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ABSTRACT
Flooding in coastal cities is increasing due to climate change and sea-level rise, stressing the

traditional stormwater systems these communities rely on. Automated real-time control (RTC) of

these systems can improve performance, and creating control policies for smart stormwater systems

is an active area of study. This research explores reinforcement learning (RL) to create control policies

to mitigate flood risk. RL is trained using a model of hypothetical urban catchments with a tidal

boundary and two retention ponds with controllable valves. RL’s performance is compared to the

passive system, a model predictive control (MPC) strategy, and a rule-based control strategy (RBC).

RL learns to proactively manage pond levels using current and forecast conditions and reduced

flooding by 32% over the passive system. Compared to the MPC approach using a physics-based

model and genetic algorithm, RL achieved nearly the same flood reduction, just 3% less than MPC,

with a significant 88× speedup in runtime. Compared to RBC, RL was able to quickly learn similar

control strategies and reduced flooding by an additional 19%. This research demonstrates that RL can

effectively control a simple system and offers a computationally efficient method that could scale to

RTC of more complex stormwater systems.
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HIGHLIGHTS

• Reinforcement learning (RL) creates policies for real-time coastal stormwater system control.

• RL’s ability to mitigate flooding and manage ponds is compared to a passive system, model

predictive control, and rule-based control.

• RL was more efficient than model predictive control using a physics-based model and genetic

algorithm.

• RL’s ability to mitigate flooding exceeded the passive system and rule-based control.
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INTRODUCTION
As the frequency and intensity of storms increase due to

changes in climate, the ability of existing stormwater infra-

structure to mitigate urban flooding is being increasingly

stressed (Mynett and Vojinovic ; Berggren et al. ;

Neumann et al. ; Wuebbles et al. ; Mounce et al.

). In coastal cities, gravity-driven stormwater systems

are critical for flood management, but their functionality is

also being reduced by sea-level rise (Sadler et al. ).

These stressors, combined with the flat, low elevation topo-

graphy of many coastal cities, mean that these communities

are already experiencing increased flooding during high tide

events (Sweet and Park ; Moftakhari et al. , ).

Advances in urban hydroinformatics (Mynett and

Vojinovic ), including smart stormwater systems

(Kerkez et al. ), provide promising tools and approaches

to improve stormwater system performance in coastal com-

munities. In the smart stormwater system approach, existing

stormwater systems are retro-fitted with real-time sensors

and actuators (e.g., remotely controlled valves and pumps)

to allow active monitoring and control. Active control is a

cost-effective way to more efficiently use the existing

capacity of stormwater infrastructure (Jose Meneses et al.

). In addition, active control can allow a system to func-

tion as a whole, which can be much more effective than a

piece-wise capital improvement of passive infrastructure sys-

tems (Wong and Kerkez ).

Key to the effectiveness of active systems is the use of

real-time control (RTC) (Schwanenberg et al. ; Kerkez

et al. ; Mounce et al. ). RTC uses streaming sensor

data (i.e., current rainfall and retention pond depths) to

approximate the current system states. The system state

can then be used to inform changes to control assets (e.g.,

valves, pumps) that adapt the behavior of the system to cur-

rent or forecast conditions. The decisions on when and what

structures to control, and how to change them in order for a

system to meet certain objectives (e.g., minimize flooding,

maintain certain flow conditions), are based on a control

policy. In a smart stormwater system, control policies map

system states, such as water levels in a pipe network, to

actions that need to be taken in order to meet management

objectives (Sadler et al. ). In current practice, control
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policies are often predefined simple heuristics, such as open-

ing a valve when a storage pond reaches a certain depth

(level control or feedback control) and may be based on

the experience of a human operator (García et al. ;

Abou Rjeily et al. ). This heuristic approach may be

effective in simple systems (i.e., a system with only a few

controlled assets); however, it requires that control actions

are predefined for all scenarios and becomes increasingly

difficult as the number of assets grows and/or more external

factors start influencing the system.

Heuristic control can be improved by incorporating

some aspects of feedback control (i.e., system observations)

and feed-forward control (i.e., forecasts and predicted

system states) (Schwanenberg et al. ), termed rule-

based control (RBC) in this research. RBC can be

implemented in stormwater systems based on watershed

characteristics and forecast rainfall data in order to meet

flooding, water quality, and/or channel protection objectives

(Marchese et al. ). By continuously monitoring retention

pond depths and rainfall forecasts, inflow from storm events

can be estimated using simple rainfall–runoff models and

used to inform control decisions. For example, if a storm

event has been forecast, the available volume in a pond

can then be adjusted based on the estimated inflow from

the storm event. This adjustment is made by actuating a

valve at the pond’s outlet that can be opened to drain

water until the necessary storage volume in the pond is

reached. RBC is intuitive to end-users and can be effective

for controlling individual stormwater system components

(OptiRTC and Geosyntec Consultants Inc. ). However,

as system complexity increases (e.g., releases of water need

to be coordinated if multiple ponds drain to the same down-

stream location in order to prevent flooding), RBC becomes

more difficult to implement.

Two approaches for finding control policies for RTC

beyond simple heuristics and RBC include model predictive

control (MPC) and reinforcement learning (RL). MPC uses a

process model to evaluate various control strategies for a

specified control horizon (Camacho and Bordons ;

García et al. ). It has been successfully applied to

large-scale water systems for multi-objective optimization
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(Schwanenberg et al. ) and for stormwater system con-

trol (Sadler et al. , ). Sadler et al. () examined

the effectiveness of MPC for a tidally influenced stormwater

system and successfully found control policies that reduced

flooding compared to the passive system. This particular for-

mulation of MPC used a physics-based stormwater system

model optimized with a genetic algorithm. Using high-per-

formance and cloud-based computing, the authors were

able to speed up this computationally expensive MPC for-

mulation. However, as a limitation of this approach, the

authors indicate that for large real-world stormwater sys-

tems, such MPC techniques could be prohibitively slow for

RTC. When scaled to part of a real-world stormwater

system, Sadler et al. () were able to run MPC for three

simulated actuators and determined that RTC could help

reduce flooding for future sea-level rise scenarios.

RL is a category of machine learning that aims to learn

from trial-and-error experience by interacting with an

environment (Sutton and Barto ). An RL agent does

not have known answers to learn from but instead tries to

maximize the amount of reward it can receive from its

environment by taking certain actions. One of the differ-

ences between RL and MPC is that RL can learn control

policies offline, which moves the computational burden to

prior to taking any actions. The use of RL in water resources

engineering has been compared with Dynamic Program-

ming (DP) for multi-objective reservoir management (Lee

and Labadie ; Castelletti et al. , ; Pianosi et al.

; Delipetrev et al. ). These studies used tabular RL

methods, which can be more computationally efficient

than DP but are constrained to simple systems (i.e., a

small number of potential system states and actions) and

demonstrated that a physics-based model could act as the

environment for RL agents to train on. Recent advances in

deep learning have allowed RL to use neural networks as

function approximators to overcome the limitations of

tabular RL. For instance, Mullapudi and Kerkez ()

demonstrated control of a stormwater system with a Deep

Q-Network (DQN) (Mnih et al. ). By throttling valves,

they were able to make control decisions for a discrete

action space (a limitation of DQN). Their work also high-

lighted how rewards can be shaped for real-time

stormwater control through deep RL and illustrated how

RTC with RL can increase a stormwater system’s effective
://iwaponline.com/jh/article-pdf/23/3/529/892364/jh0230529.pdf
capacity. However, their DQN agent was only reactive to

the current conditions of the stormwater system; effective

RTC strategies should be based on both the current con-

ditions and forecasts. Additionally, discretizing control

actions may not always provide the most efficient policy.

Further research is needed, therefore, to determine if RL

control can be further refined using a continuous action

space that allows any valve position to be used and create

forecast-based predictive control policies.

In this paper, RL is used to create control policies for

RTC of a tidally influenced stormwater system. In addition

to presenting the first work exploring RL for RTC of tidally

influenced stormwater systems, we advance on prior work

in smart stormwater by exploring the Deep Deterministic

Policy Gradient (DDPG) RL algorithm to control valves

over a continuous action space, allowing the agent to

learn more refined control policies. Additionally, forecasts

of rainfall and tide are included as part of the state infor-

mation received by the RL agent, allowing the agent to

learn proactive control strategies. The RL agent’s perform-

ance is compared to (i) a passive, gravity-driven system

(ii) MPC (as implemented by Sadler et al. ()), and

(iii) RBC. Through this comparison, we illustrate the

applicability of RL for RTC of a simulated coastal urban

stormwater system.
METHODOLOGY

In this section, the simulated stormwater system is intro-

duced, a hypothetical scenario for categorizing the impact

of flood events is detailed, and each RTC method is

described. The stormwater system is similar to that used by

Sadler et al. () and is the same for all scenarios (RL, Pas-

sive, MPC, RBC), except that retention ponds in the passive

system have weirs at a fixed elevation to maintain a depth of

water in the ponds while the ponds for the RTC scenarios

have a controllable valve at the bottom of the pond side.

An overview of the methodology used to compare the per-

formance of an RL-controlled stormwater system with the

other scenarios is provided in Table 1. Open-source code

for these scenarios is available on github (Bowes b).

SWMM simulation files and data are available as a resource

on HydroShare (Bowes a).



Table 1 | Overview of methodology for stormwater system control scenarios

Method Valve Training/optimization Control policy Testing

RBC system Controllable
valve at 0 m

N/A Fixed for simulation duration Test on 2010–2019 data

MPC system Controllable
valve at 0 m

Online optimization with
genetic algorithm

Adjusted valve positions for specified time
horizon based on modeled scenarios and
objective functions

Test on first week of
August 2019 data (due
to computational cost)

RL system Controllable
valve at 0 m

Offline training on August
2019 data for 197,000
control steps

Learned policy relating states to actions Test on 2010–2019 data

Passive system Fixed weir at
0.61 m

N/A N/A Test on 2010–2019 data
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Stormwater simulation

Stormwater system simulations are carried out using the

U.S. Environmental Protection Agency’s Stormwater Man-

agement Model (SWMM), version 5. The hypothetical

stormwater system used in this study is a simple model

inspired by conditions within an urban catchment located

in Norfolk, Virginia, USA. It consists of two subcatchments,

two storage units (retention ponds), and pipes going to the

system outfall that discharges to a tidally influenced water-

body (Figure 1). In the passive scenario, each pond has a

weir at a fixed elevation and cannot be completely emptied.

Infiltration and evaporation are excluded in this simple

system as the focus is on flood control. Ponds in the RTC

scenarios have been retro-fitted by removing the weirs and

adding controllable valves (orifices) at the bottom of the

pond side. This allows the full pond volume to act as

active storage that can be adapted for different storm

events. Input to this system is rainfall, which falls onto a sub-

catchment and is transformed into runoff that flows into a
Figure 1 | SWMM simulation schema.
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storage unit. Flow out of the storage units can be regulated

by the valves; both ponds drain directly into a single node

before flowing through two pipe segments to the outfall.

The tail water condition at the outfall is influenced by the

tide level. At high tide, the tail water condition can cause

sea level to partially block the outfall, backing up storm-

water drainage. The physical parameters of the SWMM

model can be found in Table 2.

In this SWMMmodel, flooding can be caused by (i) rain-

fall, (ii) high tide, or (iii) a combination of rainfall and tide.

Flooding caused by these factors can be in the form of the

ponds over-topping or the downstream node J1, which can

be thought of as a roadway storm drain, surcharging.

Ponds can over-top if the subcatchment runoff volume for

a storm event exceeds current pond capacity and inflow is

greater than outflow. Flooding at the downstream node

can occur if the flow from the ponds is not regulated and

coordinated by adjusting the two valves. Node J1 can also

flood if tidal conditions at the outfall are preventing the

normal flow of water from the system or causing backflow

if the tide is especially high.

The pyswmm (McDonnell et al. ) Python wrapper for

SWMM is used for step-by-step running of simulations as

needed for the RTC methods. Each control scenario can be

updated once every 15 min (an adjustable control time step).
SWMM input data

Input data for the SWMM simulation come from observed

data for stations in Norfolk, Virginia (Figure 2). Rainfall

data are collected at a 15-min timestep by the Hampton



Table 2 | Properties of SWMM model

Subcatchment properties

Name Area (hectares) Width (km) Slope (%) Impervious (%)

S1 32 0.46 0.5 30

S2 20 0.61 0.5 45

Storage unit properties

Name Surface area (m2) (constant) Initial depth (m) Max depth (m) Bottom Elev (m)

St1 6,039 0.61 1.41 0.91

St2 4,645 0.61 1.41 0.91

Pipe properties

Name Length (m) Diameter (m) Roughness

C1, C2 122 0.3 0.01

Node properties

Name Max depth (m) Bottom Elev (m)

J2 1.5 0.91

J1 0.6 0.30

Outfall NA 0

Orifice properties

Name Height (m) Discharge coefficient

R1 and R2 0.61 0.65

533 B. D. Bowes et al. | Reinforcement learning for real-time urban stormwater infrastructure control Journal of Hydroinformatics | 23.3 | 2021

Downloaded from http
by guest
on 28 August 2021
Roads Sanitation District; rainfall data for subcatchment S1

is from gauge Rain1 and data for subcatchment S2 is from

gauge Rain2. Rainfall data are cleaned through a number

of checks. First, any values over the 1000-year, 15-min rain-

fall for Norfolk (59.18 mm) are assumed to be erroneous

and removed. Next, missing data in each rainfall time

series are replaced; if both rain gauges are missing values

at the same time stamp, both get zero. Otherwise, if one

station is missing a value but the other is not, the missing

value is replaced with the known value from the other

station. Observed tide level data come from the National

Oceanic and Atmospheric Administration Sewells Point

gauge and are measured at 6-min intervals. For use as an

SWMM boundary condition, tidal data are resampled to

an hourly interval and referenced to the North American

Vertical Datum of 1988 (NAVD88). All of the observed

data are for the period between 1 January 2010 and 6

November 2019 and are divided into individual months to

make simulation run times tractable.

Forecasts were created from the observed data for use in

the various control methods, therefore assuming perfect
://iwaponline.com/jh/article-pdf/23/3/529/892364/jh0230529.pdf
knowledge of future events. A single forecast, in this case,

is an array of values representing the rainfall or tide

measurement over the next n time steps. For example, a

24-h forecast of 15 min rainfall would contain 96 values.

In future work, noise could be added to these forecasts to

explore how RL (or any other RTC method) handles uncer-

tainty, but this is beyond the scope of this research (for

future directions, see Hartono and Hashimoto () and

van Andel et al. (, )).

Flood event classification

In order to quantify the flooding impact, a hypothetical scen-

ario is developed from physical data for Norfolk. In this

scenario, the subcatchments considered are residential neigh-

borhoods where any flooding of the ponds will impact

roadway intersections. The downstream node J1 is considered

a storm drain at a roadway intersection; flooding at this node

will make the intersection impassable if the depth of the flood

water is above a certain threshold. For this hypothetical scen-

ario, 0.2 m of roadway flooding slows traffic considerably, the



Figure 2 | Gauge locations in Norfolk, VA, USA.
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threshold for safe passenger vehicle passage is 0.3 m

(Pregnolato et al. ), and 0.4 m is the limit for safe emergency

vehicle passage. The relationship between flood volume and

depth was developed from digital elevation data from Norfolk

as described in Appendix B. The number, volume, and duration

of these flood events are used as an additional metric for

quantifying flooding along with the total volume.
Implementing RL in stormwater systems

In RL, an agent learns to optimize its behavior by interacting

with its environment (Sutton and Barto ). The environ-

ment is usually modeled as a Markov Decision Process:

〈S, A, P, r, γ〉, where S is the state space, A is the action
om http://iwaponline.com/jh/article-pdf/23/3/529/892364/jh0230529.pdf
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space, P(s0js, a) is the stochastic probability of transitioning

to a new state s0 after taking action a at the current state s,

r(s, a, s0) is the reward function, and γ ∈ [0, 1] is the discount

factor that weighs the importance of short-term and long-

term reward. The RL agent’s goal is to find an optimal

policy that maximizes the expected discounted return:

Gt ¼ rt þ γrtþ1 þ γ2rtþ2 þ � � � ¼
Xk¼0

∞

γkrtþk (1)

where rt ¼ r(st, at, stþ1).

In this paper, the states S are defined as the current depths

and rate of flooding (if any) at the ponds and downstream

nodes (St1, St2, J1), the current valve positions (R1, R2),

the sum of the 24 h rainfall forecast (F) for each subcatchment,

and the mean value of the 24 h tide forecast. These values are

gathered from the SWMM simulation at each control time

step. The actions A that the RL agent can take at any step

are to close or open any valve to any degree. Finally, the

reward r the RL agent receives in this system is based on

how well the agent prevents flooding and maintains certain

target pond water depths. It is defined as:

r ¼ �Σ( flooding) F > δ
�J1flooding � (jSt1depth � targetj þ jSt2depth � targetj) F ¼ 0

�

(2)

where flooding is the flooding rate at each particular node

(St1, St2, J1) and δ represents a forecast rainfall threshold

(>0 in this case); target is the target water depth for the storage

ponds (St1 and St2). In this relatively simple stormwater

system, the target depth is 0.61 m for both ponds. In a real

system, different ponds would most likely have different

target depths; this can be taken into account in the RL

implementation by having different target depths for each

pond in the reward function.

As an example, consider a case where the agent is in a

specific state s in S (e.g., the water depth in a specific

pond is 1.0 m) and takes an action a in A (e.g., completely

opens the valve) with a probability given by the policy

π(ajs). The agent will then transition to a new state s0 with

a probability of Pa
s,s0 ¼ P(s0js, a) (e.g., the water depth in a

specific pond is 0.75 m) and receives a reward r(s, a, s0).



Table 3 | DDPG RL agent architecture and hyperparameter settings

Actor Critic

NN layer Neurons Activation Neurons Activation

Input Current
state s

N/A Current state s and
action a

N/A

Hidden 1 16 RELU 32 RELU

Hidden 2 16 RELU 32 RELU

Hidden 3 8 RELU 32 RELU

Output 1 [R1, R2] Sigmoid 1 [q-value] Linear
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The value of this action depends on the reward that the

agent receives and the discounted value of all the future

rewards if the agent follows the policy afterwards. Using a

discount factor γ, the value of a future reward of x after n

steps is xγn�1. The expected discounted return when starting

in state s, then taking action a, and following π is called the

Q-value function:

Qπ(s, a) ¼ E[Gtjs, a]
¼ r(s, a, s0)þ γ

P
s0∈S

Pa
s,s0

P
a0∈A

π(a0js0)Qπ(s0, a0), (3)

where the second equation is known as the Bellman

equation (Sutton and Barto ).

By having the optimal Q-values, one can find the opti-

mal policy by finding the specific actions in each state that

give the maximum Q-value. However, due to the curse of

dimensionality, this tabular type of Q-learning is limited to

problems with relatively small state and action spaces.

Recent advances in deep learning have been applied to RL

to overcome this problem by using deep neural networks

to approximate value functions instead of storing them in

tables (Mnih et al. ).

In order to have an RL agent that can set the valves to

any position over a continuous action space, the Deep

Deterministic Policy Gradients (DDPG) (Lillicrap et al.

) actor-critic algorithm is used. DDPG uses deep

neural networks to approximate a policy and the difference

between policies, the gradient, is used to update the agent.

In this case, the agent consists of two parts: an actor

which represents the policy, and a critic which estimates

the q-value of actions taken by the actor. During the training

process, the actor is fed information on the state of the

stormwater system and outputs the actions to be taken.

These actions, along with the state information, are used

as input to the critic. The actions and q-value estimates

output from the critic are used to update the agent.

The keras-rl (Plappert ), openai gym (Brockman et al.

), and Tensorflow (Abadi et al. ) python packages are

used to implement the DDPG algorithm for this research.

Each part of the DDPG agent, the actor and the critic, is com-

posed of a deep feed-forward neural network (Table 3). The

hyperparameters of each neural network are determined by

trial and error (Maier et al. ). Through experimentation,
://iwaponline.com/jh/article-pdf/23/3/529/892364/jh0230529.pdf
it can be found that training the RL agent on the August

2019 dataset and looping through the SWMM simulation

approximately 100 times provided enough experience of a

wide range of rainfall and tidal events for the agent to learn

from. This month has a total of 256.54 mm of rainfall over

seven events. The average tide level is 0.16 m with a maxi-

mum value of 1.01 m from Tropical Storm Erin late in the

month. A visualization of these data is given in Figure 4.

RL training and testing are carried out on a standard PC

with 8 cores, 16GB RAM, and an NVIDIA Quadro P2000

Graphical Processing Unit.
MPC settings

The swmm_mpc software developed by Sadler et al. () is

used to implement MPC for comparison with RL; readers

are referred to this paper for full details on the MPC

implementation. Briefly, swmm_mpc uses SWMM as a pro-

cess model and an evolutionary algorithm to search for a

control policy. At each time step in an SWMM simulation,

swmm_mpc runs many variations of the SWMM simulation

in order to determine which control actions minimize an

objective function for a specified time horizon. In this

case, the objective function is based on the amount of flood-

ing and deviations from target water level depths as:

MPC objective function ¼ α(a � v(u, x))þ β(b � d(u, x))
(4)

where v and d are one-dimensional vectors of flood volumes

at each node and deviations from target depths, respectively.

The two-dimensional vectors u and x represent the control
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policies for all controls and the system states, respectively.

The user-defined parameters and their definitions are given

in Table 4. The scalar multipliers α and β are overall weights

for the cost of flooding and the cost of water-level deviations.

These will be adjusted in order to optimize the MPC control.

Because of the computational expense of running

swmm_mpc, where many variants of the SWMM model

have to be executed at each simulated time step to find the

best control actions, a high-performance computer (HPC)

was used to run the software. The HPC computational

resources consisted of 28 cores with a CPU speed of

2.4 GHz, an Intel Xeon processor, and 128 GB RAM.
Rule-based control

RBC was implemented based on documented industry-stan-

dard methods (OptiRTC and Geosyntec Consultants Inc.

; Wright and Marchese ; Marchese et al. ). In

practice, this type of control uses forecasts of rainfall and

watershed characteristics to inform the control of valves on

stormwater assets (wet/dry ponds, bioswales) in order to

meet flood control, water quantity, and/or quality objectives.

Because the current research is done on a simulated

system, the expected flood volume from a forecast of rainfall,

if any, is used to control the level of water in an individual

pond. For example, if a forecast storm event is expected to

cause 1,000 m3 of flooding, the pond’s outlet valve would

open before the storm in order to drain out a corresponding

volume of water plus a 20% safety factor. After the pond’s

depth is drawn down by the appropriate level, the valve

can be closed to retain the incoming stormwater, which

helps improve water quality. In this way, storm runoff

should not flood the pond and will be retained to prevent
Table 4 | MPC cost function parameters

Parameter (description) Value

α (overall flood weight) Scalar

a (individual node flood weight [St1, St2, J1, J2]) [1, 1, 1, 1]

β (overall deviation weight) Scalar

b (individual deviation weight [St1, St2, J1, J2]) [1, 1, 0, 0]

Target depths (m) [0.61, 0.61, NA,
NA]

om http://iwaponline.com/jh/article-pdf/23/3/529/892364/jh0230529.pdf
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flooding downstream. After a storm event, water can be

held in the pond for a specified settling period (24 h in

this case) and then slowly released (over 24 h) to bring the

pond back to its standard operating range. Outside of

storm events, rules can also be in place to maintain the

pond level within the operating range or maintain certain

flow conditions. The exact control rules and their hierarchy,

as implemented in this research, are detailed in Figure 3.
RESULTS

Comparison of RL and passive system

A comparison of the RL agent’s policy against the passive

system shows that the agent can learn to effectively control

valves to maximize its reward. As indicated in Figure 4, the

training data show valves are opened when rainfall is in the

forecast, allowing additional storage space in the retention

ponds. After a storm is over, valve positions are adjusted

again in order to maintain a pond depth close to the target

of 0.61 m. Following this policy allows the RL agent to

reduce total flood volume for this month by approximately

70% (5,936 vs. 19,957 m3) compared to the passive system.

For example, in the first storm of August 2019, both valves

(R1 and R2) are opened to drain water in response to the

rainfall forecast (a detailed figure with this comparison is

available in Appendix A, Figure 1). However, due to the

difference in rainfall on the subcatchments, R2 closes earlier

than R1 in order to maintain the target depth. Directly after

storm events, the RL agent tries to balance returning the

ponds to the target depth and preventing flooding down-

stream at J1. Because the RL agent also needs to maintain

the target pond depths compared to the passive system,

there is an increase in the number of events at the down-

stream node, despite these being minor events.

Applying the policy learned on the August 2019 training

data to the test sets shows that this RL agent has learned a

policy that works well in many other conditions (Appendix

A, Figure 2). Compared to the passive system, total flooding

was reduced by RL in 85 of the 120 months of data (71%). In

particular, this policy works well on test sets with similar

(e.g., August 2018) or larger (e.g., September 2016) amounts

of flooding than the August 2019 training set (the mean total



Figure 3 | Rule-based control hierarchy and settings.
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flood volume for these months was 4,278 m3). In a few cases

(such as April 2019 or September 2017), the RL policy

increases the amount of flooding. These are months with

little or no flooding (mean of 606 m3) and the agent has

learned to respond to rainfall events in a manner that is

not ideal for these months with less flood risk. The agent’s

performance on these months can be improved by increas-

ing the threshold value for rainfall forecasts used in the

conditional reward. For example, if the conditional reward

threshold is increased from 0 to 1.3 mm of rain, the

agent’s performance on months with low flooding is

improved (Appendix A, Figure 2, ‘RL: 1.3’). However, this

is at the expense of performance on the larger storms.
://iwaponline.com/jh/article-pdf/23/3/529/892364/jh0230529.pdf
Overall, the agent trained with the 1.3 mm threshold had

lower flooding than the agent trained with the 0.0 mm

threshold in 28 months (23% of the data), but increased

flooding in the remaining 92 months (77%).

Comparison of RL and MPC

In order to make computational expense tractable, the MPC

setup from Sadler et al. () was only run using data from

the first week in August 2018. However, due to the nature of

this MPC formulation (online optimization using a genetic

algorithm), computational times are still high. Finding an

MPC policy for this week of data took almost 50 h (2 days,



Figure 4 | Comparison of RL controlled and passive system performance on August 2019 training data.

Table 5 | MPC trials and performance comparison with the passive and RL systems for

the first week in August 2019

Model

Alpha
(overall
flood
weight)

Beta
(overall
deviation
weight)

Control
horizon
(h)

Total
flood
volume
(m3)

Accumulated
deviation (m)

Passive N/A N/A N/A 13,586 126.3

MPC1 1,000.0 0.5 1.0 2,767 620.2

MPC2 0.75 0.25 1.0 2,582 614.5

MPC3 1.0 1.0 1.0 2,714 591.5

MPC4 1.0 10.0 0.5 3,929 439.2

RL N/A N/A N/A 4,058 234.5
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1 h, and 48 min); computational time for each 15 min simu-

lated control step is 3.9 min. This is tractable for a simple

system but is partly a function of the simulation length and

would increase with system complexity (Sadler et al. ).

To investigate MPC’s performance for this specific data-

set, several combinations of objective function weights were

tried in order to prevent flooding and maintain target sto-

rage pond depths (Table 5). The best performing of these

combinations is having the flood weight set to 1 and the

deviation weight set to 10 (MPC4). This result was unex-

pected given that an even weighting seems like it would

provide the best balance of flood mitigation and pond

depth maintenance. Further, this MPC formulation was

the only one in which both ponds were not kept empty for

the dry periods in the simulation. A visualization of the pol-

icies carried out by MPC and RL shows that while MPC
om http://iwaponline.com/jh/article-pdf/23/3/529/892364/jh0230529.pdf
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modulated orifice R2 and kept pond St2 close to the target

depth, orifice R1 was slightly open and static for much of

the time (Figure 5). This allowed pond St1 to essentially



Figure 5 | RL and MPC control policies and states for the first week of August 2019.
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empty during dry periods, which is an undesirable behavior.

In contrast, RL was better at maintaining the target depth

before the first storm and between the storm events.
Comparison of RL and RBC

RBC results were generated for the same monthly datasets

used in the RL training and testing. RBC was able to

reduce flooding by 57% for the month of August 2019 com-

pared to the passive system (8,540 vs. 19,957 m3). This

method of control is also able to extend the retention time

of stormwater in the ponds and maintain target pond

depths during dry periods or small rainfall events. Because

this RBC is based on rainfall forecasts (with perfect knowl-

edge of future events), it is able to drawdown ponds prior
://iwaponline.com/jh/article-pdf/23/3/529/892364/jh0230529.pdf
to a storm event based on the expected flood volume

(Figure 6).

The RL agent’s performance on the August 2019 train-

ing data is similar to RBC but has an advantage in that the

entire system state is used to inform control decisions, as

opposed to using only the depth in the individual ponds

(Figure 7). Because of this increased system knowledge

and flexibility in its valve control settings, the RL agent

was able to reduce flooding by 30% over RBC (5,936 vs.

8,540 m3). The RBC logic is based on individual pond

depths; conditions at other parts of the system (e.g., flooding

downstream or tidal influence on the outfall) are only con-

sidered indirectly if they impact pond depth.

Over all the months of data, RBC reduced flooding over

the passive system in 45 months (38%) (Figure 8). However,

these were months with large total flood volumes (mean



Figure 6 | Comparison of RBC and passive system performance on August 2019.
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total flood volume of 8,559 m3). Similar to RL, RBC per-

forms less well on the months with little or no flooding of

the passive system (e.g., February 2019, March 2014,

March 2019) and a few months with more flooding (e.g.,

September 2018, October 2012). In comparison with RL,

RBC had more or equal flooding in 101 months (84% of

data, with a mean increase in flooding of 60%) and reduced

flooding in the remaining 19 months (16% of data, with a

mean decrease in flooding of 25%).

Examining the month of July 2010 shows a situation

where RBC outperforms RL (see Appendix A, Figure 3).

For this month, the difference in flooding between RL and

RBC is relatively small (17,844 vs. 16,311 m3, respectively)

and both reduced flooding compared to the passive system

(21,997 m3), but RBC better maintained the target pond
om http://iwaponline.com/jh/article-pdf/23/3/529/892364/jh0230529.pdf
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depths. This example illustrates the difficulty in shaping

rewards for RL; because the conditional reward function is

based on the rainfall forecast, very small amounts of rainfall

will cause the agent to only be rewarded for preventing

flooding. As mentioned in the RL/Passive system results,

the rainfall threshold used in the reward function can influ-

ence this behavior. However, using a threshold value of

>0 mm lets the agent keep pond St1 higher than the

0.61 m target depth. Because RBC maintained the target

pond depths better than RL in this case, RBC did not have

as much water to drain out of the ponds before the large

storm event at the end of the month.

Examining the months where the passive system had

lower total flooding than RBC helps illustrate its limitations.

For these 75 months, the mean total flooding was 80 m3. For



Figure 7 | Comparison of RL and RBC system performance on August 2019.
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example, in March 2014, RBC increased total flooding of the

system by nearly 5.5 times over the passive system (2,396 vs.

439 m3MG) (see Appendix A, Figure 4).

Flood event classification results

Based on the flood event analysis at the two storage ponds,

RL had the fewest flood events (St1: 22, St2: 26), followed by

the passive system (St1: 41, St2: 42). RBC had the greatest

number of pond flooding events (St1: 56, St2: 59). In

terms of maximum flood volume for a single event, RL

had the lowest, followed by RBC, and the passive system

at pond St1 (27,558, 28,883, 30,094 m3, respectively) and

pond St2 (26,119, 27,331, 27,596 m3). The mean single

event flood volume showed a similar pattern at pond St1

(719, 719, 1,060 m3) and pond St2 (871, 871, 1,136 m3) for
://iwaponline.com/jh/article-pdf/23/3/529/892364/jh0230529.pdf
the RL, RBC, and passive systems, respectively. Flood

event duration at the two ponds was similar for the three

scenarios, with RL having the lowest mean duration (St1:

0.45 h, St2: 0.47 h) followed by RBC (St1: 0.51 h, St2:

0.53 h) and the passive system (St1: 0.73 h, St2: 0.66 h).

Results of flood event classification for downstream

node J1 (a hypothetical roadway storm drain inlet) are

shown in Figure 9. RL had the lowest number of flood

events classified at the 0.2 and 0.3 m thresholds but the high-

est for the 0.4 m threshold (Figure 9(a)). RBC had more

flood events for the 0.2 and 0.3 m thresholds than RL or

the passive system, but the lowest for the 0.4 m threshold.

This was expected, as these control rules manage the two

ponds individually and not as a unified system considering

downstream conditions. Flood volume for the 0.2 and

0.3 m thresholds was similar across the three systems



Figure 8 | Comparison of RL, RBC, and passive system performance on all months of data.
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(Figure 9(c)). At the 0.4 m threshold, however, the two RTC

methods (RL and RBC) had lower minimum, maximum, and

mean flood volumes than the passive system.

Flood event duration for node J1 was lowest for the pas-

sive system, followed by RBC and RL (Figure 9(b)). This

result makes sense when viewed in context with the flood

volumes coming from the upstream ponds. RL prevented

flooding at the ponds by routing more water downstream
om http://iwaponline.com/jh/article-pdf/23/3/529/892364/jh0230529.pdf
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to node J1. RL had a similar mean flood duration to the pas-

sive systems, but a 60% higher maximum, indicating that RL

allowed more low volume, but long duration flood events at

J1 in order to reduce flooding at the two storage ponds. This

behavior is influenced by the reward function; if the reward

function was based on whether or not a node was flooding

instead of the rate of flooding, the agent may have learned

a different trade-off for managing flooding between the



Figure 9 | Number (a), duration (b), and volume (c) of flood events at downstream node J1. Flood volumes at node J1 were categorized as causing �0.2, 0.3, or 0.4 m of water depth on the

roadway.
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three nodes. Due to the lack of system coordination, RBC

had longer duration flood events at J1 than the passive

system, but at lower volumes. In the passive system, the

short duration, but a high volume of flood events at node

J1 shows that without control, this system is flashy, which

is a challenge in many urban systems.
DISCUSSION

One important aspect of any RTC application is the compu-

tational cost, both in terms of when the computation needs

to happen and the time needed to compute a policy. With

the RL algorithm used here, the agent learns offline on a

training dataset. Once learned, the RL policy can be

quickly applied. This formulation of MPC, in contrast,

uses a genetic algorithm to perform on-line optimization

(i.e., the best control actions are not known until the time

that they need to be implemented). In this research, RL

was able to learn a policy in approximately 34 min using

1 month of data on a standard desktop computer. Once

developed, testing the RL policy simply requires running

an SWMM simulation, passing the system state at each con-

trol time step through the agent, and implementing the

resulting control actions (this takes 9 s for the August

2019 training data). Running MPC with the genetic
://iwaponline.com/jh/article-pdf/23/3/529/892364/jh0230529.pdf
algorithm and physics-based model as implemented in

Sadler et al. () required access to a HPC and took

almost 50 h for 1 week of simulation. Because optimization

is on-line, additional testing of MPC on other datasets

would take a similar amount of time and would increase

as the complexity of the system increases (Sadler et al.

). In practice, MPC may only need to run using the

available forecast data (e.g., 18, 24, 36 h), not an entire

week, reducing the computational burden (Sadler et al.

). Additionally, other formulations of MPC could use

a different process model than SWMM (for instance

using a state-space model learned from observed data)

which could dramatically reduce MPC’s computational

cost (Balchen et al. ; Cigler et al. ; Corbin et al.

; Li et al. ; Behl et al. ). The training time for

RL is also dependent on system complexity but needs

further research to determine the feasibility and limitations

for larger, more complex stormwater systems.

The RBC logic used in this research, like RL, can be con-

sidered an offline policy. Instead of an RL agent learning the

control policy by interacting with the system, a human oper-

ator must understand the system well enough to formulate

the rules. The growing adoption of Internet of Things (IoT)

sensors for monitoring water levels provides the data

needed to create control rules. In practice, the amount of

time required to create these rules, and their quality, is
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dependent on factors like the availability of data on the

physical watershed characteristics and the complexity of

the system to be controlled. For the relatively simple

system used in this research, and real single ponds (OptiRTC

and Geosyntec Consultants Inc. ; Marchese et al. ),

developing control rules is feasible. Ensuring coordinated

and effective system-level control, however, will become

increasingly difficult as complexity increases. As an

example, the rule for valve position when trying to maintain

the target depth was originally to completely open the valve.

Through simulation, it was found that this often caused

increased flooding at the downstream node. Adjusting that

rule to only open the valve 50% when maintaining the

target depth helped eliminate downstream flooding but is

system specific and most likely not optimal. Adding a

depth sensor in the downstream pipe as an additional

factor in the control rules would be possible in this case;

with enough time and IoT sensors, it may be possible to

create control rules considering system-wide performance.

However, there could be many such factors in a real urban

stormwater system and accounting for each one and their

interactions under different flow conditions will quickly

become unmanageable. RL has an advantage here because

the relationships between components of the system do

not have to be known or stated explicitly, but can be learned.

The disadvantage of RL, however, is that it is much less

transparent than RBC in terms of how and why certain con-

trol decisions are made.

While this paper has explored RTC with RL, MPC, and

RBC, there are other methods from the field of control

theory that could be applied to stormwater systems. Wong

and Kerkez () provide an elegant example by using a

linear quadratic regulator to manage storage pond depths

in urban headwater catchments. This uses a state-space

model as a linear representation of a watershed and per-

forms control with a feedback controller. Another key

contribution of this work is the ability to optimize the

location of control structures and show that the entire

system does not have to be controlled to achieve system-

wide benefits. The state-space representation used by

Wong and Kerkez () or the discrete time dynamic

system shown in Schwanenberg et al. () could be used

in RL or MPC as a replacement to the more computationally

expensive SWMM model to speed up control of larger
om http://iwaponline.com/jh/article-pdf/23/3/529/892364/jh0230529.pdf
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systems, but the full dynamics of the system represented in

physics-based models may be lost.

Groundwater could contribute a significant amount to

retention ponds that are being actively controlled, especially

in coastal cities with high groundwater tables like Norfolk,

Virginia, that respond quickly to storm events (Bowes

et al. ). For a retention pond in Norfolk, we have esti-

mated that groundwater would contribute approximately

0.16 m or 11% of the pond’s volume per hour if the pond

is completely emptied (see Appendix C for details on these

approximations). Considering the storm event of 4–5

August 2019, the RL agent lowers the depth of water in

the simulated ponds by almost 0.61 m over a 24-h period

(Figure 1). Over that time, groundwater would have contrib-

uted an additional 0.71 m or 50% of the pond’s total volume.

This is not currently reflected in the SWMM simulations but

has important implications in practice. While the additional

inflow would most likely not change the general policy

learned by the RL agent (i.e., lowering depths before a

storm and maintaining depths otherwise), a larger valve

may be needed to drain the ponds more quickly or the

agent may need a longer forecast in order to drain the

ponds prior to a storm event. Additionally, evaporation

should be included in these simulations before being applied

to real-world systems.

When implementing any of the RTC methods presented

in this research, the method’s interpretability will influence

its adoption and use by decision makers. While RBC is

easy to understand and highly transparent, MPC is less so,

and RL is the least transparent. The control policies created

by RL, while effective, can cause the system to make

decisions that are non-intuitive to a human operator. There-

fore, fully automating smart stormwater systems with RL

may not be advisable at this time until more testing and

safety controls can be put in place. However, RL could

assist human operators in determining control policies and

support decision making, for example, as part of a rec-

ommendation system (Solomatine and Ostfeld ). RL-

based policies should continue to be trained with new data

as it becomes available to increase confidence that the RL

policies will produce desirable outcomes. This study

shows, however, that even with a single month’s worth of

training data, RL shows great potential for determining

effective control policies.
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CONCLUSIONS AND FUTURE WORK

This research has explored the application of an RL

agent for real-time stormwater system control where

both rainfall and tidal level can impact flooding and

retention pond depths in the system. In contrast to pre-

vious work, this paper used a continuous action space

to create more refined control policies, by implementing

the DDPG RL algorithm. A conditional reward structure

based on the rainfall forecast and inclusion of forecasts

in the system state allowed the RL agent to learn proac-

tive control strategies. The performance of RL was

compared to a passive system as well as two other RTC

methods: MPC and RBC.

Results of this research show that both RL and RBC can

improve stormwater system performance compared to the

passive system. Using a control policy developed from a

single month of rainfall and tide data, RL reduced total

flood volume by 32% over the passive system for the

2010–2019 data. RBC, while only controlling ponds indivi-

dually, still reduced total flood volume by 13% compared

to the passive system. Additionally, this research showed

that RL was able to learn to balance flooding throughout

the system to maximize the conditional reward and meet

the control objectives of mitigating flooding and maintaining

target pond water levels. When implemented using the

SWMM physics-based model, as described in Sadler et al.

(, ), MPC was too computationally expensive to

run for more than a small portion of the datasets. In this

research, RL provided an 88× speedup in the creation of

control policies compared to MPC.

Although the simple stormwater system, which is

inspired by conditions in the coastal city of Norfolk, Virgi-

nia, demonstrates that RL can outperform other methods,

more complex systems will face different computational

burdens that could be a barrier to using such methods in

real-time. This needs to be explored through future research

testing RL on real-world systems. In addition, an alternative

implementation of MPC using a state-space model, instead

of the SWMM model used here, could dramatically reduce

the computational cost for this control method. Lastly, the

feasibility of using, and potentially combining, any of the

RTC methods for decision support to enhance stormwater

system performance should be investigated.
://iwaponline.com/jh/article-pdf/23/3/529/892364/jh0230529.pdf
In order to move this work toward implementation

within real-world systems, it may be valuable to explore

more complex reward functions than the one used in this

study. For example, it may be better to base the reward on

different variables beyond flood volume and pond water

depth. It may be the case that costs due to valve operation

and drainage of ponds in specific cases are higher than a

small amount of flooding that does not have a societal

impact. Additionally, the flow rates and velocities in the

system may have additional restrictions to consider in the

reward function (e.g., maintaining certain flow conditions

for water quality or stream biota health or preventing flow

velocities that can cause soil erosion). More complex

reward functions can be explored in future work to account

for more complex situations, move towards the control of

real systems, and integrate specific characteristics of valves

and ponds in real-world systems. Finally, this paper trained

an RL agent on a single month of data. In future research,

the sensitivity of the algorithm to the amount and diversity

of the data during training should be investigated. This will

help construct a trade-off analysis between the amount of

data needed, the training time required, and the accuracy

of the predictive models needed for the training procedure.
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