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Abstract— To maintain strong reliability, memory manufac-
turers label server memories at much slower data rates than the
highest data rates at which they can still operate correctly for
most (e.g., 99.999%+ of) accesses; we refer to the gap between
these two data rates as memory frequency margin. While many
prior works have studied memory latency margins in a different
context of consumer memories, none has publicly studied memory
Jfrequency margin (either for consumer or server memories).

To close this knowledge gap in the public domain, we perform
the first public study to characterize frequency margins in
commodity server memory modules. Through our large-scale
study, we find that under standard voltage and cooling, they can
operate 27% faster, on average, without error(s) for 99.999 %+
of accesses even at high temperatures.

The current practice of conservatively operating server mem-
ory is far from ideal; it slows down 99.999%+ of accesses to
benefit the <0.001% of accesses that would be erroneous at a
faster data rate. An ideal system should only pay this reliability
tax for the <0.001% of accesses that actually need it.

Towards unleashing ideal performance, our second contri-
bution is performing the first exploration on exploiting server
memory frequency margin to maximize performance. We focus
on High-Performance Computing (HPC) systems, where per-
formance is paramount. We propose exploiting HPC systems’
abundant free memory in the common case to store copies
of every data block and operate the copies unreliably fast
to speedup common-case accesses; we use the safely-operated
original blocks for recovery when the unsafely-operated copies
become corrupted. We refer to our idea as Heterogeneously-
accessed Dual Module Redundancy (Hetero-DMR).

Hetero-DMR improves node-level performance by 18%, on
average across two CPU memory hierarchies and six HPC bench-
mark suites, while weighted by different frequency margins and
different levels of memory utilization. We also use a real system to
emulate the speedup of Hetero-DMR over a conventional system;
it closely matches simulation. Our system-wide simulations show
applying Hetero-DMR to an HPC system provides 1.4x average
speedup on job turnaround time. To facilitate adoption, Hetero-
DMR also rigorously preserves system reliability and works for
commodity DIMMs and CPU-memory interfaces.

Index Terms—Memory Frequency Margin, Memory System,
Fault Tolerance, Reliability, Availability, HPC

I. INTRODUCTION

To maintain strong reliability, memory manufacturers label
server memories at much slower data rates than the highest
data rates at which they can still correctly operate for most
(e.g., 99.999%+) accesses; we refer to the gap between these
two data rates as memory frequency margin.
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Currently, no prior work in the public domain has char-
acterized memory frequency margin; in fact, in the context
of server systems, no prior work in the public domain has
characterized memory margins of any kind (e.g., frequency
margin or latency margin). Although many prior works [47],
[50], [60], [62], [65] have studied memory margins, they only
studied latency and voltage margins in the context of consumer
systems (e.g., mobile systems and desktop systems).

In this paper, we perform the first public study to charac-
terize frequency margin for server memory modules and close
this knowledge gap in the public domain. The scale of our
study is larger than any single prior work on characterizing
memory latency margins for memories of consumer systems;
in terms of the total number of chips studied, our study covers
more than all such prior works combined. Our study shows
that under standard voltage and cooling, commodity server
memory modules can operate 27% faster, on average, without
error(s) for 99.999%+ of accesses even at high temperatures.

The current server system design of conservatively operating
memory is too wasteful; it slows down 99.999%+ of accesses
to benefit the <0.001% of accesses that would be erroneous
at a faster data rate. An ideal system should only pay this
reliability tax for the <0.001% of accesses that need it.

Towards unleashing ideal performance, we also perform
the first exploration on exploiting server memory frequency
margin to improve server performance. We focus on HPC
systems, where performance is the most important metric;
HPC systems encompass traditional onsite supercomputers and
the rapidly growing HPC in Cloud [2], [8], [24].

Exploiting memory frequency margin in HPC systems is
challenging because doing so naively increases memory error
rate and reduces reliability, which is also important for HPC
systems [69], [74]. To facilitate adoption, an ideal solution
should rigorously maintain the same system reliability as
always abiding by specification.

We observe errors due to operating modules faster than
specification, by definition, do not occur in modules that
consistently abide by specification. As such, we propose
replicating every block to a second module and operating
the two modules heterogeneously: Operate ONLY the module
with copies unsafely fast and read it commonly to boost
performance for the 99.999%+ of reads; operate the module
with original blocks reliably ALWAYS according to speci-
fication and read it uncommonly to correct errors for the
<0.001% of accesses. As such, our proposed design can
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Fig. 1: Fraction of jobs in which every node the job occupies
has <50% and <25% memory utilization (i.e., all included,
including OS file cache) throughout the job’s lifetime.

achieve similar performance as the ideal system; furthermore,
under our design, regardless of what imaginable error rate or
error pattern or specific error model may occur in the modules
holding copies due to operating them unsafely, the modules
holding original blocks are unaffected and thus can maintain
correctness. We refer to our proposal as Heterogeneously-
accessed Dual Module Redundancy (Hetero-DMR).

Naively replicating data can incur 100% memory capacity
overhead. Recent prior works - FMR [64] and CLR-DRAM
[63] - solve this problem by storing copies only in memory
that are currently not used by software; by dynamically
releasing memory when software needs more memory, these
prior works maintain the same software-usable memory ca-
pacity as conventional systems. We refer to these prior works
as Free-memory-aware architectures. Like prior works on
Free-memory-aware architectures, Hetero-DMR stores copies
only in free memory to maintain the same software-usable
capacity as without Hetero-DMR. Moreover, Hetero-DMR
reuses FMR’s broadcasting write design to eliminate write
bandwidth overhead for updating data copies. Unlike FMR
and CLR-DRAM, which exploit free memory to only improve
latency, Hetero-DMR improves both latency and frequency; as
such, Hetero-DMR must address the new memory reliability
challenge of how to safely exploit memory frequency margin.

Many studies [61], [64], [66], [77] find that active nodes
in HPC systems have abundant free memory. We analyze
3,000,000,000 memory measurements, spanning 7,000,000
machine-hours, recently released by Los Alamos National Lab
(LANL) [29] and reach similar conclusion (see Figure 1). Prior
study [64] contributes low memory utilization to HPC work-
load and runtime behaviors: First, because HPC workloads are
highly parallel, just one workload usually occupies all cores in
a node; this makes it difficult to collocate/consolidate multiple
workloads on each node to improve memory utilization. Sec-
ond, an HPC node’s data input usually comes from message
passing (MPI) [19] transactions, which cannot be cached in OS
file cache; this keeps memory used by OS file cache small.
Third, HPC workloads are typically compute-intensive rather
than storage-intensive; this further limits memory usage by OS
file cache. Fourth, HPC improves performance by dividing
large problems into smaller problems and distributing them
to many nodes to compute in parallel; this keeps per-node
memory utilization low even when the problem size is large.

While memory utilization for HPC in Cloud are not publicly
available, it is likely similar to onsite HPC due to similar
software and hardware. HPC in Cloud runs many of the same
workloads as onsite HPC [2], [11]. HPC nodes in Cloud have

similar memory-to-core ratio as onsite HPC; for example, HPC
nodes in Azure [25] and AWS [1] have the same or higher 4GB
per physical core ratio as those in Figure 1.

We make the following contributions in this paper:

o We perform the first study to characterize frequency
margins for server memory modules in the public domain.

o We are first to explore how to rigorously maintain system
reliability when operating memory faster than spec.

o Our simulations show applying Hetero-DMR to a Com-
mercial Baseline and FMR improves node-level perfor-
mance by 18% and 15%, respectively, without degrading
average system-level energy efficiency.

o System-wide simulations show Hetero-DMR provides
1.4x average speedup on job turnaround time over a
conventional HPC system.

« We also emulate Hetero-DMR on a real system and find
closely matching performance benefit as our simulations.

II. REAL-SYSTEM CHARACTERIZATIONS

In this paper, we perform the first public study to char-
acterize frequency margin of server memory modules. While
many prior works [47], [50], [60], [62], [65] study memory
latency and voltage margins, none study frequency margin.
While consumer computing enthusiasts talk about overclock-
ing memory on forums and blogs, they usually report on one or
two personal desktop modules. Unlike these user reports, our
study quantifies memory frequency margins for a broad range
of server DIMMs. Table I shows the scale of our study relative
to prior works that characterize other aspects of DRAM.

Manufacturers often “design significant margin into their
products” to maintain strong reliability [22]. For those unfa-
miliar with design margins, a general example is that roads are
designed to be much wider than cars that drive on it. A closer
example is CPU margins; CPU has significant margins to
protect against different (e.g., voltage, temperature, manufac-
turing, process, etc.) variations to maintain correct operations
under worst-case conditions [55]. Memory manufactures also
stress test memories to reject ‘weak’ parts without sufficient
margins (e.g., voltage, temperature margins [18]) to increase
the likelihood that their products are reliable in the field.

Specifically, memory manufacturers design significant fre-
quency margins into their products to protect against non-
deterministic frequency variations in the field, such as clock
jitters [5], [15], [68]. For example, JEDEC DDRS5 stan-
dard [15] stipulates that DRAM “must pass” stress tests
with 10~? bit error rate; these stress tests are specified with
artificially-created, aggressive clock jitters and transmission

DRAM type # of modules | # of chips | Margin Studied
This Paper DDR4 RDIMM 119 3006 frequency
Prior Work [60] | DDR3 SO-DIMM 96 768 latency
Prior Work [56] | DDR3 SO-DIMM 32 416 latency
Prior Work [47] | DDR3 SO-DIMM 30 240 latency
Prior Work [65] LPDDR4 N/A 368 latency
Prior Work [62] | DDR3 SO-DIMM 34 248 latency
Prior Work [50] DDR3 UDIMM 8 64 voltage

TABLE I: Scale of our study compared to prior works.
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Fig. 2: Memory frequency margins across 119 server modules of brands A, B, C, and D.

noises (e.g., crosstalk). Because memories are designed ac-
cording to stress tests, they end up with a memory frequency
margin that may be opportunistically exploited in the field,
where the stress test conditions occur much less frequently.

A. Characterizing Memory Frequency Margin

We use an Intel Xeon W-3175X CPU [13] on a GIGABYTE
C621 AORUS Xtreme motherboard [7] to measure frequency
margins of RDIMMs. To characterize a given module, we
install just that module by itself on our test machine. We
determine a module’s frequency margin by measuring the
highest data rate at which the module can still correctly carry
out 99.999%+ of accesses. Due to BIOS limitation, we use
the step size of 200MT/s to scale memory data rate.

All experiments comply with the DDR4 standard voltage
of 1.2V as high voltages can damage hardware. All experi-
ments use standard DDR4 server modules without any cooling
support (e.g., heat sink). While increasing data rate could
theoretically damage memory due to increasing temperature,
we do not expect this to be a problem for memory for two
reasons: First, memories are designed to operate up to 95°C
[14], [15]. Second, memory chips consume little power (e.g.,
0.3W/chip at full utilization [21], [23]), unlike CPUs, which
consume much higher power (e.g., 255W for Intel Xeon W-
3175X [13]); in our test machine, on-DIMM sensors report
<1°C average temperature difference between operating at
specified data rate and at maximum bootable data rate after
stress testing until temperature stabilizes.

We conduct our experiments in an ambient temperature of
23 °C. When operating at manufacturer specification, the on-
DIMM temperature sensors report 43 °C, on average, if the
system is idle and read 53 °C, on average, under memory stress
test [31]. To put these temperatures in perspective, we analyzed
three million on-DIMM temperature sensor measurements
[16] taken from Trinitite system at LANL. The minimum is
16 °C, which suggests the ambient temperature is 16 °C. The
43°C idle and 53 °C active DIMM temperatures in our test
machine are higher than 99% and 99.85%, respectively, of all
temperature measurements from Trinitite. The cooler DIMM
temperatures in Trinitite are likely due to better cooling [75].

Figures 2a and 2b summarize our frequency margin mea-
surements across 119 server modules. Below, we analyze the
impact of brand, DIMM organization, chip density, manufac-
turing date, and system configuration on frequency margin.

Impact of Brand. We find that modules manufactured by
the largest memory brands have higher frequency margins.
The 119 memory modules in our study are manufactured by
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Fig. 3: Impact of memory module factors. The numbers within
the parentheses indicate the number of modules.

four companies: Brands A to C are three major memory chip
manufacturers; Brand D is a much smaller memory company
that manufactures only modules but not chips. Figure 3a shows
the average frequency margin and 99% Confidence Interval
(CI); we use the normal distribution to calculate CI similar to
a prior work [60]. The average frequency margin across the
three largest brands is 770MT/s (i.e., 27% when normalized
to each module’s manufacturer specified data rate); it is 2.6x
higher than the 213MT/s average frequency margin of modules
of brand D. However, among brands A to C, their average
frequency margins are similar to each other. Because brands
A to C are mainstream server memory brands commonly used
in HPC systems, we will focus on brands A to C in the rest
of this paper and ignore brand D.

Impact of # Chips/Rank. We find that modules with fewer
chips per rank have consistently high frequency margins. A
rank is a group of memory chips that operate in lockstep
synchronously. Figure 3b shows the average frequency mar-
gins and standard deviations (STDev) of modules with 18
chips/rank and modules with 9 chips/rank. Modules with 9
chips/rank have a much lower variation on frequency margins
with an STDev of 124MT/s; the minimum frequency margin
is 600MT/s. The STDev of modules with 18 chips/rank is 2.1x
in comparison. We hypothesize that modules with 9 chips/rank
have consistently high frequency margin with lower variation
because, intuitively, synchronizing fewer chips is easier than
more chips when operating at high frequency.

Impact of Manufacturer-specified Data Rate. A module’s
manufacturer-specified data rate seems to impact its frequency
margin. 2400MT/s modules have 967MT/s average margin;
3200MT/s modules have 679MT/s average margin in compar-
ison. But we are not confident about this conclusion; evidences
suggest system-level factors external to the memory modules
may be capping memory data rate to 4000MT/s, which in turn
limits the maximum observable memory frequency margin of
the 3200MT/s modules to 4000-3200=800MT/s. The initial
evidence that caught our attention is that while most (i.e.,
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Data Rate | tRCD tRP tRAS | tREFI

Manufacturer-specified Setting 3200MT/s | 13.75ns | 13.75ns | 32.5ns | 7.8us
Setting to Exploit Latency Margin 3200MT/s 11.5ns 11ns 29.5ns 15us
Setting to Exploit Frequency Margin | 4000MT/s | 13.75ns | 13.75ns | 32.5ns | 7.8us
Setting to Exploit Freq+Lat Margins | 4000MT/s 11.5ns 11ns 29.5ns 15us

(c) Impact of chip density. (d) Impact of manufacturing date.

Fig. 4: Impact of other memory module factors. The numbers
within the parentheses indicate the number of modules.

36 out of 44) of the 3200MT/s modules with 9 chips per
rank can operate at 4000MT/s, not one of them operate faster
than 4000MT/s in our test machine. To investigate whether our
test system may have a system-level memory data rate cap of
4000MT/s, we conduct more experiments to check whether
data rate can go beyond 4000MT/s by increasing memory
voltage from the standard 1.2V to 1.35V. We again find that
no 3200MT/s module that can already operate at 4000MT/s at
1.2V manifest higher data rate at 1.35V; in comparison, out
of the 27 3200MT/s modules that cannot operate at 4000MT/s
at 1.2V, 22 of them can operate at higher frequency at 1.35V.

A possible limiting factor external to memory may be our
CPU. While the 3200MT/s memory modules are top of the
line, our test CPU is not; it is advertised to run memory at
2666MT/s. As such, the CPU may easily handle 2400MT/s
plus 2400MT/s modules’ margin, but may have some difficulty
handling 3200MT/s plus 3200MT/s modules’ full margin
(which may be much higher than the observed 679MT/s).
We use this CPU because it is the only unlocked server CPU
currently on the market to the best of our knowledge.

Impact of Other Memory Module Factors. We find that
aging has little impact on frequency margin; Figure 4a shows
the characterization of brand new modules compared to mod-
ules extracted from a three-years-old in-production cluster and
refurbished modules. We also find that other memory module
factors, including number of ranks/module, chip density, and
manufacturing date have little impact on frequency margin as
shown in Figure 4b, 4c, and 4d.

Impact of Different CPUs. We find that different CPUs
of the same model have little impact on memory frequency
margin. We measure frequency margins for all modules using
a second CPU of the same model as the CPU used to generate
Figure 2. The memory frequency margins of all modules
remained the same under the second CPU.

Impact of Exploiting Memory Latency Margin. We ex-
plore the impact of exploiting latency margin on exploiting fre-
quency margin. We explore the margins of four most important
latency parameters: tRCD, tRP, tRAS, and tREFI. Determining
the ideal latency margin combination for one module requires
(# param.xpermutations of param.x# tests per param.)
tests; for 119 modules, four parameters, and multiple (e.g.,
five) tests per parameter , this translates to (1194 %4l%5) =
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TABLE II: Memory setting for exploiting memory margins.

Memory Hierarchyl
4.5MB / core
8 cores
1 channel, 2modules/channel,
2ranks/module

Memory Hierarchy2
2.375MB / core
16 cores
4 channels, 2modules/channel,
2ranks/module

L2$+L3$ per core
Cores
Memory Channels

TABLE III: Real System Configurations.

52320 tests, which is intractable. As such, we test just one
permutation - < tRC'D,tRP,tRAS,tREFI > - and use the
latency margin combination measured for the previous module
as the starting point to measure that of the next module. The
end result is the conservative latency margin combination that
works for all 119 modules; it is < 16%, 16%, 9%, 92% >. We
then measure the frequency margins for every module when
operating under this conservative latency margin combination;
we find that every module has the same frequency margin as
when operating under the manufacturer specified latency.

B. Characterizing Performance Loss due to Current Practice
of Conservatively Operating Memory

Intuitively, the current practice of slowing down ALL ac-
cesses just for the <0.001% of accesses that need to loses out
on substantial performance. To quantify this loss, we use our
test machine to measure the four memory settings listed in
Table II. All experiments use state-of-the-art DDR4 RDIMMs
with a labelled data rate of 3200MT/s - the maximum rate
under DDR4 JEDEC [14]. Our experiments use modules
with 9 chips/rank, instead of 18 chips/rank, because they
better resemble upcoming DDRS server modules; DDRS5 only
supports up to 10 chips/rank [39]. Lastly, our experiments use
modules with 800MT/s memory frequency margin, which is
the most common frequency margin among the 119 modules
(see Figure 2). We cherry-pick modules that correctly run the
benchmarks while exploiting these memory margins; Hetero-
DMR eliminates the need for cherry-picking.

We evaluate two memory hierarchies (see Table III); we use
Intel Cache Allocation Technology [12] to enforce the cache-
to-core ratios in Table III. We disable Hyper-Threading. We
evaluate six HPC benchmark suites — Linpack [17], HPCG
[53], Graph500 [9], CORAL2 [6], LULESH [57], and NASA
Parallel Benchmarks (NPB) [41]. We evaluate all benchmarks
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Fig. 5: Real-system speedup due to exploiting memory mar-
gins. Speedup = execution time under manufacturer specifica-
tion / execution time when operating faster than specification.
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tests for C22-C27) that had zero errors are not plotted in the figure. Modules A3, A40, ASS, B12, B19, C3, C6, C10, and C12
do not have some error rate numbers in the high ambient temperature due to failing to boot. We did not test modules A8-A31

in the thermal chamber because they were borrowed from an in-

under all suites, except for CORAL2, where we evaluate
four benchmarks. We note our single-node experiment may
under-represent communication time. To address this, we run
all benchmarks under MPI, instead of OpenMP, to increase
communication. We also use benchmarks’ small standard input
sizes; it is well-known that communication time increases
relative to computation time as problem size decreases. Our
benchmarks spend 13% of core-hours on MPI communication
under Hierarchyl, on average. To put this in perspective, a
recent study [49] reports a 786K-core supercomputer [26]
spends 34% of its core-hours on MPI communication.

production cluster.

system discussed in Section II-A. Five of 103 modules show
reduced frequency margin. Figure 6 also shows each module’s
error rate when operating at its highest bootable data rate.
Error rate is 4X higher than in 23 °C ambient temperature.
To study the error rate due to simultaneously exploiting
both memory frequency and latency margins, we use the same
latency margin as in Section II-B when operating a module at
its highest bootable data rate and repeat the characterization, as
described above; figure 6 shows the error rate. At 45 °C, nine
of 103 modules show reduced frequency margin. Compared
to the error rate at 23 °C, the error rate at 45 °C is 2X higher.

Figure 5 shows the speedup from exploiting memory mar-
gins. Exploiting both memory frequency and latency margins
provides 1.19x speedup on average across six HPC benchmark
suites! and on average across both memory hierarchies. For
Linpack, the de facto standard benchmark for ranking HPC
systems world-wide, it provides 1.24x average speedup.

We also measure full-system-level memory error rate. We
populate all channels and all slots per channel in our test
machine with 3200MT/s dual-rank modules with 800MT/s
margin per module; we find that the memory system as a whole
has 800MT/s margin. We measure error rates for the Setting
to Exploit Freq+Lat Margins from Table II at both 23 °C and
45°C ambient temperatures. The memory system’s error rate
is roughly half the sum of all installed module’s error rates.
We theorize it is half because each module is accessed half as
frequently due to having two modules per channel when fully
populating our test machine’s memory system.

C. Characterizing Memory Error Rate

While memory manufacturers design margins into their
memory, they cannot guarantee reliability beyond their speci-
fications [22]. As such, exploiting frequency margin faces the
problem of higher error rate, similar to when driving cars over
road/lane margins faces the problem of higher crash rate.

To study a module’s error rate when exploiting its frequency
margin, we install just that module by itself and run a one-
hour memory reliability stress test [31]; all tests comply with
the DDR4 standard voltage of 1.2V. We record the Cor-
rected Errors (CEs) and Uncorrected Errors (UEs) encountered
during the stress test. By default, Linux crashes when user
programs encounter UEs; we configure Linux to not do so by
setting its tolerance level [34]. Figure 6 shows each module’s
error rate when exploiting its frequency margin in an ambient
temperature of 23 °C.

To characterize memory modules’ error rate due to oc-
casional unintended spikes in ambient temperature, we use
a thermal chamber [33] to emulate an ambient temperature
of 45°C, and repeat the characterization of all modules of
Brand A, B, C. We put the whole test machine in the thermal
chamber and heat it for at least 30 minutes. At 45°C, the
active DIMM temperature is 60 °C on average, which is higher
than 99.991% of all temperature measurements from the HPC

III. HETERO-DMR

While prior works [47], [60], [62], [65] have explored ex-
ploiting memory latency margin, none has explored exploiting
memory frequency margin to boost performance. Exploiting
only latency margin loses out on the many times higher benefit
from ALSO exploiting frequency margin (see Figure 5). These
prior works are also in the context of mobile and desktop
systems, where reliability is not as important as our context
of server systems; as such, their solutions need not and do not
rigorously maintain system-level reliability (see Section V).

While some prior works [50]-[52] explore memory fre-
quency scaling, they only reduce frequency to save energy,
instead of increasing frequency beyond manufacturer specifi-
cation to improve performance.

In this paper, we perform the FIRST exploration on exploit-
ing memory frequency margin. This is also the first work to
exploit memory margins of any kind in the context of servers,
where reliability should be preserved. When operating memory
outside of specification, many kinds of errors could happen
(e.g., full block errors due to IO errors or losing all blocks due
to misinterpreting a command as a DRAM reset command).

l«“Average across six HPC benchmark suites” means weighing every suite
equally in the average. This definition is used throughout the paper.
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Goal: Our goal is to enhance server memory systems
to transparently operate faster than memory manufacturer
specification while rigorously maintaining the same level of
reliability as a system that always abides by specification. This
means being able to protect against any imaginable error rate,
pattern, or error model that may arise from operating memory
beyond its specification. No prior work claims or achieves this
goal; Section V discusses prior works in more detail.

The reason for this goal is to facilitate adoption. System de-
signers and decision-makers often hesitate to adopt techniques
without knowing the reliability risks [45]. If our solution
cannot rigorously protect against all imaginable errors that
may arise from operating memory out-of-spec, its reliability
impact has to be empirically quantified prior to adoption; doing
so for large-scale systems with 1000s of nodes (e.g., in an HPC
system) is costly and difficult. Also, to facilitate adoption, we
target commodity memory modules and interfaces.

Overview: We observe errors due to operating modules
faster than specification, by definition, do not occur in modules
that consistently abide by specification. As such, we propose
opportunistically replicating every block to a second module
when it is free (i.e., not being used by any software) and
operate the two modules heterogeneously: Operate ONLY the
Free Module unsafely fast and use the copies it stores to satisfy
99.999%+ of all cache misses at improved bandwidth and
latency; operate the module holding original blocks reliably
ALWAYS according to specification and use it to correct
errors for the <0.001% of accesses. Due to the heterogeneous
operations, regardless of what imaginable error rate or error
pattern or specific error model may occur in the copies in
the unsafely fast Free Module, the original blocks remain
intact to maintain correctness. We refer to our proposal as
Heterogeneously-accessed Dual Module Redundancy (Hetero-
DMR). Figure 7 graphically illustrates Hetero-DMR.

The rest of this section is organized as follows. Section III-A
describes how to operate the original blocks and their copies
heterogeneously. Sections III-B and III-C describe how to
detect and correct errors. Section III-D describes how to
handle variability in memory frequency margin. Section III-E
provides implementation details. Section III-F discusses gen-
erality and impact on aging.

A. Challenge 1: How to Efficiently Keep Original Blocks Safe
While Operating Copies Unsafely Fast?

One solution is to store the original blocks and their
copies in different channels and heterogeneously operate the
channels; operate channels containing copies faster than spec
and operate channels containing original blocks consistently
according to spec. This naive solution operates only half of
the channels faster than spec, which halves the performance
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benefit compared to an ideal design that operates all channels
faster than spec. For each writeback from LLC, this solution
also must write to two channels to update the original block
and its copy; this incurs 100% write bandwidth overhead.

Hetero-DMR stores a copy in the same channel as its
original block; the copy and its original block are in different
modules in the same channel. Under this design, all channels
store some copies and, therefore, all have the opportunity to
operate faster than spec. This design can also eliminate all
write bandwidth overhead to update copies by enabling a
single memory bus transaction to update both an original and
its copy; this is because CPU connects to all ranks in a channel
via the bus interconnection topology, which is well-known to
support broadcasting of identical command and data values to
multiple components on the bus in a single bus transaction (for
more details, see paragraphs 4-6 of Section 4.3 in FMR [64]).
The only restriction is that the original block and its copy
must reside in the same location across different ranks in a
channel because a broadcasted write command can only send
the same address field to all ranks; as such, for an original
block at location i in a module, Hetero-DMR stores its copy
at location 7 in a Free Module in the same channel.

Sections III-A1 and III-A2 address the unique challenges of
how to efficiently keep the original blocks safe when storing
both originals and their copies in the same channel.

1) How To Keep Original Blocks Safe When a Channel is
in Write Mode: Today’s DRAM chips take a long time to
switch between read and write; this round-trip latency from
read to write and back takes ~20ns [20]. To mitigate the cor-
responding performance overhead, modern memory channels
minimize the round-trip latency per write by buffering many
writes (e.g., 128) and performing them together in a large
batch without reading in-between [46], [54]; we say a channel
is in write mode when it is performing a batch of writes.

When a channel is in write mode, Hetero-DMR safely
operates all modules in the channel (see Figure 8a) to safely
update the originally blocks (i.e., before entering write mode,
Hetero-DMR slows down the channel’s frequency and latency
to specification.). Figures 9 illustrate how Hetero-DMR scales
down frequency in a JEDEC-compliant manner; all together,
the steps take lus [20], which effectively increases the round-
trip latency from read to write and back by 100x compared to
that of today’s systems. As such, to maintain the same read-
write switching overhead as today’s systems, Hetero-DMR
must switch between reads and writes 100x less often, which
in turn requires Hetero-DMR to increase the write batch size
by 100x (e.g., 128*%100=12800 writes per batch). Hetero-DMR
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implements this large batch size by proactively cleaning some
dirty blocks from last-level cache (LLC) each time a channel
enters write mode (see Section III-E).

During write mode, Hetero-DMR also writes to the copies;
updating copies does not cause write bandwidth overhead (see
the second Paragraph of Section III-A).

Because Hetero-DMR safely operates all modules when
a channel is in write mode, there is no benefit for writes.
However, writes only account for a small fraction of memory
accesses (e.g., only 15%, see Figure 15); as such, Hetero-DMR
can still achieve similar performance as an ideal system.

2) How to Keep Original Blocks Safe When a Channel is
in Read Mode: After ending write mode, a channel switches
to read mode. At the beginning of read mode, Hetero-DMR
speeds up the channel’s frequency and latency beyond speci-
fication; Figure 10 shows how to scale up frequency.

When a channel operates a module faster than specification,
even reads from the module can corrupt the module’s content.
When reading, today’s DRAM chip first extracts the data
to a buffer (i.e., row buffer) via a destructive process [20]
that destroys the data in DRAM cells; restoring the data
after reading requires a proper sequence of commands from
CPU. Therefore, the data in DRAM can be corrupted by an
erroneously transmitted command sequence due to operating
DRAM at unsafely high frequency. As another example, prior
work [47] reports that exploiting activation latency (i.e., tRCD)
margin can corrupt the values in the accessed DRAM location
and exploiting precharge latency (i.e., tRP) margin can corrupt
an entire row in DRAM.

To keep the original blocks safe while a channel is in read
mode, Hetero-DMR only accesses the Free Modules to satisfy
LLC misses; it does not access the modules with original
blocks. One challenge is that modules containing the original
blocks must still be refreshed to retain their data; because the
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channel is operating unsafely fast, refresh commands can be
misinterpreted (e.g., to a reset command) and thus corrupt the
original blocks. Another challenge is that all modules in the
same channel share the same external clock signals; as such,
operating a channel’s Free Module(s) unsafely fast may seem
to require all modules to operate unsafely fast. To address both
challenges, Hetero-DMR puts the modules containing original
blocks in self-refresh mode during read mode; modules in
self-refresh mode refresh on their own without receiving any
refresh command from CPU. In self-refresh mode, DRAM
chips also ignore all external clock signals [20] and use their
internal clocks [20], which abide by specification. Figure 8b
shows read mode under Hetero-DMR.

The heterogeneous operations between read mode and write
mode is another reason we name our idea Hetero-DMR.

B. Challenge 2: How to Quickly and Reliably Detect Errors
in Copies Caused by Unsafely Fast Read Mode?

Using the original blocks for recovery when copies be-
come erroneous requires Hetero-DMR to first detect erroneous
copies. We note that current server memory modules contain
ECC chips dedicated to storing ECC bytes to enable CPU to
quickly detect errors on-the-fly with accessing memory [37],
[38]. As such, Hetero-DMR uses these existing module-level
ECC bytes to quickly detect errors while accessing copies.

Operating copies unsafely fast worsens memory errors; how
to reliably detect (i.e., maintain the same SDC - silent data
corruption - rate as a conventional system) the worse errors
under the existing physical form factors of server DIMMs and
CPU-memory interfaces is challenging. The naive approach
of adding more ECC bits to reliably detect the worse errors
requires adding more ECC chip(s) per module and ECC bits
per memory bus and thus violates memory standards.

To address this challenge, we observe CPUs currently
use the module-level ECC bits to both detect and correct
errors [37], [38]; intuitively, using the ECC budget just for
detection, instead of also correction, strengthens detection.
As such, instead of adding more ECC, Hetero-DMR reliably
detects errors in each copy by using all of each copy’s existing
ECC just for detection. ECC decoding typically involves two
steps - error detection, followed by correction if errors are
detected. When using ECC to only detect errors, Hetero-DMR
stops ECC decoding after detecting error(s); Hetero-DMR
skips the ECC correction step because ECC can miscorrect
in the presence of too many errors and cause SDC. Instead,
Hetero-DMR reads the original block to correct detected error
in a copy (see Section III-C). Note that this optimization
of stopping ECC decoding after detecting error(s) does not
modify memory modules as module-level ECC decode and
encode logic both reside in CPU [37], [38].

Hetero-DMR further enhances error detection by adopting
Bamboo-ECC [58], which uses all 64 data bytes in a memory
block to compute eight Reed-Solomon ECC bytes together.
Using all eight ECC bytes only for detection can detect all
errors affecting up to eight bytes, even if some or all errors
occur in the ECC bytes themselves. In addition to detecting



data errors, Hetero-DMR also detects all address bus errors
by using the address of a block and all data in the block to
compute the ECC for the block, similar to [72].

It is possible to cause more than eight bad bytes in an
accessed block when operating memory faster than specifi-
cation (e.g., due to command bus errors); we refer to an error
spanning more than eight bytes in a memory block as an 8B+
error. The eight ECC bytes in a copy cannot guarantee to detect
8B+ errors. However, the probability that eight Reed Solomon
ECC bytes fail to detect 8B+ errors is very small - only 2(5;%8);
for an error to go undetected, all 64 code bits recomputed
from the erroneous 64B of data read from memory must
coincidentally and exactly match the 64 code bits read from
memory. In other words, a system would encounter one SDC
after encountering 288 = 18446744073709600000 detected
8B+ errors. As such, we propose slowing down how quickly a
system detects 18446744073709600000 8B+ errors, and thus
encounter one SDC, by ceasing to exploit memory margins
after seeing a threshold number of 8B+ errors.

For each one hour epoch, Hetero-DMR counts how many
errors it has encountered during the epoch; if Hetero-DMR
counts more than the threshold number of errors, it slows
down memory to specification for the rest of that epoch.
At the beginning of the next epoch, Hetero-DMR replicates
every data block and operates memory faster than its spec-
ifications again. Hetero-DMR uses a per-hour threshold of
one billiloéiiléfe?fsolsx’?rgei%oe%ogn hours ~ 2100000 CITOI"S2 to limit
the meantime to SDC to one billion years assuming the unreal
worst case where every access incurs 8B+ error when oper-
ating faster than specification. In comparison, servers target a
meantime to SDC of 1000 years [44]; as such, the system-level
SDC overhead due to operating faster than specification under
Hetero-DMR translates to one over one million (i.e., 1000
years/1 billion years). For all practical purposes, a system-
level overhead of one over one million is no overhead.

C. Challenge 3: How to Correct Errors?

When detecting an error while accessing a copy, Hetero-
DMR slows down the memory channel (i.e., the channel’s
CK_c¢/CK_t clock bits) to manufacturer specification to
reliably read the copy’s original block and use the latter’s value
to overwrite and thus correct the corrupted copy in DRAM (see
Figure 8c). As such, Hetero-DMR only pays reliability tax for
the <0.001% of accesses that are erroneous, similar to the
ideal system (see Section I). Afterwards, Hetero-DMR speeds
up the memory channel safely fast again to boost performance.

To correct normal errors (i.e., errors not due to operating
faster than specification) in original blocks, Hetero-DMR uses
ECC just like conventional systems. Note that both an original
block and its copy can have the same ECC byte values
because the optimization for detecting errors in copies (see
Section III-B) only affects ECC decoding but not encoding;
this allows Hetero-DMR to preserve the ability to broadcast

2Under this threshold, Hetero-DMR can be active ~100% of the time when
considering the average error rate in an ambient temperature of 23 °C.
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writes to both the original block and its copy in one bus trans-
action to eliminate write bandwidth overhead (Section III-A).

D. Challenge 4: How to Mitigate Variability in Memory
Frequency Margins?

1) Variability in a Channel: Different modules can have
different margins (see Figure 2). Randomly choosing a module
in a channel to operate unsafely fast can result in choosing
the module with lowest frequency margin; this can limit
the channel’s maximum achievable frequency. To maximize
a channel’s achievable frequency, Hetero-DMR chooses the
module with highest frequency margin in the channel to
operate unsafely fast; we refer to the frequency margin of the
chosen module as channel-level frequency margin.

We use Monte Carlo simulations to estimate the distribution
of channel-level frequency margins under margin-aware selec-
tion; we also simulate a margin-unaware selection that chooses
the first module in each channel to operate unsafely fast. We
use the mean and standard deviation of the frequency margins
in Figure 2a to create a normal distribution, similar to the
prior work [71], which uses normal distribution when studying
latency margins; for the reason described in Section II-B,
the distribution only considers modules with 9 chips/rank.
We use this normal distribution to randomly assign frequency
margins to each module in the Monte Carlo simulations. Each
experiment models a channel with two modules.

Figure 11 shows the distribution of channel-level frequency
margins. 96% and 80% of channels have at least 0.8GT/s
frequency margin under margin-aware selection and under
margin-unaware selection, respectively.

2) Variability in a Node: Different channels in a node can
have different frequency margins. Today’s systems typically
interleave data across many channels to balance bandwidth
utilization; this can cause the slowest channel to become a
bandwidth bottleneck that determines overall performance.
For example, our Gem5 simulations show operating different
channels in a node at different frequencies provides similar
performance as operating all channels at the slowest channel’s
frequency. We refer to the lowest channel-level frequency
margin in a node as node-level memory frequency margin.

The margin-aware selection (see Section III-D1) for miti-
gating variability in channel-level memory frequency margin
also mitigates variability in node-level memory frequency
margin. We use similar simulations (see Section III-D1) to
estimate the distribution of node-level frequency margins; in
these new simulations, each experiment models a node with
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12 channels and two modules/channel. Figure 11 also shows
the distribution of node-level frequency margins. Under the
margin-aware selection, 62% and 98% of nodes have at least
0.8GT/s and 0.6GT/s frequency margins, respectively; they are
7% and 96% under the margin-unaware selection, respectively.

3) Variability in a HPC System: Different nodes in a HPC
system can have different memory margins. A challenge is
that HPC systems’ job schedulers are currently unaware of
different nodes’ memory margins. When an MPI job runs on
nodes with different memory margins, its total execution time
can be determined by the slowest node with the lowest memory
margin; as such, allocating both nodes with high frequency
margins and nodes with low frequency margins to the same
job essentially wastes the former’s higher margins.

One solution to this issue is to enhance the system-wide job
scheduler in HPC systems to group nodes with similar memory
margins and schedule a job on nodes of the same group; we
refer to it as margin-aware job scheduler. For example, the
margin-aware job scheduler will group nodes in Figure 11
into three groups: 0.8GT/s, 0.6GT/s and 0GT/s; they occupy
62%, 98% — 62% = 36% and 100% — 98% = 2% of total
nodes, respectively. To schedule a job that requests X nodes,
the margin-aware job scheduler first determines the fastest
group with at least X free nodes to fulfill the request; if every
group have less than X free nodes, schedule the job on the
fastest X free nodes among all groups. We implement the
margin-aware job scheduler in Slurm [30], which is a popular
HPC management software, by adding ~30 lines of code;
Section IV-C evaluate its the effectiveness.

E. Implementation Details

Activating and deactivating memory replication: Exist-
ing OS and hardware can work together to free up memory
components (e.g., some banks, ranks, and modules) when
memory utilization is low [27] to turn them off to save power.
When Hetero-DMR sees half of the modules in a channel are
free, it replicates every block in in-use modules to the free
modules within the channel and then operates the latter as un-
safely fast Free Modules to boost performance. When Hetero-
DMR sees that less than half of the modules in the channel
are free, it stops replication and operates all modules in the
channel by manufacturer specification. While opportunistic
memory replication can change the free modules’ values, it
does not require any new system-level handling to maintain
correctness compared to the existing practice of turning off
freed up modules, which also changes memory values.

Increasing Write Batch Size: Recall from Section III-Al,
Hetero-DMR increases write batch size by 100X by proac-
tively cleaning 12800 dirty blocks when a channel is in
write mode; cleaning a dirty block means writing its value
to memory and marking it as clean in LLC. One challenge is
that cleaning a dirty block can cause an extra write if the block
becomes dirty again after being cleaned; as such, Hetero-DMR
first cleans least-recently used blocks as they are unlikely to
be re-written prior to eviction.
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Another challenge is that today’s CPUs typically switch a
channel to write mode when its write buffer becomes nearly
full [48]; because it is small (e.g., 128 entries), a write buffer
can become full before LLC has accumulated 12800 dirty
blocks. To address this, we add a 128KB 64-way victim
writeback cache per channel between LLC and the channel’s
write buffer, similar to [64]. Hetero-DMR caches each evicted
dirty block in the writeback cache if the corresponding set
has space and in the write buffer otherwise; this prevents
the write buffer from quickly becoming full. While a channel
is in write mode, Hetero-DMR drains the writeback cache’s
content to DRAM (by passing them through the write buffer)
in addition to cleaning LLC. The writeback cache incurs small
area overhead; for example, its area is 0.18% normalized to the
total cache size (i.e., 68.25MB) of our test CPU. It also does
not affect the memory command scheduler, which completely
ignores the writeback cache; the scheduler only inspects the
write buffer, just like conventional systems.

Handling permanent hardware faults: When a memory
module develops a permanent yet ECC-correctable fault due
to natural wear (e.g., a permanent column fault [74]), using the
module to store copies can lead to costly repeated frequency
transition to correct errors under Hetero-DMR. This issue can
be addressed by dynamically remapping the copies to the good
modules in the channel and remapping the original copies to
the module with permanent fault.

Determining Margins: Hetero-DMR can borrow from
[65] to profile a node’s memory margins at boot time and
to periodically re-profile when the node is idle. While [65]
only talks about profiling tREFI, it can be extended to other
parameters (e.g., frequency, tRCD, etc.). While Hetero-DMR
requires profiling like [65], a primary difference is that [65]
relies on profiling for both performance (i.e., to find faster
parameters) and reliability, whereas Hetero-DMR relies on
profiling only for performance, but not for reliability. For
example, if errors become worse than profiled due to limited
profiling duration or temperature spiking beyond the profiled
temperature, Hetero-DMR can provide recovery by keeping
the original blocks intact as Hetero-DMR only operates them
according to manufacturer specification.

F. Discussion

Generality: Prior works [70], [76] report that the average
memory utilization in Cloud systems is between 50% and
60%; as such, Hetero-DMR can also be a useful option in
Cloud and data center, just like how CPU turbo-boost is useful
in Cloud [4]. Hetero-DMR safely increases memory frequency
when memory utilization is low, just like how CPU turbo-
boost safely increases CPU frequency when CPU utilization
(in terms of number of in-use cores) is low.

Our work only examines DDR4; DDRS [15] is not available
at the time of this writing. DDRS may have similar frequency
margins as DDR4. 3200MT/s DDRS5 DRAM may have similar
frequency margin as 3200MT/s DDR4 DRAM because the
former operates at the same frequency as the latter. DDRS
DRAMSs faster than 3200MT/s may have similar frequency



Cores 3.1GHz, 4-wide Oo00O, 2048 TLB entries, 224-entry ROB

L1$ Split Data-Inst, 64 kB, 8-way assoc, 3-cycle latency
L1$ Prefetchers Stride (degree 2), Next-line (with auto turn-off)
L2$ IMB per core, 16-way assoc, 12-cycle latency

L2$ Prefetchers Stride (degree 4), Next-line (with auto turn-off)
L3$ Size: Refer to Table III, 22ns latency

Memory Controller | DDR4, 4ranks/channel, 16-banks/rank,

FR-FCFS scheduling policy with bank fairness,

Hybrid page policy with 200 cycle timeout interval,
XOR-based mapping function similar to Intel Skylake [67],
Read queue: 256 entries/channel,

Write queue: 128 entries/channel

TABLE IV: Simulated CPU and memory parameters.

margins as 3200MT/s DDR5 DRAM because DDRS JEDEC
stipulates the same eye width for all DDR5 DRAMs, regard-
less of their data rate [15]; eye width is a measure of timing
margin, which is the dual of frequency margin.

Impact on Aging: We do not think Hetero-DMR accel-
erates aging: First, Hetero-DMR does not increase operating
voltage; increasing frequency without overvolting only causes
temporary timing violation errors. Second, for all practical
purposes, increasing frequency alone does not increase DIMM
temperature (see Section II-A). Third, DRAM cells have
practically infinite endurance [36].

IV. EVALUATION

We simulate a single-node system with Hetero-DMR (see
Section IV-A) and an HPC system with Hetero-DMR (see
Section IV-C) to demonstrate its performance benefit. We also
emulate Hetero-DMR on a real system to check our simulated
node-level performance benefit (see Section IV-B).

A. Single-node Simulation

We simulate a single-node system with Hetero-DMR in
Gem5’s [43] full system mode with Ramulator [59] as the
memory subsystem. We evaluate the same memory hierarchies
described in Section II-B. We simulate the CPU [13] in our test
machine used in Section II; Section IV-B cross-validates our
simulated performance against the real CPU’s performance.
Table IV summarizes the microarchitecture configurations. We
evaluate the same benchmarks in Figure 5. We first use the
KVM CPU in GemS5 to fast forward each benchmark to pass
over its initialization stage. Next, we warm up caches via 15ms
of atomic simulation and the branch predictors and prefetchers
via 2ms of cycle-accurate simulation. Lastly, we perform 20ms
of cycle-accurate simulation to evaluate performance.

We evaluate the following memory systems:

Commercial Baseline. This is a conventional memory sys-
tem that provides the same performance regardless of memory
usage. This system operates at manufacturer specification (see
Manufacturer-specified Setting in Table II). Since Hetero-
DMR has a 128KB writeback cache per channel (see Section
III-E), we also add a 128KB writeback cache per channel to
this baseline system for fair comparison; this improves the
average performance of the baseline by 1%.

Hetero-DMR. Its performance depends on the node-level
memory frequency margin. Hetero-DMR uses 0.8GT/s and
0.6GT/s node-level memory frequency margins (see in Sec-
tion III-D). Hetero-DMR uses the memory latency margin

BFMR 1 Hetero-DMR@0.6GT/s
D Hetero-DMR+FMR@0.6GT/s B Hetero-DMR+FMR@0.8GT/s

M Hetero-DMR@0.8GT/s

[0~25%) usage, [[25~50%) usage, Weight avg. |[0~25%) usage, |[25~50%) usage,| Weight avg.
79% of jobs 13% of jobs |across [0~100%]| 79% of jobs 13% of jobs |across [0¥100%]
Hierarchyl Hierarchy2

Fig. 12: Performance normalized to Commercial Baseline on
average across six HPC benchmark suites. Figure 16 shows
some per-benchmark normalized performance.

setting described in Table II “Setting to Exploit Freq+Lat
Margins”. We increase read-write turnaround latency to lus to
model the latency of scaling memory frequency. After draining
the writeback cache during write mode, Hetero-DMR notifies
LLC to clean 12800 dirty cachelines. When memory usage
is >50%, Hetero-DMR falls back to the same behavior and
performance as Commercial Baseline.

Free-memory-aware Baseline: FMR [64] stores each
block and its copy in two ranks and accesses the one that
is currently in the faster state (e.g., in row buffer) to reduce
latencys; it efficiently keeps the original block and its copy up-
to-date by broadcasting each write request to both. FMR uses
the same memory setting as Commercial Baseline.

Hetero-DMR+FMR We also apply Hetero-DMR to FMR
and call this Hetero-DMR+FMR. When memory utilization
is <25%, Hetero-DMR+FMR stores two copies for every
memory block, unlike Hetero-DMR alone, which stores only
one copy. Hetero-DMR+FMR stores both copies in a Free
Module and operates the Free Module at the same unsafely
fast setting as Hetero-DMR. Hetero-DMR+FMR uses FMR’s
algorithm to dynamically select which of the two copies to
read from to further reduce effective memory latency. When
memory utilization is > 25%, Hetero-DMR+FMR regresses
to the behavior and performance of Hetero-DMR alone.

Results: Figure 12 shows performance normalized to Com-
mercial Baseline under memory Hierarchyl and Hierarchy?2.
Under each memory hierarchy, we present three memory
usage scenarios (e.g., [0~25%)). Under each memory usage
scenario, each bar represents the normalized performance of
each memory design on average across six HPC benchmark
suites. The “[0~100%]” memory usage bucket refers to the
weighted average normalized performance across all memory
usage scenarios (i.e., [0~25%), [25~50%), and [50~100%]);
the weights are the fraction of jobs having the corresponding
memory usage (see Figure 1).

Across two memory frequency margins, Hetero-DMR pro-
vides 19% weighted average performance improvement over
Commercial Baseline under memory Hierarchyl; the weights
are 62% and 36% for 0.8GT/s and 0.6GT/s frequency margins
respectively (see Section III-D).

Hetero-DMR improves performance by 18% over Commer-
cial Baseline on average across two hierarchies; this average
simultaneously considers the weights of different memory
usage scenarios and different node-level memory frequency
margins. Compared to FMR, the corresponding performance
improvement of Hetero-DMR+FMR is 15%.
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Fig. 13: EPI normalized to Commercial Baseline.
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Figure 13 shows system-level (i.e., CPU+DRAM) Energy
Per Instruction (EPI) normalized to Commercial Baseline. Al-
though Hetero-DMR increase DRAM write power due to writ-
ing twice for each memory write request, it still improves EPI
by 6% on average across two memory hierarchies. The reasons
are: First, CPU idle power dominates dynamic power; Hetero-
DMR improves CPU idle energy by improving performance,
which outweighs the energy overheads of extra writes. Second,
DRAM power relative to system power has been decreasing;
for example, memory contributes 18% to system power in
2018 [42]. Third, because write bandwidth utilization is 15%
of total bandwidth utilization on average (see Figure 15),
write contributes to <15% of DRAM power. Although Hetero-
DMR+FMR writes triple for each write request, it still shows
similar average EPI as FMR.

The experiments in Figure 12 also simulate Hetero-DMR’s
write bandwidth overhead due to cleaning dirty cachelines
(see Section III-Al); we measure this overhead as extra
DRAM accesses per instruction normalized to Commercial
Baseline. Figure 14 shows per-bench normalized DRAM ac-
cesses/instruction of Hetero-DMR+FMR @0.8GT/s over Com-
mercial Baseline under Hierarchyl; they are similar across all
Hetero-DMR and Hetero-DMR+FMR under both hierarchies.
On average across six benchmark suites, the overhead is <1%.

B. Silicon Corroboration

To check our Gem5 setup, we simulate “Exploit Fre-
quency+Latency Margins” (see Figure 5) to compare its sim-
ulated performance to its real-system performance, which is
given in Figure 5. Figure 16 shows its simulated performance
normalized to simulated Commercial Baseline and its real-
system performance normalized to real-system Commercial
Baseline; the average difference is 2%.

To check Hetero-DMR’s  simulated performance
benefit (see Section IV-A), we use the test machine in
Section II-B to emulate each benchmark’s execution time
under Hetero-DMR as: exec_timeQunsafely_fast —
wr_timeQunsafely_fast + wr_timeQsafely_slow, where
exec_timeQunsafely_fast is  benchmark execution
time measured on the real system under “Exploit
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Fig. 16: Silicon corroboration under Memory Hierarchyl.

Frequency+Latency Margins”; wr_time is the time that the
benchmark writes to DRAM when operating memory faster
(i.e., Qunsafely_fast) or at spec (i.e., Qsafely_slow). We
model wr_time as written_data/bandwidth. While this
wr_time formula only accounts for bandwidth, we use it
because the latency of individual writeback to DRAM has little
impact on write time since all writebacks are independent,
unlike read latency, which can stall subsequent reads from the
same core. We use perf tool [28] to profile the total amount of
data written to DRAM and the bandwidth during benchmark
execution; Figure 15 shows the average bandwidth utilization
of each benchmark when operating memory at manufacturer
specification under Memory Hierarchyl.

We model the fact that Hetero-DMR reads only half of the
modules of a channel in the common case (see Section IT11-A2).
As such, our real-system experiments use two ranks/channel
to emulate Hetero-DMR’s performance in a system with four
ranks/channel. Note that our simulations in Figure 12 model
a system with four ranks/channel (see Table IV).

Figure 16 shows both Hetero-DMR’s simulated perfor-
mance, which is extracted from Figure 12, and emulated
performance; both are normalized to Commercial Baseline.
The average performance benefits are similar.

Compared to “Exploit Frequency+Latency Margins”,
Hetero-DMR provides 3% and 2% lower average perfor-
mance benefit under emulation and under simulation, re-
spectively; this is a small cost for rigorously maintaining
reliability. Hetero-DMR is slightly faster than “Exploit Fre-
quency+Latency Margins” for some benchmarks (e.g., linpack,
amg, and hpcg). This is because these benchmarks perform
better under two ranks/channel than under four ranks/channel
in both real-system experiment and simulation. Recall that
“Hetero-DMR” is emulated using two ranks/channel, whereas
Exploit Frequency+Latency Margins uses four ranks/channel.

C. System-wide Simulation

Our single-node evaluations (see Sections IV-A and IV-B)
have two limitations: First, they do not consider the per-
formance impact of the system-level solution described in
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Section III-D3. Second, they do not consider each job’s
queuing delay, which can significantly affect the job’s overall
performance. To address these limitations, we also simulate a
HPC system with Hetero-DMR.

We simulate the benefit of adding Hetero-DMR to a
Slurm-managed HPC system via Slurmsim [73]. We use
Slurm configurations from an in-production HPC system
— Grizzly [10], [29]; it has 1490 nodes with 36 physical
cores and 128GB memory per node. We feed four months
of 58K Grizzly job traces into Slurmsim. The overall
node utilization (i.e., S *"°*(job_ewecution_time x
number_of_nodes_of_the_job)/(total_number_of_nodesx
dmonths)) is ~78%.

To simulate an HPC system with Hetero-DMR, we simulate
each job’s execution time by scaling it according to the per-
formance of Hetero-DMR (as opposed to Hetero-DMR+FMR)
normalized to Commercial Baseline. Because Hetero-DMR
only benefits jobs with < 50% memory utilization, we use
the job-level memory utilization distribution in Grizzly (see
Figure 1) to probabilistically scale each job’s execution time.
The simulated HPC system uses the margin-aware job sched-
uler we implement in Slurm (see Section III-D). For exam-
ple, the performance of Hetero-DMR@0.8GT/s normalized to
Commercial Baseline under memory Hierarchyl is 121%, on
average; so for a job that occupies only nodes with 0.8GT/s
memory frequency margin, we scale the job’s execution time
as scaled_execution_time = original_execution_time -
%1%. When a job occupies nodes with different data rates, we
scale the job’s execution time according to the performance of
Hetero-DMR at the lowest node-level frequency margin among
all of the job’s occupied nodes.

Results: Figure 17 shows the normalized job execution
time, queuing delay, and turnaround time over a conventional
HPC system under two memory hierarchies; the turnaround
time of a job is its queuing delay plus its execution time.

Hetero-DMR reduces job execution time by 15% on average
across two memory hierarchies; this translates to 1.17x average
speedup across the two hierarchies.

On average across two hierarchies, Hetero-DMR pro-
vides 1.4x turnaround-time-level speedup. It is higher than
execution-time-level speedup because by making each node
run 17% faster, Hetero-DMR also reduces average job queuing
delay by 34% according to our simulation. We were initially
surprised by this result; to check whether it is likely that
making each node 17% faster can reduce job queuing delay by
34%, we re-simulate the conventional HPC system with 17%
additional nodes. Our simulation shows that having 17% more
nodes reduces average queuing delay by 33%, which is close
to the 34% reduction due to making each node 17% faster.

To study the performance benefit of the margin-aware job
scheduler (see Section III-D), we also evaluate Hetero-DMR
with Slurm’s default job scheduler, which allocates nodes to
each job without considering their memory frequency margins.
On average across two memory hierarchies, the margin-aware
job scheduler provides 1.2x turnaround-time-level speedup
over Slurm’s default job scheduler.

V. RELATED WORKS AND EXISTING/PRIOR APPROACHES

Memory Profiling. Memory companies and researchers
have used memory profiling to improve memory performance
in the context of consumer products (e.g., desktop, mobile
systems). Memory profiling tests the error rates of memory
at optimistic configurations (e.g., frequency, latency) to iden-
tify the memory’s faster configurations that still have a low
probability of triggering errors. Some memory module man-
ufacturers (e.g., G.Skill, CORSAIR) use profiling to identify
chips that can operate at a high data rate (e.g., 4000MT/s)
to produce ‘overclocked’ unbuffered DIMMs for desktop
systems. Compared to standard modules, these overclocked
modules cost many times (e.g., ~2.65x [35]) as much due to
the high cost of testing for memory manufacturers [40]. There
are also no ‘overclocked’ server memory modules, the focus
of this work, available on the market.

Some prior works [47], [60], [62] propose profiling regular
(i.e., not ‘overclocked’) consumer memories (e.g., SODIMMs,
LPDDR) directly in the end system to reduce cost compared to
the commercial solutions above. However, profiling memory in
the end-system lacks environmental stress test equipment, such
as thermal and humidity-controlled test chambers; as such,
operating memory at reduced latency based on end-system
profiling results makes the memory system more vulnerable
to occasional errors due to time-dependent changes caused by
humidity, thermal cycling, corrosion, electrostatic discharge,
power spike/voltage noise, dust etc. [32]. While it may be
OK for consumer systems to experience occasional errors,
they are unacceptable for server systems which have higher
reliability requirement. Moreover, while these prior works
exploit latency margins in the context of consumer products,
this paper focuses on safely exploiting frequency margin in
the context of server systems.

Existing Server Memory Protection. Server memories
have ECC chips to protect against natural hardware failures
during system lifetime. Simply reusing existing server memory
ECC cannot achieve our goal - maintain the same level
of reliability as before while exploiting memory frequency
margin. Operating memory faster than specification increases
fault rate; intuitively, when keeping ECC the same, increasing
fault rate increases uncorrected error rate and thus reduces
system reliability. Note that our test machine uses RDIMMs’
ECC chips for ECC; it still encounters many uncorrected errors
when operating at high frequency (see Figure 6).

A possible alternative is to add more ECC chips or bits
per rank to strengthen existing ECC. However, adding more
ECC chips or bits is costly as it requires custom DIMMs,
modified CPU-memory interface standards, and additional
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area. Moreover, it is difficult to decide how many chips or bits
to add because it depends on the maximum number of bits per
access that get corrupted when operating memory faster than
its manufacturer specification. This number can vary across
modules of the same model number, across different model
numbers, brands, and generations.

Emerging memory technologies. High Bandwidth Mem-
ory (HBM) [3] and DDRS5 [15] also improve bandwidth
compared to mainstream server memory (e.g., DDR4). HBM is
primarily a GPU memory. However, adopting HBMs in CPUs -
the focus of this paper - is costly due to HBM’s high price and
high in-package area overhead; doing so is also an overkill as
HBMs are designed to satisfy GPU bandwidth requirement,
which is orders of magnitude higher than CPU. High-speed
DDRS is still several years from market; at that time, CPUs
may also increase their memory bandwidth requirement (e.g.,
due to core count scaling) and, therefore, will still benefit from
the additional bandwidth Hetero-DMR provides.

Exploiting CPU Frequency Margin. Prior works have
exploited frequency margin in CPUs (e.g., [55]). Exploiting
frequency margin in CPU requires different approaches from
exploiting frequency margins in memory because CPUs have
vastly different architectures from memory. For example,
CPUs have no concept of read mode and write mode and
thus do not operate heterogeneously for read mode and write
mode as does Hetero-DMR.

VI. CONCLUSION

This paper performs the first public broad study to char-
acterize frequency margin for server memory. We find that
under standard voltage and cooling, commodity RDIMMs
can operate, on average, 27% faster than manufacturer spec-
ification without errors for 99.999%-+ of memory accesses.
We propose Hetero-DMR to safely exploit memory margins
in HPC systems to improve both bandwidth and latency.
On average across six HPC benchmark suites and across
two memory hierarchies, Hetero-DMR improves node-level
performance by 18% and 15% over a Commercial Baseline
and over FMR, respectively. System-wide simulations show
Hetero-DMR provides 1.4x average speedup on job turnaround
time over a conventional HPC system.
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