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Abstract
Climate change and sea level rise have increased the frequency and severity of flooding 
events in coastal communities. This study quantifies transportation impacts of recurring 
flooding using crowdsourced traffic and flood incident data. Agency-provided continuous 
count station traffic volume data at 12 locations is supplemented by crowd-sourced traf-
fic data from location-based apps in Norfolk, Virginia, to assess the impacts of recurrent 
flooding on traffic flow. A random forest data predictive model utilizing roadway features, 
traffic flow characteristics, and hydrological data as inputs scales the spatial extent of traf-
fic volume data from 12 to 7736 roadway segments. Modeling results suggest that between 
January 2017 and August 2018, City of Norfolk reported flood events reduced 24 h city-
wide vehicle-hours of travel (VHT) by 3%, on average. To examine the temporal and spa-
tial variation of impacts, crowdsourced flood incident reports collected by navigation app 
Waze between August 2017 and August 2018 were also analyzed. Modeling results at the 
local scale show that on weekday afternoon and evening periods, flood-impacted areas 
experience a statistically significant 7% reduction in VHT and 12% reduction in vehicle-
miles traveled, on average. These impacts vary across roadway types, with substantial 
decline in traffic volumes on freeways, while principal arterials experience increased traffic 
volumes during flood periods. Results suggest that analyzing recurring flooding at the local 
scale is more prudent as the impact is temporally and spatially heterogeneous. Further-
more, countermeasures to mitigate impacts require a dynamic strategy that can adapt to 
conditions across various time periods and at specific locations.
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1  Introduction

Recurring flooding is a type of disruption commonly observed in coastal cities due to heavy 
rainfall, high tides, or both. Historically, recurring flooding has been a low-frequency, low 
spatial-, and temporal-scale disruption to the transportation system, assumed to have minor 
impacts. However, in recent years, rising sea levels and coastal flooding are increasingly 
affecting coastal communities across the USA, with almost 30 coastal cities witnessing 
more than double the number of annual flood days in the 2010s as compared to the 1950s 
(US EPA 2016, p. 36). NOAA (Sweet et al. 2016, p. 17) projects tide-related flooding in 
east coast cities in the USA to increase threefold by 2030 and tenfold by 2050, relative 
to 2019 estimates. Tidal flooding, combined with rainfall-induced flooding, is expected to 
increase the number of flood events in these cities even further. With continued relative sea 
level rise, recurring flooding is expected to occur more frequently, and propagate to more 
inland locations.

As recurrent flooding frequency and intensity increases, there is a growing need to 
understand the subsequent impacts of these flood events on people and civil infrastructure 
(traveler response, frequency and duration of roadway closures, reduction of infrastructure 
life, impact on stormwater drainage capacity, etc.). Coastal recurring flooding is considered 
a minor disruption compared to consequences of catastrophic storms. However, inundated 
areas in coastal cities greatly deteriorate the mobility of road users, by increasing travel 
delay and by disrupting their ability to complete trips. The existing literature on transpor-
tation disruptions due to flooding are largely focused on major storms, with much of the 
research oriented towards evacuation and rehabilitation efforts, and not the recovery of 
daily transportation activities.

Only a few studies have examined the transportation impacts of recurring flooding 
through projected data and scenario analysis (e.g., Suarez et al 2005; Chang et al 2010). 
Due to lack of availability of real-time crowdsourced datasets, none of the previous stud-
ies have used empirical data to observe the impacts of recurrent flooding on the roadway 
network. This study is the first to utilize empirical data to examine the impact of recur-
ring flooding on roadway users, using a combination of agency-provided and crowdsourced 
datasets in Norfolk, Virginia. The analysis in this study is twofold: first, analyzing the daily 
(24 h) impacts on a citywide scale using agency-provided flood report data, then analyzing 
the time-of-day (TOD) impacts on a localized scale using crowdsourced flood report data.

2 � Literature review

There are few studies focused on recurrent flooding in the transportation infrastruc-
ture resilience literature due to its historical categorization as low severity and low fre-
quency. Among studies examining recurring flooding events, most use projected trans-
portation and hydrological data to create disruption scenarios for predicting roadway 
impacts. Lu and Peng (2011) developed an accessibility-based analysis to quantify road-
way network vulnerability to sea level rise (SLR). They considered land use and popu-
lation variables in defining an accessibility index in the Miami, Florida network. Their 
model assessed portions of the roadway network and traffic analysis zones that would 
be inundated at different SLR scenarios. Jacobs et  al. (2018) combined flood projec-
tion maps with annual average daily traffic data (AADT) from the US Federal Highway 
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Administration’s Highway Performance Monitoring System along east coast highways. 
They estimated the current total vehicle hours of delay due to recurring flooding at over 
100 million hours annually, and projected this delay will increase to 160 million vehi-
cle-hours by 2020 and 1.2 billion vehicle-hours by 2060. On a citywide scale, Suarez 
et al. (2005) estimated the indirect costs of increased flooding in Boston by examining 
the effects of coastal flooding due to SLR and riverine flooding due to heavy rainfall 
events. The study simulated these effects in an urban transportation model and pro-
jected an increase in delay and lost trips of around 80% in 2100 compared to 2000, 
with an assumed SLR of 0.3 cm per year and an increase in intensity of heavy rainfall 
events of 0.31% per year. Sadler, et  al. (2018) estimated the impact of SLR on flood-
ing of roadways, by running different high tide scenarios for the cities of Norfolk and 
Virginia Beach. Critical roadways vulnerable to flooding were identified based on the 
annual average weekday daily traffic, elevation of roadways, and different high tide and 
storm surge scenarios. The study yielded an annual generalized estimate that nearly 10% 
of major roadways would be affected for every high tide event by the year 2100. As a 
part of a larger study in Portland, Oregon, Chang et  al. (2010) used predicted flood-
ing frequency and locations based on hydrological models to determine the impacts of 
coastal flooding on the roadway network in 2035, using the four-step regional travel 
demand model. The study found an inconsistent relationship between precipitation and 
travel disruption impacts and estimated a negligible change in vehicle-miles traveled 
(VMT). However, vehicle-hours of delay increased by up to 10% in one of the sub-areas 
analyzed.

None of the studies discussed thus far use empirical data for analysis. Only a few stud-
ies have characterized the impact of flood events on transportation systems using empirical 
data, and these studies focus on large-scale disruptions. For example, New York City taxi 
and subway ridership datasets were made publicly available for 2010 through 2013, dur-
ing which hurricanes Irene and Sandy significantly disrupted the transportation and power 
networks in the area. Zhu et al. (2016) and Donovan and Work (2017) used these datasets 
to propose new methodologies to quantify city-scale transportation system resilience to 
extreme events. Zhu et al. presented resilience curves, which showed that Hurricane Sandy 
had a slower transportation recovery rate than Hurricane Irene. Resilience of the roadway 
network was found to be higher in both disruptions compared to the subway network. In the 
post-disruption period of Hurricane Sandy, Donovan and Work found an increase in delay 
of over two minutes per mile about two days after the hurricane had struck, although a 
faster traffic flow was observed during most of the post-disruption period.

A significant challenge to using real-time data for estimating the impacts of disruption 
incidents is simply the lack of availability of such data through traditional agency sources. 
Installing sensors on the roadway network to obtain comprehensive real-time informa-
tion is cost-prohibitive, which makes passively generated crowdsourced data an attractive 
source for transportation analysis. Crowdsourced data is not regulated and may contain 
erroneous reporting due to misunderstanding, confusion, carelessness, incompetence, or 
even intent to deceive (Ouyang et  al 2016). This data, however, may still contain useful 
information to improve the understanding of any situation. Various studies (e.g., Amin-
Naseri et al. 2018; Lenkei 2018; Goodall and Lee 2019) have conducted analyses to quan-
tify traffic incidents through the crowdsourced navigation app, Waze (owned by Google). 
This study is the first to apply crowdsourced real-time data to assess the impacts of recur-
ring flooding, using citizen-reported flood incident data from Waze and crowdsourced traf-
fic data from location-based service (LBS) app data aggregator Streetlight (founded, 2011). 
The goal of this study consists of two parts to contrast the extent of analysis possible with 
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traditional vs. crowdsourced data: analyzing citywide impacts of recurring flooding using 
agency-obtained flood incident data, and localized impacts using crowdsourced flooding 
incident data.

3 � Data sources

For this study, a combination of agency-provided traffic volume data in limited locations 
and crowdsourced LBS data is used to build a predictive model which estimates the traf-
fic volumes across the entire Norfolk roadway network. Transportation datasets include 
agency-provided roadway geometry data along with agency-provided and crowdsourced 
traffic volumes. Hydrology datasets include agency-provided tide and rainfall data, along 
with agency-provided and crowdsourced flood incident data. The following subsections 
discuss each dataset in detail, and Table 1 shows basic summary statistics for the various 
datasets.

3.1 � Roadway characteristics data

The roadway characteristics considered in the data predictive model consist of geomet-
ric features obtained from Hampton Roads Regional Travel Demand Model (HRRTDM), 
provided by Virginia Department of Transportation (VDOT), and include number of 
lanes, posted speed limit, and per lane capacity for each of 7737 unique links in the city 
of Norfolk. Thus, the roadway network analyzed in this study was limited to the links in 
HRRTDM (shown in blue in Fig.  1), which includes interstates, freeways, arterials, and 
collectors in Norfolk. Minor streets (shown in gray in Fig. 1) are represented by aggregate 
centroid connectors (blue links in Fig. 1 that end at a cluster of gray links), but are not indi-
vidually analyzed.

3.2 � Traffic volume data

3.2.1 � Agency‑provided traffic volume data

VDOT collects traffic volume data at 12 permanent continuous count stations (CCS) on 
freeways and arterials within the city of Norfolk (shown in orange in Fig. 1). This data is 
collected at 15-min intervals throughout the year and, for this study, was obtained at all 12 
count stations for 2017 and 2018. These volumes were used as ground truth traffic volumes 
for model development in the data predictive model framework for volume estimation, 
explained in the Methods section.

3.2.2 � Crowdsourced traffic volume and speed data

Streetlight Data (http://www.stree​tligh​tdata​.com/found​ed 2011) is a commercial plat-
form that provides road segment volume data, origin–destination (OD) analysis data, 
and zonal activity data. In this platform, Streetlight (StL) trip indices (estimated 
link volumes) and travel speeds are projected from signals or pings (called StL trip 
counts) generated from applications using LBS on mobile phones, tablets, connected 
cars, and other electronic devices. LBS data-enabled devices are reported to have an 

http://www.streetlightdata.com/founded
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approximately 23% penetration rate among all traffic (Streetlight Insight 2018). Thus, 
with sufficient samples of StL trip counts across the Norfolk roadway network, Street-
light Data is able to provide significantly greater spatial coverage of traffic volume esti-
mates (StL trip indices) compared to the VDOT CCS data. The network links coded in 
blue in Fig. 1 show the extent of the spatial coverage requested from Streetlight Data for 
this study. Most of the links from the HRRTDM model coincide with the OpenStreet-
Map (OSM) layer used in Streetlight Data. The links in the roadway network that do not 
align with OSM layer either use the volumes of links that they intersect, or are marked 
as not-applicable.

For this study, data was requested from Streetlight Data’s online platform for five TOD 
periods (12a-6a, 6a-9a, 9a-3p, 3p-6p, and 6p-12a) for each day in the study period (January 
2017 to August 2018). The time period classification (within each day) matches the peak 
and off-peak period definitions in the HRRTDM. The platform then processed and filtered 
the data which matched the input requirements and then gave an output file. However, links 
without any StL trip data during a time period are omitted from the Streetlight output file 
(and thus omitted in this study). For the citywide flood impact analysis, 54% of roadway 
links have time period matches with StL trip data, while in the localized flood impact anal-
ysis, 67% of the links have time period matches with StL trip data.

The calibration process of the StL trip indices on these links and in zonal analyses is 
internal to Streetlight Data as a part of their data cleaning and imputation process, but is 
based on AADT metrics from VDOT roadways in Bristol, VA (Streetlight Insight 2018). 
Thus, direct application of the StL trip indices as link volume estimates is inappropriate for 
other parts of Virginia, including Norfolk. In examining the ratio of VDOT CCS volumes 
to StL trip indices for 35 randomly sampled days in 2017, these ratios were closer to 1 dur-
ing peak periods of travel, but ranged from 0.2 to 26 at other time periods in the day (with 
a median value of 1.57 across off-peak periods). Thus, in this study, raw StL trip counts 
are used as an input into a data predictive model which then estimates traffic volumes, 
described in the Methods section.

Fig. 1   City of Norfolk, Virginia roadway network coverage with data sources
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To verify the speed data, StL link speed estimates were compared with INRIX data pro-
vided by RITIS (a relatively more established and commercially available data source which 
estimates travel speeds and travel times based on location information emitted by GPS-based 
mobile devices) for two weekdays in March 2017 across all CCS locations for all time periods. 
There were no statistically significant differences observed when comparing both speed data-
sets. Thus, this study utilizes the Streetlight link travel time data directly in the analysis.

3.3 � Flood incident data

3.3.1 � Agency‑provided flood incident data

Flood incident data from the City of Norfolk was collected from city employees’ reported 
flood locations in a mobile phone application (System to Track, Organize, Record, and Map 
(STORM)). Due to the lack of a timestamp associated with the flood reports (only dates were 
included), flood report data is coded as a binary variable, with any day with one or more flood 
reports considered a flood day (FD) and any day without flood reports considered as a non-
flood day (NFD). The spatial distribution of flood locations could not be considered while 
using the city’s flood incident dataset due to a lack of citywide spatial representation of the 
small sample of reports for each FD. The incident data collected spanned from January 2017 
to August 2018 with floods reported on 10 unique days. This data is used to analyze the city-
wide flood impacts.

3.3.2 � Crowdsourced flood incident data

The mobile navigation application Waze also collects flood incident reports (alongside other 
incident data like road closures and congestion) via their real-time information reporting tool. 
The application provides aggregated user-reported incident data via its Waze for Cities data 
sharing program, open to public entities worldwide. In this study, Waze (2017–2018) times-
tamped and location-specific incident reports related to flooding in Norfolk (106 unique days 
with flooding between August 2017 and August 2018) are analyzed. While the Waze flood 
report data is not comprehensive of all instances of roadway flooding in Norfolk, its spatial 
coverage is significantly greater than the agency data available through City of Norfolk.

3.4 � Hydrological data

The hydrological characteristics considered in this study include rain and tidal gauge data. 
The rainfall data, collected at 15 min intervals, is from the Hampton Roads Sanitation Depart-
ment (HRSD), which has seven rain gauge stations in the city. Tide level data is available 
through the sole tidal gauge in the city at Sewell’s Point, and data collected every six minutes 
is archived and obtained by NOAA Tides and Currents. These two datasets were aggregated to 
match the time periods specified in the traffic volumes data description.
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4 � Methods

The overall framework to estimate citywide impacts of recurring flooding is shown in 
Fig.  2a. For localized impact analysis (Fig.  2b), two components of the framework are 
changed. First, a localized boundary around flood incident reports is selected based on the 
roadway network structure and AADT of adjacent roadway links. Second, Waze flood inci-
dent report data is used in place of the City of Norfolk data.

4.1 � Data predictive model: volume estimation

For the volume estimation step of the flood impact analysis, different roadway, traffic flow, 
and hydrological variables were used to create a data predictive model, which uses a set 
of input variables to provide traffic volume estimates on each roadway link for each time 
period. For the citywide flood impact analysis, the number of lanes, speed limit, and capac-
ity per lane data were collected from the HRRTDM; trip counts and speeds were collected 

Fig. 2   a Citywide flood impact analysis framework. b Localized flood impact analysis framework
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from Streetlight Data; tide levels from NOAA; rainfall values from HRSD (averaged over 
the city); and flood incident reports from City of Norfolk. In the localized impacts study, 
the same datasets are used, except the City of Norfolk flood incident report data is replaced 
by Waze flood incident reports, and the rainfall values are interpolated at the point of the 
flood incident report (from 7 rain gauges across the city, using the inverse distance weight-
ing [IDW] technique in ArcGIS). As seen in Fig. 3, several predictive models were tested 
in this study to predict the link volumes in order to determine a preferred model with the 
best prediction accuracy without overfitting the data.

A linear regression model was first developed as a baseline model for comparison. Clas-
sification and regression trees (CRT) and Random forest (RF) models, which group data 
points with similar dependent variable values together based on their independent vari-
ables, were also developed.

In CRT models, a parent node in the CRT is divided based on any independent variable 
into two child nodes, such that each child node is more homogenous (or less impure) than 
the parent node. Homogeneity is measured by the least squared deviation measure of impu-
rity (within-node variance). The process continues until constraints, such as a minimum 
number of cases per node, maximum tree depth, node homogeneity, or a minimum change 
in improvement, are satisfied. In this study, 70% of the observations were reserved for 
training the dataset, and 30% were reserved for validation. Through trial and error, a 50–20 
split of data in parent and child nodes was used (a minimum of 50 observations from the 
dataset in the parent node, and a minimum of 20 observations in the child node), which 
was pruned to avoid overfitting. Pruning reduces the size of decision trees in an attempt to 
prevent the nodes from being too specific (thereby keeping the model more generalized).

In random forests, similar to the CRT models, a 70–30 split of observations are used 
for training and testing the dataset, respectively. Random sampling of data subsets is per-
formed on the training dataset to fit the samples into a model prediction, while reducing 
the total error in the model. The response variables are divided into groups until the result-
ing predictions reach a minimum amount of node impurity (sum of the squared deviations 

Fig. 3   Traffic volume prediction process
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between the predicted and actual value, a measure of error). Random forests are a strong 
modeling technique and much more robust than a single decision tree. They aggregate 
many decision trees to limit overfitting as well as error due to bias and therefore yield use-
ful results. CRT models are also prone to overfitting the data, with random forest address-
ing the issue by creating various groups of randomly selected regression trees while run-
ning the model.

Once the model is developed, errors are calculated for training and testing the data, 
which are used as criteria for selecting the appropriate model. Errors calculated for these 
models are the root mean squared error (RMSE) and normalized root mean squared error 
(NRMSE), given by Eqs. 1 and 2. 

where i = roadway link, vobs,i = observed VDOT CCS volumes, vmodel,i = predictive model’s 
estimated volumes.

4.2 � Flood impact estimation (citywide and localized analysis)

The citywide impacts of roadway flooding borne by travelers on the Norfolk roadway net-
work are accounted for by comparing the 24 h VHT across the entire city on a day with a 
recorded flood incident versus days without a flood incident. To assess the citywide VHT 
on a FD, the products of the estimated link volume and the average travel time for each link 
are aggregated across all TOD periods (Eq. 3). FD traffic volumes and VHT were com-
pared with an average NFD to estimate the network-wide impacts of recurring flooding. 
For each FD, four NFDs were selected to obtain an average NFD (and its associated link 
volume and travel speeds) (Eq.  4). NFDs are selected from comparable days (workdays 
measured against other workdays, non-work days—weekends and holidays—measured 
against other non-work days) within 3 weeks prior to and after the FD to minimize effects 
of seasonal and weekday versus weekend traffic variation. However, the 3 days immedi-
ately before and after the FD were excluded to minimize potential anticipatory and residual 
traffic effects of the flood incident. Conceptually, this is similar to the approach taken by 
Zhu et al (2016, p. 2599), where the data was compared to the same day in the prior year to 
observe differences in traffic flow while accounting for seasonal traffic variation.

In the localized analysis, Waze flood incident reports are assigned to a TOD flood 
period (FP) based on the timestamp of the report, and the comparable non-flood periods 
(NFPs) are defined as the same TOD periods during the three weeks (of the same day 
type, e.g., workday or non-work day) prior to and after the FP, when no flood incident 
was reported within a one mile radius of the location of the flood incident report. The 
incidents reported in Waze have an associated time duration (time between when a flood 
incident is first reported to 30 min after the last “thumbs up,” indicating that report is 
still true; or until someone reports a “thumbs down,” indicator that the report no longer 
holds true). The maximum duration of an incident reported in Waze is under 3 h, which 
is shorter than any of the TOD periods considered for classification. Thus, the analysis 
here only accounts for impacts within the time period that contains the flood report (and 

(1)RMSE =

�

∑I

i=1

�

vobs,i − vmodel,i

�2

n

(2)NRMSE =
RMSE

vobs,max − vobs,min
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not subsequent time periods). For each FP, all candidate NFPs within three weeks prior 
to and after the FP are considered to obtain an average NFP for link volume and travel 
speed comparisons.

Previous studies have shown that precipitation affects travel decisions and choices 
differently for peak and off-peak periods, weekday and weekend traffic, and in different 
seasons (Böcker et al. 2013, pp. 79–80). Thus, this study distinguishes the FDs (or FPs) 
with rainfall from those without, when considering candidate NFDs (or NFPs). Flood 
events in the study area are assumed to occur due to two environmental conditions: high 
tide, rainfall, or both. The candidate NFDs (or NFPs) for a high tide only FD (or FP) 
were picked from days (or periods) with no rainfall within the comparison window. For 
FDs (or FPs) with rainfall, the NFDs (or NFPs) were chosen from days (or periods) that 
experienced rainfall, but recorded no flooding. Traffic impacts due to flooding are then 
evaluated using Eq. 5, where change in VHT is assessed across links on a FD (or FP) 
compared to a NFD (or NFP).

where i = roadway link, j = time-of-day (TOD) period, K = maximum number of compara-
ble days/periods considered for average NFD/ NFP calculations (4 for citywide impacts and 
all possible NFPs during 3 weeks prior to and after flood periods for localized impacts), 
Δ Travel = change in VHT due to flooding, measured in veh-hrs, tti,j = travel time on seg-
ment i during TOD j on a FD/FP or NFD/NFP, vi,j = traffic volume on segment i during 
TOD j on a FD/FP or NFD/NFP, (VHTi,j)F = vehicle-hours of travel on segment i during 
TOD j on a FD/ FP, (VHTi,j)NF = vehicle-hours of travel on segment i during TOD j on a 
NFD/FP.

4.3 � Localized spatial boundary selection (localized analysis only)

Since crowdsourced flood incident reports from Waze are spatially and temporally dis-
aggregate, it provides an opportunity to analyze flood impacts on a more localized scale, 
as flooding on one roadway link is unlikely to impact traffic throughout City of Norfolk 
in a homogeneous way. Thus, in the localized flood analysis, a spatial boundary can be 
used to define the affected area around the location of the flood incident report. The 
roadway links within the localized boundary were selected as those most likely to be 
affected by the flood incident, based on the network theory measure hub dependence 
(Rodrigue et al. 2017). Hub dependence, or Hvalue, is a measure of a node’s vulnerabil-
ity and represents the share of traffic borne by the highest volume traffic link among all 
links connected to a node, and is calculated as:

(3)VHTiF =
∑

j

(vi,j ∗ tti,j)F

(4)VHTiNF = 1∕K

(

K
∑

k=1

∑

j

(vi,j ∗ tti,j)NFk

)

(5)ΔTravel =
∑

i

[
(

VHTi

)

F
−
(

VHTi

)

NF
]
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where i = current node, j = adjacent node, J = maximum number of nodes that are con-
nected to node j, AADTij = annual average daily traffic of the link between node i and node 
j.

Weak nodes, exhibiting higher hub dependence values, are heavily dependent on the 
conditions of the connected links for movement of traffic, and disruptions on any link con-
necting to the weak node would greatly affect operations at the node. On the other hand, 
stronger nodes with lower hub dependence values have a more even distribution of traffic 
among the links they are connected to. Thus, their operations are less likely to be affected 
by disruptions of travel on any single connecting link. In a sense, nodes with lower hub 
dependence values may be more resilient when facing incidents and disruptions (Ducruet 
2008).

Hub dependence values for all nodes in the network based on 2009 AADT (collected 
from the HRRTDM) were calculated. To define the spatial boundary of roadway links 
impacted by a flood incident report, the node nearest to the flood report observation is 
assigned as the affected node and all the links connected to that node as affected links, by 
default. Then, the Hvalue for nodes connecting to these affected links are compared. If 
the adjacent node has a lower Hvalue than the affected node, it implies that the affected 
node is relatively stronger, and does not rely as much on the adjacent node for movement 
of traffic. In this case, the spatial boundary was cut off at the link leading to the adjacent 
weaker node. On the other hand, if the adjacent node has a higher hub dependence value 
than the affected node, it implies that the adjacent node’s operations are highly affected by 
operations of the affected node. In this case, the adjacent weak node becomes an affected 
node, and the spatial boundary is expanded to include the set of links connected to the new 
affected node(s). A 10% threshold (see Fig. 4) was used to ensure a sufficient difference 
in hub dependence values of adjacent nodes is observed before a boundary is set, and to 
prevent nodes with similar hub dependence values from being excluded from the bound-
ary. The process of increasing the spatial boundary for each Waze-reported flood incident 
is repeated until there is a node that has a minimum 10% smaller hub dependence value 
than its previous adjacent node, or until the boundary of the study network (City of Norfolk 
border) was reached. This process of spatial boundary selection by hub dependence metric 
is illustrated in Fig. 4.

Figure 5 shows an example of the spatial boundary selection starting with a flood report 
assigned to node A with Hvalue = 0.427 . Following the procedure in Fig. 4, the links within 
the localized boundary are shown in yellow. The links connected to node A are included in 
the spatial boundary by default. Next, adjacent nodes B, C, D, and E were evaluated. Since 

(6)Hvalue =

�

AADTij

�

max

∑J

j=1

�

AADTij

�

Fig. 4   Framework for estimating localized spatial boundary of flooding impacts
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the Hvalue of B was greater than that of A, B (and its connecting links) were included in 
the boundary. Moving on to the next adjacent node, H, which has an Hvalue less than 90% 
of node B, the boundary is terminated at node H. This propagation of spatial boundary 
takes place through each link that is connected to node A and terminates when the hub 
dependence value falls below 90% of the previous node’s Hvalue.

5 � Results and discussion

5.1 � Flood impact estimation at CCS locations

Variation of traffic across all VDOT CCS locations with available data was first compared 
to understand the baseline roadway network impacts due to flood incidents. The CCS are 
strategically placed on major arterials and freeways where there are no historic congestion 
or bottlenecking issues to ensure accurate volume estimates. Due to the specific location 
selection criteria and sparse spatial representation of CCS across Norfolk, an accurate esti-
mation of the flooding impacts throughout the network cannot be made, but general trends 
can be observed, as shown in Table 2. The CCS data was collected on the same FDs and 
NFDs (January 2017–August 2018) considered in the citywide flood impact analysis, at 
15 min intervals throughout the day. The table shows average speeds and volumes at across 
15 min intervals.

Fig. 5   Localized spatial boundary assignment with flood incident assigned to Node A
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The CCS volumes and speeds on the 10 FDs (as reported by the City of Norfolk) were 
compared with their respective NFD counterparts. The NFDs used in this study come from 
the 3 weeks within (before and after) the flood incident report day, excluding the week of 
the flood incident. The data was compared at 15 min intervals for the 24 h day and then 
aggregated over the 10 FDs in the 20 month study period. A two-sample, one-tailed paired 
Student’s t test was conducted, and revealed link volumes and speeds at CCS locations 
were statistically significantly lower on FDs than on NFDs (with all p values < 0.01). An 
average 11% decrease in traffic volumes and 7% decrease in travel speeds were observed 
across the CCS locations on FDs. This result suggests that FDs consistently experience 
decreased traffic demand. At the same time traffic volumes are decreased, those who are 
traveling on FDs also experienced slower speeds, which is indicative of increased travel 
times.

5.2 � Traffic volume estimation model training and validation

While general trends of the traffic impacts of recurring flooding can be observed with the 
spatially limited CCS data, a network-wide impact assessment requires more spatial cover-
age. Here, the proposed data predictive model (using agency-provided roadway character-
istics, hydrology data, and flood reports along with crowdsourced traffic flow data) esti-
mates volumes across all freeway and arterial links in Norfolk. To create the ground truth 
dataset for model calibration (training) and validation (testing), all the days in the 20 month 
period were divided into categories based on environmental conditions. The days were cat-
egorized as combinations of three levels of rainfall (rainfall = 0 in., 0 < rainfall ≤ 0.5 in., 
and rainfall > 0.5 in.) and three levels of tide (tide level < 1 ft, 1  ft < tide level ≤ 2 ft, and 
tide level > 2 ft), thus creating 9 combinations of environmental conditions based on rain-
fall and tide levels. Twenty percent of the days in each category were randomly selected to 
create the ground truth dataset, ensuring representation of all combinations of rainfall and 
tide conditions.

Linear regression, CRT, and random forest models were developed with all the variables 
previously mentioned in three categories: hydrological, roadway, and traffic flow charac-
teristics. The model fits (measured by RMSE and NRMSE values), along with statistically 
significant variables, are shown in Table 3 for comparison across models. The two random 
forest model specifications outperformed linear regression and CRT in terms of model fit. 
For random forest models, the first model (RF1) used only the roadway and traffic flow 
characteristics as input variables. In this model, the StL dynamic crowdsourced trip counts 
had less importance than other static variables such as number of lanes and type of day, 
which is counterintuitive. When the hydrological variables are introduced into the random 
forest mode specification (RF2), tide level and rainfall were found to be the least important 
variables, but the StL trip count became the highest significance variable, which is intui-
tive. In the RF2 model, other relatively high importance variables described patterns asso-
ciated with traffic flow in specific environments, such as TOD, per lane capacity, posted 
speed limit, and link speed. This RF2 model specification also proved to be the best per-
forming (with the lowest RMSE and NRMSE).

5.3 � Citywide roadway network impacts

The RF2 model was propagated to the HRRTDM roadway network in Norfolk to predict 
the volumes on each roadway segment across all TODs. The HRRTDM roadway network 
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consists of 7736 segments, which were fed into Streetlight Data to retrieve the associated 
StL trip counts, segment speed, and travel time on each segment. StL trip counts and seg-
ment speed, along with other roadway and hydrological variables, were used as inputs into 
the random forest model (RF2) to obtain volume estimates on FDs and NFDs. Total VHT 
on FDs and NFDs was calculated per Eq. 2. There were 11 FDs recorded in the 20 month 
analysis period by City of Norfolk employees. One of the FDs was discarded due to insuf-
ficient comparable NFDs within the 6 week window. Table 4 shows the total VHT on each 
FD compared to the corresponding NFDs.

Table  4 shows that, based on the predicted vehicle volumes, network-wide VHT was 
consistently reduced on FDs compared to NFDs in the citywide analysis, on average by 
3%. This decrease is consistent with trends in the CCS analysis, though not substantial. 
The result may be attributed to two factors: (1) cumulative change in VHT may not be a 
sufficient metric for quantifying the effect of flooding, and (2) the spatial aggregation at the 
city-level may be too large for assessing the impacts of local recurring flooding. Since the 
VDOT CCS data also showed a reduction in travel speeds and personal vehicle volumes 
on FDs, it is likely that the individual effects of increased travel time and reduced volumes 
were somewhat nullified when multiplying the two for the cumulative effect measured in 
VHT. Decreased network VHT may imply higher rates of abandoned trips, which would 
signify an economic impact of recurring flooding (due to decreased business transac-
tions, work productivity loss, etc.). Considering a net difference in VHT over the roadway 

Table 3   Comparison of data predictive models

Variable importance predictive power of the variables in the random forest model
*High importance variables: normalized variable importance over 0.5
**Low importance variables: normalized variable importance under 0.1

Model type RMSE NRMSE Significant/high 
importance vari-
ables*

Insignificant/low importance 
variables**

Linear regression 2384.43 0.085 Rainfall
Tide level
Flooding
Number of lanes
Posted speed limit
TOD
StL trip counts

Per lane capacity
Segment speed
Type of day

CRT​ 2512.22 0.157 StL trip count
Posted speed limit
TOD

Rainfall
Tide level
Flooding
Number of lanes
Per lane capacity Segment speed
Type of day

RF1 with road-
way and traffic 
characteristics

Train: 1573.97
Test: 3399.23

Train: 0.026
Test: 0.058

TOD
Per lane capacity
StL trip counts
Posted speed limit

Number of lanes
Type of day

RF2 with road-
way, traffic, 
and hydrologic 
variables

Train: 1341.98
Test: 2865.60

Train: 0.022
Test: 0.048

StL trip counts
TOD
Per lane capacity
Posted speed limit
Segment Speed

Type of day
Tide level
Rainfall
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network of the entire city may also temper the more significant local effects of flooding 
experienced by specific areas within the city. Thus, a more spatially disaggregate analysis 
of flooding impacts on the roadway network is necessary to fully understand the effects of 
recurring flooding.

While the sample of flood days is small (N = 10), relationships between hydrological 
variables and traffic impacts on the roadway network still appear to exist. Figure 6a and b 
shows the relationship between rainfall intensity, tide level, and VHT reduction. Increas-
ing rainfall intensity had a relatively consistent positive correlation with reduction of VHT 
(Fig.  6a); however, no relationship appears to exist between tide level and reduction in 
VHT (Fig. 6b). It is possible that effects of tide-induced flooding are more local than that 
of rain-induced flooding. In other words, tide-induced flooding impact roadway segments 
near the shoreline in a spatially and temporally consistent manner. However, this tempo-
ral and spatial granularity cannot be analyzed with the City of Norfolk flood report data, 
which lacks timestamps and representative spatial coverage.

5.4 � Localized roadway network impacts

Using City of Norfolk flood incident reports which are neither spatially nor temporally 
disaggregated, only a citywide analysis of recurring flooding impacts is feasible. How-
ever, Waze flood incident report data contains both timestamp and location (latitude and 
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Fig. 6   Comparison of roadway network impacts by hydrological variables
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longitude) data, allowing for local analysis of recurring flooding impacts. In this section, 
the analysis of recurring flooding impacts is defined by five TOD periods (consistent with 
HRRTDM definitions) and a local geographic boundary around the location of the flood 
incident report (see Sect.  4.3 for methodology for localized spatial boundary selection). 
StL trip count data is too sparse to be aggregated at an hourly interval, particularly for off-
peak travel periods, hence the selection of TOD periods for analysis. Total VHT during a 
flood period (FP) and an average non-flood period (NFP) is estimated using Eqs. 3 and 4, 
after obtaining the link volumes from the RF2 model (normalized RMSE for the training 
data: 0.03, testing data: 0.07). The candidate NFPs used in this study come from 3 weeks 
before and after the flood incident report, excluding any TOD with another reported flood 
incident within one mile radius of the original report. After removing the FPs that did not 
have any candidate NFPs, fell outside the roadway network being analyzed (e.g., on local 
streets, ramps, or centroid connectors), or had insufficient Streetlight Data trip counts to 
predict link volumes inside the localized spatial boundary, 340 flood report observations 
remained (representing 51% of the original Waze flood reported incidents between August 
2017 and August 2018).

A link-by-link impact analysis for all roadway links within the localized boundaries was 
conducted to compare travel during FPs compared to NFPs. The localized network impact 
summary of the link-by-link analysis (categorized by time period) for workdays is shown 
in Table 5.

The discussion about localized impacts of flood incidents here is focused on workdays, 
because the number of Waze flood reports on non-workdays (weekends and holidays) was 
too small per TOD period for analysis (N for each non-workday TOD ranged from 2 to 24). 
On workdays, across almost all time periods, the majority of affected links experience a 
decline in both speed and traffic volume during FPs compared to NFPs (example for 3p-6p 
and 6p-12a time periods shown in Fig. 7), as indicated by the median percent differences 
in Table 5. However, the average link speed and volume changes during FPs compared to 
NFPs are predominantly positive, indicating a few links experiencing significantly higher 
speeds or volumes during FPs. Per Table 5, workday evening (3p-6p) and overnight (6p-
12a) periods experience the most statistically significant reductions in travel speed, traffic 
volumes, and change in vehicle hours and miles of travel during flood periods compared to 
non-flood periods, and are examined in more detail here. As seen in Fig. 7, for the workday 
6p to 12a time period, the affected links observe a maximum 100% decrease in volume, 
while select links experience volume increases in excess of 300%. The significant change 
in traffic volumes in the workday evening and night periods (3p-6p and 6p-12a) is also 
reflected in the VMT measures, which show a reduction in travel during FPs compared to 
NFPs, with an aggregate VMT decline of 12% across all affected links. There are similar 
statistically significant reductions in VHT observed in the evening and night periods, sug-
gesting that road users are either avoiding travel, or changing their destinations.

Figure 8 shows the spatial distribution of links experiencing the greatest increase (top 
tenth percentile, marked in blue) and greatest decrease (bottom tenth percentile, marked 
in orange) in traffic volumes during 3p-6p (Fig. 8a and b) and 6p-12a (Fig. 8c and d). The 
links in black represent all the other links that were considered in the localized spatial 
boundary analysis for the TOD period (middle 80th percentile). A total of 2167 unique 
links are considered in the localized boundary analysis across all time periods, with the 3p 
to 6p time period showing the highest number of impacted links (985 unique links, with 
several links affected multiple times across multiple flood reports between August 2017 
and August 2018). As shown in Fig. 8, the Hampton Boulevard corridor is highly impacted 
during both TOD periods, with some flood incidents causing a large increase in traffic 
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Fig. 7   Distribution of change in traffic volume between flood periods & non-flood periods

Fig. 8   Highly affected links during flood periods
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volumes, and some flood incidents causing a large decrease in volumes, compared to the 
NFPs. In the downtown area, the majority of impacted links experience increased traffic 
volumes. On the other hand, interstate corridors (I-64 and I-264) generally see decreased 
volumes during flood periods. A few of the highly impacted links (in orange or blue) 
appear in both maps, implying that these links (25% of highly impacted links during 3p-6p 
period and 14% of highly impacted links in the 6p-12a period) experience both increasing 
and decreasing traffic volumes during different flood events.

Impacts of flood incidents on the roadway network are also analyzed by roadway func-
tional classification. The functional classification of affected links in the analysis includes 
interstates, minor freeways, principal arterials, major arterials, minor arterials, minor col-
lectors, and local collectors. Figure 9 shows the distribution of links experiencing greatest 
increase and decrease in traffic volume during FPs by roadway functional classification. 
The most impacted links within the localized boundary analysis were found to be inter-
states, principal arterials, minor arterials, and minor collectors (other functional classifica-
tions had less than 5 links impacted in the top and bottom 10th percentiles).

As seen in Fig. 9, there are relatively few links impacted by flooding in the morning 
periods (12a-6a and 6a-9a), which is a result of lower traffic volumes and fewer flood inci-
dent reports for the overnight and early morning periods. In the remainder three time peri-
ods, interstate links within the localized boundary generally observe a decline in traffic 
volumes when a flood incident is reported. Principal arterials experience a decline in traffic 
volumes during the midday period (9a-3p) during FPs compared to NFPs, but see traffic 
volumes rise in the evening and night periods (3p-12a). This implies that during the even-
ing peak and night time periods, when high numbers of flood incidents are reported, more 
road users opt to use the principal arterials (likely switching routes from interstates). It 
is possible that travelers perceive the access-controlled nature of interstate corridors as a 
disadvantage during flood periods, as their ability to switch routes dynamically is limited 
by access to ramps. Minor arterial links also appear to experience increased traffic volumes 
during FPs. Minor collector roads, though affected, do not show a consistent trend in direc-
tion of volume change by time period.

Fig. 9   Distribution of most impacted links by roadway facility type
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6 � Conclusions and limitations

Prior studies examining recurring flooding and subsequent impacts on the transportation 
network have used projected or simulated data. This study is the first to use empirical data 
to assess such impacts, leveraging crowdsourced data to expand the spatial and temporal 
coverage of agency datasets in understanding the dynamic effects of recurring flood dis-
ruptions on roadway users. With recurring flooding becoming an increasing concern for 
coastal cities, this type of analysis demonstrates a framework for combining limited agency 
flood incident report data with crowdsourced flood reports, to understand the subsequent 
impacts on road users (in response to recurring flooding).

The study first estimates the citywide impact of recurring flooding on the Norfolk, Vir-
ginia roadway network. Due to lack of comprehensive traffic volume data, a framework 
to estimate traffic volumes using agency-provided and crowdsourced data was estab-
lished, expanding the spatial coverage of volume data. These volume estimates show a 3% 
decline in VHT on FDs (as compared to NFDs) during the 20 month study period. With 
VHT being a cumulative measure of travel speeds and vehicle volumes, a simultaneous 
decrease in volumes and increase in travel times would not be sufficiently described by a 
single measure like VHT, especially when aggregated across the entire city which contains 
many links unaffected by flood events. Thus, the second part of the study examined the 
localized impacts of recurring flooding near the location of the crowdsourced flood inci-
dent reports. Results suggest that majority of links within impacted areas show a decline 
in speeds and volumes during flood periods. Volume estimates show a significant change 
in traffic volumes in the workday evening and night periods during FPs, with an aggregate 
VMT decline of 12% across all affected links. However, select links experience sizable 
increases in speeds and volumes. There are similar statistically significant reductions in 
VHT observed in the evening and night periods, suggesting that travelers are either avoid-
ing travel, or changing their destinations. Particularly in the evening and night periods, 
localized analysis results point to reductions in travel during FPs, with decreased volumes 
on interstate corridors and increased volumes on principal and minor arterials, compared to 
NFPs (suggesting route shifts as a result of flooding).

Results of this study strongly suggest that the impact of recurring flooding events on 
transportation networks is local; thus, a citywide or regional analysis is not recommended 
due to the heterogeneous effects of flooding across various links. Analysis across a city or 
region may underestimate the impact of recurring flooding on travelers, as they abandon 
trips and shift routes in specific subareas. Spatial and temporal disparities in travel impacts 
are better explained through the localized impact assessment. Since recurring flooding is 
dynamic event, the framework provided in this study can serve as a precursor to identify 
recurring problem areas and periods for agency mitigation. In the case of Norfolk, since 
evening periods are more impacted than morning periods, mitigation efforts could be con-
centrated in key areas during those evening periods.

This study has certain limitations. First, like all studies that use crowdsourced data, the 
fidelity and accuracy of the data is an issue. Waze incident data is reported by Waze users, 
and there is no ground truth roadway flooding data to enable assertion of trustworthiness 
measures on the crowdsourced flood incident data. Regardless of trustworthiness, all Waze 
incident reports are included in the analysis. Second, the ground truth data used to train 
the data predictive model is obtained from VDOT CCS locations which are located mostly 
on principal arterials or freeways. Thus, the model’s ability to predict traffic volumes on 
roads of lower functional classification is limited. In this study, only links contained in the 
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regional travel demand model network are included (thereby excluding roads in the lowest 
functional classifications). Furthermore, there is some spatial mismatch between links in 
the Streetlight Data OSM layer and the HRRTDM roadway network, and these mismatches 
occur mostly on minor roads, further exacerbating the accuracy of volume predictions on 
these links. It is important to note that the results and conclusions in this study are focused 
on major roads, due to these limitations. Lastly, the Streetlight dataset analyzed here only 
considers light duty vehicle travel; thus, heavy vehicle movement is not captured. Diver-
sion from freight schedules incurs significant economic costs, which has not been quanti-
fied with this study.

Nonetheless, the data predictive framework presented in this study can be generalized 
to be applied to other crowdsourced datasets, which are highly valuable when and where 
agency data is limited. This framework is applicable to a wide range of incident analyses 
such as congestion or accident analysis, post-disruption analysis, etc. Additionally, with 
the emergence of smarter cities and increasing availability of crowdsourced data capturing 
real-time traffic flow and hydrological variables, this framework can be a key component 
in strategic traffic rerouting and dynamic stormwater management to mitigate the impacts 
of recurring flooding, to ultimately increase resilience of coastal cities against such events.
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