to stuck. It is one of the most impor-
tant hyperparameters that should be critically optimized

Sample 10−4 This is the subsampling threshold for higher frequency words
Iter 20 This is the training epochs or the number of iterations throughout the corpus

Table 4   Word embedding similarity results validation

Results Entities found % Percentile

Top 31 44.29 44.29
Top 5 21 30.00 74.29
Top 10 8 11.43 85.72
Top 15 5 7.14 92.86
Not found 5 7.14
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of them are given in Fig. 5. For NER, the trained models 
were evaluated on test data using f1 score, and this evalu-
ation is done for each entity category as shown in Fig. 5. 
The NER model performance for Manufacturing text is quite 
decent with an f1 score of 88% which is near to the metrics 

proposed by state-of-the-art work by Lampe et al. having f1 
score closer to 91%. Most importantly, the performance of 
NER for domain specific text ought to be different as com-
pared to a regular text (Eltyeb & Salim, 2014). As per our 
current knowledge, there is no manufacturing named entity 
recognition model developed so far, hence, no comparison 
could be made on a same scale with any existing models.

The f1 score of MATE (Material) category is highest i.e. 
93% while that of MANS (Manufacturing Standard) is low-
est i.e. 52%. The high score of Material is most likely due 
to the fact that the text that was taken randomly for training 
the model might have greater frequency of occurrence in 
training set, and due to material entities being mostly ‘single 
tokens’ (Weston et al., 2019). Similarly, the low f1 score 
for the MANS category could be explained by the MANS 

Fig. 3   The architecture of neural network model for named entity 
recognition in manufacturing text. The architecture in A shows word 
level bidirectional LSTM that is fed with sequence of words (in the 
form of word embeddings) which returns the tag of respective entity 

in BIOES format. The word level embedding feature is concatenated 
with the character level LSTM output for the same word. B Shows the 
character-level LSTM architecture

Table 5   Final hyperparameter 
values for training NER model

Parameters Values

Number of epochs 30
Dropout 0.5
Batch size 32
Learning method Adam
Learning rate 0.01
Learning decay 0.9

Fig. 4   An example of entity recognition for an unseen manufacturing text
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category having fewer labeled entities, and there could be 
some labeled entities in the test set that do not exist in the 
training set. The NER model can then be used to predict 
the category for all relevant vocabulary words available 
within the entire corpus of the 500K + abstracts. If the word 
or group of words was categorized earlier then the priority 
will be given to manual categorization, and if the word is 
new and predicted by the model the new category for the 
word is stored.

Related keywords under various categories 
for a given query term

One of the applications of NER for Manufacturing could 
be seen in the form of information tool. A new researcher 
or someone who is not well versed with the manufacturing 
process domain might have a hard time browsing the terms 
or entities and understanding the relation between the enti-
ties that appears near to the recognized entity. This is where 
this tool could be very beneficial to the users who want to 
either dive into this domain or want to know about the terms 
for getting a service from manufacturing marketplace. This 
summary will provide users with information on manufac-
turing process, application, property etc. and could be very 
beneficial to non-domain experts for getting acquainted with 
initial information about the field or for domain experts for 
obtaining further quantitative information.

As discussed in the earlier section, words appearing near 
to each other has a cosine distance closer to 1, the appli-
cation of which could be in the form of identification of 

relation between subject word with words in every named 
entity categories. In one example shown in Table 6, related 
applications that are closely associated with the word 
“Maraging Steel” is highlighted. The corresponding score 
for each retrieved ‘Application’ entity is the cosine distance 
word similarity. In a more detailed example, the word, SLM 
(Selective laser melting) is a manufacturing process that is 
known for its application in additive manufactured parts. All 
related words in respective categories are obtained as shown 
in Table 7. Some of the equipment used for SLM are powder 
bed, laser machine and powder feedstock, while some related 
materials used in SLM process are alloys of aluminum and 
titanium such as alsi10mg and ti-6al-4v. The entity in ques-
tion is compared to entities in the respective category using 

     

(a) (b)

Fig. 5   a Expressions for precision, recall and F1 score calculation. b Results obtained for our NER model

Table 6   Results showing the query term; “Maraging Steel” and the 
closely associated entities within the Application category and their 
corresponding scores

Search term: maraging steel

Application Score

Additive manufactured part 0.535
Thin walled components 0.531
Naval applications 0.522
Aircraft component 0.503
Braze welding 0.498
Phenix systems 0.497
Coated abrasives 0.488
Coated carbides 0.477
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cosine word similarity, and then the words in the category 
are sorted in descending order based on scores. This appli-
cation is dependent on the vocabulary and the respective 
categories predicted and stored as discussed in the previous 
section. It has been noted that some words that are "more 
related" to the word in question may receive a lower score 
than other words in the category. This could be explained 
based on the literature text that has been used for develop-
ing the word embedding model which has been developed 
through an unsupervised learning approach without human 
intervention. In every case, the most relevant words would 
be visible to the user for desired target word.

To obtain the similar words related to entity, word embed-
dings developed earlier did not work, and we needed to 
develop another word embedding. The reason behind this 
is the fact that the word and character embedding trained 
earlier can identify the label as the output but not the similar 
words that are n-grams. For example, previous word2vec 
model could find out the similar words related to ‘manufac-
turing’ but not related to ‘additive manufacturing’ as uni-
gram word embedding for BiLSTM was needed for train-
ing the sequence of words. However, there could be many 
n-gram entities that is in the vocabulary of manufacturing. 
To counter this, we trained another word embedding after 

Table 7   Summary about target word ’slm’

Application Score Enabling tech Score Property Score Manufacturing 
process

Score

additive_manufactured_
part

0.524 laser_scan 0.531 de-powdering 0.533 selective_laser_melt-
ing

0.780

aircraft_component 0.488 additive_technology 0.531 porosity_density 0.475 l-pbf 0.736
ti_implant 0.468 laser 0.490 precipitated_hardened 0.472 ebm 0.704
bone_implant_applica-

tions
0.464 electron_beam-based 0.463 homogeneous_microstruc-

tures
0.461 powder_bed_fusion 0.686

thin-walled_components 0.462 atomized 0.435 handling_strength 0.459 sebm 0.683
dental_application 0.460 hybrid_technologies 0.435 youngmodulus 0.452 slmed 0.680
phenix_systems 0.460 additive_technologies 0.433 martensitic_grade 0.442 dmls 0.668
eos 0.458 powder_technologies 0.427 green_part 0.437 selective_laser_melt-

ing_process
0.664

Concept principle Score Feature Score Machine equipment Score Manufacturing 
standard

Score

scanning_strategies 0.564 micro-lattice_structures 0.510 powder_bed 0.604 cad_file 0.391
build_strategy 0.540 functionally_graded_lat-

tice
0.506 am_part 0.551 iso/astm 0.391

geometrically-complex 0.520 lattice_design 0.504 direct_metal_laser 0.531 iso_25178-2 0.365
rapid_solidification_pro-

cess
0.516 graded_microstructure 0.486 powder_feedstock 0.524 iso_standard 0.361

wrought_samples 0.506 overhang_features 0.481 building_platform 0.519 obj 0.346
samples_manufactured 0.503 lattice_structure_design 0.476 powder_beds 0.505 text_file 0.340
melt_pool_boundaries 0.501 overhanging_feature 0.475 l-pbf_systems 0.482 class_iii_defect 0.316
post-processing_param-

eters
0.501 mg_scaffolds 0.468 build_plate 0.471 stl_format 0.296

Characterization Score Parameter Score Material Score

build_rates 0.568 hatch_spacing 0.550 alsi10mg 0.688
building_of_parts 0.492 laser_energy_density 0.548 alsi10mg_alloy 0.609
mechanical_property_

characterization
0.489 build_height 0.536 ti-6al-4v_powder 0.582

dental_crowns 0.482 scanning_speed 0.534 ti6al4v 0.576
degrees_of_porosity 0.473 hatch_distance 0.530 in718 0.567
meltpool 0.471 building_direction 0.519 alsi10mg_alloys 0.566
three-point_bending_

fatigue_tests
0.468 scan_pattern 0.518 co-cr_dental_alloy 0.561

deposition_quality 0.467 melt_pool_dimension 0.504 aluminium_alloy_alsi10mg 0.557
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replacing all n-gram words by removing spaces between 
them and placing an underscore to make them act as uni-
gram instead of n-grams. For instance, ‘metal additive 
manufacturing’ was replaced with ‘metal_additive_manu-
facturing’, and once trained following the process of word 
embedding would give the results similar to metal additive 
manufacturing based on appearance of this word in all 12 
categories as per the context such that ‘Application’ category 
could indicate aerospace as the closest to aerospace out of 
all applications. A threshold of 0.5 cosine similarity was 
applied to avoid words not very relevant appearing as similar 
words.

Topic category identification of a manufacturing 
text paragraph

Another application of the NER model is for the algorithm 
to conduct topic assessment exercises based on a given para-
graph. One of the most common methods of topics identi-
fication is using Latent Dirichlet allocation (LDA) model 
(Blei et al., 2003). The limitation of LDA is the fixed number 
of topics that should be known ahead. We tried to make the 
task of topic assessment simpler by using the NER model 
to find the focused named entities. Focused named entities 
(Zhang et al., 2004), are relevant entities mainly concerned 
with ‘Who’ and ‘What’, are vital for identifying the main 
topic of the paragraph content. Some of the other applica-
tions of focused named entities include text summarization, 
search ranking, topic tracking and topic detection. Towards 
this portion of study, we focused on topic identification. The 
topic was chosen to assess a given paragraph text by find-
ing the maximum number of named entities occurring in 
the paragraph. In case of two or more entities present in 
equal numbers, the preference will be given to the first iden-
tified entity of the paragraph. This is because in most of the 
cases the sentence starts with introduction about the topic in 

question. To demonstrate this, two example paragraph texts 
are shown in Figure 6. The first paragraph discusses about 
STL file topic. Initially the entities were recognized by NER 
model and based on the number of occurrences of specific 
entities, the topic was finalized along with NER category. In 
the second example, even though ‘3DP’ and ‘print’ are the 
two topics identified, the preference was given to the first 
identified topic at the beginning of the article.

Discussion

Developing an information and relationship extraction 
method from free flowing manufacturing literature are 
critical steps to mining the vast literature available on 
product design and manufacturing text. Future applica-
tions can include powering chat bots specific to the design 
and manufacturing domain, understanding text written in 
maintenance records and the general parsing of documen-
tation in product manufacturing domain.

Currently, none of the existing NLP models is able to 
understand manufacturing domain specific text, primarily 
due to the lack of datasets and more importantly limited 
data available to train special purpose TLP. While there 
have been advances in NLP techniques as applied to the 
biomedical and material science domain, those models do 
not easily translate to the product engineering lifecycle 
context. With the advent of online resources, the textual 
information written in the documentation of manufacturing 
sector companies, is either publicly available or privately 
available within the organization. Such digitally available 
textual content would need to be parsed for retrieval based 
on a query search. Within the manufacturing sector, there 
are several kinds of product manufacturing text that is rel-
evant, ranging from product design data, engineering test 
data, supplier data, maintenance records and product use 

Fig. 6   NER and topic identifica-
tion of unseen article
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data. Often times, such data is not entirely text based, but 
a combination of images, 3D models, graphs, video and 
audio content. For automated mining of such domain spe-
cific data, building neural network models that are able to 
classify text is critical to inter-linking various data assets, 
which eventually lead to information extraction and knowl-
edge based generation.

This work demonstrates a process through which a large 
amount of manufacturing text abstracts can be mined for 
analysis and entity recognition. The approach taken here 
is a semi-supervised approach which uses a combination 
of human annotation, automatic vocabulary extraction and 
model based entity categorization. The method of develop-
ing a vocabulary to tag the entities is time consuming but 
quite beneficial for performing the same operations. There 
are many entities present in the corpus that has variations 
in their usage in different sentences. These type of vari-
ations in the corpus would require entity normalization 
(Cho et al., 2017) of every entity such that interchange-
ability of the terms does not affect the embedding and their 
nearby elements. Although the method discussed earlier 
based on Levenshtein distance was able to catch most of 
the variations in entities taken for training, there is a pos-
sibility that variation in terms could have been left out. 
The approach also intentionally chose to lowercase every 
term while automatically tagging based on vocabulary to 
avoid complexities arriving due to sentence formation, 
some entities such as Acrylonitrile Styrene (AS) having 
the lowercase acronym ‘as’ overlaps with the adverb ‘as’, 
which can lead to errors within the model. In such situa-
tions, manual checking or applying conditions for check-
ing common words with abbreviations would have to be 
resorted to rectify ambiguous entities.

Some of the results obtained through this approach might 
seem incomplete since we are only analyzing the words con-
tained within the abstracts. Analysis of full text associated 
with each article may provide a more complete picture of 
the entities within the domain. Also, including content from 
non-academic work would also be beneficial since it would 
add words/entities that might help interlink into other related 
domains. But in any case, the presented approach is still 
valid and would simply be an issue of scaling the model 
to also include other forms of full-form text. Adding vast 
amounts of additional data would also require further fine 
tuning of the models through hyper-parameter optimization 
techniques, such as grid search, and training data to help 
improve classification accuracy.

The word2vec technique is effective for named entity 
recognition but there are newer techniques such as BERT 
and Attention based algorithms that have gained prominence 
over the last few years (Zhang et al., 2021). In an effort 
to replace word2vec models, a custom pre-trained model 
meant for scientific text, called ‘SciBERT’ is available 

(Beltagy et al., 2019). Such models can be fine-tuned to fit 
specific manufacturing text corpora. Fine-tuning of SciB-
ERT with a relatively smaller dataset would be quite ben-
eficial in improving the performance in many NLP tasks 
such as sequence tagging (leading to NER), sentence clas-
sification, dependency parsing and question-answering (QA) 
systems. Another area of improvement is the inter-linking 
of various concepts available within the literature to form a 
Knowledge network graph that connects the various entities 
together (Shen et al., 2014) within sub-disciplines or across 
disciplines. Such manufacturing specific knowledge graphs 
can further enhance information extraction and information 
retrieval based on query terms.

Conclusion

This work demonstrates an approach to entity recognition 
from more than half a million manufacturing related scien-
tific text with quite good accuracy. The outlined approach 
can be used to perform the named entity recognition for 
any domain-specific text related to manufacturing, such 
as manufacturing maintenance records, service manuals 
or other business specific documents. We have created the 
word embedding model for discrete manufacturing using the 
scientific text corpus and achieved more than 74 percentile 
results in the top 5 most similar results. We have developed 
a named entity recognition model for Manufacturing NER, 
and achieved closer to the state-of-the-art performance i.e., 
accuracy equivalent to 88% using BiLSTM and CRF based 
neural network model. We have relied on an unsupervised 
learning approach to create the word-embeedings and a 
supervised approach to training the BiLSTM network. To 
further extend the use of annotated datasets while reducing 
labor expense, methods on semi-supervised learning, contin-
uous learning, utilizing structured content available in data-
bases and reference materials could be possible approaches 
to create additional labelled datasets without relying entirely 
on human annotation. Two useful applications of NER has 
been demonstrated in the form of literature summary review 
and article topic identification. This work represents the ini-
tial step towards building knowledge network graphs within 
the entire manufacturing domain that can help lower the 
barriers towards access to information by both domain and 
non-domain experts.
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