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ABSTRACT
Supercomputer design is a complex, multi-dimensional optimiza-
tion process, wherein several subsystems need to be reconciled
to meet a desired �gure of merit performance for a portfolio of
applications and a budget constraint. However, overall, the HPC
community has been gravitating towards ever more FLOPS, at the
expense of many other subsystems. To draw attention to overall
system balance, in this paper, we analyze balance ratios and ar-
chitectural trends in the world’s most powerful supercomputers.
Speci�cally, we have collected the performance characteristics of
systems between 1993 and 2019 based on the Top500 lists, and then
analyzed their architectures from diverse system design perspec-
tives. Notably, our analysis studies the performance balance of the
machines, across a variety of subsystems such as compute, memory,
I/O, interconnect, intra-node connectivity and power. Our analysis
reveals that balance ratios of the various subsystems need to be
considered carefully alongside the application workload portfolio
to provision the subsystem capacity and bandwidth speci�cations,
which can help achieve optimal performance.
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1 INTRODUCTION
For several decades, supercomputers have provided the needed
resources for modeling, simulation, and data analysis in numerous
scienti�c domains. The computing, storage, and data resources of-
fered by these systems have catered to both capability—requiring a
large fraction of the machine—and capacity—needing medium-sized
allocations—computing needs of applications [13]. The Top500
list [7] provides an excellent service to the HPC community by
meticulously compiling the leading systems from the world based
on the High Performance Linpack (HPL) benchmark [14], and pub-
lishing it bi-annually since 1993. The list reports key high-level
architectural highlights (e.g., processor, interconnect type, memory,
power, etc.) and FLOPS scores (Rmax and Rpeak).

Supercomputer design is a complex, multi-dimensional optimiza-
tion process, in which several aforementioned vectors (and others
such as storage) need to be reconciled to meet a desired �gure of
merit performance for a portfolio of applications and a budget con-
straint. For example, the goal of the Summit system at Oak Ridge
National Lab (200 peta�op Rpeak, 148.6 peta�op Rmax and No. 1
in the June 2019 Top500 list) was to achieve a 5-10× performance
improvement over its predecessor, Titan (the 27 peta�ops system).
Besides, the application workload mix has also been going through

a transformation. Several supercomputing centers have to deal with
the new and emerging machine and deep learning codes, on top of
the traditional modeling and simulation applications. Thus, during
this process, it is natural that certain subsystems will be prioritized
over certain others.

However, overall, the HPC community has been gravitating to-
wards ever more FLOPS, at the expense of many other subsystems.
While in theory, it may seem obvious that a balance between the
various subsystems is more important than just blindly prioritiz-
ing any one subsystem, in practice, however, this is seldom the
case. Time and again, it is easier for centers to make a case for
more FLOPS than for other subsystems. In reality, however, merely
increasing the FLOPS may not improve application throughput if
the other subsystems do not witness commensurate advances, as
the end-to-end application performance is also dependent on other
elements such as memory bandwidth, I/O throughput (for result
and checkpoint data), and the like.

Therefore, what is needed is a careful consideration of the overall
system balance and how the various subsystems reconcile with
one another. System designers need to understand the trends not
only within the individual subsystems but also with respect to one
another. For example, one needs to understand the FLOPS trends
in accelerator-based heterogeneous processors versus manycore
processor architectures, but at the same time glean the nuances
in FLOPS to memory bandwidth or memory capacity ratios; or
memory bandwidth to intra-node connectivity bandwidth ratios;
or �le system to the memory subsystem ratios; or interconnect to
FLOPS ratios. Understanding the tradeo�s between the various
subsystems will enable system designers to reconcile and provision
them carefully, instead of producing suboptimal con�gurations that
may be prone to performance bottlenecks.

In this paper, we conduct a detailed analysis of 27 years of Top500
lists since 1993, studying 10,709 supercomputers across several
dimensions.

Speci�cally, our contributions in this paper are as follows.

• We collect data from the Top500 lists and analyze detailed trends
based on 10,709 supercomputers that have ranked in the list for
the past 27 years between 1993 and 2019 (§ 4.1). We present
performance and energy trends such as the following: the pro-
gressive increase in HPL scores over time, their comparison to
Moore’s law prediction, and the in�ection point; the performance
gap (factor) between the top systems and the lower-end systems;
the historical trend in the energy e�ciency of systems, and posi-
tions of the No.1 systems; the trend in performance e�ciency, i.e.,
the practical achievement of the theoretical peak performance
by the majority of the systems; and the commonly observed
increasing trend in heterogeneous systems.



• We then select 28 systems, ranked in the top �ve in the past
decade, i.e., between 2009 and 2019, and perform a deeper anal-
ysis on their architectural balance trends, including memory,
�le system, and interconnect (§ 4.2). We present the following
results: the di�erences in the performance and energy e�ciency
of heterogeneous and traditional systems and the memory/core
di�erences therein; the balance ratio between the memory sub-
system and compute subsystem; the balance ratios between the
memory, �le system, and the burst bu�er subsystems; the bal-
ance ratios between network bisection and node injection band-
width and the importance therein; and the correlation between
interconnect performance and the over system performance e�-
ciency.

• Lastly, we further select 16 heterogeneous machines from the
28 recent top �ve supercomputers and analyze the performance
balance between the subsystem components for each recent het-
erogeneous system (§ 4.3). In this analysis, we particularly target
the balance ratios and trends involved in newer technologies
within a heterogeneous compute node such as multi-level mem-
ory and intra-node connectivity, both of which are essential in
heterogeneous systems. We analyze the importance of memory
(both DRAM and HBM) capacity and bandwidth per core and
�ve di�erent connections representing key intra-node links, and
their relevance to di�erent aspects of applications.

2 BACKGROUND: TOP500
In this section, we brie�y introduce the Top500 project [7] and
the resources it provides, which allow us to establish a basis for
performing our analysis. Since it was �rst launched in 1993, the
Top500 project has been publishing a list of 500 of the world’s most
powerful supercomputers bi-annually, i.e., June and November in
each year, on the project website [7].

Between 1993 and 2019, the project website has published 54
lists, encompassing 10,709 supercomputers from 2,894 institutions
globally. For compiling the list, the project evaluates supercom-
puters based on the High-Performance Linpack benchmark (HPL)
score, which accesses a distributed memory system’s runtime and
accuracy in solving a dense linear system using double-precision
arithmetic [14]. Speci�cally, the participating supercomputers are
ranked based on the number of �oating point operations per second,
or FLOPS. In addition to its semi-annual lists, the Top500 project
also publishes additional resources, e.g., useful statistics, interac-
tive graphs, etc., via the project website. Particularly, the Top500

Attribute Example
Supercomputer Summit
Installation site DOE/SC/Oak Ridge National Laboratory
Total cores 2,397,824
Accelerator cores 2,196,480
Total memory capacity 2,801,664 GB
Processor type IBM POWER9 22C 3.07GHz
Network interconnect family Dual-rail Mellanox EDR In�niband
Theoretical Peak (Rpeak) 200,795 TFlop/s
Linpack Performance (Rmax) 143,500 TFlop/s
Power consumption 9783 kW

Table 1: An example of the supercomputer speci�cation from the
Top500 data.

Performance Balance
in Recent Supercomputers (§ 4.2)

Performance Balance
in Heterogeneous Supercomputers (§ 4.3)

Overall Performance Trends (§ 4.1)

- CPUs vs. Accelerators
- FLOPS vs. System Connectivity

- High Performance Linpack (HPL) Scores
- Performance/Power Efficiency

- System efficiency
- FLOPS vs. IO subsystem

Figure 1: An overview of analysis dimensions.

website publishes key speci�cations of individual supercomputers,
e.g., processor type, memory capacity, interconnect family, etc.,
and such information, when combined with the semi-annual lists,
can provide excellent insights on examining historical or recent
trends in supercomputing [9, 10, 16, 21]. In this paper, we use the
term Top500 data to refer to all available data that Top500 pub-
licly publishes, including the semi-annual lists and the individual
supercomputer speci�cations.

Table 1 shows an example speci�cation of a supercomputer from
the Top500 data. Particularly, the Rpeak value is calculated based on
the FLOPS values of all individual processing chips in the system,
e.g., CPUs, GP-GPUs, etc., and demonstrates an ideal performance
of the supercomputer without considering any potential overhead,
e.g., network communication, data I/O, software algorithm, etc.
In contrast, Rmax is a measured score that has been acquired af-
ter running the HPL benchmark. Therefore, comparing the Rpeak
and Rmax values provides a reasonable assessment of the overall
processing e�ciency of a supercomputer. For instance, the Sum-
mit supercomputer in Table 1, achieves approximately 71% of the
ideal performance when running the HPL benchmark. Despite
its abundance, the Top500 data lack comprehensive information
about supercomputers, such as network bandwidth, �le system
performance, burst bu�er capacity/performance, intra-node con-
nectivity details, DRAM/HBM performance, etc., which is necessary
for performing analysis on the architectural balance of a system.
Therefore, we have collected extensive additional data through
literature survey to �ll in the gaps.

3 ANALYSIS OVERVIEW
In this section, we present our goals for analyzing the architectural
trend of supercomputers based on the Top500 lists. Speci�cally,
we perform analysis based on the following three analysis goals as
shown in Figure 1.

Overall performance trend (§ 4.1). Top500 adopts the High
Performance Linpack (HPL) benchmark score [14] for normalizing
performance and ranking supercomputers. However, the HPL score
is a macro benchmark for measuring the aggregated processing
power, and the score alone is a limited metric when it comes to
unveiling the sophisticated architectural trends in supercomput-
ers. We analyze the individual performance factors and �nd their
correlations with the HPL scores.

Balance trends in recent supercomputers (§ 4.2). In this
dimension, we perform a deeper analysis of the architectural trends
and performance balance of the recent top �ve supercomputers on
the Top500 list in the past decade. Speci�cally, we collect detailed
information for each of the recent top supercomputers and perform
further analysis on the performance balance between the processing
power and other subsystems in a supercomputer, e.g., memory,
storage, burst bu�er, and network.
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Figure 2: The growth of the linpack performance for the past 27 years, i.e., from 1993 to 2019. The graph depicts the HPL score distribu-
tion of 500 supercomputers for each year. The �rst tera-scale supercomputer (scored over 1 TFlop/s) was ASCI Red and the �rst peta-scale
supercomputer was Roadrunner.
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Figure 3: Rmax of the No.1 supercomputers, which is normalized
to the ideal projected score of Moore’s Law [22] since 1993 and is
shown by the dotted line.

Balance trends in heterogeneous supercomputers (§ 4.3).
Heterogeneous machines are becoming increasingly popular for
achieving the desired system e�ciency within the given budget
and energy requirements [16]. We aim to identify key architec-
tural trends and balance ratios from recent heterogeneous systems,
e.g., intra-node connectivity and memory subsystem balance, and
acquire insights for designing future systems.

For performing our analysis, we have collected available datasets
from the Top500 website and also manually surveyed the detailed
speci�cation of individual target supercomputers for complement-
ing the Top500 data. Our complete dataset is publicly available at
https://github.com/lass-lab/Top500-analysis-dataset.

4 ANALYSIS RESULTS
Based on the aforementioned goals (§ 3), this section reports anal-
ysis results, namely, overall performance trend (§ 4.1), balance
trends in recent supercomputers (§ 4.2), and performance balance
in heterogeneous supercomputers (§ 4.3).

4.1 Overall Performance Trend
We �rst study the overall performance trend in the Top500 list of
systems over the past 27 years. Particularly, we analyze the trend
in High Performance Linpack (HPL) scores of all 10,709 supercom-
puters that have appeared in Top500 between 1993 and 2019.

4.1.1 The Growth of HPL Scores. Figure 2 depicts the trend of
Rmax scores, i.e., the maximum observed performance (§ 2), of all su-
percomputers that have appeared in the Top500 listings since 1993.

We clearly observe a continuously increasing trend in performance
over the past 27 years. On average, a newly introduced No.1 super-
computer has doubled the Rmax score of its immediate predecessor.
In addition, ASCI Red (1997) �rst recorded over a TFlop/s, while
Roadrunner (2008) was the �rst petascale supercomputer. In Fig-
ure 3, we also compare the performance of No.1 machines against
the prediction of Moore’s Law [22]. Speci�cally, we normalize the
Rmax scores of No.1 machines based on the Rmax score of the CM-
5/1024, the No.1 machine in June 1993. We also project the ideal
Rmax scores based on the Moore’s Law, i.e., the chip density and per-
formance doubles every 18 months, using a dotted line. We observe
that all No.1 machines since 1997 perform beyond the prediction
of the Moore’s Law. Particularly, the Rmax score of Tianhe-2A in
2013 exceeds the projection of Moore’s Law by almost 100×. The
most recent Summit supercomputer exhibits Rmax that surpasses
the projection by 18×. This demonstrates that the HPC systems
address the physical limitation of the chip density by introducing
multi-processing and heterogeneous architectures [23].
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Figure 4: The distribution of normalized HPL scores in Top500.
This clearly demonstrates a signi�cant performance gap between
the top and the rest supercomputers. In 2019, for instance, the
HPL score of the No.1 supercomputer (Summit) is more than 100×
greater than the median HPL score of the year.

4.1.2 Low-end Supercomputers. Another notable trend in Fig-
ure 2 is a highly skewed distribution of the Rmax scores in all years,
indicating a signi�cant performance gap between high-end and
low-end supercomputers. To articulate the trend, in Figure 4, we
normalize Rmax scores to the maximum score in each listing. We
observe that 75% of the systems in each listing, i.e., 375 machines,
scored at least an order of magnitude less than the No.1 super-
computer. The performance gap is widest in the June 2013 Top500
list, when the median HPL score of 500 systems was almost 400×
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Figure 5: Trends in the power e�ciency in Top500 supercomputers.
Over the past 27 years, the power e�ciency of highly ranked supercom-
puters have been increasing.

lower than the score of Tianhe-1A. Although the performance gap
is becoming narrower since then, the median HPL score in 2019 is
still more than 100× lower than the top score.

4.1.3 Energy E�iciency. One of the important metrics in eval-
uating system performance is energy e�ciency, which is often
measured by Flops per watt. Figure 5(a) shows the energy e�-
ciency of clusters from the Top500 listings since 2005 1. We clearly
observe an increasing trend in energy e�ciency. Particularly, for
each listing, the median energy e�ciency of the corresponding
500 systems has increased by 1.2× on average. In addition, with
the exception of 2005, the energy e�ciency of the No.1 supercom-
puters is steadily positioned within the top 25%, demonstrating
that the No.1 machines tend to run more energy e�ciently than
other machines. To further investigate this observation, we studied
the correlation between the Top500 rank and energy e�ciency,
as shown in Figure 5(b). Each point in Figure 5(b) speci�es the
Pearson’s correlation coe�cient 2, where the energy e�ciency is
described as a function of the rank in the corresponding Top500
listing. We see that the strong negative correlation in earlier years,
i.e., higher performance supercomputers being less energy e�cient,
is no longer the case in recent years (although no positive correla-
tion). Evidently, Summit (2018, 2019), the No.1 supercomputer in
Top500, is also ranked No.2 in the Green500 [3] list for June 2019.

4.1.4 Performance E�iciency. We now study the performance
e�ciency of systems, which we calculate as a ratio of Rmax to Rpeak,
or Rmax

Rpeak
[16]. The average performance e�ciency of 10,709 sys-

tems 3 is 0.67, indicating that most machines merely achieve less
than 70% of their potential performance. Figure 6 further presents
the annual trend in performance e�ciency. In contrast to power

1The earlier listings do not provide su�cient data about power consumption.
2The Pearson correlation coe�cient, ρ , is de�ned as covariance of the variables (e.g., X and Y )
divided by the product of their standard deviations, i.e., ρ = cov (X ,Y )

σXσY
. A ρ value (ranging

between -1 and 1) close to 0 indicates that no signi�cant linear correlation is found.
3Rpeak scores of some earlier supercomputers prior to 1994 are not available.
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Figure 6: The trend of the performance e�ciency, i.e., Rmax : Rpeak, in
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Figure 7: Trends in the correlation between performance and sys-
tem attributes. Besides the number of cores, the memory capacity
has also become a major factor to deliver a higher performance.

e�ciency (Figure 5), we do not observe an increasing trend in per-
formance e�ciency. Instead, on average, the median performance
e�ciency has decreased by about 4% each year. In addition, we also
see that the performance e�ciency of the No.1 supercomputers �uc-
tuates heavily, which is a notable contrast to their power e�ciency
trend (Figure 5). For instance, the performance e�ciency of the
K Computer (2011) is 0.93, while 77% of No.1 supercomputers (40
out of 52) record performance e�ciency scores below the overall
median (0.67). Furthermore, performance e�ciency in our analysis,
which includes all systems in Top500, is about 15% lower than the
earlier analysis with Top 10 supercomputers [16].

4.1.5 Achieving Higher Performance. A key factor in achieving
a higher HPL score is to have a strong computing power. For this
purpose, recent supercomputers tend to be equipped with a massive
number of computing cores, as reported earlier in § 4.1.1. Therefore,
we now analyze how the total core count of a supercomputer a�ects
its Rmax score. Speci�cally, we performed a correlation analysis
between Rmax score and total core count for each year, as depicted
in Figure 7. We observe the correlation coe�cient (ρ) between HPL
score and total core count is highest between 2013 and 2016, i.e.,
0.95 on average. However, ρ drops drastically starting from 2017
that the average ρ between 2017 and 2018 is only 0.66, more than
30% lower than the previous year. One reason for this weaker
correlation can be attributed to the increasing number of hetero-
geneous supercomputers, which we discuss further in § 4.3. In
addition, Figure 7 also shows the correlation between HPL score
and memory capacity. Starting from late 2009, the correlation be-
tween HPL score and memory capacity becomes noticeably higher,
i.e., 0.74 on average between 2009 and 2019.

4.1.6 Heterogeneous Supercomputers. Figure 8 shows the per-
centage of heterogeneous supercomputers, i.e., systems with addi-
tional accelerator processors such as GP-GPU, in the recent Top500
listings. For the past eight years, the number of heterogeneous sys-
tems in the listings has steadily increased, i.e., 1% or �ve systems
annually, and they occupy about 28% (140 systems) in November
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to Rpeak to Power per Core to Rmax PFS BB PFS BB to ΣInjection BW

m BlueGene/L 5 0.80 0.21 0.35 1.18 2.60 · 0.0000 · 0.0038
F Roadrunner.1 2 3 0.76 0.44 5.98 0.27 28.56 · 0.0001 · 0.0627
F Roadrunner.2 ¶ 0.76 0.45 5.98 0.27 26.97 · 0.0001 · 0.0593
m Jaguar.1 2 0.77 0.15 2.05 0.34 34.13 · 0.0005 · 0.0072
m Pleiades 4 0.80 0.23 1.00 0.05 139.26 · 0.0017 · ·

m JUGENE 3 4 5 0.82 0.36 0.50 0.98 14.22 · 0.0000 · 0.0046
F Jaguar.2 ¶ ¶ 2 3 3 0.74 0.38 1.07 0.25 32.80 · 0.0004 · 0.0142
m Kraken 3 4 0.81 0.27 1.52 0.23 22.99 · 0.0001 · ·

F Tianhe-1 5 0.47 0.37 1.55 0.79 9.46 · 0.0003 · ·

F Nebulae 2 3 4 4 0.43 0.49 2.22 0.41 2.49 · 0.0001 · ·

F Tsubame-2.0 4 5 5 0.52 0.85 1.34 0.59 59.90 1.72 0.0001 0.0005 1.2291
F Tianhe-1A ¶ 2 2 5 0.55 0.64 2.92 0.25 8.36 · 0.0003 · ·

m Hopper 5 0.82 0.36 1.45 0.41 9.44 · 0.0001 · ·

m K Computer ¶ ¶ 2 3 4 4 4 4 4 4 5 0.93 0.83 2.00 0.46 22.31 8.18 0.0001 0.0002 0.0741
m Sequoia ¶ 2 3 3 3 3 3 3 4 4 5 0.85 2.18 1.00 0.20 36.67 · 0.0004 · 0.1221
m Mira 3 4 5 5 5 5 5 5 0.85 2.18 1.00 0.20 46.67 · 0.0001 · 0.0682
m Super MUC 4 0.91 0.85 2.00 0.29 53.33 · 0.0003 · 0.2778
m JUQUEEN 5 0.85 2.18 1.00 0.20 0.22 · 0.0001 · 0.0112
F Titan ¶ 2 2 2 2 2 2 3 3 4 5 0.65 2.14 2.37 0.20 44.30 · 0.0002 · 1.1158
F Tianhe-2A ¶ ¶ ¶ ¶ ¶ ¶ 2 2 2 2 4 4 4 4 0.61 3.32 8.00 0.07 5.83 · 0.0002 · 0.1918
F SW TaihuLight ¶ ¶ ¶ ¶ 2 3 3 3 0.74 6.05 16.00 0.09 8.00 · 0.0000 · 0.1094
m Cori 5 0.50 3.56 1.66 0.19 27.40 1.83 0.0001 0.0003 0.4814
F Piz Daint 3 3 5 0.78 8.91 2.23 0.06 46.06 · 0.0001 · 0.7703
F Gyoukou 4 0.68 14.17 33.94 0.03 24.67 · 0.0013 · ·

F ABCI 5 0.61 12.06 12.82 0.13 41.32 3.26 0.0004 0.0008 0.6995
F Summit ¶ ¶ ¶ ¶ 0.71 14.67 9.64 0.13 88.59 2.62 0.0001 0.0004 1.0222
F Sierra 3 2 2 2 0.75 12.72 7.52 0.14 110.00 5.06 0.0001 0.0005 0.5120
F Frontera 5 5 0.60 4.27 9.1 0.13 35.4 1.9 0.0001 0.0965 ·

Table 2: System characteristics of 28 supercomputers that have marked top �ve in Top 500 from 2009 to 2019. m and F indicate that the
corresponding supercomputer has homogeneous or heterogeneous architectures, respectively. The color intensity shows the comparison
between values within the corresponding column. A higher ratio in each column is considered to be better.
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Figure 8: The increasing number of heterogeneous supercomput-
ers in Top500 since 2011.

2019. We expect that this increasing trend will continue, particu-
larly for addressing technological limitations (§ 4.1.1) and also for
controlling the power consumption.

Note that the current analysis discussed in this section revisits
some analysis methods from prior studies [12, 18, 19, 26]. Despite
similar analysis methods, we believe it is meaningful to observe the
most up-to-date supercomputing trend. Furthermore, our analysis
in Section 4.1 encompasses all 500 supercomputers in the Top500
lists.

4.2 Balance Trends in Recent Supercomputers
In this section, we perform a deeper analysis on the performance
trend in recent top supercomputers. Speci�cally, we focus on su-
percomputers that have ranked in the top �ve positions on the
Top500 listings in the last decade, i.e., between 2009 and 2019. As
summarized in Table 2, our target supercomputers consist of 16
heterogeneous (F) and 12 traditional (m) supercomputers.

4.2.1 Overall System E�iciency. Figures 9(a) and (b) show the
performance e�ciency (Rmax:Rpeak) and power e�ciency (Rmax:Power)
of these supercomputers. We �rst observe that heterogeneous sys-
tems dominate the architectural trend in the top supercomputers.
Particularly, since November 2017, all top �ve supercomputers are
heterogeneous, indicating that the increasing popularity of the het-
erogeneous architecture (§ 4.1.6). Furthermore, in Figure 9(a), we
notice that heterogeneous systems tend to exhibit a lower perfor-
mance e�ciency, i.e., achieving less than 80% of the theoretical
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Figure 9: Trends of performance and power e�ciency in recent top
�ve supercomputers. The heterogeneous architecture clearly im-
prove the power e�ciency but also imposes challenges to increase
the performance e�ciency.

peak performance (Rpeak). In contrast, Figure 9(b) shows that the
power e�ciency of heterogeneous systems far exceed that of tra-
ditional systems, especially since 2017. Speci�cally, the average
power e�ciency of the heterogeneous machines (5.5 GFlops/W)
is about �ve times higher than the average power e�ciency of
the traditional machines (1.1 GFlops/W). Our observation clearly
demonstrates the bene�t, i.e., energy e�ciency, and also challenges,
i.e., technical obstacles to realize the potential performance [12], of
the heterogeneous architecture.
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(a) Memory capacity per core. (b) Memory bandwidth per Flops.

Figure 10: Performance balance in system memory. Despite the
increasing performance of the memory system, the per Flops mem-
ory bandwidth has decreased due to the growth of the processing
power.

4.2.2 System Memory. Next, we analyze the performance trend
in the memory subsystem. For heterogeneous systems, the mem-
ory capacity and bandwidth are the sums of the DRAM and HBM
capacity and bandwidth. First, Figure 10(a) shows the trend in the
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Figure 11: Performance balance between �le system and memory
subsystem. We do not observe a drastic change in the �le system
capacity and bandwidth. On average, the �le system capacity and
bandwidth are about 44× larger and 13,353× slower, respectively,
than the system memory capacity in the recent top �ve supercom-
puters.

memory capacity per core (ΣMemoryCap:ΣCoresTotal) of recent top
machines. We observe that most systems are clustered around 1 GB
in the graph. Only three supercomputers, i.e., Jaguar.1, K Computer,
and Super MUC, furnish more than 2 GB of memory per processing
core. In addition, the per-core memory capacity of heterogeneous
supercomputers (0.7 GB on average) tend to be lower than the per-
core memory capacity of traditional systems (1.3 GB on average),
although the heterogeneous systems tend to be equipped with a
greater amount of system memory (more than 300 TB on average).
This indicates that the increase in the core count from accelerators,
e.g., GP-GPU, is greater than the increase of memory (HBM) from
accelerators in the heterogeneous machines. In fact, in the hetero-
geneous systems, the average HBM capacity per accelerator core
is merely 0.2 GB, about 14× less than the average DRAM capacity
per CPU core (3.3 GB).

Next, Figure 10(b) depicts the performance balance between
the aggregate memory bandwidth and the peak processing power
(ΣMemoryBW:Rpeak) of the target supercomputers. Overall, we
clearly see a diminishing trend in the balance ratio, indicating
that the processing power grows faster than the system memory
speed. For instance, the highest ratio value in 2019, i.e., 0.13 from
Summit, is about 9× lower than the highest ratio in 2009, i.e., 1.2
from BlueGene/L. Further, after 2011, none of the top systems exceed
0.5 B/s per Flops (more on this in § 4.3).

4.2.3 Parallel File System. Most supercomputers are equipped
with a networked parallel �le system (PFS) to support capacity
requirements of running applications. The main memory is in-
evitably used as a bu�er space for manipulating datasets in the
PFS. Therefore, we analyze the performance balance between the
PFS and the memory subsystem. Figure 11(a) and (b) show the ca-
pacity and bandwidth ratios between PFS and memory subsystem,
i.e., PFSCap:ΣMemoryCap and PFSBW:ΣMemoryBW, respectively. Note
that we only consider scratch �le systems that parallel applications
primarily exploit for storing data, i.e., excluding NFS /home and
archival storage areas. For the �le system capacity (Figure 11(a)),
we observe that the ratio values are scattered between 2 and 100,
except for two systems, i.e., Pleiades and Gyoukou, which provide
substantially larger �le system space compared to their memory
capacity, i.e., 140× and 410×, respectively. The overall average
ratio is 44, meaning that the recent top supercomputers tend to
provision the PFS capacity to be 44× larger than their memory
capacity. In addition, Summit, the No.1 supercomputer in (2018,
2019), has a ratio of 89, almost 2× greater than the overall average.
Similar to the capacity ratio, we do not observe a clear change over

10
0

10
1

10
2

10
3

10
4

10
5

10
6

TSUBAME 2.0

K computer

Tianhe-2A
Cori

ABCI

Summit
Sierra

Frontera

C
a

p
a

c
it
y
 (

T
B

) Memory BB PFS

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

TSUBAME 2.0

K computer

Tianhe-2A
Cori

ABCI

Summit
Sierra

Frontera

B
a

n
d

w
id

th
 (

T
B

/s
)

Memory BB PFS

(a) Storage capacity. (b) Storage bandwidth.

Figure 12: Burst bu�er characteristics in seven recent supercom-
puters. In these supercomputers, the burst bu�er capacity is about
3× larger than the system memory, and its bandwidth is about 3×
faster than the bandwidth of the parallel �le system.

time in the bandwidth ratio (Figure 11(b)). On average, the �le
system bandwidth in the recent top systems are 13,353× lower than
the aggregated memory bandwidth, although we have observed
signi�cant variance (σ=17,000) among these systems. The PFS in
Summit is about 10,000× slower than its aggregated memory speed,
justifying a burst bu�er.

4.2.4 Burst Bu�er Storage. The burst bu�er (BB) is recently be-
coming popular to mitigate the performance gap between memory
and �le system [18]. Eight out of the 28 recent top systems (Table 2)
have the BB storage, either within a compute node or in a dedicated
set of nodes, e.g., IO forwarding nodes, inside the cluster. In Fig-
ure 12, we compare the (a) capacity and (b) bandwidth of the aggre-
gated system memory, BB, and PFS of each of these seven systems,
i.e., (a) ΣMemoryCap:PFSCap:BBCap and (b) ΣMemoryBW:PFSBW:BBBW,
respectively. From Figure 12(a), we see that the BB capacity of
most machines range between the capacity of memory and PFS
except for Tianhe-2A, which employs SSDs in its 256 IO forwarding
nodes [28]. On average, the BB capacity is about 3× larger than
the memory capacity, and the K Computer exhibits the highest
ratio, i.e., 8× larger than the memory capacity. Similarly, the BB
bandwidth also ranges between the memory bandwidth and the
PFS bandwidth, as depicted in Figure 12(b). However, the band-
width gap between memory and BB is noticeably large in all seven
systems. On average, the BB bandwidth in the seven systems is
about 3.2× greater than the PFS bandwidth but also about 3,065×
slower than the total memory bandwidth. In addition, compared
to the earlier systems (e.g., K Computer, Cori, etc.), Summit and
Sierra provide a signi�cantly higher BB bandwidth (i.e., 9.7 TB/s
and 9.1 TB/s respectively) with a less number of compute nodes
and SSDs.

BBs are much lower in capacity compared to the PFS and can typ-
ically accommodate 2-3 snapshots of a system memory checkpoint
(e.g., Summit’s 512GB of DRAM compared to 1.6TB of node-local
SSD.) Another emerging provisioning strategy is to combine the
salient properties of a BB (high rates) and a PFS (better reliability
and capacity) into a single �ash-based storage tier (e.g., the Perl-
mutter system at NERSC in 2020). While it can o�er better rates,
a high-capacity, all-�ash tier will be cost prohibitive (Perlmutter’s
all-�ash PFS o�ers 4TB/s but only around 30PB). The intent is for
such a tier to be backed by a project or a campaign storage with
larger capacity. On the �ip side, future systems such as OLCF’s
Frontier system in 2021 will continue to provide a node-local �ash-
based BB and an HDD-based PFS, with 2-4x capacity and bandwidth
compared to OLCF’s Summit BB and PFS, respectively (BB: 7.4PB,
9.7TB/s; PFS: 250PB, 2.5TB/s; the PFS also caters to medium-term
analysis needs like a project store). Consequently, the deep-storage
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Figure 13: Performance trend in the interconnect network. (a)
shows the interconnect network performance in processing all-to-
all communication. (b) demonstrates that the interconnect network
performance does not exhibit a strong correlation to the HPL per-
formance e�ciency.

hierarchy on the high-end systems is still evolving to better �t the
various usage scenarios at the respective centers.

4.2.5 Interconnect Network. The interconnect performance is a
crucial factor that a�ects the capability of a supercomputer when
it comes to processing large-scale, inter-node jobs. We summa-
rize the networking performance characteristics of the 28 recent
top supercomputers in Figure 13. Note that we could not �nd
the bisection bandwidth information from seven systems (marked
’·’ in Table 2) and exclude such systems in Figure 13. First, Fig-
ure 13(a) shows the ratio between the bisection bandwidth and the
total injection bandwidth (NetworkBWBisection: ΣNetworkBWInjection),
demonstrating how e�ciently the global interconnection network
of a supercomputer can handle the communication requests from
individual compute nodes at the full scale. We observe that the bi-
section bandwidth in most systems are substantially lower than the
total injection bandwidth, i.e., the aggregated injection bandwidth
from all compute nodes. On average, the bisection bandwidth is
32% of the total injection bandwidth for the 20 systems. However,
three supercomputers, i.e., Tsubame-2.0 (ratio of 1.2, non-blocking
fat tree), Titan (1.1, 3D torus), and Summit (1.0, non-blocking fat
tree), show bisection bandwidth exceeding the total injection band-
width, indicating that the bisection bandwidth in these systems
does not impose a bottleneck in global communications such as
all-to-all communication. Although it is ideal to design a system
bisection bandwidth to su�ce the total injection bandwidth, but it
needs to be weighed against design factors, e.g., target application
communication pro�le, budget, etc.

Next, Figure 13(b) shows the correlation between this intercon-
nect performance, i.e., the ratio of the bisection bandwidth to the
total injection bandwidth, and the overall performance e�ciency,
i.e., Rmax : Rpeak (§ 4.1.4). We do not �nd any strong correlation
between the overall performance e�ciency and the interconnect
network performance. This weak correlation suggests that the
network performance does not substantially impact the ability to
acquire a high score in the HPL benchmark. However, depending
on the target environment and mission, attaining a high bisection
bandwidth for a system may be necessary. For instance, a recent
analysis of the �ve-year job log from Titan suggests that over 54%
of the CPU hours were consumed by large-scale jobs (using more
than 2,048 compute nodes) even though 90% of the submitted jobs
were using less than 256 compute nodes [27]. In such an environ-
ment, a su�cient bisection bandwidth is essential for supporting
large-scale jobs.

CN Flops Intranode Connectivity System E�ciency
CPU ACC CPU-CPU CPU-ACC ACC-ACC RSD Performance Power

(GFlops) (GFlops) (GB/s) (GB/s) (GB/s) (σ :µ ) (Rmax :Rpeak ) (GFlops/W)

R.Runner.1 14.4 435.2 12.80 2.00 25.60 1.75 0.76 0.44
R.Runner.2 14.4 435.2 12.80 2.00 25.60 1.75 0.76 0.45
Jaguar.2 288.4 665.0 · 8.00 · 3.17 0.74 0.38
Tianhe-1 270.0 224.0 11.20 8.00 8.00 3.08 0.47 0.37
Nebulae 127.6 515.2 12.80 8.00 8.00 0.87 0.43 0.49
Tsubame-2.0 152.0 1,545.0 12.80 8.00 8.00 1.72 0.52 0.85
Tianhe-1A 140.6 515.0 12.80 8.00 8.00 5.39 0.55 0.64
Titan 144.2 1,341.4 · 8.00 · 2.28 0.65 2.14
Tianhe-2A 422.4 5,033.2 16.00 15.75 · 2.15 0.61 3.32
SW TaihuLight 95.0 3,040.3 16.00 · 16.00 1.75 0.74 6.05
PizDaint 166.4 4,812.8 · 15.75 · 2.22 0.78 8.91
Gyoukou 332.8 23,511.0 · 15.75 15.75 0.46 0.68 14.17
ABCI 3,840.0 28,672.0 20.80 15.75 50.00 5.52 0.61 12.06
Summit 1,105.9 43,008.0 64.00 50.00 50.00 2.06 0.71 14.67
Sierra 1,105.9 28,672.0 64.00 75.00 75.00 2.04 0.75 12.72
Frontera 2457.6 · · · · · 0.60 11.94

Table 3: Performance balance ratio in the 16 recent heteroge-
neous supercomputers. CN Flops column shows the breakdown
of the Flops performance between CPUs and accelerators (ACC)
in a compute node. RSD column lists the relative standard devia-
tion from bandwidth ofmainmemory, HBM, CPU-to-CPU, CPU-to-
ACC, ACC-to-ACC, and network injection. A smaller RSD value in-
dicates a smaller bandwidth variance among those intra-node con-
nections. Frontera [24] intra-node connectivity speci�cation are
not yet publicly available.
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(a) Flops ratio. (b) Memory ratio.
Figure 14: Provisioning the accelerators. (a) shows the ratio of the
system Flops (Rpeak) between CPUs and accelerators. (b) shows the
capacity ratio between system main memory and HBM.

Note that, it would never su�ce to normalize network perfor-
mance of supercomputers solely based on injection bandwidth and
bisection bandwidth because of the intense diversity in hardware
technologies and interconnect topologies. Therefore, we claim
that studying the ratio between the injection bandwidth and the
bisection bandwidth is meaningful to observe the general trend.
Additionally, we collected the performance speci�cations of super-
computers, including the network performance speci�cations, from
publicly available sources such as institution websites or published
papers, instead of relying on our calculations. Based on our data
collection, some supercomputers have been designed to provide a
bisection bandwidth that exceeds the total injection bandwidth.

4.3 Performance Balance in Heterogeneous
Supercomputers

In this section, we analyze the performance balance in intra-node
connectivity of the 16 heterogeneous supercomputers from the
28 top recent supercomputers (§ 4.2). With the emerging hetero-
geneous architectures and data-intensive applications, the perfor-
mance balance has become more important than it was in the past.
For each heterogeneous supercomputer, we further summarize im-
portant characteristics of the intra-node connectivity in Table 3.

4.3.1 Provisioning Accelerators. We �rst analyze the proportion
of accelerators in the overall system performance for the 16 het-
erogeneous supercomputers. Figure 14(a) depicts the Flops (Rpeak)
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ratio between the conventional CPU and the accelerators for each
heterogeneous system (ΣFlopsCPU:ΣFlopsACC). It is clearly noticeable
that the accelerator dominates the overall performance in most
heterogeneous systems. For the 16 heterogeneous systems, the
accelerators contribute to 84% of the system Rpeak on average, and
Jaguar.2 is the only machine wherein the accelerators produce less
than 50% of the system Rpeak. However, Jaguar.2 was in a partial
upgrade phase from Cray XT5 to XK6 in November 2009 (Table 2)
and thus only 960 out of 18,688 compute nodes had GP-GPUs [11].
Recent Summit, Sierra, and Frontera systems rely on the accelerator
for more than 95% of overall system Flops. This indicates that it is
essential to utilize the accelerators e�ciently to fully exploit the
processing power of heterogeneous supercomputers.

Figure 14(b) shows the capacity between DRAM (for CPUs)
and HBM (for accelerators), i.e., ΣDRAMCap:ΣHBMCap. Despite the
strong dominance of the accelerators in Rpeak, the DRAM capacity
still dominates the HBM capacity in many heterogeneous systems.
On average, DRAM provides 68% of total system memory capacity.
Besides the higher cost of HBM, this is also because the CPUs re-
quire more memory for arbitrating the tasks among accelerators
and also for handling other system demands, e.g., running the op-
erating system. In contrast, most accelerators primarily perform
computational tasks. In addition, systems may also be provision-
ing more DRAM to accommodate CPU-only jobs. For instance,
even on heterogeneous systems, there is a signi�cant fraction of
CPU-only jobs due to slower adoption of GPUs (e.g., GPU adoption
on the Titan supercomputer was only 28% in 2018 [27]) or some
codes may not be amenable to the GPU and the system may need
to support them anyway. While such jobs will not be using the
full potential of the system, it may be necessary for the system to
accommodate them in its portfolio. In such cases, one approach to
still e�ectively utilize the node would be to multiplex CPU-only
jobs and GPU-based jobs. For example, one can co-locate the post-
processing analysis of an end-to-end job (simulation + data analysis)
on the same CPU/GPU node, wherein a GPU-based simulation is
multiplexed with the CPU-based analysis in an in-situ fashion [17].

In Figure 14(b), only four heterogeneous systems, i.e., Roadrun-
ner.1, Roadrunner.2, Tianhe-2A, and Gyoukou, feature more amount
of HBM than the amount of DRAM. Interestingly, these four ma-
chines are equipped with accelerators that are not GP-GPUs. For
instance, Gyoukou is equipped with the PEZY-SC2 accelerators [8],
and the accelerator memory provides 95% of the overall memory
capacity. Similarly, Roadrunner and Tianhe-2A adopt the IBM Pow-
erXCell 8i processor and the in-house developed Matrix2000, re-
spectively, for their accelerators.

4.3.2 Memory Subsystem. In § 4.2.2, we have studied the perfor-
mance trend in system memory for 28 recent top supercomputers.
In a heterogeneous architecture, however, accelerators are com-
monly installed with a dedicated memory system that can be inde-
pendent to the system main memory. Therefore, for the 16 heteroge-
neous supercomputers, we separately analyze the performance bal-
ance of the two di�erent memory types, i.e., the system main mem-
ory for CPUs and the HBM for accelerators. First, Figure 15(a) shows
the main memory capacity per CPU core (ΣDRAMCap:ΣCoresCPU)
and the HBM capacity per accelerator core (ΣHBMCap:ΣCoresACC)
for the 16 heterogeneous supercomputers. Noticeably, the per-CPU

core memory capacity (3.5 GB on average) is signi�cantly larger, i.e.,
about 15×, than the per-accelerator core memory capacity (0.2 GB
on average). In addition, the per-CPU core memory capacity is par-
ticularly large in Sunway TaihuLight (8 GB), ABCI (9.6 GB), Summit
(11.6 GB), and Sierra (5.8 GB). As mentioned earlier in § 4.3.1, this
dissimilarity in the per-core memory capacity is attributed to the
fundamental di�erence between CPUs and accelerators in the pro-
cessing architecture and target tasks. Further, HBM is also more
expensive than DRAM, which will likely limit its capacity.

To address such cost constraints, future systems may also con-
sider deeper memory hierarchies, wherein HBM and DRAM is
supplemented with NVM (e.g., more HBM and very little to no
DRAM, but with a large node-local, byte-addressable NVM like
3D XPoint). Technologies are becoming available that can directly
populate GPU’s HBM from the node-local SSDs using GPUDirect
methods, obviating the need to load data onto DRAM and then copy
to the GPU memory. However, this needs to be weighed against the
need to accommodate CPU-only jobs that will need enough DRAM.
In any case, memory hierarchies are likely to get even richer. While
applications prefer a �atter, easily addressable memory address
space, budget constraints will eventually in�uence how deep and
wide the memory hierarchy gets.

Figure 15(b) depicts the memory bandwidth per Flops for CPUs
and accelerators (ΣDRAMBW:ΣFlopsCPU and ΣHBMBW:ΣFlopsACC).
Here, we calculate the ratio of aggregated HBM bandwidth to the
aggregated Flops of accelerators (Table 3). Except for four super-
computers, i.e., Jaguar.2, Tianhe-1, Tianhe-1A, and ABCI, the DRAM
bandwidth to CPU Flops is about 3× greater than the HBM band-
width to accelerator Flops. However, this does not indicate the
DRAM bandwidth is generally higher than the HBM bandwidth,
but is because of the higher processing power of accelerators (Flops
count), as speci�ed in Table 3.

4.3.3 Intra-node Connectivity. In a heterogeneous supercom-
puter, a compute node houses additional hardware, e.g., GP-GPU,
HBM, which requires additional connections, e.g., data exchange
between CPU and GP-GPU (denoted as ACC), inside the node.
Such internal connections, or intra-node connectivity, should be
designed carefully to prevent performance bottlenecks within a
compute node. Therefore, we analyze the balance in the intra-
node connectivity for 16 heterogeneous systems. Figure 16 shows
the bandwidth of �ve internal connections namely HBM-to-ACC
bandwidth, CPU-CPU bandwidth, CPU-ACC bandwidth, ACC-ACC
(peer-to-peer) bandwidth and injection bandwidth. All bandwidth
values are normalized to the system main memory bandwidth of
the corresponding supercomputer. A missing bar indicates that
the corresponding connection is not applicable to the system. For
instance, each compute node in Titan has a single CPU and GPU,
and thus CPU-to-CPU and ACC-to-ACC connections do not exist.
However, each node in Summit has two IBM P9 CPUs with CPU-
CPU connectivity via IBM’s X-Bus, CPU to DRAM connectivity, six
Nvidia Volta GPUs with HBM, resulting in HBM-to-ACC and ACC-
ACC connectivity (NVLink), and CPU-ACC (NVLink) links. Overall,
most internal connections within a compute node are slower than
the system main memory bandwidth, except for the HBM-to-ACC
and the ACC-to-ACC bandwidth. On average, the HBM-to-ACC
bandwidth is 6.2× greater than the main memory bandwidth, while
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Figure 15: The performance balance of memory subsystem in 15 recent heterogeneous supercomputers. The per-core memory capacity if
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the ACC-to-ACC bandwidth is almost comparable (i.e., 0.9×) to the
main memory bandwidth). In addition, the average CPU-to-CPU,
CPU-to-ACC, and network injection bandwidth are 0.8×, 0.3×, and
0.5×, respectively, of the main memory bandwidth. Since the HBM-
to-ACC bandwidth is 6.2x DRAM bandwidth, it might appear that
the DRAM bandwidth is the bottleneck in transferring data between
the CPU and the ACC; however, it should be noted that the CPU-to-
ACC (e.g., PCIe or NVLink) bandwidth is 0.3× DRAM bandwidth,
indicating that it is in fact the slower link in the end-to-end data
path.

An important measure for assessing the balance of the intra-
node connectivity is the variance among the multiple connections.
In Table 3, the RSD column lists the relative standard deviation 4

of main memory, CPU-to-CPU, CPU-to-ACC, ACC-to-ACC, and
network interconnect bandwidth. According to the RSD values
(lower means better balance), Nebulae (RSD=0.87) and Gyoukou
(RSD=0.46) exhibit a well-balanced intra-node connectivity. In
contrast, Tianhe-1A (RSD=5.39) and ABCI (RSD=5.52) show the
most skewed intra-node connectivity ratios among the 15 hetero-
geneous supercomputers. For the 15 heterogeneous supercom-
puters, the ACC-to-ACC connection exhibits the largest impact
on the performance e�ciency of the HPL benchmark, i.e., Rmax

Rpeak
,

compared to the other individual connections. Speci�cally, the
correlation coe�cient (ρ) between the ACC-to-ACC bandwidth
and the performance e�ciency is about 0.6, about 2× greater than
the average from all internal connection bandwidth values, i.e.,
the average ρ from the main memory (ρ=0.1), HBM (ρ=0.3), CPU-
to-CPU (ρ=0.4), CPU-to-ACC (ρ=0.3), ACC-to-ACC (ρ=0.6), and
network injection bandwidth (ρ=0.1). This is because the HPL
benchmark is a compute-intensive task [14], for which accelerators,

4For a standard deviation (σ ) and a mean (µ ), the relative standard deviation (RSD) is σµ .

e.g., GP-GPUs, are heavily utilized in heterogeneous supercomput-
ers (§ 4.3.1). Likewise, the HBM bandwidth (ρ=0.3) a�ects more
than the main memory bandwidth (ρ=0.1) does for HPL. Recent
technologies, such as NVLink [15] and XGMI [6], directly address
this observation, i.e., the necessity for fast communication among
CPUs and accelerators, by introducing a fast and specialized in-
terconnect for accelerators instead of relying on the generic PCIe
interconnect.

It is more important to provision for the eventual application
workload than to simply achieve a balance across all of the intra-
node connections. While a low RSD implies better balance across
the links, it is more important to better provision the links that will
get utilized more, even it results in a higher RSD. Of course, care
should be taken to not let any one connection lag behind too much.
Therefore, provisioning of intra-node connectivity should carefully
consider the application portfolio, their demands on the CPU/ACC
and the associated memory, the anticipated data movement between
the CPU and ACC and between the ACCs, and the potential cost
to e�ciently specify the bandwidth. For example, if the workload
is expected to transfer more data between the processors, it will
be more important to provision a higher CPU-ACC bandwidth
compared to the other links, etc.

5 RELATEDWORK
With the past 27 years of semi-annual reporting, the TOP500 [7]
project has become the most reliable, up-to-date source for studying
the leading technical trends of the world’s most powerful supercom-
puters. Particularly, Top500 adopts the High Performance Linpack
(HPL) benchmark [14] to normalize and rank the performance of
supercomputers. Due to its long history and abundant resources,
several prior reports have studied historical and architectural trends
in supercomputing by analyzing the data from the Top500 project.
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For instance, an earlier report in 2001 [21] summarized the super-
computing history based on the Top500 data. A study in 2008 [20]
also provided statistical summaries of supercomputer architectures
and future performance predictions based on the Top500 data. Sim-
ilarly, a recent study [16] analyzed the architectural trend of super-
computers until 2012, and anticipated the future trends based on the
past tendency. Compared to such prior studies, this paper not only
provides the most up-to-date analysis of its kind but also performs a
deeper analysis for revealing the trend in the performance balance,
which is often overlooked in prior reports.

There are other ranked lists for complementing the sole per-
formance metric of HPL [25], including the Gordon Bell Prize [1]
(focused on application performance), IO500 [5] (specialized in the
I/O performance), Green500 [3] (assessing the power e�ciency),
and Graph500 [2] (measuring the parallel graph processing capa-
bility). Despite their usefulness, we do not include such projects
in this study especially due to insu�cient resources and history
compared to the Top500 project.

There exist a few studies that have addressed the increasing
architectural complexity in supercomputers and the consequent im-
portance of the performance balance in the system design [19, 26].
For instance, an earlier study [19] indicated that the performance
of subsystem components in a supercomputer, e.g., memory, disk,
network, etc., should be comparable to the processing performance
of CPU. However, the study is out dated and thus does not con-
sider recent technologies such as accelerators or burst bu�ers. A
recent study [26] analyzes the architecture and the performance
balance in three Department of Energy (DOE) supercomputers, i.e.,
Titan, Summit, and Sierra. Despite its technical details, the study
only discusses the architectures of the three aforementioned su-
percomputers and is limited for demonstrating the overall trend in
supercomputing. Similarly, there exist other studies [12, 18] that
primarily analyzed a single performance aspect of supercomputers,
e.g., accelerator, �le system, interconnect network, etc. In contrast,
this paper thoroughly analyzes the architectural trend and perfor-
mance balance in memory subsystem, �le system, interconnect
network, and intra-node connectivity in recent supercomputers.
Further, we believe that the HPCG benchmark [4] suitably com-
plements the HPL benchmark by including more diverse parallel
application models. We are planning to cross analysis the results
from both benchmarks in our future work.

6 CONCLUSION
In this paper, we have analyzed over 10,000 supercomputers from
Top500, and presented recent architectural trends in leading su-
percomputers. Furthermore, we have analyzed the performance
balance trends for the top supercomputers in the past decade. Par-
ticularly, our analysis is focused on revealing the trend in the per-
formance balance, which has been disregarded in the prior analysis
reports. We claim that our analysis will provide a useful guideline
to understand the architectural trends in leading supercomputers
and also to design next generation supercomputers.
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