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Abstract 

Suppliers registered within a manufacturing-as-a-service (MaaS) marketplace require real time decision 

making to accept or reject orders received on the platform. It is desirable for the suppliers to maximize the 

revenue received from the limited capacity they sell on the platform. Myopic decision-making such as a 

first come, first serve method in this dynamic and stochastic environment can lead to suboptimal revenue 

generation. In this paper, this sequential decision making problem is formulated as a Markov Decision 

Process and solved using deep reinforcement learning (DRL). Empirical simulations demonstrate that DRL 

has considerably better performance compared to four baselines. This early work demonstrates a learning 

approach for real-time online decision making for suppliers participating in a MaaS marketplace. 
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1. Introduction 

Two sided manufacturing-as-a-service (MaaS) [1] marketplaces connect clients requiring manufacturing 

services to suppliers providing those services. The platform removes friction in the manufacturing 

marketplace by providing decision-making tools such as instant quotations and order acceptance decisions. 

Orders and machine capacities arrive stochastically over time and suppliers need to make online real time 

decision making on whether to accept or reject the orders. They have limited resource availability i.e. 

machine capacity and they face the task of maximizing the value i.e. revenue they derive from the available 

resources over time. This problem is essentially a dynamic stochastic knapsack problem (DKSP) [2]. 

 

Previous works consider resource allocation as a static optimization problem [3, 4] which is not suitable for 

a dynamic MaaS marketplace. Dynamic methods such as rule based heuristics or rolling horizon approach 

[5, 6] have also been widely proposed, however, they are myopic in nature. By considering the currently 

available orders, expected orders and its available capacity in the future, the supplier should be able to 

refine its strategy to better allocate its available capacity to the incoming orders. This is especially useful 

in scenarios when the available capacity is limited compared to demand in the marketplace. In a marketplace 

setting, the capacity committed by a supplier to the marketplace is limited and it is important to devise an 

order acceptance policy sequentially so that the available capacity can be utilized for accepted orders 

considering both the immediate and future rewards. Additionally, most dynamic scheduling/ dispatching 

methods [6] have focused on scheduling jobs on machines in an individual small scale manufacturing 

system, whereas in a MaaS marketplace, the supplier’s decision is based on a network level. Suppliers need 

to accept or reject the orders in real time and scheduling decisions can be taken later considering orders 

from the marketplace and other sources. In manufacturing systems with multiple suppliers, centralized 

approaches [7] that consider all participants (suppliers and orders) for allocation may not result in choosing 

an optimal action for each supplier individually. With suppliers having different preferences and objectives, 

decentralized [8] decision-making is desirable to maximize participation within a MaaS platform. 



 

In a MaaS marketplace, the environment is non-stationary and the threshold will change over time. 

Anshelevich et al. [9] determine a threshold where an agent with a match utility less than the threshold 

would reject the order and wait for a better match in the future. Therefore, a learning approach where an 

agent can learn the optimal policy and automatically adapt to a changing environment would be more 

appropriate. A model based approach such as dynamic programming is not preferred as the transition 

dynamics are hard to capture in such an environment.  This paper formulates this sequential decision making 

problem with a Markov Decision Process (MDP) framework and uses Deep Reinforcement Learning (DRL) 

to solve it. Traditional reinforcement learning methods [10] cannot handle large state spaces. Function 

approximation with neural networks in DRL solves the challenge of computational intractability. DRL  has 

been used in sequential decision making for resource allocation in ride sharing [11, 12], display advertising 

[13, 14] and cloud computing [15, 16]. This work studies the use of a model free reinforcement learning 

method named Deep Q-Networks (DQN) [17].  

2. Theory 

Figure 1 describes the interaction between supplier agent and the environment. A MaaS marketplace is 

considered where orders arrive with a rate 𝜆𝑑  per period. An order consists of attributes such as 3D design, 

material requirement and due date. The supplier commits capacity to the platform for the next 𝑞 periods. 

Capacity arrives randomly over time with a Poisson distribution parametrized with 𝜆𝑠 hours per period. 

Material availability of the supplier also changes randomly over time. The supplier quotes a price for the 

order depending on the utility it would derive from it. The utility depends on the order’s attributes and 

supplier’s available capacity and materials. The objective of the supplier is to maximize its revenue over a 

period of time T. The MDP is formulated as follows: 

 

 
Figure 1: Agent and environment interactions in a MaaS marketplace 

 

State: the state 𝑠𝑡  consists of attributes of available orders 𝑥𝑡  i.e. part volume, due date and required 

material, supplier attributes 𝑚𝑡  i.e. available capacities and material availability. The number of available 

orders in a period can vary resulting in a change in state dimension. Neural networks for function 

approximation require the state dimension to be fixed. Therefore, a fixed number of orders 𝜆𝑑  are 

considered to be a part of the state and the remaining orders are assigned to a queue. The length of the queue 

is considered as an additional parameter in the state definition.  



 

Action: An action 𝑎𝑡  for the supplier agent is to choose an order to accept. As a supplier can accept multiple 

orders, the number of possible order combinations for a supplier can grow exponentially with the number 

of orders. Therefore, a supplier is allowed to choose a single order as an action to keep the number of ac tions 

linear in the number of orders. Here as well, the action space is non-stationary and to keep it fixed, the 

supplier is only allowed to choose from the set of orders considered in the state definition. Additionally, an 

action “wait” is added where the agent chooses to move to the next period and does not choose any of the 

available orders. 

Reward: The reward function is designed as follows:  

𝑟𝑡 =  {

𝑝𝑖/ℎ𝑖                           𝑖𝑓 𝑎 𝑣𝑎𝑙𝑖𝑑 𝑜𝑟𝑑𝑒𝑟 𝑖𝑠 𝑐ℎ𝑜𝑠𝑒𝑛       

−𝐵                               𝑖𝑓 𝑎𝑛 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 𝑜𝑟𝑑𝑒𝑟 𝑖𝑠 𝑐ℎ𝑜𝑠𝑒𝑛
−𝐶 ∗ 𝑐𝑡+1                    𝑖𝑓 "𝑤𝑎𝑖𝑡" 𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑐ℎ𝑜𝑠𝑒𝑛        

 

 

where 𝑝𝑖  is the revenue generated from order 𝑖, ℎ𝑖  is the production time of the order 𝑖,  𝑐𝑡+1 is the available 

capacity in the period 𝑡 + 1, 𝐶 is the penalty for each hour of capacity which goes waste (as the agent 

decided to move to the next period) and 𝐵 is the penalty for choosing an invalid order i.e. an order for which 

it does not have enough capacity to manufacture it by its due date. This reward function ensures that the 

supplier agent maximizes its revenue over a horizon 𝑡 = 1 𝑡𝑜 𝑇 while utilizing the capacity to its fullest. 

 

Revenue from an order 𝑝𝑖  depends on its utility 𝑢𝑖 for the supplier. To determine 𝑢𝑖, expected utility theory 

[18-19] is used. 𝑢𝑖 depends on three factors – the urgency of required delivery, material availability for the 

order and the available capacity of the supplier. The closer the due date of the part, the lower the utility. 

The higher the available capacity, the higher the utility and an order for which the required material is 

available has a higher utility. Revenue is considered to be utility dependent as follows: 

𝑝𝑖 =  𝑏𝑝𝑖 + 𝑘 ∗ 𝑏𝑝𝑖 ∗ (𝑢𝑖)
−𝑙  

𝑏𝑝𝑖 =  𝑢𝑝𝑖 ∗ 𝑣𝑖 

 

where 𝑏𝑝𝑖  is the base price of the order which is determined by the volume of the part 𝑣𝑖 and price per unit 

volume 𝑢𝑝𝑖 . 𝑘 and 𝑙 are constants. The revenue and utility are assumed to have a nonlinear relationship 

with the supplier charging a higher price for a part with lower utility. Other price functions can also be 

considered. However, the price of the part ideally should be determined using historical data to capture the 

relationship between price and order/supplier attributes. 

 

The DQN algorithm is described in Figure 2. The agent observes the state and takes an action 𝑎𝑡  based on 

the 𝜀-greedy policy. The policy chooses 𝑎𝑡  randomly with a probability 𝜀, and based on the policy (𝑎𝑡 =

 argmax
𝑎

𝑄(𝑠𝑡+1| 𝜃)) with probability1 − 𝜀. The random actions allow the agent to explore the environment 

whereas the actions based on the policy let the agent exploit the learned policy. The value of 𝜀 starts at 1 

and exponentially goes down to 0.01 over the learning duration. After the action is taken, the environment 

is updated and the reward 𝑟𝑡 and the next state 𝑠𝑡+1 is observed. The agent stores the transition 

(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡, 𝑠𝑡+1) in the replay memory. To facilitate stable training of the DQN, we consider two networks 

– a predictor DQN and a target DQN. A set of transitions are sampled uniformly at random from replay 

memory. The predictor values 𝑦𝑖  are determined using predictor DQN and target values 𝑦̂𝑖  are determined 

using target DQN considering a discount factor 𝛾. The parameters 𝜃 of the predictor DQN are updated by 

minimizing the mean square loss 𝐿(𝜃) between the target and predictor values. Adam optimizer [20] is used 



for minimizing the loss function. After every 𝑘 iterations, the weights of the predictor DQN are copied to 

the target DQN to ensure that the target values do not change frequently. 

  

Initialize replay memory 𝐷 

Use random weights 𝜃 to initialize the model  

for 𝑛 = 1 to number of episodes do: 

        Reset the environment and obtain the initial state 𝑠0 

        for every period (𝑡 = 1 𝑡𝑜 𝑇) do: 

                the predictor DQN model observes the state 𝑠𝑡  and outputs action 𝑎𝑡  based on 𝜀-greedy policy 

                the simulator updates the environment and observes the reward 𝑟𝑡 and next state 𝑠𝑡+1 

                the transition of agent (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡, 𝑠𝑡+1) is stored in the replay memory 𝐷 

 

        for 𝑚 = 1 to 𝑀 do: 

                sample 𝐺 ~ 𝑈(𝐷) transitions (𝑠𝑡 , 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) from replay memory 𝐷 

                for each transition in 𝐺 do: 

                        use the predictor DQN model to calculate 𝑦 = 𝑄(𝑠𝑡 , 𝑎𝑡| 𝜃)  

                        use the target DQN model to calculate 𝑦̂ =  𝑟𝑡 +  𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎| 𝜃′) 

                        minimize mean square loss 𝐿(𝜃) =  E𝐺[(𝑦̂ − 𝑦)2] to update the parameters 𝜃 of the           

predictor DQN model 

         

         if  
𝑛

𝑘
= 0 do: 

                    copy parameters of predictor DQN network to target DQN network (𝜃 = 𝜃′) 

 

Figure 2: DQN algorithm for order acceptance in MaaS marketplace  

 

The simulator used for testing the algorithm is defined in Figure 3. Orders arrive sequentially on the 

platform and in each period the platform takes an action to accept orders until it selects an invalid order or 

the action “wait”. For each valid order selected, it updates the environment by updating its capacity and 

taking that order off from the available orders. An order from the queue moves to the set of available orders. 

Once, it selects an invalid order or “wait” action, the simulator moves to the next period.  

 



Initialize states  

for each period in an episode (𝑡 = 1 𝑡𝑜 𝑇) do: 

        Implement Policy: supplier agents selects an action as per the DQN policy. The action is either a 

valid order or an invalid order or “wait”. The policy is implemented in a period until an invalid 

order or “wait” action is selected. 

        Update environment: 

                if action is a valid order:  

                     selected order is assigned and machine capacity is updated considering the production time      

of the order selected 

                if action is invalid order or wait: 

                     Generate orders: new orders are generated considering the distributions for order       

attributes such as material, due date and volume  

                     Generate machine attributes: capacity and material availability is generated for the 𝑞𝑡ℎ  

period 

Determine Next State: considering the available orders and machine attributes the next state for 

the supplier agent is generated  

 

Figure 3: MaaS Marketplace Simulator 

3. Results and Discussion 

The proposed DQN method is compared against four baselines: Tabular Q-learning (TQ) where a table is 

used to store the 𝑄(𝑠𝑡 , 𝑎𝑡) values in contrast to the function approximation used in DQN. Since the states 

are stored in a table, the state definition has to be concise in order for the algorithm to be computationally 

tractable. State was considered to be a tuple of number of orders waiting to be assigned and the sum of 

available capacity rounded to the nearest integer. The second baseline is optimization using a rolling 

horizon approach (RHA) where the agent maximizes its revenue in each period given the constraints on 

capacity and due date. The third baseline is a greedy heuristic (GH) where, in each period, the agent selects 

a valid order which results in highest revenue per hour of capacity until there are no more valid orders 

available or it is out of capacity. The fourth baseline is a random algorithm which selects valid orders 

randomly in each period until there are no more valid orders available or it is out of capacity . The random 

seed in all algorithms is kept same to ensure a fair comparison. 

  

The neural network in DQN consists of three fully connected hidden layers with 128, 64 and 32 neurons 

respectively. Each hidden layer uses a rectified linear unit as the activation function and the output layer 

uses a linear activation function. The algorithm is trained for 3,000 episodes with each episode consisting 

of 30 periods. Three orders arrive in each period and machine capacity arrives with a Poisson distribution 

having a rate of 8 hours per period. The constants for revenue function 𝑘 and 𝑙 are 0.5 each. The size of 

replay memory buffer is 20,000 and batch size is 500. The discount factor is 0.9 and the learning rate is 

0.0001.  

 

The results shown in Table 1 demonstrate that DQN performs considerably better than the baselines. Note 

that the DQN not only needs to learn the reward mapping with the state but also to utilize capacity efficiently 

over time. DQN also has a higher order acceptance rate compared to the baselines. This can be attributed 

to the fact that the DQN, in order to maximize the revenue over time, chose smaller orders that provide 

higher revenue per hour leading to higher acceptance rate. It learns to ignore orders, which provide a lower 

per hour revenue and then reserve the available capacity for potentially better orders in the future periods. 



TQ performs slightly better than RHA but significantly worse than DQN primarily because the state 

definition in TQ captures very limited environment information. 

 

Table 2: Mean and confidence intervals (CI) of normalized revenue and order acceptance rate of DQN vs 

baselines over 100 episodes 

4. Conclusion and Future Work 

Advancements in cybermanufacturing technology has given rise to MaaS marketplaces where a large 

number of suppliers and customers participate in a network. The platform requires online real time decision 

making for suppliers in order to provide value to the customers. Conventional methods fail due to 

computational complexity in dealing with large number of participants. This work proposes a method which 

enables real time decision making with a distributed learning approach where an agent learns to maximize 

value for a supplier in the platform over a period of time. The method needs to be tested in a large 

environment with real datasets where the price quote for an order i.e. the value derived from an order and 

production time i.e. resources consumed, can both be estimated by historical data. Another key next step is 

to consider a multi agent system where both suppliers and customers participate as self -interested agents. 
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