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Abstract 

Hindsight rationality is an approach to playing 
general-sum games that prescribes no-regret learn-
ing dynamics for individual agents with respect 
to a set of deviations, and further describes jointly 
rational behavior among multiple agents with 
mediated equilibria. To develop hindsight ratio-
nal learning in sequential decision-making set-
tings, we formalize behavioral deviations as a 
general class of deviations that respect the struc-
ture of extensive-form games. Integrating the 
idea of time selection into counterfactual regret 
minimization (CFR), we introduce the extensive-
form regret minimization (EFR) algorithm that 
achieves hindsight rationality for any given set 
of behavioral deviations with computation that 
scales closely with the complexity of the set. We 
identify behavioral deviation subsets, the partial 
sequence deviation types, that subsume previously 
studied types and lead to effcient EFR instances 
in games with moderate lengths. In addition, we 
present a thorough empirical analysis of EFR in-
stantiated with different deviation types in bench-
mark games, where we fnd that stronger types 
typically induce better performance. 

1. Introduction 
We seek more effective algorithms for playing multi-player, 
general-sum extensive-form games (EFGs). The hindsight 
rationality framework (Morrill et al., 2021) suggests a game 
playing approach that prescribes no-regret dynamics and 
describes jointly rational behavior with mediated equilib-
ria (Aumann, 1974). Rationality within this framework is 
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measured by regret in hindsight relative to strategy transfor-
mations, also called deviations, rather than as prospective 
optimality with respect to beliefs. Each deviation transforms 
the learner’s behavior into a competitor that the learner must 
surpass, so a richer set of deviations pushes the learner to 
perform better. 

While larger deviation sets containing more sophisticated 
deviations produce stronger competitors, they also tend to 
raise computational and storage requirements. For example, 
there is one external deviation (constant strategy transforma-
tion) for each strategy in a set of n, but there are n2 internal 
deviations (Foster & Vohra, 1999) that transform one par-
ticular strategy into another, and the latter is fundamentally 
stronger. Though even achieving hindsight rationality with 
respect to external deviations appears intractable because 
the number of strategies in an EFG grows exponentially 
with the size of the game. 

The counterfactual regret minimization (CFR) (Zinkevich 
et al., 2007) algorithm makes use of the EFG structure to be 
effciently hindsight rational for external deviations. Modif-
cations to CFR by Celli et al. (2020) and Morrill et al. (2021) 
are effciently hindsight rational for other types of deviations 
as well. We generalize these algorithms as extensive-form 
regret minimization (EFR), a simple and extensible algo-
rithm that is hindsight rational for any given deviation set 
where each deviation can be decomposed into action trans-
formations at each decision point. It is generally intractable 
to run EFR with all such behavioral deviations so we iden-
tify four subsets that lead to effcient EFR instantiations that 
are hindsight rational for all previously studied tractable 
deviation types (external, causal (Forges & von Stengel, 
2002; von Stengel & Forges, 2008; Gordon et al., 2008; 
Dudı́k & Gordon, 2009; Farina et al., 2020a), action (von 
Stengel & Forges, 2008; Morrill et al., 2021), and counter-
factual (Morrill et al., 2021)) simultaneously. We provide 
EFR instantiations and sublinear regret bounds for each of 
these new partial sequence deviation types. 

We present a thorough empirical analysis of EFR’s perfor-
mance with different deviation types in benchmark games 
from OpenSpiel (Lanctot et al., 2019). Stronger deviation 
types typically lead to better performance, and EFR with 
the strongest type of partial sequence deviation often per-
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forms nearly as well as that with all behavioral deviations, 
in games where the latter is tractable. 

2. Background 
This work will continuously reference decision making from 
both the macroscopic, normal-form view, and the micro-
scopic, extensive-form view. We frst describe the normal-
form view, which models simultaneous decision making, 
before extending it with the extensive-form view, which 
models sequential decision making. 

2.1. The Normal-Form View 

At the macro-scale, players in a game choose strategies that 
jointly determine the utility for each player. We assume a 
bounded utility function ui : Z → [−U, U ] for each player 
i on a fnite set of outcomes, Z . Each player has a fnite set 
of pure strategies, si ∈ Si, describing their decision space. 
A set of results for entirely random events, e.g., die rolls, is 
denoted Sc. A pure strategy profle, s ∈ S = Sc ××N 

Si,i=1 
is an assignment of pure strategies to each player, and each 
strategy profle corresponds to a unique outcome z ∈ Z 
determined by the reach function P (z; s) ∈ {0, 1}. 

Δ|Si|A mixed strategy, πi ∈ Πi = , is a probability dis-
tribution over pure strategies. In general, we assume that 
strategies are mixed where pure strategies are point masses. 
The probability of a chance outcome, sc ∈ Sc, is deter-
mined by the “chance player” who plays the fxed strategy 
πc. A mixed strategy profle, π ∈ Π = {πc} ××N 

Πi,i=1 
is an assignment of mixed strategies to each player. The 
probability of sampling a pure strategy profle, s, is the 
product of sampling each pure strategy individually, i.e.,QN
π(s) = πc(sc) πi(si). For convenience, we de-i=1 
note the tuple of mixed strategies for all players except 
i as π−i ∈ Π−i = {πc} ××j Πj . We overload the6=i 
reach function to represent the probability of realizing 
outcome z according to mixed profle π, i.e., P (z; π) = 
Es∼π[P (z; s)], allowing us to express player i’s expected 

.utility as ui(πi, π−i) = ui(π) = Ez∼P (·;π)[ui(z)]. 

The regret for playing strategy πi instead of deviating to an 
alternative strategy π0 is their difference in expected utility i 
ui(π

0, π−i) − ui(π). We construct alternative strategies by i 
transforming πi. Let ΦSW = {φ : X → X} be the setX 
of transformations to and from a given fnite set X . The 
pure strategy transformations in ΦSW are known as swapSi 

deviations (Greenwald et al., 2003). Given a mixed strategy 
πi, the transformed mixed strategy under deviation φ ∈ ΦSW 

Si 

is the pushforward measure of πi, denoted as φ(πi) and 
0 P 0defned by [φπi](si) = si∈φ−1 (s0 ) πi(si) for all si ∈ Si, 

i 
0 0where φ−1 : s 7→ {si | φ(si) = s } is the pre-image of i i 

φ. The regret for playing strategy πi instead of deviating 
according to φ is then ρ(φ; π) = ui(φ(πi), π−i) − ui(π). 

In an online learning setting, a learner repeatedly plays a 
game with unknown, dynamic, possibly adversarial players. 
On each round 1 ≤ t ≤ T , the learner who acts as player i 
chooses a strategy, πt, simultaneously with the other players i 
who in aggregate choose π− 

t
i. The learner is evaluated on 

their strategies, (πt)Tt=1, against a deviation, φ, with the i 
. PTcumulative regret ρ1:T (φ) = ρ(φ; πt). A learner is t=1 

rational in hindsight with respect to a set of deviations, Φ ⊆� �+ 
ΦSW ρ1:T (φ)Si 

, if the maximum positive regret, maxφ∈Φ 
+where · = max{·, 0}, is zero. A no-regret or hindsight 

rational algorithm ensures that average maximum positive 
regret vanishes as T →∞. 

T Δ|S|The empirical distribution of play, µ ∈ , is the 
distribution that summarizes online correlated play, i.e.,PT1 µT (s) = πt(s), for all pure strategy profles, s.T t=1 

TThe distribution µ can be viewed as a source of “strat-
egy recommendations” distributed to players by a neutral 
“mediator”. The incentive for player i to deviate from 

Tthe mediator’s recommendations, sampled from µ , to 
behavior chosen by φ is then player i’s average regret 

1Es∼µT [ρ(φ; s)] = ρ1:T (φ). Jointly hindsight rational play T 
converges toward a mediated equilibrium (Aumann, 1974) 
where no player has an incentive to deviate from the me-
diator’s recommendations, since hindsight rational players 
ensure that their average regret vanishes. 

The deviation set infuences what behaviors are considered 
rational and the diffculty of ensuring hindsight rationality. 
For example, the external deviations, ΦEX = {φ→s : si 7→i 

Si 

} , are the constant strategy transformations, a setsi si ∈Si 

which is generally limited in strategic power compared to 
the full set of swap deviations. However, it is generally 
intractable to directly minimize regret with respect to the 
external deviations in sequential decision-making settings 
because the set of pure strategies grows exponentially with 
the number of decision points. 

2.2. The Extensive-Form View 

Actions, histories, and information sets. An extensive-
form game (EFG) models player behavior as a sequence 
of decisions. Outcomes, here called terminal histories, are 
constructed incrementally from the empty history, ∅ ∈ 
H. At any history h, one player determined by the player 
function P : H \ Z → {1, . . . , N} ∪ {c} plays an action, 
a ∈ A(h), from a fnite set, which advances the current 
history to ha. We write h @ ha to denote that h is a 
predecessor of ha. We denote the maximum number of 
actions at any history as nA. 

Histories are partitioned into information sets to model im-
perfect information, e.g., private cards. The player to act 
in each history h ∈ I in information set I ∈ I must do so 
knowing only that the current history is in I . The unique 
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information set that contains a given history is returned by 
I (“blackboard I”) and an arbitrary history of a given infor-
mation set is returned by h (“blackboard h”). Naturally, the 
action sets of each history within an information set must 
coincide, so we overload A(I) = A(h(I)). 

Each player i has their own information partition, denoted 
Ii. We restrict ourselves to perfect-recall information parti-
tions that ensure players never forget the information sets 
they encounter during play and their information set tran-
sition graphs are forests (not trees since other players may 
act frst). We write I � I 0 to denote that I is a predecessor 
of I 0 and p(I 0) to reference the unique parent (immediate 
predecessor) of I 0 . Let dI be the number of I’s predecessors 
representing I’s depth and d∗ = maxI∈Ii dI be the depth 

→I0 →I0of player i’s deepest information set.We use a or ah I 
to reference the unique action required to play from h ∈ I 
to a successor history in I 0 � I . 

Strategies and reach probabilities. From the extensive-
form view, a pure strategy is an assignment of actions to 
each of a player’s information sets, i.e., si(I) is the action 
that player i plays in information set I according to pure 
strategy si. A natural generalization is to randomize at 
each information set, leading to the notion of a behavioral 
strategy (Kuhn, 1953). A behavioral strategy is defned by 
an assignment of immediate strategies, πi(I) ∈ Δ|A(I)|, 
to each of player i’s information sets, where πi(a | I) is 
the probability that i plays action a in I . Perfect recall 
ensures realization equivalence between the set of mixed 
and behavioral strategies where there is always a behavioral 
strategy that applies the same weight to each terminal history 
as a mixed strategy and vice-versa. Thus, we treat mixed 
and behavioral strategies (and by extension pure strategies) 
as interchangeable representations. 

Since histories are action sequences and behavioral strate-
gies defne conditional action probabilities, the probability 
of reaching a history under a profle is the joint action prob-
ability that follows from the chain rule of probability. We 
overload P (h; π) to return the probability of a non-terminal 
history h. Furthermore, we can look at the joint probability 
of actions played by just one player or a subset of players, 
denoted, for example, as P (h; πi) or P (h; π−i). We can use 
this and perfect recall to defne the probability that player i 
plays to their information set I ∈ Ii as P (h(I); πi). Addi-
tionally, we can exclude actions taken before some initial 
history h to get the probability of playing from h to history 
h0 , written as P (h, h0; ·), where it is 1 if h = h0 and 0 if 
h 6v h0 . 

2.3. Extensive-Form Correlated Equilibrium 

Extensive-form correlated equilibrium (EFCE) is defned by 
Defnition 2.2 of von Stengel & Forges (2008) as a mediated 
equilibrium with respect to deviations that are constructed 

according to the play of a deviation player. At the beginning 
of the game, the mediator samples a pure strategy profle 
(strategy recommendations), s, and the game plays out ac-
cording to this profle until it is player i’s turn to act. Player 
i’s decision at this information set I is determined by the 
deviation player who observes si(I), which is the action 
recommended to player i by the mediator at I , and then 
chooses an action by either following this recommendation 
or deviating to a different action. After choosing an action 
and waiting for the other players to move according to their 
recommended strategies, the deviation player arrives at i’s 
next information set. Knowing the actions that were previ-
ously recommended to i, they again choose to follow the 
next recommendation or to deviate from it. This process 
continues until the game ends. 

The number of different states that the deviation player’s 
memory could be in upon reaching information set I at 
depth dI is n dI corresponding to the number of action com-A 
binations across I’s predecessors. One way to avoid this ex-
ponential growth is to assume that recommended strategies 
are reduced, that is, they do not assign actions to information 
sets that could not be reached according to actions assigned 
to previous information sets. Thus, the action recommen-
dation that the deviation player would normally observe 
after a previous deviation does not exist to observe. This 
assumption effectively forces the deviation player to behave 
according to an informed causal deviation (Gordon et al., 
2008; Dudı́k & Gordon, 2009) defned by a “trigger” action 
and information set pair, along with a strategy to play after 
triggering, and the number of possible memory states grows 
linearly with depth. Defning EFCE as a mediated equilib-
rium with respect to informed causal deviations allows them 
to be computed effciently, which has led to this becoming 
the conventional defnition of EFCE. 

3. Behavioral Deviations 
Instead of achieving tractability by limiting the amount of 
information present in strategy recommendations, what if 
we intentionally hide information from the deviation player? 
At each information set, I , we now provide the deviation 
player with three options: (i) follow the action recommenda-
tion at information set I , si(I), sight unseen, (ii) choose a 
new action without ever seeing si(I), or (iii) observe si(I) 
and then choose an action. S 
If A∗ = I∈Ii 

A(I) is the union of player i’s action 
sets, then we can describe the deviation player’s memory, 
g ∈ Gi ⊆ ({∗} ∪ A∗)d∗ , as a string that begins empty and 
gains a character after each of player i’s actions. The rec-
ommendation, si(I), at information set I where option one 
or three is chosen must be revealed to the deviation player, 
either as a consequence of play (option one) or as a pre-
requisite (option three), thus resulting in the next memory 
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state gsi(I). Otherwise, the next memory state is formed 
by appending the “∗” character to indicate that si(I) re-
mains hidden. Limiting the options available to the devi-
ation player thus limits the number of memory states that 
they can realize. Given a memory state g, there is only one 
realizable child memory state at the next information set if 
the deviation player is allowed either option one or two, or 
two memory states if both options one and two are allowed. 
If all three options are allowed, the number of realizable 
child memory states at the next information set is equal to 
the number of actions at the current information set plus 
one. 

Formally, these three options are executed at each informa-
tion set I with an action transformation, φI : A(I) → A(I), 
chosen from one of three sets: (i) the singleton containing 
the identity transformation, {φ1 : a 7→ a}, (ii) the exter-
nal transformations, ΦEX 

A(I), or (iii) the internal transforma-
tions (Foster & Vohra, 1999) ( ( ) 

ΦIN !→a a if a = a! 
φa = : a 7→ .A(I) a o.w. 

a!,a ∈A(I) 

While internal transformations can only swap one action 
with another, there is no loss in generality because every 
multi-action swap can be a represented as the combination 
of single swaps (Dudı́k & Gordon, 2009; Greenwald et al., 
2003). Thus, any strategy sequence that can be improved 
upon by a swap deviation can also be improved upon by at 
least one internal deviation. 

A complete assignment of action transformations to each 
information set and realizable memory state represents a 
complete strategy for the deviation player. We call such an 
assignment a behavioral deviation in analogy with behav-
ioral strategies and denote them as ΦI 

IN 
i 

since the behavioral 
deviations are a natural analog of the internal transforma-
tions in EFGs. 

All previously described EFG deviation types can be repre-
sented as sets of behavioral deviations: 

von Stengel & Forges (2008)’s deviations. Any strategy 
that von Stengel & Forges (2008)’s deviation player could 
employ1 is an assignment of internal transformations to 
every information set and memory state so the set of all 
such behavioral deviations represents all possible deviation 
player strategies. A mediated equilibrium with respect to the 
behavioral deviations could thus perhaps be called a “full 
strategy EFCE”, though “behavioral correlated equilibrium” 
may lead to less confusion with the conventional EFCE 
defnition. 

Causal deviations. An informed causal deviation is defned 
1Where the deviation player makes only single-action swaps, 

which, again, is a simplifcation made without a loss in general-
ity (Dudı́k & Gordon, 2009; Greenwald et al., 2003). 

by trigger information set I !, trigger action a!, and strategy 
πi 
0 . The following behavioral deviation reproduces any such 

!→adeviation: assign (i) the internal transformation φa to 
the sole memory state at I !, (ii) external transformations to 
all successors I 0 � I ! where a! is in the deviation player’s 
memory to reproduce π0, and (iii) identity transformations i 
to every other information set and memory state. The anal-
ogous blind causal deviation (Farina et al., 2020a) always 
triggers in I !, which is reproduced with the same behavioral 

(I !)deviation except that the external transformation φ→π0 

is assigned to I !. 

Action deviations. An action deviation (von Stengel & 
Forges, 2008) modifes the immediate strategy at I !, πi(I

!), 
only, either conditioning on πi(I

!) (an informed action devi-
ation) or not (a blind action deviation (Morrill et al., 2021)), 
so any such deviation is reproduced by assigning either an 
internal or external transformation to the sole memory state 
at I !, respectively, and identity transformations elsewhere. 

Counterfactual deviations. A counterfactual devia-
tion (Morrill et al., 2021) plays to reach a given “target” 
information set, I , and transforms the immediate strategy 
there so any such deviation is reproduced by assigning (i) ex-
ternal transformations to all of the information sets leading 
up to I , (ii) an external or internal transformation to the 
sole memory state at I (for the blind and informed variant, 
respectively), and (iii) identity transformations elsewhere. 

Phrasing these deviation types as behavioral deviations al-
lows us to identify complexity differences between these 
deviation types by counting the number of realizable mem-
ory states they admit. Across all action or counterfactual 
deviations, there is always exactly one memory state at each 
information set to which a non-identity transformation is 
assigned. Thus, a hindsight rational algorithm need only 
ensure its strategy cannot be improved by applying a sin-
gle action transformation at each information set. Under 
the causal deviations, in contrast, the number of memory 
states realizable at information set I is at least the number of 
I’s predecessors since there is at least one causal deviation 
that triggers at each of them and plays to I . This makes 
causal deviations more costly to compete with and gives 
them strategic power, though notably not enough to sub-
sume either the action or counterfactual deviations (Morrill 
et al., 2021). Are there sets of behavioral deviations that 
subsume the causal, action, and counterfactual deviations 
without being much more costly than the causal deviations? 

4. Partial Sequence Deviations 
Notice that the causal, action, and counterfactual deviations 
are composed of contiguous blocks of the same type of 
action transformation. We can therefore understand these 
deviations as having distinct phases. The correlation phase 
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is an initial sequence of identity transformations, where 
“correlation” references the fact that the identity transforma-
tion preserves any correlation that player i’s behavior has 
with those of the other players. There are causal and action 
deviations with a correlation phase, but no counterfactual 
deviation exhibits such behavior. All of these deviation 
types permit a de-correlation phase that modifes the input 
strategy with external transformations, breaking correlation. 
Finally, the re-correlation phase is where identity transfor-
mations follow a de-correlation phase, but it is only present 
in action and counterfactual deviations. The informed vari-
ant of each deviation type separates these phases with a sin-
gle internal transformation, which both modifes the strategy 
and preserves correlation. The action deviation type is the 
only one that permits all three phases, but the de-correlation 
phase is limited to a single action transformation. 

Why not permit all three phases at arbitrary lengths to sub-
sume the causal, action, and counterfactual deviations? We 
now introduce four types of partial sequence deviations 
based on exactly this idea, where each phase spans a “par-
tial sequence” through the game. 

The blind partial sequence (BPS) deviation has all three 
phases and lacks any internal transformations. Notice that 
there are at most d∗nA|Ii| BPS deviations and yet the be-
havior produced by any blind causal deviation given a pure 
strategy profle can be reproduced exactly by a BPS devi-
ation. Thus, the beneft of a blind causal deviation cannot 
be more than the sum of the positive part of the beneft 
from each individual BPS deviation needed to reproduce the 
blind causal deviation’s behavior under different strategy 
profles. Since there are O(n|Ii||Ii|) blind causal devia-A 
tions, the BPS deviations capture the same strategic power 
with an exponential reduction in complexity. Even better, 
the set of BPS deviations includes the sets of blind action 
and blind counterfactual deviations. The empirical distri-
bution of play of learners that are hindsight rational for 
BPS deviations thus converge towards what we could call a 
BPS correlated equilibrium in the intersection of the sets of 
extensive-form coarse-correlated equilibrium (EFCCE) (Fa-
rina et al., 2020a), agent-form coarse-correlated equilibrium 
(AFCCE) (Morrill et al., 2021), and counterfactual coarse-
correlated equilibrium (CFCCE) (Morrill et al., 2021). 

In general, re-correlation is strategically useful (Morrill 
et al., 2021) and adding it to a deviation type decreases its 
complexity! While this observation may be new in its gen-
erality, Zinkevich et al. (2007) implicitly uses this property 
of deviations in EFGs to design counterfactual regret mini-
mization (CFR) so that it effciently minimizes regret for the 
external deviations. This is because CFR minimizes regret 
for blind counterfactual deviations (Morrill et al., 2021), 
which are exactly external deviations augmented with re-
correlation in the same way that BPS deviations are the 

blind causal deviations augmented with re-correlation. 

There are three versions of informed partial sequence de-
viations due to the asymmetry between informed causal 
and informed counterfactual deviations. A causal partial 
sequence (CSPS) deviation uses an internal transformation 
at the end of the correlation phase while a counterfactual 
partial sequence (CFPS) deviation uses an internal trans-
formation at the start of the re-correlation phase. A twice 
informed partial sequence (TIPS) deviation uses internal 
transformations at both positions, making it the strongest of 
our partial sequence deviation types. CSPS subsumes the 
informed causal deviations but represents an exponentially 
smaller set because CSPS allows re-correlation. And TIPS 
achieves our initial goal as it subsumes the informed causal, 
informed action, and informed counterfactual deviations at 
the cost of an nA factor compared to CSPS or CFPS. Each 
type of informed partial sequence deviation corresponds to 
a new mediated equilibrium concept in the intersection of 
previously studied equilibrium concepts. 

Table C.1 in Appendix C gives a formal defnition of each 
deviation type derived from behavioral deviations and Fig-
ure 1 gives a visualization of each type along with their 
relationships. The number of deviations contained within 
each deviation type is listed in Table 1. 

5. Extensive-Form Regret Minimization 
We now develop extensive-form regret minimization (EFR), 
a general and extensible algorithm that is hindsight rational 
for any given set of behavioral deviations. Its computational 
requirements and regret bound scale closely with the number 
of realizable memory states. 

5.1. CFR and Previous Derivatives 

CFR is based on evaluating actions with their counterfactual 
value (Zinkevich et al., 2007). Given a strategy profle, π, 
the counterfactual value for taking a in information set I is 
the expected utility for player i, assuming they play to reach 
I before playing πi thereafter and that the other players play 
according to π−i throughout, i.e., X 

vI (a; π) = P (h; π−i) P (ha, z; π)ui(z) .| {z }
h∈I, Future value given ha. 
z∈Z 

The learner’s performance is then measured at each informa-
tion set in isolation according to immediate counterfactual 
regret, which is the extra counterfactual value achieved by 
choosing a given action instead of following πi at I , i.e., 
ρCF 0(a; π) = vI (a; π) − Ea0∼πi(I)vI (a ; π).I 

Iterating on Zinkevich et al. (2007)’s approach to learning 
in EFGs, Celli et al. (2020) defne laminar subtree trig-
ger regret (immediate trigger regret in our terminology), 



Effcient Deviation Types and Learning 

internal 
Table 1. A rough accounting of (i) realizable memory states, (ii) 

twice informed PS 

behavioral 
action transformations, and (iii) the total number of deviations 
showing dominant terms. Columns (i) and (ii) are with respect to 
a single information set. 

type (i) (ii) (iii) 
2|Ii|internal N/A N/A nA 

d∗ d∗+2|Ii|† 
A 

2behavioral n n nA Acausal PS 
3

2

2 

2

2 

counterfactual PS 
A|Ii| 

A|Ii| 
A|Ii|

BPS d∗ nA d∗nA|Ii|
informed causal action CF blind PS |Ii|+1informed causal d∗ N/A nA 

A|Ii| 
A|Ii| 

2TIPS d∗nA d∗nnA 
‡CSPS d∗nA d∗nnA 

2CFPS d∗ d∗nnA 

|Ii|
2informed action 1 n nA 
2informed CF 1 n nA 

blind causal action CF 

external 

Figure 1. A summary of the deviation landscape in EFGs. Each 
pictogram is an abstract representation of a prototypical deviation. 
Games play out from top to bottom. Straight lines represent ac-
tion transformations, zigzags are transformation sequences, and 
triangles are transformations of entire decision trees. Identity trans-
formations are colored black; internal transformations have a cyan 

blind causal d∗ N/A n
|Ii||Ii|A 

blind action 1 nA nA|Ii|
blind CF 1 nA nA|Ii| 

|Ii|external N/A N/A nA 

2 

† This is the number of behavioral deviations that only assign 
non-identity transformations to each predecessor information 
set leading up to a given target information set, which are rep-
resentative in the same way that, e.g., BPS deviations capture 
all the strategic power of blind causal deviations. 

‡ One memory state at each information set is associated with the 
set of internal transformations which contains O(nA) trans-
formations, but this is dominated by the number of external 
transformations associated with every other memory state in 
non-root information sets. 

component representing the trigger action or strategy and a red 
component representing the target action or strategy; and external 
transformations only have a red component. Arrows denote order-
ing from a stronger to a weaker deviation type (and therefore a 
subset to superset equilibrium relationship). 

as the regret under counterfactual values weighted by the 
probability that player i plays to a given predecessor and 
plays a particular action there. Their ICFR modifcation 
of pure CFR (Gibson, 2014)2 is hindsight rational for in-
formed causal deviations3. Morrill et al. (2021) also observe 
that simply weighting the counterfactual regret at I by the 
probability that player i plays to I modifes CFR so that it 
is hindsight rational for blind action deviations. We derive 
EFR by generalizing the idea of changing CFR’s learning 
behavior by weighting counterfactual regrets. 

5.2. Time Selection 

The key insight that leads to EFR is that each of the deviation 
player’s memory states corresponds to a different weighting 

2Pure CFR purifes the learner’s strategy on each round by 
sampling actions at each information set. 

3Actually, ICFR is hindsight rational for CSPS deviations as 
well, but of course this was previously not understood. 

function, which reduces the problem of minimizing imme-
diate regret with respect to all weightings simultaneously to 
time selection regret minimization (Blum & Mansour, 2007). 
In a time selection problem, there is a fnite set of M(φ) 

M(φ)ttime selection functions, W (φ) = {t 7→ w ∈ [0, 1]} ,j j=1 
for each deviation φ ∈ Φ ⊆ ΦSW that maps the roundSi 

t to a weight. The regret with respect to deviation φ 
and time selection function w ∈ W (φ) after T rounds is 

. PT
ρ1:T (φ, w) = tρ(φ; πt). The goal is to ensure thatt=1 w 
each of these regrets grow sublinearly, which can be accom-
plished by simply treating each (φ, w)-pair as a separate 
transformation (here called an expert) and applying a no-
regret algorithm4. 

We introduce a (Φ, f)-regret matching (Hart & Mas-Colell, 

4 The regret matching++ algorithm (Kash et al., 2020) could 
ostensibly be used to minimize regret with respect to all time 
selection functions simultaneously without using more than |Si|
computation and memory, however, there is an error in the proof of 
the regret bound. In Appendix D, we give an example where regret 
matching++ suffers linear regret and we show that no algorithm 
can have a sublinear bound on the sum of positive instantaneous 
regrets. 
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2000; Greenwald et al., 2006) algorithm for the time se-
lection setting with a regret bound that depends on the 
size of the largest time selection function set, M∗ = 
maxφ∈Φ M(φ).5 

Corollary 1. Given deviation set Φ ⊆ ΦSW and fnite time Si 
M(φ)selection sets W (φ) = {wj ∈ [0, 1]T } for each de-j=1 

viation φ ∈ Φ, (Φ, ·+)-regret matching chooses a strat-
egy on each round 1 ≤ t ≤ T as the fxed point of Lt :P 
πi 7→ 1/z t φ(πi)y

t or an arbitrary strategy when φ∈Φ φ 
tz = 0, where link outputs are generated from exact regrets P P 
t t ty = t(ρ1:t−1(φ, w))+ and z = φ.φ w∈W (φ) w φ∈Φ yp

This algorithm ensures that ρ1:T (φ, w) ≤ 2U M∗ω(Φ)T 
for any deviation φ and time selection function w, where P 
ω(Φ) = maxa∈Si 1{φ(si) =6 si} is the maximal ac-φ∈Φ 
tivation of Φ (Greenwald et al., 2006). 

This result is a consequence of two more general theorems 
presented in Appendix B, one that allows regret approxi-
mations à la D’Orazio et al. (2020) (motivating the use of 
function approximation) and another that allows predictions 
of future regret, i.e., optimistic regret matching (D’Orazio & 
Huang, 2021). Appendix B also contains analogous results 
for the regret matching+ (Tammelin, 2014; Tammelin et al., 
2015) modifcation of regret matching. 

5.3. Memory Probabilities 

Just as we use the reach probability function to capture the 
frequency that a mixed strategy plays to reach a particular 
history, we defne a memory probability function, wφ, to 
capture the frequency that the deviation player, playing be-
havioral deviation φ, reaches information set I with memory 
state g given mixed recommendations, πi. It is the prod-
uct of the probabilities that πi plays each action in g, i.e., 
wφ(I, ∅; πi) = 1, wφ(I

0, ga; πi) = wφ(I, g; πi)πi(a | I), 
and wφ(I

0, g∗; πi) = wφ(I, g; πi), for all I 0 � I . Under 
pure recommendations, the memory probability function 
expresses realizability. We overload 

Gi(I, φ) = {g ∈ Gi | ∃si ∈ Si, wφ(I, g; si) = 1} 

as the set of memory states that φ can realize in I . 

5.4. EFR 

We defne the immediate regret of behavioral deviation 
φ at information set I and memory state g as the imme-
diate counterfactual regret for not applying action trans-
formation φI,g weighted by the probability of g, i.e., 
wφ(I, g; πi)ρ

CF(φI,g; π), where we generalize counterfac-I 
tual regret to action transformations as ρI 

CF(φI,g ; π) = 

5While we only present the bound for the rectifed linear unit 
(ReLU) link function, · + : x 7→ max{0, x}, the arguments in-
volved in proving Corollary 1 apply to any link function; only the 
fnal bound would change. 

Ea∼φI,g (πi (I))[ρI 
CF(a; π)]. By treating t 7→ wφ(I, g; πi

t) for 
each memory state g in I as a time selection function, we 
reduce the problem of minimizing immediate regret to time 
selection regret minimization. 

EFR is given a set of behavioral deviations, Φ ⊆ ΦIN , and Ii 

gathers all transformations at information set I across realiz-
able memory states into ΦI = {φI,g }φ∈Φ, g∈Gi(I,φ). Each 
action transformation, φI ∈ ΦI is associated with the set of 
time selection functions 

WI 
Φ(φI ) = {t 7→ wφ0 (I, g; πi

t)}φ0∈Φ, g∈Gi(I,φ0), φ0 =φII,g 

derived from memory probabilities. EFR then chooses its 
immediate strategy at I according to a time selection regret 
minimizer. Applying the same procedure at each informa-
tion set, EFR minimizes immediate regret at all information 
sets and memory states simultaneously. 

Hindsight rationality requires us to relate immediate regret 
to full regret. The full regret of behavioral deviation φ at 
information set I and memory state g, ρI,g(φ; π), is the 
expected value achieved by φ(πi) from I and g minus that 
of πi, weighted by the probability of g. The full regret at 
the start of the game on any given round is then exactly the 
total performance difference between φ and the learner. The 
full regret decomposes across successive information sets 
and memory states, i.e., 

X 
ρI,g (φ; π) = ρI (φ�I,vg) + ρI0,gb(φ; π),| {z } | {z }

a 0∈A(I),Immediate regret. Full regret at successor. 
I0∈Ii (I,a

0), 
b∈{∗}∪A(I) 

where φ�I,vg is the behavioral deviation that deploys φ at 
all Ī  � I and ḡ v g but the identity transformation oth-
erwise. Therefore, minimizing immediate regret at every 
information set and memory state also minimizes full re-
gret at every information set and memory state, including 
those at the start of the game. Finally, this implies that min-
imizing immediate regret with respect to any given set of 
behavioral deviations Φ ⊆ ΦIN ensures hindsight rationality Ii 

with respect to Φ. EFR’s regret is bounded according to the 
following theorem: 

Theorem 1. Instantiate EFR for player i with exact regret 
matching and a set of behavioral deviations Φ ⊆ ΦI 

IN 
i 
. Let 

the maximum number of information sets along the same line 
of play where non-identity internal transformations are al-
lowed before a non-identity transformation within any single 
deviation be nIN. Let D = maxI∈Ii ,φI ∈ΦI |W Φ(φI )|ω(ΦI ).I 
Then, EFR’s cumulative regret after T rounds with respect √ 
to Φ is upper bounded by 2nIN +1U |Ii| DT . 

See Appendix C for technical details. 
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Algorithm 1 EFR update for player i with exact regret 
matching. 

1: Input: Strategy profle, πt ∈ Π, t ≥ 1, and 
behavioral deviations, Φ ⊆ ΦI 

IN 
i 
. 

2: initialize table ρ1:0(·) = 0.·,· 
3: # Update cumulative immediate regrets: 
4: for I ∈ Ii, φI ∈ ΦI , w ∈ W Φ(φI ) doI 

ρ1:t (φI ) ← ρ1:t−1 tρCF 5: (φI ) + w (φI ; πt)I,w I,w I 
6: end for 
7: # Construct πt+1 with regret matching: i 
8: for I ∈ Ii from the start of the game to the end do 
9: for φI ∈ ΦI do 

# πt+110: need only be defned at Ī  � I .i �P �+t+1 t+1 ρ1:t11: y ← (φI )φI w∈W Φ (φI ) w I,w 

12: end for 
I P 

t+1 ← t+113: z yφI ∈ΦI φI 

14: if zt+1 > 0 then 
πt+115: (I) ← a fxed point of linear operator i P

1 t+1Lt : Δ|A(I)| 3 σ 7→ zt+1 y φI (σ)φI 
φI ∈ΦI 

16: else 
[πt+1 117: i (a | I) ← A(I) ]a∈A(I) # Arbitrary. 

18: end if 
19: end for 
output πt+1 

i 

5.5. Discussion 

The variable D in the EFR regret bound depends on the 
given behavioral deviations and is essentially the maximum 
number of realizable memory states times the number of 
action transformations across information sets. See Table 
C.2 in Appendix C for the D value for each deviation type. 

Algorithm 1 provides an implementation of EFR with ex-
act regret matching. Notice that as a matter of practical 
implementation, EFR only requires ΦI and W Φ for all in-I 
formation sets I ∈ Ii, which are often easier to specify 
than Φ. Table C.2 in Appendix C shows the ΦI and W Φ 

I 
parameters corresponding to each deviation type, as well as 
the D and nIN values that determine each EFR instance’s re-
gret bound. Thanks to this feature, EFR always operates on 
representative deviations from Φ that are additionally aug-
mented with re-correlation. This both potentially improves 
EFR’s performance and ensures that learning is effcient 
even for some exponentially large deviation sets, like the 
external, blind causal, and informed causal deviations. 

For example, it is equivalent to instantiate EFR with the 
blind causal deviations or the BPS deviations. Likewise for 
the informed causal deviations and the CSPS deviations, 
where EFR reduces to a variation of ICFR (Celli et al., 
2020). To be precise, ICFR is pure EFR (analogous to 
pure CFR) instantiated with the CSPS deviations except 

that the external and internal action transformation learners 
at separate memory states within an information set are 
sampled and updated independently in ICFR. EFR therefore 
improves on this algorithm (beyond its generality) because 
EFR’s action transformation learners share all experience, 
potentially leading to faster learning, and EFR enjoys a 
deterministic fnite time regret bound. 

Crucially, EFR’s generality does not come at a compu-
tational cost. EFR reduces to the CFR algorithms previ-
ously described to handle counterfactual and action devia-
tions (Zinkevich et al., 2007; Morrill et al., 2021). Further-
more, EFR inherits CFR’s fexibility as it can be used with 
Monte Carlo sampling (Lanctot et al., 2009; Burch et al., 
2012; Gibson et al., 2012; Johanson et al., 2012), function 
approximation (Waugh et al., 2015; Morrill, 2016; D’Orazio 
et al., 2020; Brown et al., 2019; Steinberger et al., 2020; 
D’Orazio, 2020), variance reduction (Schmid et al., 2019; 
Davis et al., 2020), and predictions (Rakhlin & Sridharan, 
2013; Farina et al., 2019; D’Orazio & Huang, 2021; Farina 
et al., 2020b). 

6. Experiments 
Our theoretical results show that EFR variants utilizing more 
powerful deviation types are pushed to accumulate higher 
payoffs during learning in worst-case environments. Do 
these deviation types make a practical difference outside of 
the worst case? 

We investigate the performance of EFR with different devi-
ation types in nine benchmark game instances from Open-
Spiel (Lanctot et al., 2019). We evaluate each EFR variant 
by the expected payoffs accumulated over the course of 
playing each game in each seat over 1000 rounds under 
two different regimes for selecting the other players. In the 
“fxed regime”, other players play their parts of the fxed 
sequence of strategy profles generated with self-play before 
the start of the experiment using one of the EFR variants 
under evaluation. In the “simultaneous regime”, the other 
players are EFR instances themselves. In games with more 
than two players, all other players share the same EFR vari-
ant and we only record the score for the solo EFR instance. 
The fxed regime provides a test of how well each EFR vari-
ant adapts when the other players are gradually changing 
in an oblivious way where comparison is simple, while the 
simultaneous regime is a possibly more realistic test of dy-
namic adaptation where it is more diffcult to draw defnitive 
conclusions about relative effectiveness. 

Since we evaluate expected payoff, use expected EFR up-
dates, and use exact regret matching, all results are deter-
ministic and hyperparameter-free. To compute the regret 
matching fxed point when internal transformations are used, 
we solve a linear system with the Jacobi singular value al-
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Table 2. The payoff of each EFR instance averaged across both 
1000 rounds and each instance pairing (eight pairs in total) in 
two-player and three-player goofspiel (measured in win frequency 
between zero and one), and Sheriff (measured in points between 
−6 and +6). The top group of algorithms use weak deviation types 
(ACTIN → informed action deviations, CF → blind counterfactual, 
and CFIN → informed counterfactual) and the middle group use 
partial sequence deviation types. The BHV instance uses the full 
set of behavioral deviations. 

g2, 5, ↑ 

fxed 
g3, 4, ↑ Sheriff 

simultaneous 
†g2, 5, ↑ g3, 4, ↑ Sheriff 

ACTIN 

CF 
CFIN 

0.51 
0.56 
0.57 

0.48 
0.51 
0.51 

0.28 
0.48 
0.60 

0.45 
0.50 
0.50 

0.86 
0.88 
0.92 

0.00 
0.34 
0.37 

BPS 
CF 
CSPS 
TIPS 

0.58 
0.58 
0.59 
0.60 

0.51 
0.52 
0.52 
0.53 

0.58 
0.70 
0.61 
0.82 

0.50 
0.51 
0.51 
0.51 

0.85 
0.84 
0.91 
0.87 

0.34 
0.37 
0.37 
0.38 

BHV 0.63 0.53 0.91 0.51 0.92 0.38 
† In three-player goofspiel, players who tend to play the same 

actions perform worse. Since the game is symmetric across 
player seats, two players who use the same (deterministic) al-
gorithm will always employ the same strategies and often play 
the same actions, giving the third player a substantial advan-
tage. The win percentage for all variants in the simultaneous 
regime tends to be high because we only record the score for 
each variant when they are instantiated in a single seat. The 
relative comparison is still informative. 

gorithm implemented by the jacobiSvd method from 
the Eigen C++ library (Guennebaud et al., 2010). Experi-
mental data and code for generating both the data and fnal 
results are available on GitHub.6 Experiments took roughly 
20 hours to complete on a 2.10GHz Intel® Xeon® CPU 
E5-2683 v4 processor with 10 GB of RAM. 

Appendix E hosts the full set of results but a representative 
summary from two variants of imperfect information goof-
spiel (Ross, 1971; Lanctot, 2013) (a two-player and a three-
player version denoted as g2, 5, ↑ and g3, 4, ↑, respectively, 
both zero-sum) and Sheriff (two-player, non-zero-sum) is 
presented in Table 2. See Appendix E.1 for descriptions of 
all games. 

Stronger deviations consistently lead to better performance 
in both the fxed and the simultaneous regime. The behav-
ioral deviations (BHV) and the informed action deviations 
(ACTIN) often lead to the best and worst performance, re-
spectively, and this is true of each scenario in Table 2. In 
many cases however, TIPS or CSPS yield similar perfor-
mance to BHV. A notable outlier from the scenarios in 
Table 2 is three-player goofspiel with a descending point 
deck. Here, blind counterfactual (CF) and BPS deviations 

6https://github.com/dmorrill10/hr_edl_ 
experiments 

lead to better performance in the frst few rounds before all 
variants quickly converge to play that achieves essentially 
the same payoff (see Figures E.1-E.4 in Appendix E). 

7. Conclusions 
We introduced EFR, an algorithm that is hindsight rational 
for any given set of behavioral deviations. While the full 
set of behavioral deviations leads to generally intractable 
computational requirements, we identifed four partial se-
quence deviation types that are both tractable and powerful 
in games with moderate lengths. 

An important tradeoff within EFR is that using stronger 
deviation types generally leads to slower strategy updates, 
demonstrated by Figures E.5-E.6 in Appendix E where learn-
ing curves are plotted according to runtime. Often in a tour-
nament setting, the number of rounds and computational 
budget may be fxed so that running faster cannot lead to 
more reward for the learner, but there may be reward to gain 
by running faster in other scenarios. Quantifying the poten-
tial beneft of using a stronger deviation type in particular 
games could aid in navigating this tradeoff. 

Alternatively, perhaps the learner can navigate this trade-
off on their own. Algorithms like the fxed-share fore-
caster (Herbster & Warmuth, 1998) or context tree weight-
ing (Willems et al., 1993) effciently minimize regret across 
large structured sets of experts, effectively avoiding a sim-
ilar tradeoff. This approach could also address a second 
tradeoff, which is that stronger deviation types lead to EFR 
regret bounds with larger constant factors even if the best 
deviation is part of a “simpler” class, e.g., the regret bound 
that TIPS EFR has with respect to counterfactual deviations 
is larger than that of CFR even though a TIPS EFR instance 
might often accumulate more reward in order to compete 
with the larger TIPS deviations. Perhaps an EFR variant 
can be designed that would compete with large sets of be-
havioral deviations, but its regret bound would scale with 
the “complexity” (in a sense that has yet to be rigorously 
defned) of the best deviation rather than the size of the 
whole deviation set. Ideally, its computational cost would 
be independent of the deviation set size or would at least 
scale with the complexity of the best deviation. 
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