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In this paper, we study oriented bipartite graphs. In particular, we introduce “bitransitive” 
graphs. Several characterizations of bitransitive bitournaments are obtained. We show 
that bitransitive bitounaments are equivalent to acyclic bitournaments. As applications, 
we characterize acyclic bitournaments with Hamiltonian paths, determine the number of 
non-isomorphic acyclic bitournaments of a given order, and solve the graph-isomorphism 
problem in linear time for acyclic bitournaments. Next, we prove the well-known Caccetta-
Häggkvist Conjecture for oriented bipartite graphs in some cases for which it is unsolved, 
in general, for oriented graphs. We also introduce the concept of undirected as well as 
oriented “odd-even” graphs. We characterize bipartite graphs and acyclic oriented bipartite 
graphs in terms of them. In fact, we show that any bipartite graph (acyclic oriented 
bipartite graph) can be represented by some odd-even graph (oriented odd-even graph). 
We obtain some conditions for connectedness of odd-even graphs. This study of odd-even 
graphs and their connectedness is motivated by a special family of odd-even graphs which 
we call “Goldbach graphs”. We show that the famous Goldbach’s conjecture is equivalent to 
the connectedness of Goldbach graphs. Several other number theoretic conjectures (e.g., the 
twin prime conjecture) are related to various parameters of Goldbach graphs, motivating 
us to study the nature of vertex-degrees and independent sets of these graphs. Finally, we 
observe Hamiltonian properties of some odd-even graphs related to Goldbach graphs for a 
small number of vertices.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

A (simple) directed graph D = (V , E) is bipartite if the vertex set V is partitioned into X and Y such that there is no 
arc between any two vertices of X or between any two vertices of Y . We usually denote such a graph by D = (X, Y , E). 
A directed bipartite graph D = (V , E) is oriented if for any u, v ∈ V , uv ∈ E implies vu /∈ E . An oriented bipartite graph 
D = (X, Y , E) is called a bitournament if for all x ∈ X and y ∈ Y , either xy ∈ E or yx ∈ E . For a directed graph D , the 
undirected graph G(D) obtained from D by disregarding directions of arcs is the underlying graph of D . Moreover two arcs 
e and f of D are adjacent if they have a common end point in G(D). The adjacency matrix M(D) of a directed bipartite 
graph, D = (X, Y , E) is of the following form:
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M(D) =
X Y

X 0 A
Y B 0

where A and B are two (0, 1)-matrices. Note that in the case of an undirected bipartite graph, we have B = AT , but it is 
not true in general for oriented bipartite graphs. D is unidirectional if either xy /∈ E for all x ∈ X , y ∈ Y or yx /∈ E for all 
x ∈ X , y ∈ Y . In this case either A = 0 or B = 0 in M(D).

There are some interesting studies over directed bipartite graphs, oriented bipartite graphs, and in particular, oriented 
trees [4,9,10,16]. For a comprehesive study on bitournaments and in general, multipartite digraphs, one may consult the 
monograph [1], in particular, Chapter 2 [2] and Chapter 7 [18]. In this paper, we introduce bitransitive (directed) graphs. 
Several characterizations of bitransitive bitournaments are obtained. In particular, we show that bitournaments are bitransi-
tive if and only if they are acyclic. As applications of the theorem, we characterize acyclic bitournaments with Hamiltonian 
paths, determine the number of non-isomorphic acyclic bitournaments of a given order, and solve the isomorphism problem 
in linear time for acyclic bitournaments.

Next, we consider the Caccetta-Häggkvist Conjecture that states “Every simple directed graph of order n with minimum 
outdegree at least r has a cycle of length at most dn/re.” The conjecture is open for r = n/3, n/4, n/5 and so on. We prove 
that the result is true for directed bipartite graphs for r = n/3, n/4, n/5. Our main technical contribution is the n/5 case, 
which requires some rigorous analysis of vertex-degrees.

We introduce the concept of oriented odd-even graphs and their undirected counterpart. We characterize the class of 
oriented bipartite graphs and (undirected) bipartite graphs in their terms. In fact, we show that any (acyclic oriented) 
bipartite graph can be represented by some (resp. oriented) odd-even graph. We obtain a necessary condition and another 
sufficient condition for connectedness of odd-even graphs. We study some cases where oriented odd-even graphs become 
unidirectional.

Finally, we introduce Goldbach graphs, a special family of odd-even graphs. We show that the famous Goldbach’s con-
jecture is equivalent to the connectedness of Goldbach graphs. Furthermore, we observed that Maillet’s, Kronecker’s, and 
twin prime conjectures are related to various parameters of Goldbach graphs, especially to the vertex-degrees. So we study 
the nature of vertex-degrees and independent sets of Goldbach graphs. In the concluding section, we observe Hamiltonian 
properties of some odd-even graphs related to Goldbach graphs for a small number of vertices and exhibit a sequence of 
even natural numbers up to 1000 such that for any pair of consecutive numbers in the sequence, one of them is the sum 
of two odd primes or 1 and the other is the difference between them (cf. Appendix B).

Throughout the paper let N denote the set of all natural numbers. If two natural numbers a and b are congruent modulo 
p, then we denote it by a ≡p b. Hence, in particular, for two numbers a and b with the same parity, we write a ≡2 b, and 
if they have the opposite parity, we write a 6≡2 b. We denote the set {1,2, . . . ,n} by [n] for any n ∈ N . For graph theoretic 
concepts, definitions and terminologies, see [17].

2. Oriented bipartite graphs

In this section, we study several classes of oriented bipartite graphs. In Section 2.1, we introduce bitransitive digraphs 
and characterize bitransitive bitournaments. Next, in Section 2.2, we study acyclic bitournaments. Then, in Section 2.3, we 
prove the Caccetta-Häggkvist conjecture restricted to the class of oriented bipartite graphs for some cases that are open for 
general oriented graphs.

2.1. Bitournaments and bitransitive digraphs

We begin with an observation. Oriented trees form an interesting subclass of the class of oriented bipartite graphs. Let 
T be an oriented tree. Then a path in the underlying tree G(T ) of T is called alternating if each pair of adjacent arc are of 
opposite directions in T .

Observation 2.1. In an oriented tree T , there is an alternate path between any two vertices of T if and only if for each vertex v ∈ V (T ), 
either indeg (v) = 0 or outdeg (v) = 0 (i.e., T is unidirectional).

In the following, we introduce bitransitive bipartite digraphs, analogous to transitive general digraphs.

Definition 2.2 (Bitransitive Digraph). An oriented bipartite graph D = (X, Y , E) is called bitransitive if for any x1, x2, y1, y2 ∈
X ∪ Y , x1 y1, y1x2, x2 y2 ∈ E =⇒ x1 y2 ∈ E (see Fig. 1).

We shall now define a digraph labelled by natural numbers that would work as an example of a bitransitive bitournament 
and shall help us to characterize them.

Definition 2.3 (Digraph D S ). Given a non-empty set S ⊆ N , define D S as a digraph with the vertex set S and the arc set 
E = {(a,b) ∈ S × S | a < b and a 6≡2 b}.
2
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Fig. 1. An illustration of bitransitive property

Example 2.4. For any non-empty set S ⊆N , D S = (X, Y , E) is a bitransitive bitournament with X = {u ∈ S | u is even} and 
Y = {u ∈ S | u is odd}.

The following theorem characterizes bitransitive bitournaments. A Ferrers digraph D = (V , E) is a directed graph whose 
successor sets are linearly ordered by inclusion where the successor set of v ∈ V is its set of out-neighbors {u ∈ V | vu ∈ E}. 
It is known that a directed graph D is a Ferrers digraph if and only if its adjacency matrix does not contain any 2 × 2
permutation matrix (called a couple) [3,12]:·

1 0
0 1

¸
or

·
0 1
1 0

¸
.

Theorem 2.5. Let D = (X, Y , E) be a bitournament. Then the following statements are equivalent:

1. D is bitransitive.
2. D has no directed 4-cycle.
3. D has no directed cycle.
4. The matrix M(D) is given by

X Y
X 0 A

Y A
T

0

where A is the adjacency matrix of a Ferrer’s digraph and A is the 1’s complement of A.
5. D ∼= D S (Definition 2.3) for some nonempty set S ⊆N .

Proof. 2 =⇒ 1: Suppose there is no directed 4-cycle in a bitournament D = (X, Y , E). Let u1u2, u2u3, u3u4 ∈ E for some 
u1, u2, u3, u4 ∈ V (D) = X ∪ Y . Then u4u1 /∈ E . Since D is a bitournament, we have u1u4 ∈ E . Hence it follows from Defini-
tion 2.2 that D is bitransitive.

1 =⇒ 3: Suppose D = (X, Y , E) is bitransitive but has a directed cycle. Since D is bipartite, there cannot be any odd cycle. 
Hence the cycle is even. Now let the cycle be (u1, u2, . . . , u2n). We prove by induction that u1u2k ∈ E for all k = 1, 2, . . . , n. 
By induction hypothesis, u1u2(k−1) ∈ E . Now u2(k−1)u2k−1, u2k−1u2k ∈ E . Hence u1u2k ∈ E . So by induction, u1u2k ∈ E for all 
k = 1, 2, . . . , n. Hence u1u2n ∈ E . But we have already u2nu1 ∈ E . Since D is a bitournament, both u1u2n, u2nu1 cannot be in 
E . Hence there is a contradiction.

3 =⇒ 2: Obvious.

5 =⇒ 2: Suppose D ∼= D S for some nonempty set S ⊆ N . Suppose it has a directed 4-cycle (u1, u2, u3, u4). So 
u1u2, u2u3, u3u4, u4u1 ∈ E . This implies u1 < u2 < u3 < u4 < u1 which is a contradiction. So D cannot have a directed 
4-cycle.

2 ⇐⇒ 4: The adjacency matrix A is not of a Ferrer’s digraph if and only if there is a couple in A such that

yr ys

xi 1 0
x j 0 1

Hence A
T

has the submatrix.

xi x j
yr 0 1
y 1 0
s

3
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Thus, xi → yr , yr → x j , x j → ys and ys → xi . Then we get a 4-cycle. Hence A is not the adjacency matrix of a Ferrer’s 
digraph if and only if there is a directed 4-cycle. That is, A is the adjacency matrix of a Ferrer’s digraph if and only if there 
is no directed 4-cycle.

3 =⇒ 5: We prove this by induction on number of vertices of a bitournament D = (X, Y , E). The result is trivially true 
for 2 vertices, one in each partite set. Now suppose there are n + 1 > 2 vertices in D . Now we remove a vertex v from D . 
Then by induction hypothesis, the result is true for the resultant graph, say D1 which has n vertices, i.e., D1 ∼= D S for some 
∅ 6= S ⊆N . Now, let A be the set vertices u of D such that there is a directed path from u to v . Let B be the set of vertices 
w of D such that there is a directed path from v to w . Since there is no directed cycle, A and B are disjoint. Now in D S , 
any two vertices of opposite parity are adjacent and so they belong to different partite sets in D . Thus v cannot be adjacent 
to both of them. Let v ∈ X . Without loss of generality we may assume that other vertices of X are labeled by even numbers 
in D1 for otherwise we increase the label of each vertex in D1 by 1.

Let m be an even number that is greater than all labels of vertices in D1. We label v as m and for each w ∈ B , we relabel 
w as w + m. We first note that adding m does not change the parity for any w in B . Next we prove that this relabeling 
does not violate the adjacency condition. Let there be an arc from w ∈ B to a vertex x in D1. Then by construction x ∈ B . 
Hence all arcs from any w ∈ B go to vertices to B itself. Since the original labeling did not violate the adjacency condition, 
increasing each label by m also does not violate it for arcs from some vertex of B to another vertex of B . Now for the arcs 
from some x /∈ B to some w ∈ B , the adjacency condition is not violated as we have increased the label of w . All arcs from 
v go to some vertex of B . Since v = m and w + m > m, the adjacency condition is not violated for arcs from v to some 
vertex of B . If there is an arc from a vertex x to v , then x ∈ A and since the label of v is higher than any vertex of A, the 
adjacency retains. In all other cases, labels are not changed. Hence the relabeling matches the adjacency condition of any 
arc in D . This completes the proof. 2

The above characterization of acyclic bitournaments in terms of digraphs D S enables us to characterize acyclic bi-
tournaments with Hamiltonian paths, determine the number of non-isomorphic acyclic bitournaments of a given order, 
and solve the graph isomorphism problem for acyclic bitournaments in linear time. We show this in the following sec-
tion.

2.2. Acyclic bitournaments

In this section, we study the class of acyclic bitournaments (or, equivalently bitransitive bitournamemts). First, we show 
that an acyclic bitournament with a Hamiltonian path is unique (up to isomorphism) for a given order. Next, we show that 
the class of acyclic bitournaments can be given an “encoding” such that distinct (non-isomorphic) graphs from the class 
have distinct codes. This encoding enables us to count the number of non-isomorphic acyclic bitournaments and to check 
in linear time whether two given acyclic birtournaments are isomorphic.

Theorem 2.6. An acyclic bitournament D with n vertices has a Hamiltonian path if and only if D is isomorphic to D[n] , where [n] :=
{1,2, . . . ,n}.

Proof. The “if” direction is immediate from the definition of D S (Definition 2.3). In D[n] , we have the Hamiltonian path 
1 −→ 2 −→ · · · −→ n.

For the “only if” direction, let D be an acyclic bitournament which has a Hamiltonian path. By Theorem 2.5 (v), D ∼= D S

for some nonempty set S ⊆ N . Hence, D S has a Hamiltonian path, say a1 −→ a2 −→ . . . −→ an . Now, in D S , for every arc 
xy, we have x < y and x 6≡2 y. Thus, ai < ai+1 and ai 6≡2 ai+1 for each i = 1, . . . , n − 1. Therefore, all elements in the set 
{ai | i is odd} have the same parity while all elements in the set {ai | i is even} have the opposite parity, i.e., i 6≡2 j ⇐⇒
ai 6≡2 a j . Let us map i in D[n] to ai in D S . We have

i → j in D[n] ⇐⇒ i < j and i 6≡2 j ⇐⇒ ai < a j and ai 6≡2 a j ⇐⇒ ai → a j in D S

Hence, this is an isomorphism and D S ∼= D[n] , i.e., D ∼= D[n] . 2
We now define a function that we shall use to encode acyclic bitournaments.

Definition 2.7 (Function βS ). Given a nonempty set S ⊆ N , define the “scaling” function βS as follows. Let the increasing 
order of the natural numbers in S be given by ha1, a2, . . . , ani. Then, βS : S −→N is defined inductively as βS (a1) = 1, and 
for i ≥ 2, βS(ai) = βS(ai−1) + 1 if ai 6≡2 ai−1 and βS (ai) = βS (ai−1) + 2 if ai ≡2 ai−1.

For a nonempty set S ⊆N with ha1, a2, . . . , ani being the increasing order of its elements, we define its “scaled” set Sscl

as

Sscl := {βS(a1),βS(a2), . . . , βS(an)}

4
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Observation 2.8. D S is isomorphic to D Sscl .

Proof. For a digraph D S , let the increasing order of the elements in S be given by ha1, a2, . . . , ani and that in Sscl be given 
by hb1, b2, . . . , bni. Then, by definition of Sscl , for any i, j ∈ [n], we have bi < b j if and only if ai < a j and bi 6≡2 b j if and 
only if ai 6≡2 a j . Hence, by Definition 2.3, D S ∼= D Sscl . 2

The following lemma enables us to give a unique code to each acyclic bitournament.

Lemma 2.9. For two nonempty sets S, T ⊆N , D S is isomorphic to DT if and only if Sscl = Tscl .

Proof. One direction is obvious. Sscl = Tscl =⇒ D Sscl
∼= DTscl =⇒ D S ∼= DT (by Observation 2.8).

For the other direction, we proceed as follows. For a nonempty set S , denote the increasing order of its elements by 
ha1, . . . , ani. Let k be the integer such that a1, . . . , ak all have the same parity but ak+1 has the opposite parity. Let S 0 :=
S \ {a1 . . . , ak}. We claim that Sscl = {1, . . . , 2k − 1} ∪ {s0 + 2k − 1 : s0 ∈ S 0

scl}.
First note that by definition, βS (ai) = 2i − 1 for each i ∈ [k]. Let the increasing order of elements in S 0

scl be hs0
1, . . . , s

0
n−ki. 

Now, we prove by induction that βS (ak+i) = 2k −1 + s0
i for each i ∈ [n −k]. Since ak+1 6≡2 ak , we have βS (ak+1) = βS (ak) +1 =

2k − 1 + s0
1. Therefore, the base case holds. Now suppose βS (ak+ j) = 2k − 1 + s0

j for some j ≥ 1. Then, if ak+ j 6≡2 ak+ j+1, we 
have

βS(ak+ j+1) = βS(ak+ j) + 1 = 2k − 1 + s0
j + 1 = 2k − 1 + βS 0(ak+ j) + 1 = 2k − 1 + βS 0(ak+ j+1) = 2k − 1 + s0

j+1 .

Again, if ak+ j ≡2 ak+ j+1, we have

βS(ak+ j+1) = βS(ak+ j) + 2 = 2k − 1 + s0
j + 2 = 2k − 1 + βS 0(ak+ j) + 2 = 2k − 1 + βS 0(ak+ j+1) = 2k − 1 + s0

j+1 .

Thus, we have proven the claim by induction. Next, suppose D is isomorphic to D S and DT for two sets S and T . Thus, 
D S ∼= DT . Hence, |S| must equal |T |. We prove that Sscl = Tscl by induction on n = |S| = |T |. The base case holds for n = 2, 
since there is only one nonempty bitournament on two vertices which is a single arc, and Sscl = Tscl = {1, 2}. Now suppose 
the result is true for all m ≤ n − 1.

Since D S and DT are acyclic, they must have nonzero source vertices, i.e., vertices with in-degree 0. Again, since they are 
isomorphic, they must have the same number (say k) of source vertices. Note that since these are source vertices, they must 
have the least values in S and T by Definition 2.3 and all of them must have the same parity. Let the digraphs obtained by 
deleting the source vertices from each of D S and DT be isomorphic to D S 0 and DT 0 respectively. Then since D S ∼= DT , we 
have D S 0 ∼= DT 0 . Therefore, since |S 0| = |T 0| = n − k, by the induction hypothesis, we have S 0

scl = T 0
scl. By the claim above, we 

have

Sscl = {1, . . . ,2k − 1} ∪ {s0 + 2k − 1 : s0 ∈ S 0
scl} = {1, . . . ,2k − 1} ∪ {t0 + 2k − 1 : t0 ∈ T 0

scl} = Tscl .

This completes the proof. 2
We are now ready to define the code of an acyclic bitournament.

Definition 2.10 (code(D)). Given an acyclic bitournament D , define code(D) as the sequence obtained by taking the ele-
ments of Sscl in increasing order, where S is a set such that D ∼= D S (see Fig. 2).

Note that by Lemma 2.9, code(D) is a well-defined function. It then follows that code of an acyclic bitournament is 
unique up to isomorphism.

Lemma 2.11. Two acyclic bitournaments D1 and D2 are isomorphic if and only if code(D1) = code(D2).

Proof. Let D1 and D2 be isomorphic to D S and DT for some nonempty sets S, T ⊆N respectively. Then

D1 ∼= D2 ⇐⇒ D S ∼= DT ⇐⇒ Sscl = Tscl (by Lemma 2.9) ⇐⇒ code(D1) = code(D2) (by Definition 2.10). 2
Now, we shall use this encoding of the class of acyclic bitournaments to count the number of non-isomorphic acyclic 

bitournaments of a given order.

Theorem 2.12. Let α be the number of non-isomorphic acyclic bitournaments D = (X, Y , E). Then, α = ¡2n−1
n

¢
when |X | = |Y | = n

and α = ¡m+n¢ when |X | = m 6= n = |Y |.
n

5
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Fig. 2. An acyclic bitournament with its code h1,3,4,5,6,8,10,11i.

Proof. Consider the case that the acyclic bitournament is D = (X, Y , E) with |X | = |Y | = n. By Lemma 2.11, we see that the 
number of non-isomorphic acyclic bitournaments is the number of distinct codes. Note that code(D) = ha1, . . . , a2ni has 
a1 = 1 and must contain n even numbers and n odd numbers as |X | = |Y | = n. For i ∈ [n − 1] let ki denote the number 
of even integers between the ith and the i + 1th odd numbers in the sequence ha1, . . . , a2ni, and kn be the number of 
even numbers after the nth odd number. We claim that two codes ha1, . . . , a2ni and ha0

1, . . . , a
0
2ni differ if and only if their 

corresponding sequences hk1, . . . , kni and hk0
1, . . . , k

0
ni differ.

Let a = ha1, . . . , a2ni and a0 = ha0
1, . . . , a

0
2ni. If a = a0 , then clearly hk1, . . . , kni = hk0

1, . . . , k
0
ni. Now suppose that 

hk1, . . . , kni = hk0
1, . . . , k

0
ni. Then for each i, we prove that the two sets of numbers from the ith to i +1th odd numbers in the 

respective sequences a and a0 are equal. The base case for i = 0 holds as a1 = a0
1 = 1. Suppose it holds for some i ≥ 0. Let the 

i + 1th odd number in a and a0 be a j and a0
j respectively. Now, we have ki+1 = k0

i+1. If ki+1 = k0
i+1 = 0, then, by definition, 

there is no even number between a j (equivalently a0
j) and the next odd number in the sequence. Thus, a j+1 (equivalently 

a0
j+1) must be odd. Since a j+1 ∈ {a j + 1, a j + 2} and a0

j+1 ∈ {a0
j + 1, a0

j + 2}, we must have a j+1 = a j + 2 = a0
j + 2 = a0

j+1, 
where a j+1 and a0

j+1 are the i + 2th odd numbers in a and a0 respectively. Now consider the case when ki+1 = k0
i+1 > 0. 

Then, there are ki+1 even numbers in a (resp. a0) between a j (resp. a0
j ) and the next odd number. These numbers must 

be a j + 1, a j + 3, . . . , a j + 2ki+1 − 1 and a0
j + 1, a0

j + 3, . . . , a0
j + 2ki+1 − 1. The next odd number must then be a j + 2ki+1

and a0
j + 2ki+1 respectively. Since a j = a0

j , these two sets of numbers are equal. We have a j+1 = a0
j+1. Hence, it follows by 

induction that for all 0 ≤ i ≤ n − 1, the numbers from the ith to i + 1th odd numbers are equal in the sequences a and a0 . 
Also since hk1, . . . , kni = hk0

1, . . . , k
0
ni, we have a = a0 .

Therefore, the number of distinct codes is the number of such sequences hk1, . . . , kni. We see that the only constraints 

on ki are that they are non-negative and 
nX

i=1

ki = n. Recall that the number of non-negative integer solutions to the equation 

rX
i=1

xi = s is 
¡s+r−1

s

¢ = ¡s+r−1
r−1

¢
. Hence, there are 

¡2n−1
n

¢
such sequences, i.e., 

¡2n−1
n

¢
distinct codes, and hence there are 

¡2n−1
n

¢
non-isomorphic acyclic bitournaments with partite sets of size n.

For the case when |X | = m and |Y | = n with n 6= m, code(D) = ha1, . . . , an+mi has a1 = 1 and either n odd numbers 
and m even numbers or vice versa. Then, by similar argument as above, the number of distinct codes is the number of 

sequences hk1, . . . , kni such that each ki ≥ 0 and 
nX

i=1

ki = m plus the number of sequences hk0
1, . . . , k0

mi such that each k0
i ≥ 0

and 
mX

i=1

k0
i = n. This is equal to 

¡m+n−1
n−1

¢ + ¡m+n−1
n

¢ = ¡m+n
n

¢
(by Pascal’s identity). Hence, there are 

¡m+n
n

¢
non-isomorphic 

bitournaments in this case. 2
Finally, we give a linear time algorithm to check isomorphism between two given acyclic bitournaments.

Theorem 2.13. There is a linear time algorithm for deciding whether two acyclic bitournaments are isomorphic.

Proof. Suppose we are given two acyclic bitournaments D1 and D2 as input and we need to check whether D1 ∼= D2. We 
describe an algorithm. For each of the digraphs, we do the following. Topologically sort it and obtain an ordering hv1, . . . , vni
of the vertices. We set labels to the vertices using a function ` as follows. Set `(v1) = 1. For i ≥ 2, if vi−1 has an arc to vi , 
then set `(vi) = `(vi−1) + 1. Otherwise, set `(vi) = `(vi−1) + 2. Call the sequences h`(v1), . . . , ̀ (vn)i obtained for D1 and 
D2 as d1 and d2 respectively. We decide that D1 ∼= D2 if and only if d1 = d2.
6
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We first argue the correctness. Let S be the set {`(v1), . . . , ̀ (vn)}. Since D is an oriented bipartite graph, we have as-
signed odd numbers to all vertices in the partite set containing v1 and even numbers to all vertices in the other partite 
set. Thus for any arc (vi, v j), we have `(vi) 6≡2 `(v j). Again, because of the topological sorting, if D has an arc (vi, v j), 
then i < j. Our construction ensures that if i < j, then `(vi) < `(v j). Hence, for each arc (vi, v j), we have `(vi) < `(v j)

and `(vi) 6≡2 `(v j). Therefore, D ∼= D S . It follows from Definition 2.7 and the above construction that Sscl = S . There-
fore, d1 = code(D1). By similar argument, d2 = code(D2). Thus, by Theorem 2.12, we must have D1 ∼= D2 if and only if 
d1 = d2.

Let us now analyze the runtime. Let n = |V (D1)| = |V (D2)| and m = |E(D1)| = |E(D2)|. For digraphs D1 and D2, 
each topological sort takes O (n + m) time. Constructing the labels for each digraph takes O (n) time if the input is 
given in adjacency matrix form. If the input is of the form of adjacency list, then the construction of labels takes 

nX
i=2

out-degree(vi−1) = O (m). Finally checking whether the codes are same takes O (n) time. Hence, we get an O (n + m)

time, i.e., a linear time algorithm. 2
2.3. Caccetta-Häggkvist Conjecture

Here, we note that a conjecture for general directed graphs can be solved to some extent for directed bipartite graphs. 
The Caccetta-Häggkvist Conjecture states: “Every simple digraph of order n with minimum outdegree at least r has a cycle 
of length at most dn/re.” The conjecture has been proved for r ≤ √

n/2 by Shen [13]. For r ≥ n/2 it is trivial since that 
means number of arcs in the graph is at least n2/2 >

¡n
2

¢
, which implies the presence of a 2-cycle. But it is still open for 

r = n/3, n/4, n/5 and so on.
We consider the conjecture for directed bipartite graphs. For any r < n, if there exists a 2-cycle, we are done. So we 

can assume that the graphs are oriented bipartite graphs. Let D = (X, Y , E) be an oriented bipartite graph with partite sets 
X and Y , where |X | = n1 and |Y | = n2 (n1, n2 ≥ 1), and E is the set of arcs. Let V = X ∪ Y be the set of vertices of D
with |V | = n = n1 + n2. Consider the conjecture for r = n/3. Since an oriented bipartite graph does not have a 3-cycle, the 
conjecture implies the following:

Proposition 2.14. There exists no oriented bipartite graph of order n with minimum outdegree at least n/3.

Proof. Suppose d+(v) ≥ n/3 = n1+n2
3 ∀v ∈ V . Then |E| = P

v∈V
d+(v) ≥ (n1+n2)2

3 ≥ 4n1n2
3 > n1n2 which is a contradiction since 

|E| ≤ n1n2. 2
Now we have the following improvement of the above result.

Proposition 2.15. There exists no oriented bipartite graph of order n with minimum outdegree > n/4.

Proof. If ∀v ∈ V , d+(v) ≥ n/4, then |E| = P
v∈V

d+(v) > (n1+n2)2

4 ≥ n1n2 which is again a contradiction as before. 2

Thus, the above proposition can be restated as the following.

Corollary 2.16. In any oriented bipartite graph of order n, there exists a vertex with outdegree at most n/4.

Now by similar calculations it follows that in an oriented bipartite graph with minimum outdegree n/4, every vertex 
has outdegree exactly n/4. Then, n1n2 ≥ |E| = n2/4 = (n1 + n2)

2/4 ≥ n1n2. Therefore, |E| = n1n2 = (n1 + n2)
2/4 and hence, 

n1 = n2. Thus, we see that D is an oriented complete bipartite graph, i.e., a bitournament with |X | = |Y |. Note that since 
n/4 = n1/2 is an integer (the exact outdegree of each vertex), n1 must be even. Since the underlying undirected bipartite 
graph is complete, the in-degree of each vertex must also be n1/2. Therefore, for r = n/4, the Caccetta-Häggkvist conjecture 
for oriented bipartite digraphs can be restated as the following.

Theorem 2.17. Let D = (X, Y , E) be a bitournament with |X | = |Y | = 2m and d+(v) = d−(v) = m ∀v ∈ V = X ∪ Y . Then D contains 
a 4-cycle.

Proof. Consider any 2-path u → v → w in D where u, w ∈ X and v ∈ Y . Let N(w) ⊂ Y be the set of m out-neighbors of 
w . All vertices in N(w) cannot be out-neighbors of u, otherwise d+(u) ≥ |N(w) ∪ {v}| = m + 1 which is a contradiction. 
Hence ∃x ∈ N(w) such that x is not an out-neighbor of u and hence an in-neighbor of u. (Since every vertex in Y is either 
an in-neighbor or an out-neighbor of u). Thus we have the 4-cycle u → v → w → x → u. 2
7
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Remark 2.18. Note that in the case of Theorem 2.17, D cannot be bitransitive by Theorem 2.5.

We now prove the conjecture for the case r = n/5. Since a bipartite graph cannot have a 5-cycle, the case for r = n/5
can be restated as: “An oriented bipartite graph (X0, X1, E) with |X0 ∪ X1| = n and minimum out-degree at least n/5 has a 
directed 4-cycle.”

We use some notations: for i ≥ 0, let Ni(v) denote the ith neighborhood of a vertex v , i.e., the set of vertices which are 
at distance i from v , and let N−1(v) denote the set of in-neighbors of the vertex v .

Lemma 2.19. In a bipartite graph with bipartition (X0, X1) and minimum out-degree at least n/5, if for some i ∈ {0, 1}, |Xi | ≤ α1n

and |X1−i | ≥ α2n, then there exists v ∈ Xi such that |N−1(v)| ≥ α2

5α1
n.

Proof. Since minimum out-degree of a vertex is at least n/5, there are at least α2n2/5 outgoing arcs from X1−i , which are 
“received” by at most α1n vertices in Xi . Hence, by pigeon-hole principle, there exists a vertex v ∈ Xi which “receives” at 

least 
α2n2/5

α1n
many arcs. Thus, |N−1(v)| ≥ α2

5α1
n. 2

Lemma 2.20. Let G = (X0, X1, E) be an oriented bipartite graph that does not contain a 4-cycle and has minimum out-degree at least 
n/5. Let v be a vertex in Xi , for some i ∈ {0, 1}, such that |N−1(v)| ≥ αn. Then

(i) |N1(v) ∪ N3(v)| ≤ |X1−i| − αn

(ii) |N2(v)| ≥ 0.04n
|X1−i |

n − α − 0.2

Proof. Note that if N3(v) ∩ N−1(v) 6= ∅, then there is a directed 4-cycle, which is a contradiction. Since the graph is oriented, 
we also have N1(v) ∩ N−1(v) 6= ∅. Thus, (N1(v) ∪ N3(v)) ∩ N−1(v) = ∅. Hence, |N1(v) ∪ N3(v)| ≤ |X1−i| −|N−1(v)| ≤ |X1−i| −
αn, which proves (i).

Now, consider the graph G 0 induced by N2(v) ∪ (N1(v) ∪ N3(v)). Since it is oriented, the number of arcs in G 0 is at 
most |N2(v)||N1(v) ∪ N3(v)| ≤ |N2(v)|(|X1−i | −αn). Again, the number of arcs in G 0 is at least the number of arcs “exiting” 

N2(v) and N1(v), which is at least (|N1(v)| + |N2(v)|)n

5
≥ |N2(v)|n

5
+ n2

25
. Thus, we get the inequality |N2(v)|n

5
+ n2

25
≤

|N2(v)|(|X1−i | − αn), which gives |N2(v)| ≥ 0.04n
|X1−i |

n − α − 0.2
, and this proves (ii). 2

Now we invoke Lemma 2.19 and Lemma 2.20 repeatedly to prove the following theorem:

Theorem 2.21. An oriented bipartite graph G = (X0, X1, E) with |X0 ∪ X1| = n and minimum out-degree at least n/5 has a directed 
4-cycle.

Proof. Assume that G does not contain a directed 4-cycle. WLOG, let |X0| ≤ |X1|. We prove the theorem by considering the 
following cases:

Case 1. |X1| ≥ 0.75n.
Note that |X0| ≤ 0.25n. By Lemma 2.19, ∃v ∈ X0 such that |N−1(v)| ≥ 0.6n. Now, |N1(v)| ≥ n/5 and N1(v) ∩N−1(v) = ∅ since 
the graph is oriented. Again, |N2(v)| ≥ n/5 and v 6∈ N2(v). Thus |V | ≥ |N−1(v) ∪N1(v) ∪N2(v) ∪{v}| ≥ 3n/5 +n/5 +n/5 +1 =
n + 1, which is a contradiction.

Case 2. 0.65n ≤ |X1| < 0.75n.
Note that 0.25n < |X0| ≤ 0.35n. By Lemma 2.19, ∃v ∈ X0 such that |N−1(v)| > 0.371n. Then, by Lemma 2.20, |N1(v) ∪
N3(v)| < 0.379n and |N2(v)| > 0.223n. Again, by applying Lemma 2.19 on the induced bipartite graph with bipartition 
(N1(v) ∪ N3(v), N2(v)), ∃u ∈ N1(v) ∪ N3(v) ⊂ X1 such that |N−1(u)| > 0.117n. Then, by Lemma 2.20, |N2(u)| > 0.04n

0.033 > n, 
which is a contradiction.

Case 3. 0.6n ≤ |X1| < 0.65n.
Note that 0.35n < |X0| ≤ 0.4n. By Lemma 2.19, ∃v ∈ X0 such that |N−1(v)| ≥ 0.3n. Then, by Lemma 2.20, |N1(v) ∪
N3(v)| ≤ 0.35n and |N2(v)| > 0.26n. Again, by applying Lemma 2.19 on the induced bipartite graph with bipartition 
(N1(v) ∪ N3(v), N2(v)), ∃u ∈ N1(v) ∪ N3(v) ⊂ X1 such that |N−1(u)| > 0.14n. Then, by Lemma 2.20, |N2(u)| > 0.66n, which 
is a contradiction since N2(u) ⊂ X1 and |X1| < 0.65n.

Case 4. 0.56n ≤ |X1| < 0.6n.
8
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Note that 0.4n < |X0| ≤ 0.44n. By Lemma 2.19, ∃v ∈ X0 such that |N−1(v)| > 0.254n. Then, by Lemma 2.20, |N1(v) ∪
N3(v)| < 0.35n and |N2(v)| > 0.27n. Again, by applying Lemma 2.19 on the induced bipartite graph with bipartition (N1(v) ∪
N3(v), N2(v)), ∃u ∈ N1(v) ∪ N3(v) ⊂ X1 such that |N−1(u)| > 0.154n. Then, by Lemma 2.20, |N1(v) ∪ N3(v)| < 0.286n
and |N2(u)| > 0.465n. By applying Lemma 2.19 on the induced bipartite graph with bipartition (N1(u) ∪ N3(u), N2(u)), 
∃w ∈ N1(u) ∪ N3(u) ⊂ X0 such that |N−1(w)| > 0.339n. Then, by Lemma 2.20, |N2(w)| > 0.655n, which is a contradiction 
since N2(w) ⊂ X0 and |X0| ≤ 0.44n.

Case 5. 0.53n ≤ |X1| < 0.56n.
Note that 0.44n < |X0| ≤ 0.47n. By Lemma 2.19, ∃v ∈ X0 such that |N−1(v)| > 0.225n. Then, by Lemma 2.20, |N1(v) ∪
N3(v)| < 0.335n and |N2(v)| > 0.296n. Again, by applying Lemma 2.19 on the induced bipartite graph with biparti-
tion (N1(v) ∪ N3(v), N2(v)), ∃u ∈ N1(v) ∪ N3(v) ⊂ X1 such that |N−1(u)| > 0.176n. Then, by Lemma 2.20, |N1(u) ∪
N3(u)| < 0.294n and |N2(u)| > 0.425n. By applying Lemma 2.19 on the induced bipartite graph with bipartition (N1(u) ∪
N3(u), N2(u)), ∃w ∈ N1(u) ∪ N3(u) ⊂ X0 such that |N−1(w)| > 0.289n. Then, by Lemma 2.20, |N2(w)| > 0.563n, which is a 
contradiction since N2(w) ⊂ X0 and |X0| ≤ 0.47n.

Case 6. 0.5n ≤ |X1| < 0.53n.
Note that 0.47n < |X0| ≤ 0.5n. By Lemma 2.19, ∃v ∈ X0 such that |N−1(v)| ≥ 0.2n. Then, by Lemma 2.20, |N1(v) ∪ N3(v)| <
0.33n and |N2(v)| > 0.307n. Again, by applying Lemma 2.19 on the induced bipartite graph with bipartition (N1(v) ∪
N3(v), N2(v)), ∃u ∈ N1(v) ∪ N3(v) ⊂ X1 such that |N−1(u)| > 0.186n. Then, by Lemma 2.20, |N1(u) ∪ N3(u)| < 0.314n and 
|N2(u)| > 0.35n. By applying Lemma 2.19 on the induced bipartite graph with bipartition (N1(u) ∪ N3(u), N2(u)), ∃w ∈
N1(u) ∪ N3(u) ⊂ X0 such that |N−1(w)| > 0.222n. Then, by Lemma 2.20, |N1(w) ∪ N3(w)| < 0.308n and |N2(w)| > 0.37n. By 
applying Lemma 2.19 on the induced bipartite graph with bipartition (N1(w) ∪ N3(w), N2(w)), ∃x ∈ N1(w) ∪ N3(w) ⊂ X1
such that |N−1(x)| > 0.24n. Then, by Lemma 2.20, |N2(x)| > 0.66n, which is a contradiction since N2(x) ⊂ X1 and |X1| <
0.53n.

Hence, in each case we get a contradiction, but one of them must hold. Thus, our assumption that there is no 4-cycle in 
G must be wrong. This completes the proof. 2
3. Odd-even graphs

In this section, we introduce a family of graphs that we call odd-even graphs. Throughout the section we denote the 
set of all non-negative even numbers by E and the set of all positive odd numbers by O. We begin with the definition of 
oriented odd-even graphs.

Definition 3.1. Let A ⊆ E and O  ⊆ O. An oriented odd-even graph 
−→G A(O ) is an oriented graph with the set of vertices A

and with set of arcs E =
n

ab | a+b
2 , b−a

2 ∈ O
o

.

Observe that 
−→G A(O ) is an oriented bipartite graph with partite sets V 1 = {v ∈ A | v ≡ 0 (mod 4)} and V 2 =

{v ∈ A | v ≡ 2 (mod 4)} as both a+b
2 and b−a

2 are even for any pair of a, b ∈ V i and for each i ∈ {1,2}.

Definition 3.2. An odd-even graph GA(O ) is the underlying (undirected) graph of 
−→G A(O ), i.e., GA(O ) is a graph with set of 

vertices A and with set of arcs E =
n

ab | a+b
2 ,

|a−b|
2 ∈ O

o
.

From above, it is clear that GA(O ) is bipartite graph. Interestingly, the following theorem shows that every bipartite 
graph can be represented by an odd-even graph.

Theorem 3.3. Let B be a bipartite graph. Then there exist A ⊆ E and O  ⊆O such that GA(O ) is isomorphic to B.

Proof. Let B = (X, Y , E) be a bipartite graph with the partite sets X and Y . Let X = {b0,b2, . . . ,b2m}, Y = {b1,b3, . . . ,b2n−1}
and V = X ∪ Y . Now define a function f : V −→ E with f (bi) = 10i+2 + 1 + (−1)i+1. It is easy to check that 
the function f is well-defined and injective. Take the even set A to be the image of f and let the odd set O  =n

f (a)+ f (b)
2 ,

| f (a)− f (b)|
2 | ab ∈ E(B)

o
. Now to show that B is isomorphic to GA(O ) it is enough to observe that f (x) + f (y) 6=

f (x0) + f (y0), f (x) + f (y) 6= | f (x0) − f (y0)|, | f (x) − f (y)| 6= f (x0) + f (y0) and | f (x) − f (y)| 6= | f (x0) − f (y0)| for any xy ∈ E(B)

and x0 y0 /∈ E(B). 2
Now from Definition 3.1 it is clear that 

−→G A(O ) is acyclic, i.e., there is no directed cycle in 
−→G A(O ) = (V , E) as for any 

arc ab ∈ E , b − a > 0 and so a < b. Thus no come back to the starting vertex is possible in a directed walk. Therefore −→G A(O ) is an acyclic oriented bipartite graph. In the following we will see that any acyclic oriented bipartite graph can be 
represented by an oriented odd-even graph. Let D = (V , E) be a digraph. An ordering u1, u2, . . . , un of vertices of D is a 
9
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topological ordering (or, acyclic ordering [6]) if for every arc uiu j ∈ E , we have i < j. It is known that every acyclic digraph 
has a topological ordering of vertices [6].

Theorem 3.4. Let B be an acyclic oriented bipartite graph. Then there exist A ⊆ E and O  ⊆O such that 
−→G A(O ) is isomorphic to B.

Proof. Let B = (X, Y , E) be an acyclic oriented bipartite graph with the partite sets X and Y and V = X ∪ Y . Let 
u1, u2, . . . , un be a topological ordering of V . Now we define a function f : V −→ E inductively. Assign f (u1) = 102 or 
103 + 2 according as u1 ∈ X or u1 ∈ Y . Suppose f (ui) = 102k for some k ∈ N . We assign f (ui+1) = 102k+2 or 102k+1 + 2
according as ui+1 ∈ X or ui+1 ∈ Y . If f (ui) = 102k+1 + 2 for some k ∈ N . We assign f (ui+1) = 102k+2 or 102k+3 + 2 ac-
cording as ui+1 ∈ X or ui+1 ∈ Y . The function f is well-defined and is a strictly increasing function (hence injective). We 
take the even set A to be the image of f and let the odd set O  =

n
f (a)+ f (b)

2 ,
f (b)− f (a)

2 | ab ∈ E(B)
o

. Since f is increasing, 

f (a) < f (b) for all ab ∈ E due to the topological ordering. Then it follows that 
−→G A(O ) is isomorphic to B (rest of the proof 

is similar to the proof of Theorem 3.3). 2
Note that the above theorem can easily be extended to bipartite graphs with countably infinite number of vertices. 

Therefore, the family of odd-even graphs is, in fact, the family of all bipartite graphs with countable number of vertices. 
Now we will prove some conditions for finite odd even graphs to be connected. For any odd-even graph GA(O ), let the 
relevant odd set be O rel = O  ∩ { a+b

2 , |a−b|
2 | ab ∈ E}. Note that GA(O ) is isomorphic to GA(O rel).

Theorem 3.5. If GA(O ) is connected with |A| ≥ 2, then | O rel |≥ √
2 | A | − 1.

Proof. Suppose |A| = n and |O rel| = k. Now, the number of edges in GA(O ) is at least n − 1 (since GA(O ) is connected) and 
at most 

¡k
2

¢+k = k(k+1)
2 . This is because each edge ab corresponds to either a pair of numbers ( a+b

2 , |a−b|
2 ) ∈ O rel or a single 

number a
2 ∈ O rel (in case b = 0). Thus,

k(k + 1)

2
≥ n − 1 ⇒

Ã
k −

√
8n − 7 − 1

2

!Ã
k +

√
8n − 7 + 1

2

!
≥ 0

⇒ k −
√

8n − 7 − 1

2
≥ 0 (since k +

√
8n − 7 + 1

2
> 0)

⇒ k ≥
√

8n − 7 − 1

2
≥ √

2n − 1 ( for n ≥ 2)

⇒ |O rel| ≥
p

2 | A | − 1. 2
Theorem 3.6. Suppose A = {0,2,4, ...,2(m − 1)}. If |O rel| ≥ 7|A|

8 , then GA(O ) is connected.

Proof. WLOG, we can remove the isolated vertices from A and prove the statement for the resulting set A. Since the size 
of A can only decrease, the lower bound of 7|A|

8 on O rel still holds.
Assume to the contrary that GA(O ) is disconnected. Therefore, there exist at least two connected components. Let X be 

a connected component and Y be the union of the other connected components. Call the larger of these two sets as Z and 
let W be the other set. Then, we have |Z | ≥ |A|

2 . Now, Z can be partitioned into two sets: those of the form 4k +2 and those 
of the form 4k. Let the larger set be Z 0 . We must have |Z 0| ≥ |Z |

2 ≥ |A|
4 . Fix a vertex a ∈ W such that a has a form opposite 

to that of the numbers in Z 0 . Note that such a number exists in W because if W has all numbers of the same form, then 
W cannot have edges within itself, and hence, would be a set of isolated vertices. But we removed all such vertices.

For b ∈ Z 0 , define Sb =
n

(a+b)
2 ,

|a−b|
2

o
. Note that all elements in Sb are odd. Define

T = {t | t ∈ Sb for some b and t /∈ O rel}
We must have O rel ⊆ {1, 3, . . . , 2m − 3} \ T , where T ⊆ {1, 3, . . . , 2m − 3}.

Observe that a does not share edges with any vertex in Z 0 . Therefore, at least one element from each Sb does not belong 
to O rel . Consider the multiset obtained by adding the elements from each Sb that do not belong to O rel . It has size at least 
|Z 0| ≥ |A|

4 , and the multiplicity of any number in this multiset can be at most 2. Hence, removing duplicates, we get the set 
T , which has size at least |A|

8 . Therefore, |O rel| ≤ |{1, 3, . . . , 2m − 3}| − |T | ≤ m − 1 − |A|
8 = |A| − 1 − |A|

8 <
7|A|

8 . But this is a 
contradiction to our premise. Hence, GA(O ) must be connected. 2

Now we study odd-even graphs with odd sets of the following form:

O a,b = {ak + b | a ∈ E,b ∈ O,k ∈N} .
10
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Theorem 3.7. The oriented bipartite graph 
−→
G = −→G E (O a,b) = (V , E) is unidirectional if and only if 4 divides a.

Proof. Let V 1 = {v ∈ E | v ≡ 0 (mod 4)} and V 2 = {v ∈ E | v ≡ 2 (mod 4)}. Then V = V 1 ∪ V 2. First assume that a is divisible 
by 4. Let u = 4x ∈ V 1, v = 4y + 2 ∈ V 2 and vu ∈ E . So that forces u > v as we have u+v

2 , u−v
2 ∈ O a,b . That is, we have 

2(x + y) + 1, 2(x − y) − 1 ∈ O a,b . This implies

2x = a(n1 + n2)/2 + b

where n1, n2 are some positive integers. But this is a contradiction as a(n1 + n2)/2 + b is an odd number while 2x is even. 
So all the arcs in 

−→
G are from V 1 to V 2, i.e., 

−→
G is unidirectional.

For the converse part, assume that a is not divisible by 4. Let n1 > n2 be two positive even integers. Then u = a(n1 −n2) ∈
V 1 and v = a(n1 +n2) + 2b ∈ V 2. In this case, u+v

2 , v−u
2 ∈ O a,b and we have the arc uv ∈ E . On the other hand, consider two 

positive integers m1 > m2 where m1 is odd and m2 is even. Then u0 = a(m1 +m2) +2b ∈ V 1 and v 0 = a(m1 −m2) ∈ V 2. In this 
case, u0+v 0

2 , u
0−v 0
2 ∈ O a,b and we have the arc v 0u0 ∈ E . So the graph 

−→
G is not unidirectional when a is not divisible by 4. 2

Theorem 3.8. Let ∅ 6= I ⊂N and the odd set is given by O  = {ai + 1 | ai ∈ E, i ∈ I}. Then the oriented graph 
−→G E (O ) is unidirectional 

if and only if 4 divides ai for all i ∈ I or, 4 does not divide ai for all i ∈ I .

Proof. Let V 1 = {v ∈ E | v ≡ 0 (mod 4)}, V 2 = {v ∈ E | v ≡ 2 (mod 4)}, V = V 1 ∪ V 2 and 
−→G E (O ) = (V , E). First suppose that 

4 divides ai for all i ∈ I . Let u, v ∈ E such that uv ∈ E . Then u+v
2 , v−u

2 ∈ O . Thus u+v
2 = 4k1 + 1 and v−u

2 = 4k2 + 1 for some 
k1, k2 ∈N . These imply v = 4(k1 + k2) + 2 and u = 4(k1 − k2). Thus all the arcs are from V 1 to V 2.

Next consider that 4 does not divide ai for all i ∈ I . Let u, v ∈ E such that uv ∈ E . Then as before we have u+v
2 = 4k1 + 3

and v−u
2 = 4k2 + 3 for some k1, k2 ∈N . These imply v = 4(k1 + k2 + 1) + 2 and u = 4(k1 − k2). Thus again we have all the 

arcs are from V 1 to V 2.
Finally let a1 + 1, a2 + 1 ∈ O such that 4 divides a1 and 4 does not divide a2. Let a1 > a2. Consider u = a1 − a2 and 

v = a1 + a2 + 2. Then u ∈ V 2, v ∈ V 1, u+v
2 = a1 + 1 and v−u

2 = a2 + 1. Thus uv ∈ E . Again for w = 2a1 + 2, we have 
0w ∈ E , where 0 ∈ V 1 and w ∈ V 2. Thus the graph is not unidirectional. For a1 < a2, the proof is similar with the choice 
u = a2 − a1. 2

The adjacency matrix of the oriented graph 
−→G E (O 4,1) is of the form

0 X
0 0

where X =

⎡
⎢⎢⎢⎣

1 0 1 0 1 0 ...

0 1 0 1 0 1 ...

0 0 1 0 1 0 ...

0 0 0 1 0 1 ...

0 ...

⎤
⎥⎥⎥⎦

and the adjacency matrix of 
−→G E (O 6,1) is⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

⎡
⎢⎢⎢⎣

1 0 0 1 0 0 1 0 0 ...

0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0 0 0 0 ...

0 0 0 0 1 0 0 1 0 ...

0 ...

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 ...

0 1 0 0 1 0 0 1 0 ...

0 0 0 0 0 0 0 0 0 ...

0 0 0 0 0 0 0 0 0 ...

0 0 0 0 1 0 0 1 0 ...

0 ...

⎤
⎥⎥⎥⎥⎥⎦ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that according to Theorem 3.7, 
−→G E (O 4,1) is unidirectional while 

−→G E (O 6,1) is not. From the above two examples 
one can observe the difference between the adjacency matrices of unidirectional and not unidirectional oriented odd-even 
graphs.

4. The Goldbach graph

Here, we focus on a particular odd-even graph 
−→G E (P) and GE (P) where the odd set P is the set of all odd primes, 

and call them the Goldbach (infinite) digraph and the Goldbach (infinite) graph respectively for the reason that will become 
apparent in the first result of this section. The set of vertices of the Goldbach (infinite) graph is the set of all non-negative 
11



S. Das, P. Ghosh, S. Ghosh et al. Discrete Mathematics 344 (2021) 112497
even integers and two such vertices a, b are adjacent if and only if both a+b
2 and |a−b|

2 are odd prime numbers. Let En

denote the set of all non-negative even numbers less than or equal to 2n. Also, the graph GEn (P) will be denoted by Gn

and we call this graph a Goldbach (finite) graph. The neighborhood NGn (v) (or, the out-neighbor N+
Gn

(v) or the in-neighbor 

N−
Gn

(v)) of a vertex v in Gn (or, in 
−→G n which we call a Goldbach (finite) digraph) will be denoted by Nn(v) (or N+

n (v) or 
N−

n (v), respectively) for the remainder of the section. Also the degree dGn (v) (or, the out-degree d+
Gn

(v) or the in-degree 

d−
Gn

(v)) of a vertex v in Gn (or, in 
−→G n) will be denoted by dn(v) (or d+

n (v) or d−
n (v), respectively) for the remainder of the 

section. We denote 
−→G E (P) and GE (P) by 

−→G ∞ and G∞ respectively and the out-degree and the in-degree of v ∈ E in 
−→G ∞

by d+∞(v) and d−∞(v) respectively and the degree of v ∈ E in G∞ by d∞(v). N+∞(v) or N−∞(v) are defined similarly. Now we 
state the result that, by and large, motivated this work.

Theorem 4.1. The following statements are equivalent.

(i) (Goldbach’s conjecture) Every even integer greater than 5 can be written as sum of two odd primes.
(ii) Gn is connected for all n ≥ 7.

(iii) d−∞(v) > 0 for all v ≥ 6 in 
−→G ∞ .

Proof. (i) ⇒ (ii): Suppose that the Goldbach’s conjecture is true. Observe that G7 is connected. Now assume that Gn is 
connected for all n ≤ k. By Goldbach Conjecture, 2(k + 1) = p + q for some p, q ∈ P . Then |p − q| is even and |p − q| <
p + q = 2(k + 1). Thus 2(k + 1) is adjacent to |p − q| which is a vertex of Gk as well. This implies that Gk+1 is connected.
(ii) ⇒ (iii): Suppose Gn is connected for all n ≥ 7. Let v be any even integer greater equal to 14. Then, as the graph Gv/2 is 
connected, the vertex v of the graph must be adjacent to some other vertex of the graph. Note that v is the greatest vertex 
in Gv/2. Hence d−∞(v) > 0. Now it is a simple observation that for 6 ≤ v ≤ 12 we have d−∞(v) > 0 as 0 ∈ N−∞(6) ∩ N−∞(10)

and 2 ∈ N−∞(8) ∩ N−∞(12). This completes the proof.
(iii) ⇒ (i): Suppose d−∞(v) > 0 for all v ≥ 6. Now for any even number a > 5 there exists b such that b ∈ N−∞(a). That 
means, there exist odd primes p, q such that we have p + q = a. This is precisely the Goldbach’s conjecture. 2

The above result shows that the Goldbach’s conjecture can be formulated using graph theoretic notions. For verification 
and other studies on Goldbach’s conjecture one may consult [5,11,14,15]. Note that in Theorem 3.5 and 3.6 we presented one 
necessary and another sufficient conditions for connectedness of finite odd-even graphs. Improved results of similar nature 
might give rise to an alternative way of digging into the Goldbach’s conjecture using graph theory due to Theorem 4.1. 
Having proved this equivalence, naturally we tried to explore more such equivalent formulations. Our observation which 
was integral in proving the above result is that, given a non-negative even integer 2n, it is adjacent to a smaller integer 
implies that 2n can be expressed as the sum of two odd primes. Similarly, its adjacency with a greater integer implies 
that 2n can be expressed as difference of two odd primes. This readily provides graph theoretic formulation of another 
well-known conjecture in number theory.

Theorem 4.2. The following statements are equivalent.

(i) (A conjecture by Maillet [8]) Every non-negative even integer can be written as difference of two odd primes.

(ii) d+∞(v) > 0 for all v ≥ 2 in 
−→G∞ .

After this the first thing that came to our notice is that the degree of the vertices of our graph is particularly interesting. 
As the graph is an infinite graph, the natural question about the degrees is, if they are finite or not. In particular, note 
that each vertex has finite in-degree, as its in-neighbors are smaller non-negative even numbers, while its out-degree can 
be unbounded. So the vertex 0 has no in-neighbors while its out-neighbors are precisely 2p for all p ∈ P . We know that 
there are infinitely many odd primes due to Euclid’s theorem (which says, there are infinitely many prime numbers). Hence, 
d+∞(0) is infinite and this is equivalent to Euclid’s theorem.

Observation 4.3. The vertex 0 of 
−→G ∞ has infinitely many out-neighbors and hence, has infinitely many neighbors.

This observation naturally motivates us to wonder if the degrees (or out-degrees) of the other vertices are finite or not. 
It turns out to be a difficult question as it is equivalent to another well-known conjecture, the Kronecker’s conjecture.

Theorem 4.4. The following statements are equivalent.

(i) (Kronecker’s conjecture [7]) Given a positive even number 2k, there are infinitely many pairs of primes of the form {p, p + 2k}.

(ii) For every vertex v ∈ E we have d+∞(v) is infinite in 
−→G ∞ .
12
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(iii) For every vertex v ∈ E we have d∞(v) is infinite in G∞ .

Proof. (i) ⇒ (ii): Suppose that the conjecture is true. Let 2k be an even number for some k ≥ 1. So, there are infinitely many 
pairs of primes of the form {p, p + 2k} by assumption. Note that for each such pair of primes the vertex 2k is adjacent to 
the vertex 2(p + k) in G∞ .
(ii) ⇔ (iii): Clearly follows from the fact that d+∞(v) ≤ d+∞(v) + d−∞(v) = d∞(v) for all v ∈ E while d−∞(v) is finite.
(iii) ⇒ (i): Suppose d+∞(v) is infinite for all v ∈ E . Let v = 2k be an even number for some k ≥ 1. Now for each out-neighbor 
u = 2n of v in G∞ we have 2n+2k

2 , (2n−2k)
2 ∈ P . Hence, both (n − k) and (n + k) are primes and there are infinitely such 

distincts pairs for each k ≥ 1. 2
In particular, determining if degree (or out-degree) of 2 is finite or not will settle the twin prime conjecture [19] (posi-

tively if d(2) is infinite). This implies an immediate corollary.

Corollary 4.5. The following statements are equivalent.

1. (Twin prime conjecture [19]) There are infinitely many pairs of primes of the form {p, p + 2}.

2. d+∞(2) is infinite in 
−→G ∞ .

3. d∞(2) is infinite in G∞ .

Next we will try to understand the significance of the degrees of the vertices in G∞ . Given a non-negative even number 
2n, the in-degree d−∞(2n) is the number of ways 2n can be expressed as the sum of two odd primes. Similarly, the out-
degree d+∞(2n) is the number of ways 2n can be expressed as the difference of two odd primes. Moreover, the degree of 0 in 
Gn is the number of odd primes less than or equal to n. So, the graph parameter dn(0) can be regarded as a function similar 
to the prime counting function π(n), which denotes the number of primes less than or equal to n. So, for n ≥ 2 we have

π(n) = dn(0) + 1

as the only even prime 2 is not adjacent to 0. As it turned out to be an interesting yet difficult problem to figure out what 
the degrees of the vertices are, we started to establish some relations between them. Hence the following result.

Theorem 4.6. For all n ≥ 2r and for 0 ≤ m ≤ 4, in 
−→G ∞ we have

mX
i=0

d+
n (2i) ≥

mX
i=0

d−
n (2r − 2i).

Sketch of the proof. Let Ai = {q | p + q = 2r − 2i and q ≤ p} for i ∈ {0, 1, 2, 3, 4} where p, q are odd primes. Observe that 
d−

n (2r − 2i) = |Ai |. Note that for any q ∈ S4
i=0 Ai , we have 2q ∈ N+

n (0). Thus, d+
n (0) ≥| S4

i=0 Ai |.
Now suppose q ∈ Ai ∩ A j for some i, j ∈ {0, 1, 2, 3, 4} and i < j. Then there are primes p1, p2 ≥ q such that p1 + q =

2r − 2i and p2 + q = 2r − 2 j. So p2 = p1 − 2( j − i). As both 2p1−2( j−i)+2( j−i)
2 = p1 and 2p1−2( j−i)−2( j−i)

2 = p1 − 2( j − i) = p2

are odd primes we have

2p1 − 2( j − i)) ∈ N+
n (2( j − i)). (4.1)

Let Si = {(i, x) | x ∈ N+
n (2i)} for i ∈ {0, 1, 2, 3, 4}. Note that Si ∩ S j = ∅ for i 6= j and |Si | = d+

n (2i) for all i ∈ {0, 1, 2, 3, 4}. Also 
let S = S4

i=0 Si . Then we will construct a subset T ⊆ S such that |T | ≥ P4
i=0 | Ai |. This will complete the proof.

Step 0: We know that for each q ∈ S4
i=0 Ai , we have (0, 2q) ∈ S0. Put all these (0, 2q)’s in the set T . Next we have to deal 

with the elements that are in more than one Ai ’s.
Step 1: First we handle the case where an element q ∈ A0 ∩ A j for some j ∈ {1, 2, 3, 4}. For each such q there is a prime 
p such that p + q = 2r. By (4.1) we know that for each such q, there is an edge between 2 j and (2p − 2 j). Put all these 
( j, 2p − 2 j)’s in T . Observe that all these are new elements in T as j ≥ 1.
Step 2: Now consider an element q ∈ A1 ∩ A2. Then there exists a prime p such that p + q = 2r − 2 and by (4.1) we know 
that (1, 2p − 2) ∈ S1. We will put all such (1, 2p − 2)’s in T if they were already not in T . Let for some q, its corresponding 
(1, 2p − 2) were already in T . That means that element was included to T due to Step 1. Therefore, p + (q + 2) = 2r where 
(q + 2) is also a prime. Hence, (1, 2q + 2) ∈ S1 as both 2q+2+2

2 = (q + 2) and 2q+2−2
2 = q are primes. Note that, all the 

elements included to T before are of the form (1, 2p − 2) with p /∈ A0 while (q + 2) ∈ A0. Therefore, (1, 2q + 2) is not yet 
included to T . Now we include all such (1, 2q + 2)’s to T .
Step 3: Now consider an element q ∈ A1 ∩ A3. Then there exists a prime p such that p + q = 2r − 2 and by (4.1) we know 
that (2, 2p − 4) ∈ S2. We will put all such (2, 2p − 4)’s in T if they were not already in T .

Let for some q, its corresponding (2, 2p − 4) were already in T . That means that element was included to T due to 
Step 1. An argument similar to Step 2 will show that there is an edge between (2q + 2) and 2. We will include all those 
(1, 2q + 2)’s to T which were not included to T before.
13
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There may be some (1, 2q + 2) which was included to T before. Then that inclusion was due to Step 2. This implies 
p, (p − 2) and (p − 4) are all odd primes. The only such instance is when p = 7. Thus, 2r − 6 = (p − 4) + q = 3 + q. As 
(p − 4) ≥ q we have q = 3. Hence, 2r = 12. It is easy to check that the theorem holds for 2r = 12. Therefore, we can ignore 
this case.

There are four more steps, namely, for q ∈ A1 ∩ A4, q ∈ A2 ∩ A3, q ∈ A2 ∩ A4 and q ∈ A3 ∩ A4 in that order, that will 
conclude the proof. Those cases can be handled in a similar way like above. 2

Our interest in the degree of the bipartite graph G∞ prompted us to study the complete bipartite subgraphs of G∞ from 
number theoretic point of view.

Proposition 4.7. If the complete bipartite graph Km,n is a subgraph of G∞ , then there exists a set {p1, p2, . . . , pm} of m primes and a 
set {r1, r2, ...rn−1} of (n − 1) positive integers such that pi + r j is a prime for all (i, j) ∈ {1, 2, ..., m} × {1, 2, ..., n}.

Proof. Let X and Y be the two partite sets of Km,n . Index the vertices of X = {x1, x2, ..., xm} and Y = {y1, y2, ..., yn} in 
increasing order. Let pi = xi+y1

2 and r j = y j+1−y1
2 for (i, j) ∈ {1, 2, ..., m} × {1, 2, ..., n − 1}. Note that pi + r j = xi+y j+1

2 is a 
prime for each (i, j) ∈ {1, 2, ..., m} × {1, 2, ..., n − 1}. 2

Now we will prove some conditions for a complete bipartite subgraph of G∞ with the aid of the following two lemmas. 
Let us denote N ∪ {0} by N0.

Lemma 4.8. Let a, b /∈ 6N0 and ab ∈ E(G∞), then | a − b |= 6.

Proof. Let a > b. Then a = p + q and b = p − q for some odd primes p and q. If p, q 6= 3, then p and q are each of the form 
6k + 1 or 6k − 1. Then either 6 | (p + q) = a or 6 | (p − q) = b contradicting the assumption of the lemma. Hence q = 3 (as 
p ≥ q ≥ 3) which implies a − b = 2q = 6. 2
Lemma 4.9. Let a, b ∈ 6N0 and ab ∈ E(G∞) with a ≥ b, then a = 6 and b = 0.

Proof. As both a and b are divisible by 6, both a+b
2 and a−b

2 are divisible by 3. Since they are primes, a+b
2 = 3 = a−b

2 . 
Therefore, a = 6, b = 0. 2
Theorem 4.10. Let Km,n be a subgraph of G∞ with partite sets X and Y such that m, n > 2. Then either X ⊂ 6N0 and Y ∩ 6N0 = ∅
or Y ⊂ 6N0 and X ∩ 6N0 = ∅.

Proof. If neither X 6⊂ 6N0 nor X ∩ 6N0 6= ∅, then either there exist a ∈ X ∩ 6N0 and {b, c} ⊂ X ∩ (N0 \ 6N0) or there exist 
{b, c} ⊂ X ∩ 6N0 and a ∈ X ∩ (N0 \ 6N0).
If a ∈ X ∩ 6N0 and {b, c} ⊂ X ∩ (N0 \ 6N0), then | Y ∩ 6N0 |≤ 1 by Lemma 4.9. Again for any d ∈ Y ∩ (N0 \ 6N0), Lemma 4.8
forces b − 6 = d = c + 6 assuming b > c, without loss of generality. Hence | Y ∩ (N0 \ 6N0) |≤ 1. Therefore, | Y |=| Y ∩ 6N0 |
+ | Y ∩ (N0 \ 6N0) |≤ 2, a contradiction.
If {b, c} ⊂ X ∩ 6N0 and a ∈ X ∩ (N0 \ 6N0), then Y ∩ 6N0 = ∅ as otherwise each vertex of Y ∩ 6N0 must be adjacent to 
both b and c forcing them to be the same vertex by Lemma 4.9. On the other hand, if d ∈ Y ∩ (N0 \ 6N0), then d = a − 6
or d = a + 6 by Lemma 4.8. This implies | Y |=| Y ∩ 6N0 | + | Y ∩ (N0 \ 6N0) |≤ 2, a contradiction. So either X ⊂ 6N0 or 
X ∩ 6N0 = ∅. If X ⊂ 6N0, then Y ∩ 6N0 = ∅ by Lemma 4.9. If X ∩ 6N0 = ∅, then Y ∩ (N0 \ 6N0) = ∅ by Lemma 4.8. For if 
x ∈ X is adjacent to x − 6, x + 6 ∈ Y , then x + 6 can be adjacent to only x and x + 12. But x + 12 is not adjacent to x − 6. 2

In the next result we will also capture the case where at least one of the partite sets have exactly two vertices while the 
other one has at least four of them.

Theorem 4.11. Let K2,n be a subgraph of G∞ with partite sets X and Y such that |X | = 2 and |Y | = n > 3. Then either X ⊂ 6N0 and 
Y ∩ 6N0 = ∅, or X ∩ 6N0 = ∅ and | Y ∩ (N0 \ 6N0) |≤ 1.

Proof. Suppose X = {a, b}. Without loss of generality, let a ∈ 6N0 and b ∈ (N0 \ 6N0). Then | Y ∩ 6N0 |≤ 1 and | Y ∩ (N0 \
6N0) |≤ 2 by Lemma 4.9 and 4.8. Therefore, | Y |≤ 3, a contradiction. Hence either X ⊂ 6N0 or X ∩ 6N0 = ∅. If X ⊂ 6N0, 
then Y ∩ 6N0 = ∅ by Lemma 4.9. If X ∩ 6N0 = ∅, then a and b can have at most one common neighbor c such that 
c ∈ (N0 \ 6N0) by Lemma 4.8. 2

Now let us try to understand the structure of independent sets in G∞ . Of course, as G∞ is a bipartite graph, there are at 
least two distinct (and disjoint) independent sets in the form of the two partite sets. But how big can an independent set 
consisting of only consecutive (non-negative) even numbers be? We answer this question in the following result.
14
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Theorem 4.12. There exist arbitrarily large independent sets containing consecutive (non-negative) even numbers in G∞.

Proof. Given any n ∈N , the set R = {(2n)! + 2, (2n)! + 3, ..., (2n)! + (2n)} is a set of consecutive composite numbers. Hence 
no two vertices in the set

S = {(2n)! + 2, (2n)! + 4, ..., (2n)! + 2n}
are adjacent to each other as a+b

2 ∈ R for all a, b ∈ S . Hence S is an independent set containing n consecutive (non-negative) 
even numbers in G∞ . 2
5. Conclusions

We conclude the paper with an interesting observation that the graphs GE∗
n
(P1) are Hamiltonian for all even n with 

4 6 n 6 58, where E∗
n = En r {0} and P1 = P ∪ {1} (cf. Appendix A). Since the graph GE∗

n
(P1) is bipartite, there cannot be 

any odd cycle in the graph. But it follows from the above observations that GE∗
n
(P1) has a Hamiltonian path (i.e., a spanning 

path) for all odd n with 5 6 n 6 57 for if GE∗
2m

(P1) is Hamiltonian, then deleting the vertex corresponding to 2m from any 
of its Hamiltonian cycle, we get a Hamiltonian path of GE∗

2m−1
(P1). Thus GE∗

n
(P1) has a Hamiltonian path for all n with 

4 6 n 6 58. The following is an interesting Hamiltonian path of GE∗
58

(P1) that starts with 2, ends at 116 and covers all even 
integers in between them:

2, 4, 6, 8, 14, 12, 10, 16, 18, 20, 26, 32, 30, 28, 34, 24, 22, 36, 38, 44, 42, 40, 46, 48, 58, 60, 62, 56, 50, 72, 70,
64, 54, 52, 66, 68, 74, 84, 82, 76, 90, 88, 78, 80, 86, 92, 102, 100, 94, 108, 98, 96, 106, 112, 114, 104, 110, 116.

Let us call two even natural numbers conjugate to each other if {a,b} = {p − q, p + q} for some p, q each of which is either 
an odd prime or 1. We see that there is a sequence of even natural numbers up to 1000 such that any two consecutive 
numbers in this sequence are conjugate to each other (cf. Appendix B). Now these observations lead to the following 
questions:

1. Does there exist a sequence of all even natural numbers such that any two consecutive numbers in this sequence are 
conjugate to each other?

2. If the answer to the above question is negative, then what is the least value of m such that GE∗
2m

(P1) is not Hamiltonian?
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Appendix A

Number of Vertices Hamiltonian Cycle
4 (4,2,8,6,4)
6 (4,6,8,2,12,10,4)
8 (4,2,8,14,12,10,16,6,4)
10 (4,2,8,6,16,10,12,14,20,18,4)
12 (4,2,8,6,16,10,12,22,24,14,20,18,4)
14 (4,2,8,6,28,18,16,22,12,26,20,14,24,10,4)
16 (4,2,8,6,16,10,12,22,24,14,20,26,32,30,28,18,4)
18 (4,2,8,6,16,10,12,14,20,18,28,34,24,22,36,26,32,30,4)
20 (4,2,8,6,16,10,12,22,36,38,24,14,20,26,32,30,28,34,40,18,4)
22 (4,2,8,6,16,10,12,14,20,18,28,34,40,42,32,26,36,22,24,38,44,30,4)
24 (4,2,8,6,16,10,12,14,20,18,28,30,32,26,36,22,24,34,40,46,48,38,44,42,4)
26 (4,2,8,6,16,10,12,14,20,18,28,34,40,46,36,22,24,50,44,38,48,26,32,30,52,42,4)
28 (4,2,8,6,16,10,12,14,20,18,28,30,56,50,44,38,24,22,36,46,40,34,48,26,32,54,52,42,4)

(continued on next page)
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Number of Vertices Hamiltonian Cycle
30 (4,2,8,6,16,10,12,14,20,18,28,30,56,50,44,38,24,22,36,46,40,34,48,58,60,26,32,54,52,42,4)
32 (4,2,8,6,16,10,12,14,20,18,28,30,32,26,36,22,24,34,40,46,48,38,44,50,56,62,60,58,64,54,52,

42,4)
34 (4,2,8,6,16,10,12,14,20,18,28,30,32,26,36,22,24,34,40,46,48,38,44,50,56,62,60,58,64,54,68,

66,52,42,4)
36 (4,2,8,6,16,10,12,14,20,18,28,30,32,26,36,22,24,34,40,46,48,38,44,50,72,70,64,58,60,62,56,

66,68,54,52,42,4)
38 (4,2,8,6,16,10,12,14,20,18,28,30,32,26,36,22,24,34,40,46,48,38,44,50,56,62,60,58,64,54,52,

66,68,74,72,70,76,42,4)
40 (4,2,8,6,16,10,12,14,20,18,28,30,32,26,36,22,24,34,40,42,52,54,68,74,48,38,44,50,56,62,72,

46,60,58,64,70,76,66,80,78,4)
42 (4,2,8,6,16,10,12,14,20,18,28,30,32,26,36,22,24,34,40,42,44,38,48,46,60,58,64,70,76,82,84,

50,56,62,72,74,68,54,52,66,80,78,4)
44 (4,2,8,6,16,10,12,14,20,18,28,30,32,26,36,22,24,34,40,42,52,66,68,74,48,38,44,50,56,62,84,

58,64,70,76,82,60,46,72,86,80,54,88,78,4)
46 (4,2,8,6,16,10,12,14,20,18,28,30,32,26,36,22,24,34,40,42,44,38,48,46,60,58,64,70,76,82,84,

50,56,62,72,74,68,54,52,66,92,86,80,78,88,90,4)
48 (4,2,8,6,16,10,12,14,20,18,28,30,32,26,36,22,24,34,40,42,44,38,48,46,60,58,64,70,76,82,96,

50,56,62,72,94,84,74,68,54,52,66,92,86,80,78,88,90,4)
50 (4,2,8,6,16,10,12,14,20,18,28,30,32,26,36,22,24,34,40,46,48,38,44,42,100,94,72,62,56,50,96,

98,60,58,64,70,76,82,84,74,68,54,52,66,92,86,80,78,88,90,4)
52 (4,2,8,6,16,10,12,14,20,18,28,30,32,26,36,22,24,34,40,46,48,38,44,42,104,102,100,94,72,62,56,

50,96,98,60,58,64,70,76,82,84,74,68,54,52,66,92,86,80,78,88,90,4)
54 (4,2,8,6,16,10,12,14,20,18,28,30,32,26,36,22,24,34,40,46,48,38,44,42,104,102,100,106,108,94,72,

62,56,50,96,98,60,58,64,70,76,82,84,74,68,54,52,66,92,86,80,78,88,90,4)
56 (4,10,16,6,8,14,14,20,18,28,30,32,26,36,22,24,34,40,46,48,38,44,42,100,102,104,110,108,106,112,

90,88,78,80,86,92,66,52,54,68,74,84,82,76,70,64,58,60,98,96,50,56,62,72,94,12,2,4)
58 (6,4,2,8,14,12,10,16,18,20,26,32,30,28,34,24,22,36,38,44,42,40,46,48,58,60,62,56,50,72,70,64,54,

52,66,68,74,84,82,76,90,88,78,80,86,92,102,116,110,104,114,112,106,96,98,108,94,100,6)

Appendix B

A Hamiltonian path in the graph GE∗
500

(P1),
(A sequence of even natural numbers up to 1000 where

any pair of consecutive numbers are conjugate to each other).

{22, 16, 10, 4, 2, 8, 14, 20, 26, 32, 54, 52, 42, 80, 86, 92, 102, 112, 106, 100, 94, 12, 514, 408,
394, 400, 138, 284, 278, 288, 250, 204, 658, 664, 30, 136, 142, 120, 74, 68, 6, 340, 334, 328, 294,
152, 146, 528, 586, 372, 362, 356, 350, 344, 18, 28, 34, 40, 46, 36, 430, 436, 442, 576, 662, 656,
650, 644, 638, 24, 338, 636, 710, 672, 682, 516, 502, 496, 798, 844, 642, 776, 770, 324, 218, 228,
926, 932, 390, 508, 330, 292, 210, 304, 310, 316, 222, 244, 238, 264, 482, 476, 282, 416, 422, 720,
598, 604, 610, 616, 622, 504, 82, 76, 70, 64, 58, 420, 578, 300, 322, 996, 998, 984, 982, 900, 914,
908, 906, 800, 794, 180, 122, 84, 842, 836, 78, 88, 114, 412, 406, 108, 166, 160, 154, 148, 366, 592,
450, 764, 758, 60, 778, 768, 634, 628, 66, 812, 806, 72, 626, 468, 206, 540, 698, 704, 582, 940, 934,
588, 674, 680, 686, 552, 646, 640, 762, 752, 630, 808, 814, 708, 746, 740, 738, 700, 594, 872, 882,
892, 870, 788, 786, 172, 834, 688, 694, 948, 986, 980, 974, 968, 750, 268, 274, 280, 286, 252, 374,
492, 466, 460, 454, 312, 614, 620, 618, 676, 670, 972, 970, 964, 942, 716, 722, 696, 818, 824, 830,
828, 946, 960, 242, 236, 230, 224, 702, 920, 954, 248, 254, 260, 266, 272, 606, 308, 314, 320, 306,
388, 414, 332, 666, 472, 726, 728, 654, 632, 246, 712, 706, 732, 554, 560, 566, 572, 966, 928, 714,
724, 730, 736, 742, 660, 262, 924, 898, 816, 958, 936, 902, 864, 118, 780, 862, 856, 850, 804, 962,
876, 718, 684, 938, 944, 950, 956, 498, 220, 226, 232, 126, 352, 346, 48, 38, 44, 50, 56, 62, 96, 98,
104, 110, 116, 198, 784, 790, 648, 734, 612, 190, 196, 202, 192, 890, 884, 878, 840, 886, 880, 874,
852, 866, 860, 854, 912, 326, 888, 434, 428, 894, 832, 826, 820, 774, 548, 930, 212, 150, 296, 290,
132, 410, 456, 562, 480, 494, 488, 510, 532, 426, 452, 446, 440, 318, 524, 518, 360, 478, 216, 418,
424, 342, 404, 398, 276, 470, 464, 458, 624, 298, 600, 766, 772, 270, 448, 186, 952, 486, 652, 474,
608, 534, 692, 546, 580, 574, 568, 354, 512, 506, 500, 378, 368, 174, 208, 214, 168, 158, 156, 602,
596, 590, 584, 258, 200, 194, 188, 234, 392, 386, 380, 162, 164, 170, 176, 182, 144, 490, 484, 522,
140, 134, 128, 90, 256, 462, 556, 558, 536, 918, 520, 526, 432, 550, 544, 538, 396, 922, 916, 438,
364, 370, 376, 382, 240, 302, 444, 530, 384, 542, 336, 178, 184, 402, 124, 130, 348, 358, 756, 838,
564, 782, 792, 802, 744, 910, 904, 822, 896, 810, 848, 858, 868, 570, 796, 690, 748, 754, 760, 678,
668, 846, 992, 990, 976, 978, 988, 994, 1000}
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