
water

Article

Deep Reinforcement Learning with Uncertain
Data for Real-Time Stormwater System Control and
Flood Mitigation

Sami M. Saliba 1,† , Benjamin D. Bowes 1,2,† , Stephen Adams 1 , Peter A. Beling 1,2

and Jonathan L. Goodall 1,2,*
1 Department of Engineering Systems and Environment, University of Virginia, P.O. Box 400747,

Charlottesville, VA 22904, USA; sms8fr@virginia.edu (S.M.S.); bdb3m@virginia.edu (B.D.B.);
sca2c@virginia.edu (S.A.); beling@virginia.edu (P.A.B.)

2 Link Lab, University of Virginia, P.O. Box 400259, Charlottesville, VA 22904, USA
* Correspondence: goodall@virginia.edu
† These authors contributed equally to this work.

Received: 19 October 2020; Accepted: 12 November 2020; Published: 17 November 2020
����������
�������

Abstract: Flooding in many areas is becoming more prevalent due to factors such as urbanization and
climate change, requiring modernization of stormwater infrastructure. Retrofitting standard passive
systems with controllable valves/pumps is promising, but requires real-time control (RTC). One method
of automating RTC is reinforcement learning (RL), a general technique for sequential optimization and
control in uncertain environments. The notion is that an RL algorithm can use inputs of real-time flood
data and rainfall forecasts to learn a policy for controlling the stormwater infrastructure to minimize
measures of flooding. In real-world conditions, rainfall forecasts and other state information are subject
to noise and uncertainty. To account for these characteristics of the problem data, we implemented
Deep Deterministic Policy Gradient (DDPG), an RL algorithm that is distinguished by its capability
to handle noise in the input data. DDPG implementations were trained and tested against a passive
flood control policy. Three primary cases were studied: (i) perfect data, (ii) imperfect rainfall forecasts,
and (iii) imperfect water level and forecast data. Rainfall episodes (100) that caused flooding in the
passive system were selected from 10 years of observations in Norfolk, Virginia, USA; 85 randomly
selected episodes were used for training and the remaining 15 unseen episodes served as test cases.
Compared to the passive system, all RL implementations reduced flooding volume by 70.5% on average,
and performed within a range of 5%. This suggests that DDPG is robust to noisy input data, which is
essential knowledge to advance the real-world applicability of RL for stormwater RTC.

Keywords: real-time control; reinforcement learning; smart stormwater systems; urban flooding

1. Introduction

Flooding in many urban areas is becoming more prevalent due to changing weather patterns, rising sea
levels, and increases in impervious surfaces [1–5]. The cost of stormwater flooding is estimated in the
billions of dollars with the loss of property, potential for loss of life, and mobilization of emergency
personnel to keep people safe [6]. Currently, the majority of stormwater systems are designed to passively
manage rainfall and runoff. Although these systems are planned for urban growth and development,
they often cannot accommodate the increased water volumes with new or changing construction of

Water 2020, 12, 3222; doi:10.3390/w12113222 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0002-7009-7667
https://orcid.org/0000-0001-8349-4787
https://orcid.org/0000-0002-1207-4504
https://orcid.org/0000-0003-2196-6982
https://orcid.org/0000-0002-1112-4522
http://www.mdpi.com/2073-4441/12/11/3222?type=check_update&version=1
http://dx.doi.org/10.3390/w12113222
http://www.mdpi.com/journal/water

Water 2020, 12, 3222 2 of 19

buildings and roads, which decrease permeable surfaces, or the increasing storm intensities associated
with climate change [7,8].

While modern stormwater systems are increasingly designed for multiple goals such as flood
mitigation and water quality protection [9], they are still passive infrastructure that cannot adapt to
dynamic storm events and long-term changes in runoff volumes. Retrofitting stormwater systems for
active monitoring and real-time control (RTC) is a promising approach to address these issues [10]. RTC has
been previously used in other urban infrastructure, such as combined sewers to prevent overflows [11].
While becoming more common with stormwater management, RTC of these systems is not yet the standard.
The utilization of these dynamic systems with heuristic control has shown significant performance
improvements compared to their passive counterparts [12]. Heuristic control typically offers a generalized
strategy to adjust valves and pumps based on a prediction model. While shown to be successful on an
individual storage pond, the repercussions of having multiple ponds in parallel are rarely considered [13].
For example, when two of these heuristic controlled systems are used, each is designed to monitor its own
storage pond, and thus may cause flooding downstream by releasing water to reduce their own flooding.

As the use of stormwater RTC grows and these systems become more complex, automated control
and optimization techniques are needed. Algorithmic control such as using machine learning or genetic
algorithms have been proposed previously for water resource management; however, both have their
faults. Machine learning has primarily been utilized to predict flooding, not reduce it [14]. Similarly,
genetic algorithms have issues when the scope of the area evaluated is expanded [15]. Reinforcement
learning (RL) [16], a type of machine learning, is an emerging approach to stormwater system RTC that
allows the creation of policies for flow control valves, pumps, and ponds within a stormwater system
using simulations [17,18]. With all forms of RL, the ultimate goal of the agent is to learn a policy (π) for the
given simulated environment. A policy acts as a map for actions to a given state. In the case of this project,
sensor data (state information) is connected to flow valve opening (action) at any given time. RL functions
similarly in principle to the way humans or animals learn or make behavioral modifications. An action
occurs and is evaluated, then a reward is applied. A greater reward incentivizes an action, and a lesser
reward discourages an action. With consistent administration, the human or animal “learns” to avoid
negative consequences using this technique, while positive rewards reinforce good behaviors. The RL is
designed with reward functions to provide a positive or negative reward.

Deep Deterministic Policy Gradients (DDPG) is a RL algorithm that uses a deep learning framework
to create function approximators with neural networks [19]. DDPG is an actor-critic RL method. The Actor
and Critic are separate neural networks, but they collaborate through constant interaction. The action is
performed by an actor, and the evaluation of the performance of the actor is done by a critic. The Actor
takes actions in the environment based on the gradient of the Critic. The Critic receives information about
the environment and “grades” the action made by the Actor. The relationship of the Actor and the Critic
dictates how the overall agent learns based on a reward function that reinforces the learning [20]. DDPG is
useful to learn policies in complex environments and problems in which the number of available control
actions is large or a continuous space. This would make DDPG a good choice for stormwater systems in
which a continuum of valve settings can be used to shift water to another location that may have upstream,
downstream, or even parallel implications. The control valves used in this study can be opened to any
value from 0% to 100%. Finding the most effective reward function is a key component to fully automating
the stormwater systems to mitigate flooding across broad areas in a complex environment.

Bowes et al. (2020) demonstrated an improvement over the passive system, reducing flooding
using DDPG when the sum of flooding was used as a reward function to train the RL agent [21].
They demonstrated that RL could reduce flooding compared to a passive stormwater system and rule-based
RTC. Although they were able to reduce flooding substantially, their RL agent was trained and tested with
perfect state information: the dataset used exact water levels at a current time, and the rainfall forecast was

Water 2020, 12, 3222 3 of 19

equal to the exact future rainfall amount. In reality however, rainfall forecasts are uncertain, and sensor
data are noisy.

A simulation representing the real-world must combine a multitude of sensors working in parallel,
should accommodate uncertain data or imperfections in the sensors, and should account for uncertain
weather conditions. A RL strategy that includes factors such as incorrect water measurements and uncertain
forecasts has not been examined. Weather forecasts and rainfall prediction have poor reliability even a day
in advance, and previous RTC implementations that included forecasts found that >80% of algorithmic
control actions were the result of false alarms [22,23]. Rainfall uncertainty can have a significant influence
on stormwater system performance [24]; for the successful application of RTC with forecasts, robustness
to these variables is essential. In other applications, RL has been shown to find superior control policies
despite uncertain data [25]. But the use of RL with uncertain data has not been studied for stormwater
RTC. Therefore, the purpose of this study is to examine the effect of uncertain state information on the
performance of DDPG in reducing flooding. We hypothesize that RL can accommodate for the uncertain
data and provide an optimal or near-optimal solution, similar to perfect rainfall forecasting and fully
functional sensors.

This project evaluates the effectiveness of DDPG-based stormwater control in reducing flooding based
on real rainfall data from Norfolk Virginia. Expanding on previous work, we explore the robustness of a
DDPG implementation by utilizing uncertain forecasting and state data. Without exact measurements,
the heuristic or algorithmic control could cause catastrophic effects – holding water as the system floods,
or releasing the entirety of the storage. However, this project demonstrates that DDPG can overcome
uncertain data to successfully reducing flooding.

The remainder of the paper is organized as follows in Sections 2–5. Section 2 presents the methods by
detailing the modeling of the stormwater environment, examining the development and implementation
of a DDPG agent and RL, and describing the data. Finally, we introduce the experiment design. Section 3
presents the results comparing the RL with perfect and uncertain data to the passive system. Section 4 is a
discussion of the study with further description of the utility of the design. Section 5 presents a conclusion
and proposes future work.

2. Methods

This study was designed to compare the effectiveness of RL policies in reducing flooding volume
under the following conditions: (i) perfect state and forecast data, (ii) perfect state and uncertain forecast
data, (iii) uncertain state and forecast data. The RL policies were compared to a passive system where all
stormwater valves were 100% open.

2.1. Modeling the Stormwater Environment

The US Environmental Protection Agency has developed software to simulate drainage and water
transportation within urban environments called the Storm Water Management Model (SWMM) [26].
SWMM allows for the modeling of stormwater systems, taking into account runoff quality, hydrology,
and elevation changes within a specific environment. It has been used when designing stormwater
management systems and when development within a city changes such as building new communities
or roads, as the number of impermeable surfaces affects stormwater absorption [27]. The SWMM tool
allows for the modeling of a system, such as the City of Norfolk, Virginia, which commonly floods even in
low-rate rainfall events when concurrent with high tides.

SWMM allows for the manipulation of specific variables such as the number of storm drains, junctions,
valves, and storage areas (retention ponds) within a simulation.

Water 2020, 12, 3222 4 of 19

Figure 1—the SWMM model utilized in this research—is based on the designs of previous machine
learning implementations by Bowes et al. (2020) [21]. This model houses eight subcatchments (S1–8),
three major junctions (J1–3), and three flow control valves—orifices—(R1–3) in this system. The elevation
changes are not indicated within the diagram, but are programmed into the model and the system drains
downward toward the outfall (Out). The R valve position can be dynamically controlled in any range of
openings between 0% and 100%.

Figure 1. Graphic of the SWMM model used.

Table 1 shows SWMM setup parameters. Within the model, each subcatchment used the same
rainfall data at each timestep; however, each subcatchment has unique area, impermeability, and width.
Although in the table and diagram there are junctions labeled, these junctions have a secondary function
as storage ponds. Throughout, they are consistently denoted as junctions; although they do have a depth
component, they act as the joint output of multiple connections.

SWMM allowed for measurement of depth at each junction, accounting for water height within the
system and out of the system (flooding).

Water 2020, 12, 3222 5 of 19

Table 1. SWMM model setup parameters.

Name Gage Outlet Area (km2) %Imperv Width (m) %Slope

S1 Gage1 J1 283.28 25 457.2 0.5
S2 J1 364.21 35 457.2 0.5
S3 J1 202.34 30 457.2 0.5
S4 J1 343.98 25 457.2 0.5
S5 J2 283.28 35 457.2 0.5
S6 J2 263.04 30 457.2 0.5
S7 J2 222.57 25 457.2 0.5
S8 J2 303.51 25 457.2 0.5

Name Elev. (m) MaxDepth (m) InitDepth (m) Area (km2)

J1 27.4 1.2 0.2286 0.0607
J2 27.4 1.2 0.2286 0.0809
J3 25.9 1.2 0.2286 0.0809

Name From Node To Node Length (m) Roughness Diameter (m)

C J3 Out 121.92 0.01 0.2286

Name From Node To Node Type Qcoeff Gated CloseTime

R1 J1 J3 BOTTOM 0.65 NO 0.2
R2 J2 J3 BOTTOM 0.65 NO 0.2
R3 J3 Out BOTTOM 0.65 NO 0.2

Name Elevation (m)

Out 25.29

2.2. Reinforcement Learning

RL has been studied since the 1990s [16], but has only more recently become viable for complex
problems with the advancement of computational technology. The sequential decision-making model for
standard RL problems is a Markov Decision Process (MDP). An MDP is composed of a set of states (S),
a set of actions (A), a reward function (R), a transition function (P), and a discount factor (γ). Let s ∈ S
represent a specific state, and let a ∈ A represent a specific action. The reward function is generally
a function of both state and action R(s, a). The transition function P(s′|s, a) defines the probability of
moving to s′ given s and a.

The core idea of RL is to learn from experience through an iterative process of taking actions in a given
state and observing a reward and state change. The goal of the agent is to learn a policy that maximizes
the sum of expected future reward

Gt = Rt + γRt+1 + γ2Rt+2 + ...

=
∞

∑
k=0

γkRt+k,
(1)

where Rt = R(st, at) is the reward at time t.

Water 2020, 12, 3222 6 of 19

Two key concepts in RL are the value function and the Q-function. The value function is the expected
return of following a given policy starting in a state Vπ(s) = Eπ [Gt|s]. The Q-function defines the value
of taking an action in a state and then following a given policy Qπ(s, a) = Eπ [Gt|s, a]. An optimal policy
maximizes either the value function or the Q-function. Significant advances in RL can be attributed to the
integration of deep learning techniques to approximate the value function, the Q-function, or the policy.

Various types of RL algorithms have been developed to create policies for increasingly complex
environments. In this case, the action is the opening or closing of the drainage valves (0–100%) within the
stormwater system based on measured water height at various aspects in and around the system when
rainfall data was introduced. RL allows large numbers of simulations to be run to develop a generalized
policy between many different conditions within the environment. In this case, the water height or total
water volume above the system (flooding) was the outcome. Thus, it was not important to pre-determine
the relationship or anticipate how the drains and valves might interact. RL tests thousands of policies and
iteratively performs its adjustments based on the reward function during training and testing on an unseen
dataset prevents overfitting the model or biasing results. Another aspect of RL is a concept of exploration.
Over time the agent may learn some policy without random exploration, but it may learn a sub-optimal
policy, as the optimal may not even be discovered. To achieve this exploration, a random process generates
the action of the agent for a certain amount of time during training. As training progresses, this random
action becomes less common. One of the first types of deep RL algorithms was Q-learning, which allowed
the creation of its own relationships among variables, rather than the programmer establishing a model [28]
establishing a framework for future RL algorithms.

2.3. Deep Deterministic Policy Gradient

New RL techniques are capable of handling continuous states and actions, a requirement for this
project. Deep Deterministic Policy Gradient (DDPG) is an Actor-Critic RL algorithm that combines
some of the optimal characteristics of deep Q learning in a continuous action space. Although this
algorithm was developed in 2015 and has been tested primarily on games—Atari games are the current
industry standard for evaluating reinforcement learning [19]—DDPG has potential applicability for large,
complex systems such as urban infrastructure because of its ability to integrate the continuous and
streaming datasets with interactive variables. Interactions between SWMM and DDPG are processed
through an interpreter [29], converting DDPG output into a context readable by SWMM and vice
versa with SWMM output. This interpreter is loosely based around the OpenAI Gym environment [30],
a standardized framework for RL and environment interaction and RL is implemented with the keras-rl
python package [31]. The python PySWMM wrapper for SWMM allows for the SWMM model to be run
incrementally, an essential requirement for RL [32].

DDPG can be divided into two major parts: The actor network, µ(s|θµ) is a function which updates
the current policy π mapping states to actions. The critic, Q(s, a|θQ) learns using the Bellman equation
utilized by past RL such as Q learning [28] (see Figure 2).

The actor and critic are initialized with weights θµ and θQ. With this, the target networks of Q′ and
µ′ are also initialized with the weights of Q and µ creating θµ′ and θQ′ . Due to the constant updating of
the actor and critic neural networks, and the actor being based on the critic’s network, target networks
are utilized to slowly update the networks. A replay buffer (B) is also initialized. B stores state, reward,
and action information as the episode progresses and is sampled for training. B and target networks
improve the stability of DDPG as one imperfect event will not cause a drastic change to the model.

Water 2020, 12, 3222 7 of 19

Figure 2. Communication between SWMM and DDPG.

The simulations begin with an initial observation and a random process ε ∼ N (0, σ) for action
exploration. As the simulations progress, an action is selected at each time step using the formula,

at = µ(s|θµ) + ε. (2)

Then, for each step in the simulation: The action is performed, resulting in a reward, and the next
state, st+1 is observed; all stored in B.

As training begins, a random batch of s, a, r, and si+1 of size (N) is sampled from B. Intermediary
variable yi, which is the expected future reward as predicted by the target networks, is created,

yi = ri + γQ′(si+1, µ′(si+1|θµ′)|θQ′). (3)

The critic network is updated to minimize the loss; the sum of the difference between yi and the critic
with respect to the current state and actions where i represents the ith sample,

L(θQ) =
1
N

Σi(yi −Q(si, ai|θQ))2. (4)

The actor policy is updated using the sampled policy gradient of the critic with respect to the actions
multiplied by the policy gradient of the actor with respect to the state. This is then averaged by the total
size of the batch,

∇θµ ≈ 1
N

Σi∇aQ(s, a|θQ)|s=si ,a=µ(si)
.∇θµ µ(s|θµ)|si . (5)

The weights of the target networks are then updated, discounted by learning rate multiplier τ,

Water 2020, 12, 3222 8 of 19

θQ′ ← τθQ + (1− τ)θQ′ , (6)

θµ′ ← τθµ + (1− τ)θµ′ . (7)

This process iterates for the duration of the simulations, starting with parameter, t = 0

2.4. MDP

The DDPG functioned on the following MDP state-action space:

1. The state is composed of several features defined below:

• the depth of the water at junction i = {1, 2, 3} is defined as di,
• the amount of flooding at junction i = {1, 2, 3} is defined as fi,
• the current orifice setting at junction i = {1, 2, 3} is defined as oi,
• the predicted rainfall within the current hour is defined as r1, and the predicted rainfall within

the next hour is defined as r2.

st = [d1, d2, d3, f1, f2, f3, o1, o2, o3, r1, r2]. (8)

2. The action: at the next time step set valve position oi to value x ∈ [0, 1]
3. The reward: R(F, D, E), where F = f1 + f2 + f3, D = d1 + d2 + d3, and E is the target depth of 0.6096

R(F, D, E) =

{
−F2 · [σ(f1), σ(f2), σ(f3)] F > 0

|D− E| F = 0

where σ represents the sigmoid function:

σ =
1

1 + e−x (9)

As a starting parameter, oi = 0.5.

R is a piecewise function, with flooding; the reward is the dot product of the average of the sigmoid
of the flooding at different junctions multiplied by the negative sum of flooding. The sigmoid function
utilized normalizes the total flooding amount at each node in a range of zero to one. This would cause the
reward to be approaching the actual flooding value as flooding increases. An even more general multiplier
for each node was created as the episode progresses due to averaging. In other words, even if flooding was
very large for a short period of the episode—potentially indicative of a flash flooding event—averaging it
would not as negatively penalize the RL for unchangeable externalities such as an amount of rainfall that
would greatly overwhelm any system, passive or controlled. If there is no flooding, then the reward is
dependent on the difference of water level from the expected height.

A secondary addition to the function is a minor reward related to the water depth and its difference
from an expected depth (E) of 0.6096 meters, 50% of the junction max depth. In the context of real-world
applications, these junctions/storage ponds are not meant to run dry. As a result, this expected height
would act as the intended safe operating depth for the pond. Application of this solution to a real-world
situation would require an examination of the results to promote greater distribution of water over the
entire system where the total water volume could be managed. For the reward function, the sum of the
total flooding F, and depths D are used.

Water 2020, 12, 3222 9 of 19

After pilot testing, a reward function was selected for further training and testing. Pilot testing
included five total rewards each evaluated against the passive and each other following 10,000 training
steps with the same setup as this study. It was determined that a beneficial reward function should
include a dot product of an array method to prevent a policy that placed all of the flooding on one node.
Although the total volume of water might be less, it would be a sub-optimal policy since one node would
have a catastrophic amount of flooding.

2.5. Data

For experimentation, a rainfall data set was obtained from two gauges operated by the Hampton
Roads Sanitation District in Norfolk, Virginia (Figure 3). This data set recorded rainfall in 15-min increments
from 2010 to 2019. As this is a generic simulation loosely representing a stormwater system in Norfolk,
Virginia, the mean of the two data sets was used to provide a rainfall time series more representative of
the larger area. From this data, 100 episodes in 24-h periods were selected that were found to result in
flooding using a passive system. This was done in order to reduce variability within the successes of the
RL implementation—if the RL agent does not have to make any actions and no flooding occurs, it takes
longer for an optimal policy to be found.

Figure 3. Map of the Norfolk area with rain gauge locations.

Water 2020, 12, 3222 10 of 19

2.6. Experimental Design

Training simulations were run 10,000 times, making measures and adjustments on a 15-min basis,
with each simulation corresponding to a 24 h period within the data set. Training was repeated with each
of the testing conditions. This means that in total, 240,000 h were simulated for each condition, equating to
a total of 16,000 15-min periods.

For each condition, the episodes were processed into a simulated perfect forecast, giving the sum of
the depth of rainfall received during each period in one-hour increments. In other words, one value was
created for each hour to represent the total rainfall for that particular hour. This was done for the current
hour of the simulation, (f1), and the next, (f2).

Forecasts were found to have an approximate 40% accuracy within a tertile of variation six days in
advance; however, the accuracy greatly increases as the timescale decreases (1 h in advance increases
accuracy) [33]. The perfect forecast generated has no imperfections, as such to evaluate more real-world
performance, noise is added. Thus to simulate uncertain forecasts, (f ′1–2), a uniform distribution (U) was
sampled in order to generate a value between the upper (A) and lower bounds (B) of the accuracy,

X ∼ U(A, B). (10)

This uncertainty was simulated by the product of the perfect forecast and sampled value (X) with
upper and lower bounds of 0.95 and 1.05 to create a possible spread of values in between +/−5%.

f ′1 = f1 × X ∼ U(0.95, 1.05) (11)

The bounds of the sample became greater the further the forecast was from the current timestep;
an example being +/−10% two hours in the future.

f ′2 = f2 × X ∼ U(0.90, 1.10) (12)

During the same time period, the SWMM tool simulated water heights and flooding at each node.
For the perfect state data, the exact sensor and exact forecast data were used. For both the

uncertain state and uncertain forecast data, the uniform sampling discussed above was utilized; however,
additionally, a uniform distribution was again sampled +/−10% for the state data to create the uncertain
state condition.

A random sample of 15% of rain events was selected for test episodes (rainfall test episodes 1–15) to
compare the performance of each trained RL to that of the passive condition. These test episodes were
not used for training to prevent and test for overfitting—the policy is only optimal for the training data.
The passive condition mimicked the traditional stormwater systems which are commonly used, and served
as a control condition for the RL implementations.

3. Results

3.1. Overall Comparison of RL Agents and Passive System

The performance of each DDPG implementation with perfect and noisy forecast and state information
was evaluated against the passive system for the 15 randomly chosen test datasets (Table 2). The table
lists the total flooding volume for each episode. Each implementation showed major reductions in overall
flooding volume compared to the passive system (Figure 4). When compared to the passive system,
total flood volumes had average reductions of 69.23%, 67.90%, and 73.02% for the RL implementations
using perfect data, noisy forecast data, and noisy state data, respectively. The episodes 1, 5, and 10 were
randomly selected to further explore the performance of the implementations on a step basis.

Water 2020, 12, 3222 11 of 19

Table 2. Total flood volumes and percent change compared to the passive system for the 15 test events from
each control method. Testing episodes which were further evaluated are in bold.

Testing Episode Passive (m3) Perfect RL (m3) Noisy Forecast RL (m3) Noisy State RL

1 9,227,798 6,279,419 4,203,413 4,545,268
2 2,086,213 0 176,732 0
3 3,334,000 0 195,665 0
4 502,718 0 90,518 0
5 5,982,981 207,619 0 0
6 1,785,434 0 135,982 0
7 2,258,397 0 159,199 0
8 7,035,674 337,263 0 0
9 1,232,353 0 250,331 0

10 23,302,974 19,503,673 18,023,794 17,336,890
11 20,115,112 18,056,242 16,624,101 16,936,806
12 20,265,776 13,885,644 12,774,289 12,496,106
13 614,207 0 89,129 0
14 11,353,640 4,223,142 3,803,721 4,415,311
15 18,299,270 12,509,538 12,183,680 11,279,106

Passive Comparison Perfect RL Noisy Forecast RL Noisy State RL

Mean % reduction 69.23% 67.90% 73.02%
Median % reduction 96.53% 81.99% 100.00%
Standard deviation % reduction 36.35% 29.34% 32.77%

Figure 4. Percent reduction of flooding volume of the RL implementations compared to the passive
condition. The similar performance of the implementations result in the range of the mean % reductions to
be within 4%.

Water 2020, 12, 3222 12 of 19

3.2. Analysis of RL Agent Policies

Of the 15 test rainfall events used to evaluate the performance of the RL implementation,
three events—1, 5, and 10—were randomly selected as a sample for further analysis. The rain events for
testing episodes one, five, and ten are displayed in Figure 5.

Figure 5. Rainfall events further analyzed: Test Episode 1—short duration high intensity storm peaking
at 1.9177 cm of rainfall in a 15 min period. Test Episode 5—long duration low intensity storm peaking at
0.2667 cm of rainfall in a 15 min period. Test Episode 10—long duration low intensity storm peaking at
0.3175 cm of rainfall in a 15 min period.

For test episode 1 (Figure 6), where there was approximately 2 cm of rainfall within a 15 min period,
all stormwater implementations were quickly overwhelmed. The passive system resulting in 9× 106 m3

of flooding, performed the worst. As all of the valves are open, J1 and J2 do not see substantial volume;
however, J3 is quickly overwhelmed resulting in the large flooding amounts. The RL implementation
using perfect data was able to modulate the valves, resulting in a 32% reduction. Opposed to the passive
system, the perfect RL caused flooding at J1 and J2 while keeping J3 below flood stage. In a real-world
context, while still causing flooding, it would result in less damage distributing the flood volume across
two different areas as opposed to 9× 106 m3 at one. Both of the noisy data variants performed similarly
resulting in a 50+% reduction. Similar to the perfect data implementation, both kept J3 below flood stage,
but they achieved this—noisy state especially—by rapidly cycling the orifices from 0–100%. In a simulated
environment, this may be optimal, but in a real-world context, this may not be a desirable behavior.
Further research, potentially with another reward function, would be needed to avoid this behavior.

Water 2020, 12, 3222 13 of 19

Figure 6. Comparison of the passive system to the RL implementations (episode 1). Each implementation
performed better than the passive condition. In this instance the Perfect RL performed worse than the other
two implementations only resulting in a 32% reduction opposed to the ∼50% reduction of the other two.

For test episode 5 (Figure 7), there was peak rainfall of approximately 0.4 cm of rainfall over a 15 min
period, however there was a continuous, yet minor rainfall for 24 h period. While a seemingly small
quantity of water, multiplied across the area of eight subcatchments, the perfect implementation was
overwhelmed. Similar to the first episode, J1–2 were well below flood stage; however, J3 flooded. In the
case of this episode, flooding occurred for nearly 12 of the 24 h resulting in 6 × 106 m3, the passive
performing the worst. The perfect data implementation was able to modulate the valves, resulting in a 96%
reduction. Similar to the first test episode, the perfect data implementation caused flooding at J1 and J2

while keeping J3 below flood stage; again distributing the flooding volume to two areas. Both of the noisy

Water 2020, 12, 3222 14 of 19

data variants performed similarly resulting in a 100% reduction. Each case was able to keep each junction
below flood stage.

Figure 7. Comparison of the passive system to the RL implementations (episode 5). All implementations
are able to reduce flooding, yet reducing a lesser amount than the first test episode.

For test episode 10 (Figure 8), there was a moderate intensity storm peaking at 0.3 cm per 15 min.
The storm fluctuated around that volume for the duration of the 24 h. The passive system resulting in
over 23× 106 m3 of flooding, performed the worst. All junctions had flooding, J3 the most. Opposed
to the other test episodes, all of the RL implementations resulted in flooding. The junctions are all
overwhelmed in a similar way, yet minor differences result in differences in flooding volume. The perfect
data implementation preforms the worst with a 16% reduction, and the imperfect state resulting in a 25%
reduction, a range of 9%.

Water 2020, 12, 3222 15 of 19

Figure 8. Comparison of the passive system to the RL implementation (episode 10). With this test episode,
each implementation shows rapid cycling between 0 and 100% open. All show a reduction compared to the
passive condition.

4. Discussion

The DDPG implementations, even with added noise, showed reductions in flooding compared to
the passive conditions, evaluated on 15 test conditions. The tests show that DDPG learned a policy that
reduced total flood volume by an average of 69–73% compared to the passive system and several test
events had 100% reductions. The implementations were evaluated using disadvantages more realistic in
real-world conditions such as uncertain forecast and state data. Nevertheless, each DDPG implementation
performed similarly to the others. This shows the ability to account for and even learn how to use data
formerly unused due to unpredictability and uncertainty, such as forecasting.

Within the results, each implementation at some point showed rapid cycling between valve positions;
this is particularly evident with test episode 10 (Figure 8). This action may be indicative of incomplete
training, a fully optimal policy not being completely realized.

While only resulting in an average decrease in flooding volume by an additional one percent,
the noisy state implementation performed better than the perfect condition. Without more extensive testing,

Water 2020, 12, 3222 16 of 19

any explanation may be speculation, but, the better performance can most likely be attributed to further
exploration of the state space due to increased irregularity with the state information. Another explanation
for the irregularity is simply variation within training. While ideally an optimal policy can be learned
every time, there is an aspect of random exploration to RL.

This project acted as a first step showing that DDPG can perform optimally even with uncertain data.
However, for an implementation such as this to be utilized in the real world, there are still a multitude
of factors that need further exploration, such as the consequences of control system or sensor failure.
While uncertain data are more representative of reality and can often lead to unpredictability within
a system, the loss or removal of data can have even graver consequences. If a human were to look at
operating levels of something such as a storage pond, the human could realize highly improbable values
such as a depth of zero, but a machine without vast training on a wide array of issues may never realize
there is an error. RL or DDPG solutions are currently limited by what can be simulated. Without the
knowledge of what can fail and how, one can only speculate as to the ramifications of a system continuously
flooding a storage pond as it thinks it is below standard operating height due to sensor failure.

Reinforcement learning is an evolving field, and computer systems are able to handle larger datasets.
A multitude of factors go into the performance of a reinforcement learning implementation, DDPG being
no exception [19]. This study utilized a reward function selected following pilot testing of 5 others,
each using different methods of administering a negative reward. Other formulae may have produced
less total flooding volume, but potentially may be catastrophic based on the concentration of where the
flooding occurred. However, without further area specific evaluation; this remains speculation. The reward
function chosen for further training and testing would mitigate flooding, but it may have unforeseen
consequences based on the current infrastructure model. Additional training cycles would likely improve
the results.

The reported rainfall amounts and subsequent flooding, although simulated, were representative of
historical events in Norfolk, Virginia. Norfolk has been especially affected by changing weather patterns
and climate change due to a rising sea level and development in various surrounding areas. In cases where
seawater rises impact stormwater outlets, even minor rain events can lead to so-called nuisance floods [34].
DDPG with the tested reward function, regardless of noise added showed the greatest reduction in flooding
during these minor rainfall events, situations when nuisance floods would occur. Thus, communities such
as Norfolk could benefit greatly from RL solutions. The SWMM tool helps with the design factors, but the
ability to learn how to best adjust the valves during rain events could continually improve.

RL application to mitigate flooding in coastal cities is an emerging strategy for this important problem.
Using authentic data sets, with the introduction of noise provides a realistic simulation of stormwater
systems. DDPG was able to accommodate a complex model considering an integration of rain forecasting,
each with imperfect or noisy data. DDPG and simulations can be adapted with different rainfall datasets
and models indicative of other cities and as development of infrastructure continues. Thus, one could
relatively quickly retrain the algorithm based on the new environment, and hope to see similar results.
The application of DDPG, and, to a greater extent reinforcement learning, has application in a wide
variety of civil infrastructure systems, not limited to just stormwater infrastructure. Using DDPG and
other machine learning strategies to control critical infrastructure has the ability to process multiple,
simultaneous factors in near real-time following sufficient training. Furthermore, this paper describes the
ability of the machine to accommodate uncertainties that represent real-world factors and can reduce the
loss of life and property by dynamically automating stormwater systems.

Water 2020, 12, 3222 17 of 19

5. Conclusions

This study demonstrated the viability and success of a DDPG RL implementation in controlling
stormwater systems with a reduction of flooding in a variety of storm events observed in Norfolk, VA.
Three stormwater control conditions were compared with the passive system: (i) RL using perfect input
data, (ii) RL using noisy forecasts, and (iii) RL using noisy state data. We hypothesized that RL would
provide better flood mitigation than the passive system by accommodating for noisy forecast or state
data that is more representative of the real-world than having perfect knowledge of current and future
states. Three DDPG agents were trained by interacting with a SWMM simulation for 10,000 time steps.
Following training, the RL policies were tested on a set of previously unseen rainfall events. We found
that the DDPG strategies were able to accommodate uncertain data resulting in similar flood mitigation
ability between the three data conditions. Compared to the passive system, the three RL implementations
reduced flooding by an average of 70.5% on the test events.

The results of this research demonstrate the promise of using RL to control stormwater systems in
real-time, even under uncertain conditions. Additional work to further understand how RL performs
for stormwater RTC includes using real rainfall forecasts that are longer than the forecasts used here.
This would allow control decisions to be made even further in advance of storm events to prepare the
system to prevent flooding. Longer forecasts; however, may include more uncertainty and increase the
chance of making inappropriate control decisions. Another key topic to advance this research is to explore
RL’s ability to maintain overall system performance when a sensor or group of sensors is not functioning
or is reporting erroneous data. This will be especially critical as both the density of sensor networks and
the adoption of stormwater RTC systems continue to increase [12].

Author Contributions: Conceptualization, S.M.S., B.D.B., P.A.B. and J.L.G.; Data curation, S.M.S. and B.D.B.;
Formal analysis, S.M.S.; Funding acquisition, J.L.G.; Investigation, S.M.S. and B.D.B.; Methodology, S.M.S., B.D.B.
and S.A.; Project administration, S.M.S. and B.D.B.; Resources, S.M.S.; Software, S.M.S.; Supervision, B.D.B. and
S.A.; Validation, S.M.S. and B.D.B.; Visualization, S.M.S. and B.D.B.; Writing—original draft, S.M.S.; Writing—review
& editing, S.M.S., B.D.B., S.A., P.A.B. and J.L.G. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was funded as part of two U.S. National Science Foundation grants: Award #1735587
(CRISP-Critical, Resilient Interdependent Infrastructure Systems and Processes) and Award #1737432 (SCC-IRG Track 1:
Overcoming Social and Technical Barriers for the Broad Adoption of Smart Stormwater Systems).

Acknowledgments: We gratefully acknowledge the Hampton Roads Sanitation District for access to their high quality
rainfall data.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

RTC Real Time Control
RL Reinforcement Learning
DDPG Deep Deterministic Policy Gradients
RL Reinforcement Learning
SWMM Storm Water Management Model
S Subcatchment
J Junction
R Orifice Valve
MDP Markov Decision Process
S State
A Action

Water 2020, 12, 3222 18 of 19

P Transition Function
γ Discount factor
s Specific State
a Specific Action
o Orifice Valve Setting
f Forecast
D Depths
E Expected Depth
f’ Imperfect Forecast

References

1. Ezer, T.; Atkinson, L.P. Accelerated flooding along the US East Coast: On the impact of sea-level rise, tides,
storms, the Gulf Stream, and the North Atlantic Oscillations. Earth’s Future 2014, 2, 362–382. [CrossRef]

2. O’Driscoll, M.; Clinton, S.; Jefferson, A.; Manda, A.; McMillan, S. Urbanization effects on watershed hydrology
and in-stream processes in the southern United States. Water 2010, 2, 605–648. [CrossRef]

3. Sweet, W.V.; Park, J. From the extreme to the mean: Acceleration and tipping points of coastal inundation from
sea level rise. Earth’s Future 2014, 2, 579–600. [CrossRef]

4. Sörensen, J.; Persson, A.; Sternudd, C.; Aspegren, H.; Nilsson, J.; Nordström, J.; Jönsson, K.; Mottaghi, M.;
Becker, P.; Pilesjö, P.; et al. Re-thinking urban flood management—Time for a regime shift. Water 2016, 8, 332.
[CrossRef]

5. Miller, J.D.; Hutchins, M. The impacts of urbanisation and climate change on urban flooding and urban water
quality: A review of the evidence concerning the United Kingdom. J. Hydrol. Reg. Stud. 2017, 12, 345–362.
[CrossRef]

6. Smith, A.B.; Katz, R.W. US billion-dollar weather and climate disasters: data sources, trends, accuracy and biases.
Nat. Hazards 2013, 67, 387–410. [CrossRef]

7. Sadler, J.; Goodall, J.; Morsy, M.; Spencer, K. Modeling urban coastal flood severity from crowd-sourced flood
reports using Poisson regression and Random Forest. J. Hydrol. 2018, 559, 43–55. [CrossRef]

8. Sadler, J.M.; Haselden, N.; Mellon, K.; Hackel, A.; Son, V.; Mayfield, J.; Blase, A.; Goodall, J.L. Impact of
sea-level rise on roadway flooding in the Hampton Roads region, Virginia. J. Infrastruct. Syst. 2017, 23, 05017006.
[CrossRef]

9. Li, F.; Yan, X.F.; Duan, H.F. Sustainable Design of Urban Stormwater Drainage Systems by implementing
detention tank and LID measures for flooding risk control and water quality management. Water Resour. Manag.
2019, 33, 3271–3288. [CrossRef]

10. Kerkez, B.; Gruden, C.; Lewis, M.; Montestruque, L.; Quigley, M.; Wong, B.; Bedig, A.; Kertesz, R.; Braun, T.;
Cadwalader, O.; et al. Smarter Stormwater Systems. Environ. Sci. Technol. 2016, 50, 7267–7273. [CrossRef]

11. Rathnayake, U.; Anwar, A.F. Dynamic control of urban sewer systems to reduce combined sewer overflows and
their adverse impacts. J. Hydrol. 2019, 579, 124150. [CrossRef]

12. Marchese, D.; Jin, A.; Fox-Lent, C.; Linkov, I. Resilience for Smart Water Systems. J. Water Resour. Plan. Manag.
2020, 146, 02519002. [CrossRef]

13. Ibrahim, Y.A. Real-Time Control Algorithm for Enhancing Operation of Network of Stormwater Management
Facilities. J. Hydrol. Eng. 2020, 25, 04019065. [CrossRef]

14. Jafari, F.; Mousavi, S.J.; Yazdi, J.; Kim, J.H. Real-time operation of pumping systems for urban flood mitigation:
Single-period vs. multi-period optimization. Water Resour. Manag. 2018, 32, 4643–4660. [CrossRef]

15. Mounce, S.; Shepherd, W.; Ostojin, S.; Abdel-Aal, M.; Schellart, A.; Shucksmith, J.; Tait, S. Optimisation of
a fuzzy logic-based local real-time control system for mitigation of sewer flooding using genetic algorithms.
J. Hydroinform. 2020, 22, 281–295. [CrossRef]

16. Sutton, R.S.; Barto, A.G. Reinforcement Learning, a Bradford Book; MIT Press: Cambridge, MA, USA, 1998;
Volume 2015, p. 2.

http://dx.doi.org/10.1002/2014EF000252
http://dx.doi.org/10.3390/w2030605
http://dx.doi.org/10.1002/2014EF000272
http://dx.doi.org/10.3390/w8080332
http://dx.doi.org/10.1016/j.ejrh.2017.06.006
http://dx.doi.org/10.1007/s11069-013-0566-5
http://dx.doi.org/10.1016/j.jhydrol.2018.01.044
http://dx.doi.org/10.1061/(ASCE)IS.1943-555X.0000397
http://dx.doi.org/10.1007/s11269-019-02300-0
http://dx.doi.org/10.1021/acs.est.5b05870
http://dx.doi.org/10.1016/j.jhydrol.2019.124150
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0001130
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0001881
http://dx.doi.org/10.1007/s11269-018-2076-4
http://dx.doi.org/10.2166/hydro.2019.058

Water 2020, 12, 3222 19 of 19

17. Mullapudi, A.; Lewis, M.J.; Gruden, C.L.; Kerkez, B. Deep reinforcement learning for the real time control of
stormwater systems. Adv. Water Resour. 2020, 140, 103600. [CrossRef]

18. Wang, C.; Bowes, B.; Tavakoli, A.; Adams, S.; Goodall, J.; Beling, P. Smart Stormwater Control Systems:
A Reinforcement Learning Approach. In Proceedings of the ISCRAM Conference Proceedings—17th International
Conference on Information Systems for Crisis Response and Management, Blacksburg, VA, USA, 24–27 May 2020;
Hughes, A.L., McNeill, F., Zobel, C., Eds.; pp. 2–13.

19. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with
deep reinforcement learning. arXiv 2015, arXiv:1509.02971.

20. Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.;
Graepel, T.; et al. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play.
Science 2018, 362, 1140–1144. [CrossRef]

21. Bowes, B.D.; Tavakoli, A.; Wang, C.; Heydarian, A.; Behl, M.; Beling, P.A.; Goodall, J.L. Flood mitigation in coastal
urban catchments using real-time stormwater infrastructure control and reinforcement learning. J. Hydroinform.
2020, jh2020080. [CrossRef]

22. Rayner, S.; Lach, D.; Ingram, H. Weather forecasts are for wimps: why water resource managers do not use
climate forecasts. Clim. Chang. 2005, 69, 197–227. [CrossRef]

23. Jan van Andel, S.; Price, R.K.; Lobbrecht, A.H.; van Kruiningen, F.; Mureau, R. Ensemble precipitation and
water-level forecasts for anticipatory water-system control. J. Hydrometeorol. 2008, 9, 776–788. [CrossRef]

24. Duan, H.F.; Li, F.; Tao, T. Multi-objective optimal design of detention tanks in the urban stormwater drainage
system: uncertainty and sensitivity analysis. Water Resour. Manag. 2016, 30, 2213–2226. [CrossRef]

25. Hartono, P.; Hashimoto, S. Learning from imperfect data. Appl. Soft Comput. 2007, 7, 353–363. [CrossRef]
26. Gironás, J.; Roesner, L.A.; Rossman, L.A.; Davis, J. A new applications manual for the Storm Water Management

Model(SWMM). Environ. Model. Softw. 2010, 25, 813–814. [CrossRef]
27. Jang, S.; Cho, M.; Yoon, J.; Yoon, Y.; Kim, S.; Kim, G.; Kim, L.; Aksoy, H. Using SWMM as a tool for hydrologic

impact assessment. Desalination 2007, 212, 344–356. [CrossRef]
28. Gu, S.; Lillicrap, T.; Sutskever, I.; Levine, S. Continuous deep q-learning with model-based acceleration.

In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016;
pp. 2829–2838.

29. Choo, B.; Crannel, G.; Adams, S.; Dadgostari, F.; Beling, P.A.; Bolcavage, A.; McIntyre, R. Reinforcement
learning from simulated environments: An encoder decoder framework. In Proceedings of the Spring Simulation
Conference (SpringSim), Fairfax, VA, USA, 18–21 May 2020; pp. 1–12.

30. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym. arXiv
2016, arXiv:1606.01540.

31. Plappert, M. keras-rl. 2016. Github Repository. Available online: https://github.com/keras-rl/keras-rl
(accessed on 15 August 2019).

32. McDonnell, B.E.; Ratliff, K.; Tryby, M.E.; Wu, J.J.X.; Mullapudi, A. PySWMM: The Python Interface to Stormwater
Management Model (SWMM). J. Open Source Softw. 2020, 5, 2292. [CrossRef]

33. Hu, Q.S.; Skaggs, K. Accuracy of 6–10 day precipitation forecasts and its improvement in the past six years.
In Proceedings of the 7th NOAA Annual Climate Prediction Application Science Workshop, Norman, OK, USA,
24–27 October 2009.

34. Sheridan, S.C.; Pirhalla, D.E.; Lee, C.C.; Ransibrahmanakul, V. Atmospheric drivers of sea-level fluctuations and
nuisance floods along the mid-Atlantic coast of the USA. Reg. Environ. Chang. 2017, 17, 1853–1861. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.advwatres.2020.103600
http://dx.doi.org/10.1126/science.aar6404
http://dx.doi.org/10.2166/hydro.2020.080
http://dx.doi.org/10.1007/s10584-005-3148-z
http://dx.doi.org/10.1175/2008JHM971.1
http://dx.doi.org/10.1007/s11269-016-1282-1
http://dx.doi.org/10.1016/j.asoc.2005.07.005
http://dx.doi.org/10.1016/j.envsoft.2009.11.009
http://dx.doi.org/10.1016/j.desal.2007.05.005
https://github.com/keras-rl/keras-rl
http://dx.doi.org/10.21105/joss.02292
http://dx.doi.org/10.1007/s10113-017-1156-y
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methods
	Modeling the Stormwater Environment
	Reinforcement Learning
	Deep Deterministic Policy Gradient
	MDP
	Data
	Experimental Design

	Results
	Overall Comparison of RL Agents and Passive System
	Analysis of RL Agent Policies

	Discussion
	Conclusions
	References

