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that bitransitive bitounaments are equivalent to acyclic bitournaments. As applications,
we characterize acyclic bitournaments with Hamiltonian paths, determine the number of
non-isomorphic acyclic bitournaments of a given order, and solve the graph-isomorphism
problem in linear time for acyclic bitournaments. Next, we prove the well-known Caccetta-

gfiyg: r:,j}nber Haggkvist Conjecture for oriented bipartite graphs in some cases for which it is unsolved,
Bipartite graph in general, for oriented graphs. We also introduce the concept of undirected as well as
Oriented bipartite graph oriented “odd-even” graphs. We characterize bipartite graphs and acyclic oriented bipartite
Bitransitive graph graphs in terms of them. In fact, we show that any bipartite graph (acyclic oriented
Bitournament bipartite graph) can be represented by some odd-even graph (oriented odd-even graph).

Goldbach conjecture We obtain some conditions for connectedness of odd-even graphs. This study of odd-even

graphs and their connectedness is motivated by a special family of odd-even graphs which
we call “Goldbach graphs”. We show that the famous Goldbach’s conjecture is equivalent to
the connectedness of Goldbach graphs. Several other number theoretic conjectures (e.g., the
twin prime conjecture) are related to various parameters of Goldbach graphs, motivating
us to study the nature of vertex-degrees and independent sets of these graphs. Finally, we
observe Hamiltonian properties of some odd-even graphs related to Goldbach graphs for a
small number of vertices.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

A (simple) directed graph D = (V, E) is bipartite if the vertex set V is partitioned into X and Y such that there is no
arc between any two vertices of X or between any two vertices of Y. We usually denote such a graph by D = (X, Y, E).
A directed bipartite graph D = (V, E) is oriented if for any u,v € V, uv € E implies vu ¢ E. An oriented bipartite graph
D = (X,Y,E) is called a bitournament if for all x € X and y €Y, either xy € E or yx € E. For a directed graph D, the
undirected graph G(D) obtained from D by disregarding directions of arcs is the underlying graph of D. Moreover two arcs
e and f of D are adjacent if they have a common end point in G(D). The adjacency matrix M(D) of a directed bipartite
graph, D = (X, Y, E) is of the following form:
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X Y
M®D) = X[0]A
Y[B|O

where A and B are two (0, 1)-matrices. Note that in the case of an undirected bipartite graph, we have B = AT, but it is
not true in general for oriented bipartite graphs. D is unidirectional if either xy ¢ E for all x€ X, y € Y or yx ¢ E for all
x€ X, y €Y. In this case either A=0 or B=0 in M(D).

There are some interesting studies over directed bipartite graphs, oriented bipartite graphs, and in particular, oriented
trees [4,9,10,16]. For a comprehesive study on bitournaments and in general, multipartite digraphs, one may consult the
monograph [1], in particular, Chapter 2 [2] and Chapter 7 [18]. In this paper, we introduce bitransitive (directed) graphs.
Several characterizations of bitransitive bitournaments are obtained. In particular, we show that bitournaments are bitransi-
tive if and only if they are acyclic. As applications of the theorem, we characterize acyclic bitournaments with Hamiltonian
paths, determine the number of non-isomorphic acyclic bitournaments of a given order, and solve the isomorphism problem
in linear time for acyclic bitournaments.

Next, we consider the Caccetta-Hdggkvist Conjecture that states “Every simple directed graph of order n with minimum
outdegree at least r has a cycle of length at most [n/r].” The conjecture is open for r =n/3,n/4,n/5 and so on. We prove
that the result is true for directed bipartite graphs for r =n/3,n/4,n/5. Our main technical contribution is the n/5 case,
which requires some rigorous analysis of vertex-degrees.

We introduce the concept of oriented odd-even graphs and their undirected counterpart. We characterize the class of
oriented bipartite graphs and (undirected) bipartite graphs in their terms. In fact, we show that any (acyclic oriented)
bipartite graph can be represented by some (resp. oriented) odd-even graph. We obtain a necessary condition and another
sufficient condition for connectedness of odd-even graphs. We study some cases where oriented odd-even graphs become
unidirectional.

Finally, we introduce Goldbach graphs, a special family of odd-even graphs. We show that the famous Goldbach’s con-
jecture is equivalent to the connectedness of Goldbach graphs. Furthermore, we observed that Maillet’s, Kronecker’s, and
twin prime conjectures are related to various parameters of Goldbach graphs, especially to the vertex-degrees. So we study
the nature of vertex-degrees and independent sets of Goldbach graphs. In the concluding section, we observe Hamiltonian
properties of some odd-even graphs related to Goldbach graphs for a small number of vertices and exhibit a sequence of
even natural numbers up to 1000 such that for any pair of consecutive numbers in the sequence, one of them is the sum
of two odd primes or 1 and the other is the difference between them (cf. Appendix B).

Throughout the paper let N denote the set of all natural numbers. If two natural numbers a and b are congruent modulo
p, then we denote it by a =p b. Hence, in particular, for two numbers a and b with the same parity, we write a =, b, and
if they have the opposite parity, we write a %%, b. We denote the set {1,2,...,n} by [n] for any n € N. For graph theoretic
concepts, definitions and terminologies, see [17].

2. Oriented bipartite graphs

In this section, we study several classes of oriented bipartite graphs. In Section 2.1, we introduce bitransitive digraphs
and characterize bitransitive bitournaments. Next, in Section 2.2, we study acyclic bitournaments. Then, in Section 2.3, we
prove the Caccetta-Hdggkvist conjecture restricted to the class of oriented bipartite graphs for some cases that are open for
general oriented graphs.
2.1. Bitournaments and bitransitive digraphs

We begin with an observation. Oriented trees form an interesting subclass of the class of oriented bipartite graphs. Let

T be an oriented tree. Then a path in the underlying tree G(T) of T is called alternating if each pair of adjacent arc are of
opposite directions in T.

Observation 2.1. In an oriented tree T, there is an alternate path between any two vertices of T if and only if for each vertex v € V (T),
either indeg (v) = 0 or outdeg (v) =0 (i.e., T is unidirectional).

In the following, we introduce bitransitive bipartite digraphs, analogous to transitive general digraphs.

Definition 2.2 (Bitransitive Digraph). An oriented bipartite graph D = (X, Y, E) is called bitransitive if for any x1, x2, y1, y2 €
XUY, x1y1,y1X2,X2Y2 € E => X1y, € E (see Fig. 1).

We shall now define a digraph labelled by natural numbers that would work as an example of a bitransitive bitournament
and shall help us to characterize them.

Definition 2.3 (Digraph Ds). Given a non-empty set S C N, define Ds as a digraph with the vertex set S and the arc set
E={(a,b)eS xS |a<band az;b}.
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Fig. 1. An illustration of bitransitive property

Example 2.4. For any non-empty set S C N, Ds = (X, Y, E) is a bitransitive bitournament with X ={u € S | u is even} and
Y={ueS | uisodd}.

The following theorem characterizes bitransitive bitournaments. A Ferrers digraph D = (V, E) is a directed graph whose
successor sets are linearly ordered by inclusion where the successor set of v € V is its set of out-neighbors {u € V | vu € E}.
It is known that a directed graph D is a Ferrers digraph if and only if its adjacency matrix does not contain any 2 x 2
permutation matrix (called a couple) [3,12]:

o v o [Ve)

Theorem 2.5. Let D = (X, Y, E) be a bitournament. Then the following statements are equivalent:

1. D is bitransitive.

2. D has no directed 4-cycle.

3. D has no directed cycle.

4. The matrix M(D) is given by

X Y
X| 0 | A
v[A o

where A is the adjacency matrix of a Ferrer’s digraph and A is the 1’s complement of A.
5. D = Ds (Definition 2.3) for some nonempty set S C N.

Proof. 2 — 1: Suppose there is no directed 4-cycle in a bitournament D = (X, Y, E). Let ujuy, uyus, usuy € E for some
uq, Uz, us,ug € V(D)= XUY. Then uquq ¢ E. Since D is a bitournament, we have uqu4 € E. Hence it follows from Defini-
tion 2.2 that D is bitransitive.

1 = 3: Suppose D = (X, Y, E) is bitransitive but has a directed cycle. Since D is bipartite, there cannot be any odd cycle.
Hence the cycle is even. Now let the cycle be (u1,us, ..., u;). We prove by induction that uquy, € E for all k=1,2,...,n.
By induction hypothesis, ujuyk—1y € E. NOW upk—1yUok—1, Ugk—1U2k € E. Hence ujuy € E. So by induction, ujuyy € E for all
k=1,2,...,n. Hence ujuy, € E. But we have already u,uq € E. Since D is a bitournament, both uqus,, upuq cannot be in
E. Hence there is a contradiction.

3 = 2: Obvious.

~

5 — 2: Suppose D = Ds for some nonempty set S C N. Suppose it has a directed 4-cycle (uq,us,us,us). So
Uqly, Upls, Uslyg, UgUq € E. This implies uq < uy < u3 < ug < uq which is a contradiction. So D cannot have a directed
4-cycle.

2 < 4: The adjacency matrix A is not of a Ferrer’s digraph if and only if there is a couple in A such that

Yr Vs
X 1 0
Xj 0 1

—T .
Hence A has the submatrix.

Xi Xj
Yr 1
ys| 1
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Thus, X; — yr, ¥r = Xj, Xj = ys and ys — x;. Then we get a 4-cycle. Hence A is not the adjacency matrix of a Ferrer’s
digraph if and only if there is a directed 4-cycle. That is, A is the adjacency matrix of a Ferrer’s digraph if and only if there
is no directed 4-cycle.

3 = 5: We prove this by induction on number of vertices of a bitournament D = (X, Y, E). The result is trivially true
for 2 vertices, one in each partite set. Now suppose there are n + 1 > 2 vertices in D. Now we remove a vertex v from D.
Then by induction hypothesis, the result is true for the resultant graph, say D1 which has n vertices, i.e., D1 = Ds for some
##S C N. Now, let A be the set vertices u of D such that there is a directed path from u to v. Let B be the set of vertices
w of D such that there is a directed path from v to w. Since there is no directed cycle, A and B are disjoint. Now in Ds,
any two vertices of opposite parity are adjacent and so they belong to different partite sets in D. Thus v cannot be adjacent
to both of them. Let v € X. Without loss of generality we may assume that other vertices of X are labeled by even numbers
in Dy for otherwise we increase the label of each vertex in D1 by 1.

Let m be an even number that is greater than all labels of vertices in D1. We label v as m and for each w € B, we relabel
w as w + m. We first note that adding m does not change the parity for any w in B. Next we prove that this relabeling
does not violate the adjacency condition. Let there be an arc from w € B to a vertex x in Dq. Then by construction x € B.
Hence all arcs from any w € B go to vertices to B itself. Since the original labeling did not violate the adjacency condition,
increasing each label by m also does not violate it for arcs from some vertex of B to another vertex of B. Now for the arcs
from some x ¢ B to some w € B, the adjacency condition is not violated as we have increased the label of w. All arcs from
v go to some vertex of B. Since v=m and w + m > m, the adjacency condition is not violated for arcs from v to some
vertex of B. If there is an arc from a vertex x to v, then x € A and since the label of v is higher than any vertex of A, the
adjacency retains. In all other cases, labels are not changed. Hence the relabeling matches the adjacency condition of any
arc in D. This completes the proof. O

The above characterization of acyclic bitournaments in terms of digraphs Ds enables us to characterize acyclic bi-
tournaments with Hamiltonian paths, determine the number of non-isomorphic acyclic bitournaments of a given order,
and solve the graph isomorphism problem for acyclic bitournaments in linear time. We show this in the following sec-
tion.

2.2. Acyclic bitournaments

In this section, we study the class of acyclic bitournaments (or, equivalently bitransitive bitournamemts). First, we show
that an acyclic bitournament with a Hamiltonian path is unique (up to isomorphism) for a given order. Next, we show that
the class of acyclic bitournaments can be given an “encoding” such that distinct (non-isomorphic) graphs from the class
have distinct codes. This encoding enables us to count the number of non-isomorphic acyclic bitournaments and to check
in linear time whether two given acyclic birtournaments are isomorphic.

Theorem 2.6. An acyclic bitournament D with n vertices has a Hamiltonian path if and only if D is isomorphic to D), where [n] :=
{1,2,...,n}.

Proof. The “if” direction is immediate from the definition of Dg (Definition 2.3). In Dy, we have the Hamiltonian path
1—2—...—>n.

For the “only if” direction, let D be an acyclic bitournament which has a Hamiltonian path. By Theorem 2.5 (v), D = Dg
for some nonempty set S C N. Hence, Ds has a Hamiltonian path, say a; —> a —> ... —> a,. Now, in Ds, for every arc
Xy, we have x <y and x #; y. Thus, a; < aj+1 and a; #; a;4+1 for each i =1,...,n — 1. Therefore, all elements in the set
{a; | i is odd} have the same parity while all elements in the set {a; | i is even} have the opposite parity, i.e., i #; j <
a; # a;. Let us map i in Dy to a; in Ds. We have

i— jinDy < i<jandi#; j <= a; <ajanda; #a; <= a; — a;in Dg
Hence, this is an isomorphism and Ds = Dy, i.e.,, D= D). O

We now define a function that we shall use to encode acyclic bitournaments.

Definition 2.7 (Function Bs). Given a nonempty set S C N, define the “scaling” function Bs as follows. Let the increasing
order of the natural numbers in S be given by (ay,as,...,ay). Then, Bs : S —> N is defined inductively as Bs(a;) =1, and
for i > 2, Bs(a;) = Bs(ai—1) + 1 if a; #2 a;_1 and Bs(a;) = Bs(aj—1) +2 if a; =2 ;1.

For a nonempty set S € N with (aj,az, ..., a,) being the increasing order of its elements, we define its “scaled” set Sy
as

Ssel :={Bs(a1), Bs(az), ..., Bs(an)}
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Observation 2.8. D is isomorphic to Ds

scl®

Proof. For a digraph Dgs, let the increasing order of the elements in S be given by (ay,as,...,a,) and that in Sgq be given
by (b1,b2,...,bys). Then, by definition of S, for any i, j € [n], we have b; < bj if and only if a; < a; and b; #; b; if and
only if a; #; a;j. Hence, by Definition 2.3, Ds = Ds_,. O

The following lemma enables us to give a unique code to each acyclic bitournament.

Lemma 2.9. For two nonempty sets S, T C N, Dy is isomorphic to Dt if and only if Sgq = Tsg.

Proof. One direction is obvious. Ss; = Tsqg == Ds,, = D1, = Ds = Dt (by Observation 2.8).
For the other direction, we proceed as follows. For a nonempty set S, denote the increasing order of its elements by

(ai,...,ap). Let k be the integer such that ay,...,a; all have the same parity but a1 has the opposite parity. Let S’ :=
S\{ar...,a}). We claim that Ssq ={1,...,2k =1} U{s'+2k—1:5" € S, 4}.
First note that by definition, Bs(a;) =2i — 1 for each i € [k]. Let the increasing order of elements in S;d be (s},..., s;H().

Now, we prove by induction that s (ax4;) = 2k—1+s; for each i € [n—k]. Since a1 #2 ax, we have Bs(ar11) = Bs(a) +1=
2k — 1+ 7. Therefore, the base case holds. Now suppose Bs(aj) =2k — 1 +s/j for some j > 1. Then, if a4 j #2 a1, We
have

Bs @it ji1) = Bs @y j) +1=2k =145 +1=2k =1+ Bo (g j) + 1 =2k — 1+ B/ (x4 j11) =2k — 1 +57, ;.

Again, if ay4 j = a4 j+1, we have

Bs (@t j1) = Bs @r) +2= 2k — 145} +2=2k — 1 + B (@rs ) +2 =2k — 1 + By (@hs j1) = 2k — 1+

Thus, we have proven the claim by induction. Next, suppose D is isomorphic to Ds and Dt for two sets S and T. Thus,
Ds = Dr. Hence, |S| must equal |T|. We prove that S = Ty by induction on n = |S| =|T|. The base case holds for n =2,
since there is only one nonempty bitournament on two vertices which is a single arc, and Sg¢ = Ts = {1, 2}. Now suppose
the result is true for allm<n—1.

Since Ds and D7 are acyclic, they must have nonzero source vertices, i.e., vertices with in-degree 0. Again, since they are
isomorphic, they must have the same number (say k) of source vertices. Note that since these are source vertices, they must
have the least values in S and T by Definition 2.3 and all of them must have the same parity. Let the digraphs obtained by
deleting the source vertices from each of Ds and Dr be isomorphic to Ds and Dy respectively. Then since Ds = Dr, we
have Dg = Dyv. Therefore, since |S’| =|T'| =n —k, by the induction hypothesis, we have S, = T;. By the claim above, we
have

Sea={1,...,2k—=1}U{s' +2k -1 :s’eSgd}:{l,.‘.,Zk—1}U{t’+2k—1 :t’eT;Cl}:TSd.

This completes the proof. O
We are now ready to define the code of an acyclic bitournament.

Definition 2.10 (code(D)). Given an acyclic bitournament D, define code(D) as the sequence obtained by taking the ele-
ments of Sgq in increasing order, where S is a set such that D = D (see Fig. 2).

Note that by Lemma 2.9, code(D) is a well-defined function. It then follows that code of an acyclic bitournament is
unique up to isomorphism.

Lemma 2.11. Two acyclic bitournaments D1 and D, are isomorphic if and only if code(D1) = code(D>).

Proof. Let D and D, be isomorphic to Ds and Dt for some nonempty sets S, T C N respectively. Then
D1 =Dy<—= Ds = D1 <= Sg1 = T (by Lemma 2.9) <= code(D1) = code(D3) (by Definition 2.10). O

Now, we shall use this encoding of the class of acyclic bitournaments to count the number of non-isomorphic acyclic
bitournaments of a given order.

Theorem 2.12. Let « be the number of non-isomorphic acyclic bitournaments D = (X, Y, E). Then, & = (znn’l) when |X|=|Y|=n
and a = (") when |X| =m #n =Y.
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Fig. 2. An acyclic bitournament with its code (1, 3,4,5,6, 8,10, 11).

Proof. Consider the case that the acyclic bitournament is D = (X, Y, E) with |X|=|Y| =n. By Lemma 2.11, we see that the

number of non-isomorphic acyclic bitournaments is the number of distinct codes. Note that code(D) = (ay, ..., az;) has
a; =1 and must contain n even numbers and n odd numbers as |X| =|Y|=n. For i € [n — 1] let k; denote the number
of even integers between the ith and the i + 1th odd numbers in the sequence (ai,...,daz,;), and k, be the number of
even numbers after the nth odd number. We claim that two codes (aj,...,a,) and (d], ..., a},) differ if and only if their
corresponding sequences (ki,...,kp) and (k},... k) differ.

Let a = (a1,...,ax) and @ = (d},...,d,,). If a =d, then clearly (kq,...,ky) = (kj,..., k). Now suppose that
(k1,...,kq) = (K}, ..., kp). Then for each i, we prove that the two sets of numbers from the ith to i+ 1th odd numbers in the

respective sequences a and a’ are equal. The base case for i =0 holds as a; = a} = 1. Suppose it holds for some i > 0. Let the
i+ 1th odd number in a and a’ be a; and a/j respectively. Now, we have k;1 = k§+1. If kiy1 = k§+1 =0, then, by definition,
there is no even number between a; (equivalently a’j) and the next odd number in the sequence. Thus, aj;q (equivalently
a}+1) must be odd. Since ajy1 € {a; + 1,a; + 2} and a}H € {a/j + 1,a;. + 2}, we must have aj; 1 =aj +2 :a/j +2= a;.+],
where aj;1 and a;.+1 are the i+ 2th odd numbers in a and a’ respectively. Now consider the case when ki1 = k§+1 > 0.
Then, there are ki1 even numbers in a (resp. a’) between a; (resp. a/j) and the next odd number. These numbers must
be aj+1,a;+3,...,a; + 2kiy1 — 1 and a/j + 1,a/j +3,...,d; + 2ki;1 — 1. The next odd number must then be a; + 2k
and a;. + 2ki11 respectively. Since a; = a;., these two sets of numbers are equal. We have aj,q = a;._H. Hence, it follows by
induction that for all 0 <i <n — 1, the numbers from the ith to i + 1th odd numbers are equal in the sequences a and a'.
Also since (ki,...,ky) = (kj,... k), we have a=d'.

Therefore, the number of distinct codes is the number of such sequences (kq, ..., k,). We see that the only constraints
n

on k; are that they are non-negative and Z k; =n. Recall that the number of non-negative integer solutions to the equation
i=1

.
in =sis (Hg*]) = (Sfjl) Hence, there are (2”,;1) such sequences, i.e., (2”,;1) distinct codes, and hence there are (2";1)
i=1

non-isomorphic acyclic bitournaments with partite sets of size n.
For the case when |X|=m and |Y| =n with n # m, code(D) = (ai,...,an+m) has a; =1 and either n odd numbers

and m even numbers or vice versa. Then, by similar argument as above, the number of distinct codes is the number of
n

sequences (k1,...,kp) such that each k; > 0 and Zki =m plus the number of sequences (k. ..., k) such that each k{ >0
i=1
m 1
and Zk; =n. This is equal to (™"") + ("17") = (™) (by Pascal’s identity). Hence, there are ("/™) non-isomorphic
i=1
bitournaments in this case. O

Finally, we give a linear time algorithm to check isomorphism between two given acyclic bitournaments.
Theorem 2.13. There is a linear time algorithm for deciding whether two acyclic bitournaments are isomorphic.

Proof. Suppose we are given two acyclic bitournaments D and D, as input and we need to check whether D1 = D,. We
describe an algorithm. For each of the digraphs, we do the following. Topologically sort it and obtain an ordering (v1, ..., vy)
of the vertices. We set labels to the vertices using a function ¢ as follows. Set £(v{) = 1. For i > 2, if v;_; has an arc to v;,
then set £(v;) = £(vi_1) + 1. Otherwise, set £(v;) = £(v;_1) + 2. Call the sequences (£(v1),...,£(vy)) obtained for D1 and
D, as dq and d, respectively. We decide that Dy = D5 if and only if dy =d5.

6
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We first argue the correctness. Let S be the set {£(vq),...,£(vy)}. Since D is an oriented bipartite graph, we have as-
signed odd numbers to all vertices in the partite set containing vi and even numbers to all vertices in the other partite
set. Thus for any arc (v;, v;), we have £(v;) #; £(v;). Again, because of the topological sorting, if D has an arc (v, vj),
then i < j. Our construction ensures that if i < j, then £(v;) < £(v;). Hence, for each arc (v;, v;), we have £(v;) < £(v})
and €(v;) #; £(v;). Therefore, D = Ds. It follows from Definition 2.7 and the above construction that Ssq = S. There-
fore, di = code(D1). By similar argument, d» = code(D3). Thus, by Theorem 2.12, we must have D; = D if and only if
di =dy.

Let us now analyze the runtime. Let n = |V (Dq1)| = |V(D3)| and m = |E(D1)| = |E(D3)|. For digraphs D; and D,
each topological sort takes O(n + m) time. Constructing the labels for each digraph takes O(n) time if the input is
given in adjacency matrix form. If the input is of the form of adjacency list, then the construction of labels takes

n

Zout-degree(v;_1) = O(m). Finally checking whether the codes are same takes O(n) time. Hence, we get an O(n + m)
i=2
time, i.e., a linear time algorithm. O

2.3. Caccetta-Hdggkvist Conjecture

Here, we note that a conjecture for general directed graphs can be solved to some extent for directed bipartite graphs.
The Caccetta-Haggkvist Conjecture states: “Every simple digraph of order n with minimum outdegree at least r has a cycle
of length at most [n/r].” The conjecture has been proved for r < \/n/2 by Shen [13]. For r > n/2 it is trivial since that
means number of arcs in the graph is at least n?/2 > (g) which implies the presence of a 2-cycle. But it is still open for
r=n/3,n/4,n/5 and so on.

We consider the conjecture for directed bipartite graphs. For any r < n, if there exists a 2-cycle, we are done. So we
can assume that the graphs are oriented bipartite graphs. Let D = (X, Y, E) be an oriented bipartite graph with partite sets
X and Y, where |X| =ny and |Y|=ny (ny,ny > 1), and E is the set of arcs. Let V=X UY be the set of vertices of D
with |V| =n =ny + ny. Consider the conjecture for r =n/3. Since an oriented bipartite graph does not have a 3-cycle, the
conjecture implies the following:

Proposition 2.14. There exists no oriented bipartite graph of order n with minimum outdegree at least n/3.

2
Proof. Suppose d*(v) >n/3="3" Vv e V. Then [E|= Y d*(v) > % > %T"Z > nyny which is a contradiction since
veV
|[E| <nmnp. O

Now we have the following improvement of the above result.

Proposition 2.15. There exists no oriented bipartite graph of order n with minimum outdegree > n/4.

Proof. If Vv e V, dT(v) >n/4, then |[E|= Y dT(v) > W >nqny which is again a contradiction as before. 0O
veV

Thus, the above proposition can be restated as the following.
Corollary 2.16. In any oriented bipartite graph of order n, there exists a vertex with outdegree at most n/4.

Now by similar calculations it follows that in an oriented bipartite graph with minimum outdegree n/4, every vertex
has outdegree exactly n/4. Then, niny > |E| =n%/4 = (n1 +ny)?/4 > nyny. Therefore, |E| = nyny = (n1 +n2)?/4 and hence,
np =ny. Thus, we see that D is an oriented complete bipartite graph, i.e., a bitournament with |X| = |Y|. Note that since
n/4=nq1/2 is an integer (the exact outdegree of each vertex), ny must be even. Since the underlying undirected bipartite
graph is complete, the in-degree of each vertex must also be n;/2. Therefore, for r =n/4, the Caccetta-Haggkvist conjecture
for oriented bipartite digraphs can be restated as the following.

Theorem 2.17. Let D = (X, Y, E) be a bitournament with |X| =|Y|=2mandd*(v) =d~(v) =mVYv € V = XUY. Then D contains
a 4-cycle.

Proof. Consider any 2-path u — v — w in D where u,w € X and v € Y. Let N(w) C Y be the set of m out-neighbors of
w. All vertices in N(w) cannot be out-neighbors of u, otherwise d*(u) > [N(w) U {v}| =m + 1 which is a contradiction.
Hence 3x € N(w) such that x is not an out-neighbor of u and hence an in-neighbor of u. (Since every vertex in Y is either
an in-neighbor or an out-neighbor of u). Thus we have the 4-cycle u > v —>w —>x—u. O

7
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Remark 2.18. Note that in the case of Theorem 2.17, D cannot be bitransitive by Theorem 2.5.

We now prove the conjecture for the case r =n/5. Since a bipartite graph cannot have a 5-cycle, the case for r =n/5
can be restated as: “An oriented bipartite graph (Xo, X1, E) with |Xo U X;| =n and minimum out-degree at least n/5 has a
directed 4-cycle.”

We use some notations: for i > 0, let Nj(v) denote the ith neighborhood of a vertex v, i.e., the set of vertices which are
at distance i from v, and let N_q(v) denote the set of in-neighbors of the vertex v.

Lemma 2.19. In a bipartite graph with bipartition (X, X1) and minimum out-degree at least n/5, if for some i € {0, 1}, | Xj| < a1n
o

and | X1_i| > azan, then there exists v € X;j such that [N_1(v)| > S—Zn.
251

Proof. Since minimum out-degree of a vertex is at least n/5, there are at least apn?/5 outgoing arcs from X;_;, which are
“received” by at most «in vertices in X;. Hence, by pigeon-hole principle, there exists a vertex v € X; which “receives” at

n2/5 a
many arcs. Thus, [IN_1(v)| > —
an 501

o
least

n. 0O

Lemma 2.20. Let G = (Xo, X1, E) be an oriented bipartite graph that does not contain a 4-cycle and has minimum out-degree at least
n/5. Let v be a vertex in X;, for some i € {0, 1}, such that [N_1(v)| > an. Then

(i) IN1(v) UN3(v)| < [X1-i| —an
.. .04n
(ii) IN2()] =

L —a—0.2

Proof. Note that if N3(v) NN_1(v) # @, then there is a directed 4-cycle, which is a contradiction. Since the graph is oriented,
we also have N{(v)NN_1(v) #@. Thus, (N1(v) UN3(v))NN_1(v) =@. Hence, [IN1(v) UN3(v)| < |X1—i| = IN=1 (V)| < |X1-i| —
on, which proves (i).

Now, consider the graph G’ induced by N3 (v) U (N1(v) U N3(v)). Since it is oriented, the number of arcs in G’ is at

most |[N2(v)||N1(v) UN3(v)| < [N2(v)[(|X1_i| — an). Again, the number of arcs in G’ is at least the number of arcs “exiting”
2 2

N, (v) and Nq(v), which is at least (|[N1(v)| + |N2(v)|)g > |N2(v)|§ + n—. Thus, we get the inequality |N2(v)|g + L

25 25 7
0.04n

N2 (v)|(]X1—i| — an), which gives [N2(v)| > o , and this proves (ii). O
Lk Sl R o —
n

Now we invoke Lemma 2.19 and Lemma 2.20 repeatedly to prove the following theorem:

Theorem 2.21. An oriented bipartite graph G = (Xo, X1, E) with | Xo U X1| = n and minimum out-degree at least n/5 has a directed
4-cycle.

Proof. Assume that G does not contain a directed 4-cycle. WLOG, let |Xp| < |X;|. We prove the theorem by considering the
following cases:

Case 1. |[Xq| > 0.75n.

Note that | Xo| < 0.25n. By Lemma 2.19, v € X such that [N_1(v)| > 0.6n. Now, [N1(v)| >n/5 and N1(v)NN_1(v) = @ since
the graph is oriented. Again, [N>(v)| >n/5 and v ¢ Na(v). Thus |V| > [N_1(v)UN1(v)UN2(v)U{v}| > 3n/5+n/5+n/5+1=
n+ 1, which is a contradiction.

Case 2. 0.65n < |X1| <0.75n.

Note that 0.25n < |Xp| < 0.35n. By Lemma 2.19, 3v € X such that [N_q(v)| > 0.371n. Then, by Lemma 2.20, |[N1(v) U
N3(v)| < 0.379n and |N3(v)| > 0.223n. Again, by applying Lemma 2.19 on the induced bipartite graph with bipartition
(N1(v) UN3(v), N2(v)), Ju € N1(v) UN3(v) C X7 such that [N_1(u)| > 0.117n. Then, by Lemma 2.20, |N2(u)| > 8:8‘3‘3 >n,
which is a contradiction.

Case 3. 0.6n < |X1| < 0.65n.

Note that 0.35n < |Xp| < 0.4n. By Lemma 2.19, 3v € X such that |[N_;(v)| > 0.3n. Then, by Lemma 2.20, |N;{(v) U
N3(v)| <0.35n and |Nz(v)| > 0.26n. Again, by applying Lemma 2.19 on the induced bipartite graph with bipartition
(N1(v) UN3(v), Na(v)), Ju € N1 (v) U N3(v) C X7 such that [N_1(u)| > 0.14n. Then, by Lemma 2.20, |[N,(u)| > 0.66n, which
is a contradiction since N, (u) C X7 and |X1| < 0.65n.

Case 4. 0.56n < |X1| < 0.6n.
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Note that 0.4n < |Xg| < 0.44n. By Lemma 2.19, 3v € Xo such that [N_q(v)| > 0.254n. Then, by Lemma 2.20, |[N1(v) U
N3(v)| <0.35n and [Nz (v)| > 0.27n. Again, by applying Lemma 2.19 on the induced bipartite graph with bipartition (N1(v)U
N3(v), N2(v)), Ju € N1(v) U N3(v) C X1 such that [N_q(u)| > 0.154n. Then, by Lemma 2.20, |[N1(v) U N3(v)| < 0.286n
and [N3(u)| > 0.465n. By applying Lemma 2.19 on the induced bipartite graph with bipartition (N(u) U N3(u), N>(u)),
Iw € N1(u) U N3(u) C Xg such that |[N_;(w)| > 0.339n. Then, by Lemma 2.20, |[N>(w)| > 0.655n, which is a contradiction
since Ny(w) C Xp and |Xp| < 0.44n.

Case 5. 0.53n < |X1| < 0.56n.

Note that 0.44n < |Xg| < 0.47n. By Lemma 2.19, 3v € Xp such that [N_q1(v)| > 0.225n. Then, by Lemma 2.20, |[N1(v) U
N3(v)| < 0.335n and |N3(v)| > 0.296n. Again, by applying Lemma 2.19 on the induced bipartite graph with biparti-
tion (N1(v) U N3(v), Na(v)), Ju € N1(v) U N3(v) C X7 such that |[N_q(u)| > 0.176n. Then, by Lemma 2.20, |[Nq(u) U
N3(u)| < 0.294n and |N3(u)| > 0.425n. By applying Lemma 2.19 on the induced bipartite graph with bipartition (N1 (u) U
N3(u), Na(u)), 3w € N1(u) U N3(u) C Xp such that [N_q(w)| > 0.289n. Then, by Lemma 2.20, |N,(w)| > 0.563n, which is a
contradiction since Ny (w) C X and | Xp| < 0.47n.

Case 6. 0.5n < |X1]| < 0.53n.
Note that 0.47n < |Xp| < 0.5n. By Lemma 2.19, 3v € Xg such that [N_1(v)| > 0.2n. Then, by Lemma 2.20, |[N1(v) U N3(v)| <
0.33n and |N2(v)| > 0.307n. Again, by applying Lemma 2.19 on the induced bipartite graph with bipartition (Ni(v) U
N3(v), N2(v)), 3u € Ny(v) U N3(v) C X7 such that |[N_q(u)| > 0.186n. Then, by Lemma 2.20, |[N1(u) U N3(u)| < 0.314n and
[N (u)| > 0.35n. By applying Lemma 2.19 on the induced bipartite graph with bipartition (N1(u) U N3(u), Na(u)), Iw €
N1(u) UN3(u) C Xo such that [IN_1(w)| > 0.222n. Then, by Lemma 2.20, |[N1(w) U N3(w)| < 0.308n and |[N>(w)| > 0.37n. By
applying Lemma 2.19 on the induced bipartite graph with bipartition (N;(w) U N3(w), Na(w)), 3x € Ny (w) U N3(w) C X;
such that [N_1(x)| > 0.24n. Then, by Lemma 2.20, |N,(x)| > 0.66n, which is a contradiction since N»(x) C X; and |Xq| <
0.53n.

Hence, in each case we get a contradiction, but one of them must hold. Thus, our assumption that there is no 4-cycle in
G must be wrong. This completes the proof. O

3. 0dd-even graphs

In this section, we introduce a family of graphs that we call odd-even graphs. Throughout the section we denote the
set of all non-negative even numbers by £ and the set of all positive odd numbers by O. We begin with the definition of
oriented odd-even graphs.

Definition 3.1. Let A C £ and O C O. An oriented odd-even graph 6/;(0) is an oriented graph with the set of vertices A
and with set of arcs E = {ab | &b bod ¢ O}.

Observe that 6/\(0) is an oriented bipartite graph with partite sets Vi = {veA|v=0 (mod 4)} and V, =
{veA|v=2 (mod 4)} as both # and bz;“ are even for any pair of a, b € V; and for each i € {1, 2}.

Definition 3.2. An odd-even graph G4(0) is the underlying (undirected) graph of 5/;(0), i.e.,, Ga(0) is a graph with set of
vertices A and with set of arcs E = {ab | azib, @ €0 }

From above, it is clear that G4(0) is bipartite graph. Interestingly, the following theorem shows that every bipartite
graph can be represented by an odd-even graph.

Theorem 3.3. Let B be a bipartite graph. Then there exist A C £ and O C O such that G4(0) is isomorphic to B.

Proof. Let B = (X, Y, E) be a bipartite graph with the partite sets X and Y. Let X = {bo, b2, ..., bam}, Y = {b1,bs3, ..., ban-1}
and V = X UY. Now define a function f : V — & with f(b;) = 10/t2 + 1 + (=1)*1. It is easy to check that
the function f is well-defined and injective. Take the even set A to be the image of f and let the odd set O =
{f(a);rf(b), M | ab e E(B)}. Now to show that B is isomorphic to G4(0) it is enough to observe that f(x) + f(y) #

FEOYFFOD), FO+FFOAIFE)=FON N —=FWI#FE)+ ) and | f(x)— fF(W)| # | f&)— f(¥)] for any xy € E(B)
and X'y’ ¢ E(B). O

Now from Definition 3.1 it is clear that ?A(O) is acyclic, i.e., there is no directed cycle in 3,;(0) = (V,E) as for any
arc ab € E, b —a > 0 and so a < b. Thus no come back to the starting vertex is possible in a directed walk. Therefore

6 A(0) is an acyclic oriented bipartite graph. In the following we will see that any acyclic oriented bipartite graph can be
represented by an oriented odd-even graph. Let D = (V, E) be a digraph. An ordering uq, uy, ..., u, of vertices of D is a

9
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topological ordering (or, acyclic ordering [6]) if for every arc ujuj € E, we have i < j. It is known that every acyclic digraph
has a topological ordering of vertices [6].

Theorem 3.4. Let B be an acyclic oriented bipartite graph. Then there exist A € £ and O C O such that 6 A(0) is isomorphic to B.

Proof. Let B = (X,Y,E) be an acyclic oriented bipartite graph with the partite sets X and Y and V = X U Y. Let
Uy, uy,...,u, be a topological ordering of V. Now we define a function f : V — £ inductively. Assign f(u;) = 10? or
103 + 2 according as uj € X or uy € Y. Suppose f(u;) = 102 for some k € N. We assign f(ujy1) = 10%+2 or 10%+1 4.2
according as ujyq € X or uj4q € Y. If f(u;) = 10%+1 4+ 2 for some k € N. We assign f(ui11) = 10242 or 10%+3 42 ac-
cording as uj+1 € X or uj+1 € Y. The function f is well-defined and is a strictly increasing function (hence injective). We

take the even set A to be the image of f and let the odd set 0 = {M M | ab e E(B)}. Since f is increasing,

f(a) < f(b) for all ab € E due to the topological ordering. Then it follows that 6A(O) is isomorphic to B (rest of the proof
is similar to the proof of Theorem 3.3). O

Note that the above theorem can easily be extended to bipartite graphs with countably infinite number of vertices.
Therefore, the family of odd-even graphs is, in fact, the family of all bipartite graphs with countable number of vertices.
Now we will prove some conditions for finite odd even graphs to be connected. For any odd-even graph G4(0), let the
relevant odd set be O;e; =0 N {#, ‘“;bl | ab € E}. Note that G4(0) is isomorphic to G4 (O ).

Theorem 3.5. If G4 (0) is connected with |A| > 2, then | O |> /2 A — 1.

Proof. Suppose |A| =n and |O¢| = k. Now, the number of edges in G4(0) is at least n — 1 (since G4(0) is connected) and

at most (’;) +k= k(kle) This is because each edge ab corresponds to either a pair of numbers (b, ‘“;—b‘) € Oy or a single
number % € O,¢ (in case b =0). Thus,

k(k+1 8n—7-1 V8n—-74+1
%2n—l:>(k—%>(k+%)zo

V8n—7-—-1 V8 —7+1
:Ic—n#zo (sincek+n#+>0)
8n—7-1
k=Y a1 (forn>2)

= [Oretl =v/2|A|—1. O
Theorem 3.6. Suppose A = {0,2,4, ..., 2(m — 1)}. If |Orell = 2L, then Ga(0) is connected.

Proof. WLOG, we can remove the isolated vertices from A and prove the statement for the resulting set A. Since the size
of A can only decrease, the lower bound of % on O, still holds.

Assume to the contrary that G4(0) is disconnected. Therefore, there exist at least two connected components. Let X be
a connected component and Y be the union of the other connected components. Call the larger of these two sets as Z and
let W be the other set. Then, we have |Z| > @. Now, Z can be partitioned into two sets: those of the form 4k +2 and those
of the form 4k. Let the larger set be Z’. We must have |Z'| > lzﬁ > ‘fl;'. Fix a vertex a € W such that a has a form opposite
to that of the numbers in Z’. Note that such a number exists in W because if W has all numbers of the same form, then
W cannot have edges within itself, and hence, would be a set of isolated vertices. But we removed all such vertices.

For b € Z/, define Sp = {@ "’%b‘ } Note that all elements in S, are odd. Define

T={t|teSyforsomebandt¢ O}

We must have O, C{1,3,...,2m —3}\ T, where T € {1,3,...,2m — 3}.

Observe that a does not share edges with any vertex in Z’. Therefore, at least one element from each S, does not belong
to Oy. Consider the multiset obtained by adding the elements from each S, that do not belong to O,¢. It has size at least
|Z'| > %, and the multiplicity of any number in this multiset can be at most 2. Hence, removing duplicates, we get the set

T, which has size at least 14.. Therefore, [Oyeil <1{1,3,...,2m —3}| — [T <m —1— Bl = |4 =1 - 4 < 741 But this is a
contradiction to our premise. Hence, G4(0) must be connected. O

Now we study odd-even graphs with odd sets of the following form:
Ogp=1{ak+blac& beO,keN}.

10
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Theorem 3.7. The oriented bipartite graph C= 65(00,;3) = (V, E) is unidirectional if and only if 4 divides a.

Proof. Llet Vi={ve&|v=0(mod4)} and V, ={ve&|v=2(mod 4)}. Then V = VU V,. First assume that a is divisible
by 4. Let u=4xe Vi, v=4y +2 €V, and vu € E. So that forces u > v as we have %V Y=Y € 0qp. That is, we have

2
2(x+y)+1,2(x — y) — 1 € 04 p. This implies

2x=a(ny +ny)/2+b

where nq,n, are some positive integers. But this is a contradiction as a(ny +n3)/2 + b is an odd number while 2x is even.
.= .= .
So all the arcs in G are from V; to V5, i.e,, G is unidirectional.
For the converse part, assume that a is not divisible by 4. Let n; > ny be two positive even integers. Then u =a(ny —ny) €
V1 and v =a(ny +ny) +2b € V. In this case, ”zﬂ % € Ogqp and we have the arc uv € E. On the other hand, consider two
positive integers m; > my where m; is odd and m; is even. Then u’ = a(m; +m3)+2b € V1 and v/ = a(m; —m3) € V5. In this

’ oy [ - . . g . . P
case, Y- Y=Y € 04 and we have the arc v/u’ € E. So the graph G is not unidirectional when a is not divisible by 4. O

Theorem 3.8. Let § £ I C N and the odd set is given by O ={a; + 1 | a; € £, i € I}. Then the oriented graph 55(0) is unidirectional
if and only if 4 divides a; for all i € I or, 4 does not divide a; for alli € I.

Proof. et Vi={vef|v=0(mod4)}, Vo={ve&|v=2 (mod 4)}, V=V,UV;, and 55(0) = (V, E). First suppose that
4 divides a; for all i € I. Let u, v € £ such that uv € E. Then “zﬂ =4 € 0. Thus “zﬂ =4k +1 and 5% =4ky 41 for some
k1,k € N. These imply v =4(k1 +k2) + 2 and u = 4(kq — k3). Thus all the arcs are from V7 to V5.

Next consider that 4 does not divide a; for all i € I. Let u, v € £ such that uv € E. Then as before we have % =4k{+3
and "2;“ =4k, + 3 for some k1, ky € N. These imply v =4(ky +ky +1) + 2 and u = 4(k1 — k). Thus again we have all the
arcs are from V4 to V5.

Finally let a; + 1,a, +1 € O such that 4 divides a; and 4 does not divide a;. Let a; > a,. Consider u =a; — a and
v=aj;+ay+2. Then ueVy veVy, % =a;+1 and "2;“ =a; + 1. Thus uv € E. Again for w = 2a; + 2, we have
Ow € E, where 0 € V{ and w € V,. Thus the graph is not unidirectional. For a; < ay, the proof is similar with the choice
u=a—a. O

The adjacency matrix of the oriented graph 65(04,1) is of the form

1 o0 1 0 1 O
0 o 1 o0 1 o0 1
olo where X=|10 0 1 0 1 O
o o O 1 o0 1
0
_
and the adjacency matrix of G £(0¢.1) is
r 1 0 01001O00O0 7
0O 0 O0OO0OOOODOD
0 0O 0 O0OO0OOOODOD
0O 0 O0O0O1O0O0T1TOPO0
0
0 0 OO0 OOOUODO
0O 1 001O0O0T1TO0
0 0O O O0OO0OO0OTUODO 0
0 0 O O0OOOOTUOTDO
0 0 0O0O1O0O0T1TTPO0
0

Note that according to Theorem 3.7, 55(04,1) is unidirectional while 55(05,1) is not. From the above two examples
one can observe the difference between the adjacency matrices of unidirectional and not unidirectional oriented odd-even
graphs.

4. The Goldbach graph
Here, we focus on a particular odd-even graph 55(77) and Gg¢(P) where the odd set P is the set of all odd primes,
and call them the Goldbach (infinite) digraph and the Goldbach (infinite) graph respectively for the reason that will become

apparent in the first result of this section. The set of vertices of the Goldbach (infinite) graph is the set of all non-negative

11
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even integers and two such vertices a,b are adjacent if and only if both # and @ are odd prime numbers. Let &,
denote the set of all non-negative even numbers less than or equal to 2n. Also, the graph Gg, (P) will be denoted by Gy,
and we call this graph a Goldbach (finite) graph. The neighborhood Ng, (v) (or, the out-neighbor Ngn(v) or the in-neighbor

Ng_;n(v)) of a vertex v in G, (or, in 511 which we call a Goldbach (finite) digraph) will be denoted by Ny (v) (or N; (v) or
N, (v), respectively) for the remainder of the section. Also the degree dg, (v) (or, the out-degree d‘gLn(v) or the in-degree

dén(v)) of a vertex v in G, (or, in 6,1) will be denoted by dn(v) (or d;f (v) or d (v), respectively) for the remainder of the

section. We denote 85(73) and Gg (P) by 500 and G, respectively and the out-degree and the in-degree of v € £ in T])oo
by d¥ (v) and d3 (v) respectively and the degree of v € £ in G by doo (V). NI (v) or N3 (v) are defined similarly. Now we
state the result that, by and large, motivated this work.

Theorem 4.1. The following statements are equivalent.

(i) (Goldbach’s conjecture) Every even integer greater than 5 can be written as sum of two odd primes.
(ii) Gp is connected for alln > 7.

(iii) d,(v) > O forall v>6in G .

Proof. (i) = (ii): Suppose that the Goldbach’s conjecture is true. Observe that G; is connected. Now assume that G, is
connected for all n < k. By Goldbach Conjecture, 2(k + 1) = p 4+ q for some p,q € P. Then |p —q| is even and |p — q| <
p+q=2(k+1). Thus 2(k + 1) is adjacent to |p — q| which is a vertex of Gy as well. This implies that Gy is connected.
(ii) = (iii): Suppose Gy is connected for all n > 7. Let v be any even integer greater equal to 14. Then, as the graph G, is
connected, the vertex v of the graph must be adjacent to some other vertex of the graph. Note that v is the greatest vertex
in Gy /2. Hence d_ (v) > 0. Now it is a simple observation that for 6 < v <12 we have d_ (v) >0 as 0 € N,(6) N N, (10)
and 2 € N, (8) N N, (12). This completes the proof.

(iii) = (i): Suppose d_ (v) > 0 for all v > 6. Now for any even number a > 5 there exists b such that b € N (a). That
means, there exist odd primes p, q such that we have p 4+ q =a. This is precisely the Goldbach’s conjecture. O

The above result shows that the Goldbach’s conjecture can be formulated using graph theoretic notions. For verification
and other studies on Goldbach’s conjecture one may consult [5,11,14,15]. Note that in Theorem 3.5 and 3.6 we presented one
necessary and another sufficient conditions for connectedness of finite odd-even graphs. Improved results of similar nature
might give rise to an alternative way of digging into the Goldbach’s conjecture using graph theory due to Theorem 4.1.
Having proved this equivalence, naturally we tried to explore more such equivalent formulations. Our observation which
was integral in proving the above result is that, given a non-negative even integer 2n, it is adjacent to a smaller integer
implies that 2n can be expressed as the sum of two odd primes. Similarly, its adjacency with a greater integer implies
that 2n can be expressed as difference of two odd primes. This readily provides graph theoretic formulation of another
well-known conjecture in number theory.

Theorem 4.2. The following statements are equivalent.

(i) (A conjecture by Maillet [8]) Every non-negative even integer can be written as difference of two odd primes.
—
(i) di,(v) >0 forallv>2inG.

After this the first thing that came to our notice is that the degree of the vertices of our graph is particularly interesting.
As the graph is an infinite graph, the natural question about the degrees is, if they are finite or not. In particular, note
that each vertex has finite in-degree, as its in-neighbors are smaller non-negative even numbers, while its out-degree can
be unbounded. So the vertex 0 has no in-neighbors while its out-neighbors are precisely 2p for all p € P. We know that
there are infinitely many odd primes due to Euclid’s theorem (which says, there are infinitely many prime numbers). Hence,
d¥,(0) is infinite and this is equivalent to Euclid’s theorem.

Observation 4.3. The vertex 0 of 600 has infinitely many out-neighbors and hence, has infinitely many neighbors.

This observation naturally motivates us to wonder if the degrees (or out-degrees) of the other vertices are finite or not.
It turns out to be a difficult question as it is equivalent to another well-known conjecture, the Kronecker’s conjecture.

Theorem 4.4. The following statements are equivalent.

(i) (Kronecker’s conjecture [7]) Given a positive even number 2k, there are infinitely many pairs of primes of the form {p, p + 2k}.
(ii) For every vertex v € £ we have d; (v) is infinite in 600.

12
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(iii) For every vertex v € £ we have doo (V) is infinite in Go.

Proof. (i) = (ii): Suppose that the conjecture is true. Let 2k be an even number for some k > 1. So, there are infinitely many
pairs of primes of the form {p, p + 2k} by assumption. Note that for each such pair of primes the vertex 2k is adjacent to
the vertex 2(p + k) in Go.

(ii) < (iii): Clearly follows from the fact that dX,(v) <d} (v) +d5(v) =dx(v) for all v € € while d (v) is finite.

(iii) = (i): Suppose d¥ (v) is infinite for all v € £. Let v = 2k be an even number for some k > 1. Now for each out-neighbor
u=2n of v in G5, we have Z”Zﬂ @ € P. Hence, both (n — k) and (n + k) are primes and there are infinitely such
distincts pairs for each k>1. O

In particular, determining if degree (or out-degree) of 2 is finite or not will settle the twin prime conjecture [19] (posi-
tively if d(2) is infinite). This implies an immediate corollary.

Corollary 4.5. The following statements are equivalent.

1. (Twin prime conjecture [19]) There are infinitely many pairs of primes of the form {p, p + 2}.
2. df (2) isinfinite in G .
3. deo(2) is infinite in Geo.

Next we will try to understand the significance of the degrees of the vertices in G,. Given a non-negative even number
2n, the in-degree d_,(2n) is the number of ways 2n can be expressed as the sum of two odd primes. Similarly, the out-
degree dI_ (2n) is the number of ways 2n can be expressed as the difference of two odd primes. Moreover, the degree of 0 in
G is the number of odd primes less than or equal to n. So, the graph parameter d,(0) can be regarded as a function similar
to the prime counting function 7 (n), which denotes the number of primes less than or equal to n. So, for n > 2 we have

() =dn(0) +1

as the only even prime 2 is not adjacent to 0. As it turned out to be an interesting yet difficult problem to figure out what
the degrees of the vertices are, we started to establish some relations between them. Hence the following result.

Theorem 4.6. For alln > 2r and for 0 <m <4, in 600 we have
m m
> di@i) =) d, 2 —2i).
i=0 i=0

Sketch of the proof. Let A; ={q|p+q=2r—2iand q <p} for i € {0,1,2,3,4} where p,q are odd primes. Observe that
d (2r — 2i) = |A;|. Note that for any q € i, A;, we have 2q € N; (0). Thus, dif (0) >| U, Ai |-

Now suppose q € A; N A; for some i, j € {0,1,2,3,4} and i < j. Then there are primes p1, p> > q such that p; +q =
2r —2i and pp +q=2r—2j.So p =p1 —2(j —1i). As both w = p1 and w =p1—2(j—i)=p2
are odd primes we have

2p1 —2(j — 1) € NF (- ). (41)

Let S; ={(i,x) | x € N;F (2i)} for i € {0, 1,2, 3, 4}. Note that S;NS; = for i # j and |S;| =d;f (2i) for all i € {0, 1, 2, 3, 4}. Also
let S = U?:o Si. Then we will construct a subset T C S such that |T| > Z?:o | Aj |. This will complete the proof.
Step 0: We know that for each q € U?:o Aj, we have (0, 2q) € Sp. Put all these (0, 2q)’s in the set T. Next we have to deal
with the elements that are in more than one A;’s.
Step 1: First we handle the case where an element q € Ag N A; for some j € {1,2,3,4}. For each such g there is a prime
p such that p +q =2r. By (4.1) we know that for each such q, there is an edge between 2j and (2p — 2j). Put all these
(j,2p —2j)'s in T. Observe that all these are new elements in T as j > 1.
Step 2: Now consider an element g € A; N A,. Then there exists a prime p such that p+q =2r — 2 and by (4.1) we know
that (1,2p —2) € S1. We will put all such (1,2p —2)’s in T if they were already not in T. Let for some g, its corresponding
(1,2p — 2) were already in T. That means that element was included to T due to Step 1. Therefore, p 4+ (q + 2) = 2r where
(q + 2) is also a prime. Hence, (1,2q + 2) € S as both w =(q+2) and % =q are primes. Note that, all the
elements included to T before are of the form (1,2p — 2) with p ¢ Ag while (q 4+ 2) € Ap. Therefore, (1,2q + 2) is not yet
included to T. Now we include all such (1,2q+2)'sto T.
Step 3: Now consider an element g € A1 N As. Then there exists a prime p such that p +q = 2r — 2 and by (4.1) we know
that (2,2p —4) € Sp. We will put all such (2,2p —4)’s in T if they were not already in T.

Let for some q, its corresponding (2,2p — 4) were already in T. That means that element was included to T due to
Step 1. An argument similar to Step 2 will show that there is an edge between (2q + 2) and 2. We will include all those
(1,2q + 2)’s to T which were not included to T before.

13
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There may be some (1,2q + 2) which was included to T before. Then that inclusion was due to Step 2. This implies
p, (p —2) and (p — 4) are all odd primes. The only such instance is when p =7. Thus, 2r—6=(p —4)+q=3+q. As
(p —4) > q we have q = 3. Hence, 2r = 12. It is easy to check that the theorem holds for 2r = 12. Therefore, we can ignore
this case.

There are four more steps, namely, for g € A1 N Ag, q € A2 N A3, g€ AN A4 and q € A3 N A4 in that order, that will
conclude the proof. Those cases can be handled in a similar way like above. O

Our interest in the degree of the bipartite graph G,, prompted us to study the complete bipartite subgraphs of G, from
number theoretic point of view.

Proposition 4.7. If the complete bipartite graph K, p is a subgraph of Goo, then there exists a set {p1, pz2, ..., Pm} of m primes and a
set {r1,12,...ra—1} of (n — 1) positive integers such that p; +rj is a prime for all (i, j) € {1, 2, ...,m} x {1, 2, ...,n}.

Proof. Let X and Y be the two partite sets of Kp . Index the vertices of X = {x1,x2,...,xm} and Y = {y1, y2,....,yn} in
increasing order. Let p; = “Ty] and rj = w for (i, j) €{1,2,...,m} x {1,2,...,n — 1}. Note that p; +r; = “# is a
prime for each (i, j) € {1,2,....m} x {1,2,....,n—1}. O

Now we will prove some conditions for a complete bipartite subgraph of G, with the aid of the following two lemmas.
Let us denote N U {0} by Ny.

Lemma 4.8. Let a, b ¢ 6Ny and ab € E(G), then |a — b |=6.

Proof. Let a > b. Then a=p+q and b = p — q for some odd primes p and q. If p,q # 3, then p and q are each of the form
6k + 1 or 6k — 1. Then either 6 | (p +q) =a or 6 | (p — q) = b contradicting the assumption of the lemma. Hence g =3 (as
p >q > 3) which impliesa—b=2¢q=6. O

Lemma4.9. Let a,b € 6Ng and ab € E(Gy) witha > b, thena=6 and b =0.

a=b
5 -

Proof. As both a and b are divisible by 6, both # and % are divisible by 3. Since they are primes, %2 =3 =

2
Therefore, a=6,b=0. O

Theorem 4.10. Let K, , be a subgraph of G, with partite sets X and Y such that m,n > 2. Then either X C 6Ngand Y N6Ng =
orY c 6Ngand XN6Ng = 0.

Proof. If neither X ¢ 6Ng nor X N 6Ny # @, then either there exist a € X N6Ny and {b,c} € X N (Np \ 6Np) or there exist
{b,c} c XN6Np and a € X N (Np \ 6Np).

If ae XN6Np and {b, c} ¢ XN (Np\6Np), then | Y N6Np |< 1 by Lemma 4.9. Again for any d € Y N (Np \ 6Np), Lemma 4.8
forces b — 6 =d = c + 6 assuming b > c, without loss of generality. Hence | Y N (Np \ 6Np) |< 1. Therefore, | Y |=| Y N6Np |
+1Y N (Ng\6Np) |<2, a contradiction.

If {b,c} c XN6Np and a € XN (Np \ 6Np), then Y N 6Ny =@ as otherwise each vertex of Y N 6Ny must be adjacent to
both b and ¢ forcing them to be the same vertex by Lemma 4.9. On the other hand, if d e Y N (Np \ 6Np), then d=a — 6
or d=a+ 6 by Lemma 4.8. This implies | Y |=| Y N6Np |+ | Y N (Np \ 6Np) |< 2, a contradiction. So either X C 6Ny or
XN6Ng=¢. If X C 6Ny, then Y N6Ny =@ by Lemma 4.9. If XN 6Ny =@, then Y N (Np \ 6Np) =@ by Lemma 4.8. For if
x € X is adjacent to x —6,x+ 6 € Y, then x+ 6 can be adjacent to only x and x+ 12. But x+ 12 is not adjacent to x— 6. O

In the next result we will also capture the case where at least one of the partite sets have exactly two vertices while the
other one has at least four of them.

Theorem 4.11. Let K> ,, be a subgraph of G, with partite sets X and Y such that | X| =2 and |Y| =n > 3. Then either X C 6Ny and
Y N6Ng =@, or XN6Ng=@and|Y N (Ng\6Np) |<1.

Proof. Suppose X = {a, b}. Without loss of generality, let a € 6Ny and b € (Ng \ 6Np). Then | Y N6Np|<1 and | Y N (Np\
6Np) |< 2 by Lemma 4.9 and 4.8. Therefore, | Y |< 3, a contradiction. Hence either X C 6Ny or XN 6Ny =#. If X C 6Nj,
then Y N6Ng =@ by Lemma 4.9. If X N 6Ny =@, then a and b can have at most one common neighbor ¢ such that
c € (Ng\6Np) by Lemma 4.8. O

Now let us try to understand the structure of independent sets in G,. Of course, as G, is a bipartite graph, there are at
least two distinct (and disjoint) independent sets in the form of the two partite sets. But how big can an independent set
consisting of only consecutive (non-negative) even numbers be? We answer this question in the following result.
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Theorem 4.12. There exist arbitrarily large independent sets containing consecutive (non-negative) even numbers in Gu..

Proof. Given any n € N, the set R ={(2n)! +2, 2n)! + 3, ..., (2n)! + (2n)} is a set of consecutive composite numbers. Hence
no two vertices in the set

S={2n)!+2,(2n)! +4, ..., 2n)! + 2n}

a+b

are adjacent to each other as =~

even numbers in Go. O

€ R for all a,b € S. Hence S is an independent set containing n consecutive (non-negative)

5. Conclusions

We conclude the paper with an interesting observation that the graphs Gg:(P1) are Hamiltonian for all even n with
4 <n <58, where & =&, \ {0} and P; =P U {1} (cf. Appendix A). Since the graph Ggx(P1) is bipartite, there cannot be
any odd cycle in the graph. But it follows from the above observations that Ggx (1) has a Hamiltonian path (i.e., a spanning
path) for all odd n with 5 <n <57 for if gg;m (P1) is Hamiltonian, then deleting the vertex corresponding to 2m from any
of its Hamiltonian cycle, we get a Hamiltonian path of Q'gz*mil (P1). Thus Ggx(P1) has a Hamiltonian path for all n with
4 < n < 58. The following is an interesting Hamiltonian path of ggs*s (1) that starts with 2, ends at 116 and covers all even
integers in between them:

2,4,6,8,14,12,10, 16, 18, 20, 26, 32, 30, 28, 34, 24, 22, 36, 38, 44, 42, 40, 46, 48, 58, 60, 62, 56, 50, 72, 70,
64,54, 52,66, 68,74, 84, 82, 76, 90, 88, 78, 80, 86, 92, 102, 100, 94, 108, 98, 96, 106, 112, 114, 104, 110, 116.

Let us call two even natural numbers conjugate to each other if {a,b} ={p — q, p + q} for some p, q each of which is either
an odd prime or 1. We see that there is a sequence of even natural numbers up to 1000 such that any two consecutive
numbers in this sequence are conjugate to each other (cf. Appendix B). Now these observations lead to the following
questions:

1. Does there exist a sequence of all even natural numbers such that any two consecutive numbers in this sequence are
conjugate to each other?
2. If the answer to the above question is negative, then what is the least value of m such that gg;m (P1) is not Hamiltonian?
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Appendix A

Number of Vertices Hamiltonian Cycle

4,2,8,6,16,10,12,14,20,18,28,30,32,26,36,22,24,34,40,46,48,38,44,42,4)
4,2,8,6,16,10,12,14,20,18,28,34,40,46,36,22,24,50,44,38,48,26,32,30,52,42,4)
4,2,8,6,16,10,12,14,20,18,28,30,56,50,44,38,24,22,36,46,40,34,48,26,32,54,52,42,4)

(continued on next page)

4 (42,864)
6 (4,6,82,12,104)
8 (4,2,814,12,10,16,6,4)
10 (4,.2,8,6,1610,12,14,20,18,4)
12 (4,2,8,6,16,10,12,22,24,14,20,18,4)
14 (4,2,8,6,28,18,16,22,12,26,20,14,24,10,4)
16 (4,2,8,6,16,10,12,22,24,14,20,26,32,30,28,18,4)
18 (4,2,8,6,16,10,12,14,20,18,28,34,24,22,36,26,32,30,4)
20 (4,2,8,6,16,10,12,22,36,38,24,14,20,26,32,30,28,34,40,18 4)
22 (4,2,8,6,16,10,12,14,20,18,28,34,40,42,32,26,36,22,24,38,44,30,4)
(
(
(
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Number of Vertices Hamiltonian Cycle

30 (4,2,8,6,16,10,12,14,20,18,28,30,56,50,44,38,24,22,36,46,40,34,48,58,60,26,32,54,52,42,4)
32 (4,2,8,6,16,10,12,14,20,18,28,30,32,26,36,22,24,34,40,46,48,38,44,50,56,62,60,58,64,54,52,
42,4)
34 (4,2,8,6,16,10,12,14,20,18,28,30,32,26,36,22,24,34,40,46,48,38,44,50,56,62,60,58,64,54,68,
66,52,42,4)
36 (4,2,8,6,16,10,12,14,20,18,28,30,32,26,36,22,24,34,40,46,48,38,44,50,72,70,64,58,60,62,56,
66,68,54,52,42,4)
38 (4,2,8,6,16,10,12,14,20,18,28,30,32,26,36,22,24,34,40,46,48,38,44,50,56,62,60,58,64,54,52,
66,68,74,72,70,76,42,4)
40 (4,2,8,6,16,10,12,14,20,18,28,30,32,26,36,22,24,34,40,42,52,54,68,74,48,38,44,50,56,62,72,
46,60,58,64,70,76,66,80,78,4)
42 (4,2,8,6,16,10,12,14,20,18,28,30,32,26,36,22,24,34,40,42,44,38,48,46,60,58,64,70,76,82,84,
50,56,62,72,74,68,54,52,66,80,78,4)
44 (4,2,8,6,16,10,12,14,20,18,28,30,32,26,36,22,24,34,40,42,52,66,68,74,48,38,44,50,56,62,84,
58,64,70,76,82,60,46,72,86,80,54,88,78,4)
46 (4,2,8,6,16,10,12,14,20,18,28,30,32,26,36,22,24,34,40,42,44,38,48,46,60,58,64,70,76,82,84,
50,56,62,72,74,68,54,52,66,92,86,80,78,88,90,4)
48 (4,2,8,6,16,10,12,14,20,18,28,30,32,26,36,22,24,34,40,42,44,38 48,46,60,58,64,70,76,82,96,
50,56,62,72,94,84,74,68,54,52,66,92,86,80,78,88,90,4)
50 (4,2,8,616,10,12,14,20,18,28,30,32,26,36,22,24,34,40,46,48,38,44,42,100,94,72,62,56,50,96,
98,60,58,64,70,76,82,84,74,68,54,52,66,92,86,80,78,88,90,4)
52 (4,2,8,6,16,10,12,14,20,18,28,30,32,26,36,22,24,34,40,46,48,38,44,42,104,102,100,94,72,62,56,
50,96,98,60,58,64,70,76,82,84,74,68,54,52,66,92,86,80,78,88,90,4)
54 (4,2,8,6,16,10,12,14,20,18,28,30,32,26,36,22,24,34,40,46,48,38,44,42,104,102,100,106,108,94,72,
62,56,50,96,98,60,58,64,70,76,82,84,74,68,54,52,66,92,86,80,78,88,90,4)
56 (4,10,16,6,8,14,14,20,18,28,30,32,26,36,22,24,34,40,46,48,38,44,42,100,102,104,110,108,106,112,
90,88,78,80,86,92,66,52,54,68,74,84,82,76,70,64,58,60,98,96,50,56,62,72,94,12,2,4)
58 (64,2,8,14,12,10,16,18,20,26,32,30,28,34,24,22,36,38,44,42,40,46,48,58,60,62,56,50,72,70,64,54,

52,66,68,74,84,82,76,90,88,78,80,86,92,102,116,110,104,114,112,106,96,98,108,94,100,6)

Appendix B

A Hamiltonian path in the graph Qg;oo P,
(A sequence of even natural numbers up to 1000 where
any pair of consecutive numbers are conjugate to each other).

{22, 16, 10, 4, 2, 8, 14, 20, 26, 32, 54, 52, 42, 80, 86, 92, 102, 112, 106, 100, 94, 12, 514, 408,
394, 400, 138, 284, 278, 288, 250, 204, 658, 664, 30, 136, 142, 120, 74, 68, 6, 340, 334, 328, 294,
152, 146, 528, 586, 372, 362, 356, 350, 344, 18, 28, 34, 40, 46, 36, 430, 436, 442, 576, 662, 656
650, 644, 638, 24, 338, 636, 710, 672, 682, 516, 502, 496, 798, 844, 642, 776, 770, 324, 218, 228
926, 932, 390, 508, 330, 292, 210, 304, 310, 316, 222, 244, 238, 264, 482, 476, 282, 416, 422, 720
598, 604, 610, 616, 622, 504, 82, 76, 70, 64, 58, 420, 578, 300, 322, 996, 998, 984, 982, 900, 914
908, 906, 800, 794, 180, 122, 84, 842, 836, 78, 88, 114, 412, 406, 108, 166, 160, 154, 148, 366, 592,
450, 764, 758, 60, 778, 768, 634, 628, 66, 812, 806, 72, 626, 468, 206, 540, 698, 704, 582, 940, 934,
588, 674, 680, 686, 552, 646, 640, 762, 752, 630, 808, 814, 708, 746, 740, 738, 700, 594, 872, 882,
892, 870, 788, 786, 172, 834, 688, 694, 948, 986, 980, 974, 968, 750, 268, 274, 280, 286, 252, 374,
492, 466, 460, 454, 312, 614, 620, 618, 676, 670, 972, 970, 964, 942, 716, 722, 696, 818, 824, 830
828, 946, 960, 242, 236, 230, 224, 702, 920, 954, 248, 254, 260, 266, 272, 606, 308, 314, 320, 306
388, 414, 332, 666, 472, 726, 728, 654, 632, 246, 712, 706, 732, 554, 560, 566, 572, 966, 928, 714,
724, 730, 736, 742, 660, 262, 924, 898, 816, 958, 936, 902, 864, 118, 780, 862, 856, 850, 804, 962
876, 718, 684, 938, 944, 950, 956, 498, 220, 226, 232, 126, 352, 346, 48, 38, 44, 50, 56, 62, 96, 98,
104, 110, 116, 198, 784, 790, 648, 734, 612, 190, 196, 202, 192, 890, 884, 878, 840, 886, 880, 874,
852, 866, 860, 854, 912, 326, 888, 434, 428, 894, 832, 826, 820, 774, 548, 930, 212, 150, 296, 290
132, 410, 456, 562, 480, 494, 488, 510, 532, 426, 452, 446, 440, 318, 524, 518, 360, 478, 216, 418
424, 342, 404, 398, 276, 470, 464, 458, 624, 298, 600, 766, 772, 270, 448, 186, 952, 486, 652, 474,
608, 534, 692, 546, 580, 574, 568, 354, 512, 506, 500, 378, 368, 174, 208, 214, 168, 158, 156, 602
596, 590, 584, 258, 200, 194, 188, 234, 392, 386, 380, 162, 164, 170, 176, 182, 144, 490, 484, 522
140, 134, 128, 90, 256, 462, 556, 558, 536, 918, 520, 526, 432, 550, 544, 538, 396, 922, 916, 438
364, 370, 376, 382, 240, 302, 444, 530, 384, 542, 336, 178, 184, 402, 124, 130, 348, 358, 756, 838,
564, 782, 792, 802, 744, 910, 904, 822, 896, 810, 848, 858, 868, 570, 796, 690, 748, 754, 760, 678
668, 846, 992, 990, 976, 978, 988, 994, 1000}
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