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Abstract

As an important class of spiking neural networks (SNNs), recurrent spiking neural net-

works (RSNNs) possess great computational power and have been widely used for pro-

cessing sequential data like audio and text. However, most RSNNs suffer from two

problems. 1. Due to the lack of architectural guidance, random recurrent connectivity

is often adopted, which does not guarantee good performance. 2. Training of RSNNs

is in general challenging, bottlenecking achievable model accuracy. To address these

problems, we propose a new type of RSNNs called Skip-Connected Self-Recurrent

SNNs (ScSr-SNNs). Recurrence in ScSr-SNNs is introduced in a stereotyped manner

by adding self-recurrent connections to spiking neurons. The SNNs with self-recurrent

connections can realize recurrent behaviors similar to those of more complex RSNNs

while the error gradients can be more straightforwardly calculated due to the mostly

feedforward nature of the network. The network dynamics is enriched by skip connec-

tions between nonadjacent layers. Moreover, we propose a new backpropagation (BP)

method called backpropagated intrinsic plasticity (BIP) to further boost the performance

of ScSr-SNNs by training intrinsic model parameters. Unlike standard intrinsic plastic-

ity rules that adjust the neuron’s intrinsic parameters according to neuronal activity, the

proposed BIP method optimizes intrinsic parameters based on the backpropagated error

gradient of a well-defined global loss function in addition to synaptic weight training.

Based on challenging speech, neuromorphic speech, and neuromorphic image datasets,

the proposed ScSr-SNNs can boost performance by up to 2.85% compared with other

types of RSNNs trained by state-of-the-art BP methods.

2



1 Introduction

Recurrent neural networks (RNNs) are one of the most popular types of networks

in artificial neural networks (ANNs). They are designed to better handle sequential

information such as audio or text. RNNs make use of internal states to store past

information, which is combined with the current input to determine the current net-

work output. During the past few decades, RNNs have been widely studied with var-

ious structures such as Gated Recurrent Units (GRU) (Cho et al., 2014), Long Short

Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997), Legendre Memory Units

(LMU) (Voelker, Kajić, and Eliasmith, 2019), Echo state networks (ESN) (Jaeger,

2001), and Deep RNNs (Graves, Mohamed, and Hinton, 2013).

Similarly, recurrent spiking neural networks (RSNNs) are competent for processing

temporal signals such as time series or speech data (Ghani et al., 2008). Moreover,

RSNNs are advantageous from a biological plausibility point of view compared with

their non-spiking counterparts and enjoy their intrinsic spatiotemporal computing power

attributed to the rich network dynamics created by the recurrence of connectivity. While

mature network architectures have been developed for RNNs, the complex dynamics of

RSNNs are not well understood and training of RSNNs is in general challenging. These

difficulties lead to the demonstration of simple RSNN architectures, severely limiting

the practical application of RSNNs.

In the previous works, most RSNNs have randomly generated recurrent connec-

tions. Training these recurrent connections is challenging, bottlenecking achievable

model accuracy. One of the well-known RSNN models is the liquid State Machine

(LSM) (Maass, Natschläger, and Markram, 2002) which has a single randomly con-
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nected reservoir layer followed by a readout layer. The reservoir weights typically are

either fixed or trained by unsupervised learning rules like spike-timing-dependent plas-

ticity (STDP) (Morrison, Diesmann, and Gerstner, 2008) with only the readout layer

trained by supervision (Ponulak and Kasiński, 2010; Zhang et al., 2015; Jin and Li,

2016). In recent years, the reservoir of LSM has been extended to different structures.

In (Wang and Li, 2016) and (Srinivasan, Panda, and Roy, 2018), multiple reservoirs are

applied to process different parts of the input signals. (Maes, Barahona, and Clopath,

2020) proposed a recurrent structure in which the recurrent layer is organized in C

clusters of excitatory neurons and a central cluster of inhibitory neurons. In (Panda and

Srinivasa, 2018), a modified D/A based reservoir construction approach is applied to

build the reservoir. (Bellec et al., 2018) proposed an architecture called long short-term

memory SNNs with one recurrent layer. Its recurrent layer has a regular spiking portion

with both inhibitory and excitatory spiking neurons and an adaptive neural population.

The recurrent connections are trained by the BPTT method. (Zhang and Li, 2019b)

demonstrates training of deep RSNNs by a backpropagation method called ST-RSBP.

However, the recurrent connections in all of these works are sparsely and randomly

generated with certain probabilities.

On the other hand, (Shrestha et al., 2017) and (Lotfi Rezaabad and Vishwanath,

2020) propose methods to convert a pre-trained ANN-based LSTM to a spiking LSTM.

However, they either directly substitute the original non-spiking activation function with

a spiking activation function or approximate the non-spiking activation function heuris-

tically. The original ANN LSTM model is re-trained using a standard BP method for

ANNs and no additional training is applied to the converted spiking LSTM model in the
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spatiotemporal domain. Hence, these ANN-to-SNN conversion approaches are unable

to explore the intrinsic spatiotemporal computing capability of typical spiking neurons

such as ones modeled using the Leaky-Integrate-and-Fire (LIF) model or spike response

model (SRM). In addition, the converted spiking LSTMs are trained with the BP method

of ANNs without considering the spikes.

In most existing works of RSNNs, the recurrent connections are sparsely and ran-

domly generated. Whether a neuron is connected to another neuron in the same layer is

randomly determined with a probability. In this paper, we propose a new RSNN struc-

ture called Skip-Connected Self-Recurrent SNNs (ScSr-SNNs) to offer a simple and

structured approach for designing high-performance RSNNs and mitigating the train-

ing challenges resulted from random recurrent connections as in the prior works. The

main contributions of this work are:

• We proposed the self-recurrent architecture for SNNs. The recurrence is only in-

troduced by self-recurrent connections of individual spiking neurons, i.e., there

exist no lateral connections between different neurons within a layer. We demon-

strate that, with self-recurrent connections, SNNs are able to realize recurrent

behaviors similar to those of more complex RSNNs while the error gradients can

be more straightforwardly calculated due to the mostly feedforward nature of the

network;

• We show that the skip connections can help the formation of recurrent structures,

introduce more tunability, and thus improve performance.

• We rigorously derive the backpropagation algorithm that can handle self-recurrent
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connections and skip connections;

• We propose a new backpropagation (BP) method called backpropagated intrin-

sic plasticity (BIP) to further boost the performance of ScSr-SNNs by training

intrinsic model parameters. Unlike standard intrinsic plasticity rules that adjust

the neuron’s intrinsic parameters according to neuronal activity, the proposed BIP

method optimizes intrinsic parameters based on the backpropagated error gradi-

ent of a well-defined global loss function in addition to synaptic weight training.

• We implement the self-recurrent connections and BIP method not only to fully

connected SNNs but also to spiking CNNs. Our experiments on the neuromorphic

image dataset show that the proposed methods also benefit the image learning

tasks on Spiking CNNs.

Based on challenging speech datasets TI46 (Liberman et al., 1991), neuromorphic

speech dataset N-TIDIGITS (Anumula et al., 2018), neuromorphic image dataset Dvs-

Gesture (Amir et al., 2017) and N-MNIST (Orchard et al., 2015), the proposed ScSr-

SNNs can boost performance by up to 2.85% compared with other types of RSNNs

trained by state-of-the-art BP methods.

2 Background

2.1 Spiking Neuron Model

SNNs employ more biologically plausible spiking neuron models than ANNs. In this

work, the leaky integrate-and-fire (LIF) neuron model (Gerstner and Kistler, 2002) are
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adopted.

First, we notate the input spike train from pre-synaptic neuron j to post-synaptic

neuron i as

sj(t) =
∑
t
(f)
j

δ(t− t
(f)
j ), (1)

where δ is the Dirac delta function, t(f)j the firing time of presynaptic neuron j.

Then, the incoming spikes are converted into an unweighted postsynaptic current

(PSC) aj(t) through a synaptic model. The first order synaptic model (Gerstner and

Kistler, 2002) is adopted and defined as

τs
aj(t)

dt
= −aj(t) + sj(t), (2)

where τs is the synaptic time constant.

The neuronal membrane voltage ui(t) of post-synaptic neuron i at time t is given by

τm
dui(t)

dt
= −ui(t) + R

∑
j

wijaj(t), (3)

where R and τm are the effective leaky resistance and time constant of the membrane,

wij the synaptic weight from neuron j to neuron i, and aj(t) the PSC induced by the

spikes from neuron j.

Considering the discrete time steps simulation, we use the fixed-step first-order Eu-

ler method to discretize Eq.(3) to

ui[t] = θmui[t− 1] +
∑
j

wijaj[t], (4)
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where we name θm = 1− 1
τm

the time constant factor. The ratio of R and τm is absorbed

into the synaptic weights. Moreover, the firing output of the neuron i is expressed as

si[t] = H (ui[t]− Vth) , (5)

where Vth is the firing threshold and H(·) the Heaviside step function.

2.2 SNNs Forward Pass

Figure 1: Forward evaluation pass of SNNs.

Figure 1 describes a feedforward SNN with the aforementioned LIF model and

synaptic model. Consider a layer l with Nl neurons, we denote the presynaptic weights

by W (l) =
[
w

(l)
1 , · · · ,w

(l)
Nl

]T
, where w(l)

i is a column vector of weights from all the

neurons in layer l − 1 to the neuron i of layer l. In addition, we also denote PSCs from

neurons in layer l−1 by a(l−1)[t] =
[
a
(l−1)
1 [t], · · · , a(l−1)

Nl−1
[t]
]T

, output spike trains of the
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l − 1 layer by s(l−1)[t] =
[
s
(l−1)
1 [t], · · · , s(l−1)

Nl−1
[t]
]T

, membrane potentials of the l layer

neurons by u(l)[t] =
[
u
(l)
1 [t], · · · , u(l)Nl

[t]
]T

, where variables associated with the layer l

have l as the superscript. Therefore, the network forward pass can be described as

a(l−1)[t] = (1− 1

τs
)a(l−1)[t− 1] + s(l−1)[t],

u(l)[t] = θmu
(l)[t− 1] +W (l)a(l−1)[t],

s(l)[t] = H
(
u(l)[t]− Vth

)
,

(6)

In the forward pass, the spike trains s(l−1)[t] of the l − 1 layer generate the (un-

weighted) PSCs a(l−1)[t] according to the synaptic model. Then, a(l−1)[t] are multiplied

by the synaptic weights and passed onto the neurons of layer l. The integrated PSCs

alter the membrane potentials and trigger the output spikes of the layer l neurons when

the membrane potentials exceed the threshold.

3 ScSr-SNN Architecture

In this section, we first introduce the two components in ScSr-SNNs, the self-recurrent

connections, and the skip connections. We illustrate that self-recurrent layers can realize

recurrent behaviors similar to one fully connected recurrent layer while implementing

extra local memory. Then, we introduce the skip-connected structure which can benefit

neuronal dynamics and correlations.
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3.1 Self-recurrent Architecture

The idea of connecting neurons back to themself in ANNs was introduced in (Mikolov

et al., 2014). It presented that by introducing constraints on the recurrent weight matrix,

RNNs can learn longer-term patterns with standard stochastic gradient descent. More

specifically, it claimed that a kind of longer-term memory can be formed by making part

of the recurrent weight matrix close to the identity matrix. It is the same as adding self-

recurrent connections to part of hidden neurons. After that, (Li et al., 2018a) proposed

an independently recurrent neural network (IndRNN) with self-recurrent connections

where neurons in one layer are independent of each other. It is shown that multiple

IndRNNs can be stacked to construct a deep network especially combined with residual

connections over layers, and the deep ANNs can be trained robustly. In this work, we

apply a similar idea to SNNs. We show that applying self-recurrence to SNNs can

realize recurrent behaviors similar to those of more complex RSNNs. In addition, the

self-recurrent connection can also improve local memory.

For simplicity, we adopt the method in (Huh and Sejnowski, 2018) to replace the

threshold and synaptic model with a gate function g(). Thus, the PSC is defined as

a(l)[t] = g
(
u(l)[t]

)
, (7)

g() reveals the relation between the membrane potential and the postsynaptic PSC. It is

introduced here to simplify the analysis. In the experiments, we still use (6) to simulate

the network activities.

In a single layer, the computation of each neuron is independent while neurons
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are correlated through multiple layers. Neurons in the same self-recurrent layer only

recurrently connected to themselves and can be described as

u(l)[t] = θmu
(l)[t− 1]

+W (l)a(l−1)[t] +W (l)
s ◦ g

(
u(l)[t− 1]

)
,

(8)

whereW (l)
s =

[
w

(l)
s,1, · · · , w

(l)
s,Nl

]
is a vector weight matrix of self-recurrent connections

in layer l , w(l)
s,i the weight of neuron i’s self-recurrent connection in layer l, and ◦ the

Hadamard product.

Two self-recurrent layers can work similarly to the fully connected recurrent layer.

To illustrate this, we approximately derive the behavior of two self-recurrent layers and

compare it with a fully connected recurrent layer.

Figure 2: Self-recurrent pass of SNNs.

Figure 2 presents the layer l and layer l + 1 of a network while layer l has self-
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recurrent connections. In this case, the behavior can be expressed as

u(l)[t] = θmu
(l)[t− 1]

+W (l)a(l−1)[t] +W (l)
s ◦ g

(
u(l)[t− 1]

)
,

u(l+1)[t] = θmu
(l+1)[t− 1] +W (l+1)g

(
u(l)[t]

)
.

(9)

More aggressively, we approximate the g(v) as a linear function g(v) = hv. h is a

constant value to represent the proportion from membrane potential to the postsynaptic

PSC. Then, the Eq.(9) can be combined as

u(l+1)[t] = θmu
(l+1)[t− 1] +W (l)a(l−1)[t]

+W
(l)
1 a

(l+1)[t− 1] +W
(l)
2 a

(l+1)[t− 2],

W
(l)
1 =W (l+1)(

θm
h

+W (l)
s )(W (l+1))−1

W
(l)
2 = −θmW (l)

1 .

(10)

The behavior of two layers network illustrated in Eq.(10) is similar to the single fully

connected recurrent layer which is described as

u(l)[t] = θmu
(l)[t− 1] +W (l)a(l−1)[t] +W (l)

r a
(l)[t− 1], (11)

whereW (l)
r is recurrent connection weights matrix.

Compared to the Eq.(11), two layers self-recurrent structure can be viewed as a

single recurrent layer with two groups of recurrent connections which have the delay

of 1 and 2 time steps. Eq.(10) also indicates the constraints of two layers self-recurrent

structure that: 1. the recurrent weights W (l)
1 and W (l)

2 should be diagonalizable; 2.
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W
(l)
2 is the negative ofW (l)

1 with the scalar θm.

Moreover, by including the reset mechanism and self-recurrent connections, Eq.(8)

can be written as

u(l)[t] = θmu
(l)[t− 1](1− s(l)[t− 1]) +W (l)a(l−1)[t] +W (l)

s ◦ a(l)[t− 1]. (12)

As shown in the first right term, a neuron will lose previous information after it fires and

resets the membrane potential. With the self-recurrent connections, the output signals

are passed back to the original neurons. From the neuronal perspective, positive feed-

back can be viewed as compensation for the information loss caused by the firing-and-

resetting mechanism. On the other hand, negative feedback can control the neuron’s

firing activity and regulate the network dynamics.

To sum it up, a two layers self-recurrent structure behaves similarly to a fully con-

nected recurrent layer. However, compared to the existing random connected RSNNs,

ScSr-SNNs brings several benefits from the self-recurrent connections:

• ScSr-SNNs have a simpler but more structured architecture than the randomly

generated RSNNs.

• ScSr-SNNs simplify the forward and backward computation in the recurrent struc-

ture. The error gradients can be calculated straightforwardly in ScSr-SNNs due

to the mostly feedforward nature of the network. Thus, the straightforward cal-

culation also cost less computational resources.

• Since the self connections are local within the layer, they can be not only applied

to fully connected SNNs but also applicable to other structures like spiking CNNs.
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3.2 Skip Connections

Figure 3: Skip-connected pass of SNNs.

As shown in Figure 3, we adopt the skip connections which directly connect two

non-adjacent layers to enrich the network dynamics. The skip connections benefit the

network for three reasons. First, two layers with self-recurrent connections can work

similarly to a fully connected recurrent layer. Therefore, in Figure 3, we can view layer

l and l + 1 as a recurrent layer while the l + 1 and l + 2 layers also form an equiva-

lent recurrent layer. With the additional skip connections from layer l to l + 2, these

two layers can also be treated as an approximate recurrent layer. The skip connections

bring more possibilities and dynamics to form different structures. Second, the skip

connections pass high-layer information to a certain layer and introduce more features.

Third, during training, the skip connections form an alternative path for the calcula-

tion of backpropagated error gradient and provide additional tunability for the network.

Owing to these three features, in Section 6.2, we demonstrate that the performance im-
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provement and faster convergence speed are achieved by applying the skip connections.

4 Backpropagation for ScSr-SNNs

In this paper, we adopt the TSSL-BP method proposed in (Zhang and Li, 2020) to train

the ScSr-SNNs. TSSL-BP is a BPTT based backpropagation method for SNNs. It

captures the error backpropagation across two types of inter-neuron and intra-neuron

dependencies and leads to state-of-the-art performance with extremely low latency. In

the original paper, the TSSL-BP is proposed only for feedforward SNNs. In this paper,

we extend its applicability to the self-recurrent connections and skip connections.

4.1 Loss Fuction

During the training, we denote the desired and the actual spike trains in the output layer

by d = [d[t0], · · · ,d[tNt ]] and s = [s[t0], · · · , s[tNt ]] where Nt is the number of the

considered time steps, d[t] and s[t] the desired and actual firing events for all output

neurons at time t, respectively. Note that, in this work, the output layer has neither

self-recurrent connections nor skip connections.

The loss function L is defined by the square error for each output neuron at each

time step:

L =
Nt∑
k=0

E[tk] =
Nt∑
k=0

1

2
((ε ∗ d)[tk]− (ε ∗ s)[tk])2, (13)

where ε(·) is a kernel function which measures the so-called Van Rossum distance be-

tween the actual spike train and desired spike train.

We consider the backpropagation in three cases: 1. feedforward layer, 2. self-
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recurrent layer, 3. self-recurrent layer with skip-connections to a post layer.

4.2 Case 1: Feedforward Layer

As shown in Figure 1, when the layer l is feedforward layer, it could be the output layer

or a hidden layer.

Eq.(6) reveals that the membrane potentials u(l) of the neurons in layer l at time t

have contribution to all future fires and losses. Therefore, the error gradient with respect

to the presynaptic weights matrixW (l) can be defined as

∂L

∂W (l)
=

Nt∑
k=0

∂E[tk]

∂W (l)
=

Nt∑
k=0

k∑
m=0

∂E[tk]

∂u(l)[tm]

∂u(l)[tm]

∂W (l)

=
Nt∑
m=0

a(l−1)[tm]
Nt∑
k=m

∂E[tk]

∂u(l)[tm]
.

(14)

We use δ[tm] to denote the backpropagated error at time tm:

δ(l)[tm] =
Nt∑
k=m

∂E[tk]

∂u(l)[tm]
=

Nt∑
k=m

∂E[tk]

∂a(l)[tk]

∂a(l)[tk]

∂u(l)[tm]
. (15)

If l is the output layer, from Eq.(13), the first term of Eq.(15) is given by

∂E[tk]

∂a(l)[tk]
= (ε ∗ d)[tk]− (ε ∗ s)[tk]. (16)
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If l is a hidden layer, δ(l)[tm] can be derived from the error δ of the post layer:

δ(l)[tm] =
Nt∑
j=m

j∑
k=m

∂a(l)[tk]

∂u(l)[tm]

(
∂u(l+1)[tk]

∂a(l)[tk]

∂E[tj]

∂u(l+1)[tk]

)

=
Nt∑
k=m

∂a(l)[tk]

∂u(l)[tm]

Nt∑
j=k

W (l+1) ∂E[tj]

∂u(l+1)[tk]

= (W (l+1))T
Nt∑
k=m

∂a(l)[tk]

∂u(l)[tm]
δ(l+1)[tk].

(17)

Eq.(17) demonstrates that membrane potentials u(l) of the neurons in layer l in-

fluence their (unweighted) PSCs a(l) through fired spikes, and a(l) further affects the

membrane potentials u(l+1) in the next layer.

The calculation of the term ∂a(l)[tk]

∂u(l)[tm]
is one of the key contributions of (Zhang and Li,

2020). We do not repeat the derivatives here but treat it as a known term in this paper.

4.3 Case 2: Self-recurrent Layer

The structure of the self-recurrent layer is shown in Figure 2. Similar to the feedforward

case, the weights of the incoming synapses can be calculated according to Eq.(14).

Based on Eq.(8), the error gradient with respect to the weights of self-recurrent layer

can be expressed as:

∂L

∂W
(l)
s

=
Nt∑
m=1

a(l)[tm − 1]δ(l)[tm]. (18)

Compared to the feedforward case, the main difference of the self-recurrent case

comes from the derivation of δ(l)[tm]. Except the error signals from the post layer,

we also need to take the errors backpropagated from self-recurrent connections into
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consideration. Thus, the error δ(l)[tm] is calculated by:

δ(l)[tm] =
Nt∑
j=m

j∑
k=m

∂a(l)[tk]

∂u(l)[tm]

(
∂u(l+1)[tk]

∂a(l)[tk]

∂E[tj]

∂u(l+1)[tk]

)

+
Nt∑

j=m+1

j∑
k=m

∂a(l)[tk]

∂u(l)[tm]

(
∂u(l)[tk + 1]

∂a(l)[tk]

∂E[tj]

∂u(l)[tk + 1]

)

= (W (l+1))T
Nt∑
k=m

∂a(l)[tk]

∂u(l)[tm]
δ(l+1)[tk]

+W (l)
s ◦

Nt−1∑
k=m

∂a(l)[tk]

∂u(l)[tm]
δ(l)[tk + 1].

(19)

In Eq.(19), the first term is the same as Eq.(17) which represent the error backprop-

agated from the post layer. The second term is caused by self-recurrent connections.

It reveals that membrane potentials u(l) of the neurons in layer l influence their (un-

weighted) PSCs a(l) through fired spikes, and a(l) further affect the membrane poten-

tials of u(l) at the next time step.

4.4 Case 3: Self-recurrent Layer with skip connections

As shown in Figure 3, we suppose layer l has self-recurrent connections. In addition, it

also connects to layer l+1 the same as the feedforward layer and layer l+2 through the

skip connections. The changes of BP method still come from the derivation of δ(l)[tm].

In this case, the output (unweighted) PSCs a(l) of layer l further directly affects the

membrane potentials of u(l+2) at layer l + 2.

Similar to the derivation of Eq.(19), an additional term should be added when the
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skip connections are taken into account. Therefore, the δ(l)[tm] can be derived as

δ(l)[tm] = (W (l+1))T
Nt∑
k=m

∂a(l)[tk]

∂u(l)[tm]
δ(l+1)[tk]

+W (l)
s ◦

Nt−1∑
k=m

∂a(l)[tk]

∂u(l)[tm]
δ(l)[tk + 1]

+ (W (l,l+2))T
Nt∑
k=m

∂a(l)[tk]

∂u(l)[tm]
δ(l+2)[tk],

(20)

whereW (l,l+2) represents weights of skip connections from layer l to layer l + 2.

4.5 Backpropagation Based Intrinsic Plasticity

Apart from the ScSr-SNNs, we also propose a new backpropagation (BP) method called

backpropagated intrinsic plasticity (BIP) to further boost the performance of ScSr-

SNNs by training intrinsic model parameters.

Intrinsic plasticity (IP) is a widely used self-adaptive mechanism that maintains

homeostasis and shapes the dynamics of neural circuits. In short, IP is an inner neuronal

mechanism that adjusts the neuron’s activity. IP has been observed in various biological

neurons (Marder et al., 1996; Baddeley et al., 1997; Desai, Rutherford, and Turrigiano,

1999). However, there’s still no conclusion about how the IP exactly works.

The most straight forward idea of IP is boosting the neuron’s activity if the neuron

rarely fires and depressing the neuron if it fires too frequently. In SNNs, there are mainly

two ways to apply the IP method. First, the most famous way is called the dynamic

threshold. It heuristically increases the neuronal firing threshold when the neuron spikes

and exponentially decays the firing threshold during the rest of the time (Lazar, Pipa,

and Triesch, 2007; Bellec et al., 2018; Li et al., 2018b). The mechanism of the dynamic
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threshold method is the same as the adaptive LIF (ALIF) neuron model in (Bellec et al.,

2018). The ALIF neuron adapts the firing rate by adjusting the threshold. On the

other hand, (Triesch, 2005) first proposed a mathematical IP rule on ANNs to adjust the

neuron so that its Kullback–Leibler (KL) divergence from an exponential distribution to

the actual output firing rate distribution is minimized. After that several works tried to

apply this idea to SNNs by adjusting the neuronal parameters to optimize the neuron’s

output firing rate distribution (Schrauwen et al., 2008; Li and Li, 2013; Zhang and Li,

2019a).

In (Zhang and Li, 2019a), the IP method trains the time constant to minimize the

loss which is defined by the KL divergence between the desired and actual firing rate

distributions. In this work, we also train the time constant of the neuron. However, the

typical IP method targets to adjust network firing rates. It may contradict the objective

of the BP rule that tries to minimize the output loss and hinder the training. Therefore,

we propose a backpropagated intrinsic plasticity (BIP) method to joint both the IP and

BP methods for the same goal, the output loss. More specifically, unlike the typical

IP rule which is unsupervised, we apply the IP rule together with the BP rule. During

backpropagation, the error of each neuron is either directly from the loss function (the

output layer) or backpropagated from the post layer. Once the error is obtained, the

neuron’s time constant can be updated according to the error by the BIP method while

the corresponding weights are updated by the BP method.

According to Eq.(6), the neuronal parameters θm of each neuron are trained with the
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backpropagated errors. We rewrite the forward pass with self-recurrent connections as

u(l)[t] = θ(l) ◦ u(l)[t− 1] +W (l)a(l−1)[t] +W (l)
s ◦ a(l)[t− 1], (21)

where θ(l) =
[
θ
(l)
1 , · · · , θ

(l)
Nl

]T
is the vector of the time constant factor defined in (4).

Similar to Eq.(14), the θ(l) is updated based on the backpropagated error δ(l). The

error gradient can be described as

∂L

∂θ(l)
=

Nt∑
m=1

u(l)[tm − 1]δ(l)[tm]. (22)

Figure 4 summarizes the forward pass and backward pass of the proposed ScSr-

SNNs with BIP method at the single-neuron level. In the figure, neurons in layer l

have skip connections to neurons in layer l + q. Neurons in layer l − p and l + 1 are

also connected through skip connections. As shown, at the spatial level, the neuron

communicates with neurons of different layers via regular feedforward connections and

skip connections. However, within the same layer, the neuron only depends on itself

at the temporal level via intrinsic parameter and self-recurrent connection. This simple

structure results in efficient learning with rich neural dynamics.

In addition, at the spatial level, the self-recurrent connections and intrinsic parame-

ters are independent without connecting to other neurons. Therefore, both self-recurrent

connections and BIP can be easily applied to different SNNs like Spiking CNNs. In Sec-

tion 5.5, we demonstrate that the proposed methods can also improve the performance

of Spiking CNNs on the neuromorphic image dataset.
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Figure 4: Forward and backward pass of ScSr-SNNs with BIP method.

5 Experiments and Results

5.1 Experimental Settings

In this section, we test the proposed ScSr-SNNs with BIP method on five datasets, the

speech dataset TI46-Alpha (Liberman et al., 1991), TI46-Digits (Liberman et al., 1991),

neuromorphic speech dataset N-TIDIGITS (Anumula et al., 2018), neuromorphic im-

age dataset DvsGesture (Amir et al., 2017), and N-MNIST (Orchard et al., 2015).

We compare ScSr-SNNs with several state-of-the-art results of different structures in-

cluding feedforward SNNs, RSNNs, Liquid State Machine(LSM), spiking CNNs, and

ANNs.

All reported experiments are conducted on an NVIDIA Titan XP GPU. The im-
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plementation of ScSr-SNNs is on the Pytorch framework (Paszke et al., 2019). The

simulation step size is set to 1 ms. The parameters like threshold and learning rate are

empirically tuned. Table 1 lists the typical values adopted for each dataset.

Parameter TI46-Alpha TI46-Digit N-TIDIGITS DvsGesture N-MNIST

τm 16 ms 16 ms 64 ms 64 ms 16 ms
τs 8ms 8 ms 8 ms 8 ms 4 ms

learning rate 0.0005 0.0005 0.0002 0.0001 0.0005
Threshold Vth 1 mV 1 mV 1 mV 1 mV 1 mV

Batch Size 50 50 50 5 50
Time steps 100 100 300 300 100

Epochs 400 400 400 100 100

Table 1: Parameters settings.

The weight matrices of self-recurrent connections and skip connections are initial-

ized following the normal distribution with a mean of 0 and std of 1. For the BIP

method, the time constant of membrane potential in Table 1 is applied as the initial

value. No axon and synaptic delay or refractory period are adopted in the feedforward

pass whereas the self-recurrent connections have 1 ms delay. No dropout or normaliza-

tion is applied. Adam (Kingma and Ba, 2014) is adopted as the optimizer.

For practical issues such as desired output selection, warm-up mechanism, the bound-

ary of derivatives, we follow the solutions in (Zhang and Li, 2020).

In the results, the mean and standard deviation (std) reported are obtained by re-

peating the experiments five times. Moreover, we also separately apply the proposed

self-recurrent structure, skip-connected structure, and BIP method to the networks to

reveal their individual effects of boosting performance. For all the results reported in

this paper, we follow Table 2 to name the structures and methods.
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Name Structures

Sr-SNNs SNNs with self-recurrent connections in each hidden layer
Sr-SNNs-BIP Sr-SNNs with BIP in each hidden layer
ScSr-SNNs Sr-SNNs with skip connections between two layers

ScSr-SNNs-BIP ScSr-SNNs with BIP in each hidden layer

Table 2: Structures.

5.2 TI46-Alpha

TI46-Alpha is the full alphabets subset of the TI46 Speech corpus (Liberman et al.,

1991) with spoken English alphabets audios from 16 speakers. There are 4142 and

6628 spoken English examples in 26 classes for training and testing, respectively. The

continuous temporal speech waveforms are preprocessed by Lyon’s ear model (Lyon,

1982). Each speech is encoded into 78 channels with real-valued intensity. In this case,

we directly apply the preprocessed real-valued results to the input layer. The sample

rate of this dataset is 12.5 kHz. The decimation factor of Lyon’s ear model is 125. Each

preprocessed sample is simulated for 100 time steps.

In Table 3, we compare the proposed structures with several existing results. In

(Wijesinghe et al., 2019), the state vector of the reservoir is used to train the single

readout layer using BP. Its result shows that only training the single readout layer of a

recurrent LSM is inadequate for this challenging task, demonstrating the necessity of a

more structured and deep SNN. (Zhang and Li, 2019b) demonstrates the best-reported

performance of TI46-Alpha. It has one recurrent layer and two feedforward layers

trained with the ST-RSBP method. However, both recurrent networks in (Wijesinghe

et al., 2019) and (Zhang and Li, 2019b) are randomly generated. We show that, with

the proposed ScSr-SNNs-BIP method, we can achieve a performance of 96.20% with

24



a mean of 95.76% and a standard deviation of 0.29% which is 2.85% better than the

best-reported result.

In the table, we also demonstrate that the three proposed methods, the self-recurrent

connections, skip connections, and BIP method, can all improve performance when they

are applied separately. In addition, with the same training rule TSSL-BP, our proposed

methods can boost 3.06% performance on the same network size compared to (Zhang

and Li, 2020).

Method Network Size Mean Std Best

HM2BP (Jin, Zhang, and Li, 2018) 400-400 89.83% 0.71% 90.60%
Liquid Ensembles (Wijesinghe et al., 2019) LSM: R2000a - - 85.5%

ST-RSBP (Zhang and Li, 2019b) 400-R400-400 93.06% 0.21% 93.35%
TSSL-BP (Zhang and Li, 2020) 400-400-400 93.01% 0.13% 93.14%

Sr-SNNs 400-400-400 94.17% 0.31% 94.62%
Sr-SNNs-BIP 400-400-400 94.90% 0.16% 95.04%
ScSr-SNNs 400-400-400b 94.98% 0.17% 95.13%

ScSr-SNNs-BIP 400-400-400b 95.76% 0.29% 96.20%
a R represent recurrent layer.
b Skip connections from first layer to third layer.

Table 3: Performances on TI46-Alpha

5.3 TI46-Digit

TI46-Digits is the full digits subset of the TI46 Speech corpus (Liberman et al., 1991).

It contains 1594 training examples and 2542 testing examples of 10 utterances for each

of digits ”0” to ”9” spoken by 16 different speakers. The same preprocessing steps of

TI46-Alpha is adopted. In the Table 4, SpiLinC proposed in (Srinivasan, Panda, and

Roy, 2018) is an LSM with multiple reservoirs in parallel. Weights between inputs and

reservoirs are trained using STDP. The excitatory neurons in the reservoir are tagged
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with the classes for which they spiked at the highest rate during training. The neurons

with the same tag are grouped accordingly for inference. As shown in table, with the

proposed methods, We can achieve 99.69% with a mean of 99.52% and a standard

deviation of 0.13%. The performance is 0.3% better than the best-reported results in

(Zhang and Li, 2019b) with only half of the network size. Moreover, our proposed

method also achieves 6 times latency reduction. It proves that the proposed methods

can improve the network dynamic when processing sequential signals and thus boost

the performance.

Method Network Size Mean Std Best

SpiLinC (Srinivasan, Panda, and Roy, 2018) LSM: R3200 - - 86.66%
Liquid Ensembles (Wijesinghe et al., 2019) LSM: R5000 - - 97.25%

ST-RSBP (Zhang and Li, 2019b) 200-R200-200 99.25% 0.13% 99.39%
TSSL-BP (Zhang and Li, 2020) 100-100-100 98.49% 0.18% 98.66%

Sr-SNNs 100-100-100 99.01% 0.20% 99.17%
Sr-SNNs-BIP 100-100-100 99.08% 0.09% 99.31%
ScSr-SNNs 100-100-100a 99.16% 0.08% 99.35%

ScSr-SNNs-BIP 100-100-100a 99.52% 0.13% 99.69%
a Skip connections from first layer to third layer.

Table 4: Performances on TI46-Digits

5.4 N-TIDIGITS

The N-Tidigits (Anumula et al., 2018) is the neuromorphic version of the well-known

speech dataset Tidigits (Leonard and Doddington, 1993). It consists of recorded spike

responses from a 64-channel CochleaAMS1b sensor in response to the original audios.

The dataset includes both single digits and connected digit sequences with a vocabulary

consisting of 11 digits including “oh,” “zero” and the digits “1” to “9”. In this experi-

ment, There are 55 male and 56 female speakers with 2,475 single digit examples for
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training and the same number of examples for testing. In the original dataset, each sam-

ple lasts about 0.9s. We reduce the time resolution to speed up the simulation. Thus,

the preprocessed samples only have about 300 time steps. We determine that a channel

has a spike at a certain time step in the preprocessed sample if there’s at least one spike

among the corresponding several time steps of the original sample.

For N-TIDIGITS dataset, we not only compare the performance with previous work

on RSNNs but also with the well-known RNNs in non-spiking networks such as Gated

Recurrent Unit (GRU) and Long-Short Term Memory (LSTM). The GRU and LSTM

networks are trained by the non-spiking BP method. As shown in Table 5, the proposed

methods achieve 95.07% with a mean of 94.79% and a standard deviation of 0.22%

which is the best results compared to state-of-the-art performances. Note that although

the number of neurons in the GRU and LSTM networks are less than our proposed

methods. The number of tunable parameters is nearly the same.

Structures Network Size Mean Std Best

GRU (Anumula et al., 2018) G200-G200-100a - - 89.69%
LSTM (Anumula et al., 2018) L250-L250b - - 90.90%

ST-RSBP (Zhang and Li, 2019b) 400-R400-400 93.63% 0.27% 93.90%
TSSL-BP (Zhang and Li, 2020) 400-400-400 89.55% 0.28% 89.85%

Sr-SNNs 400-400-400 93.77% 0.25% 94.02%
Sr-SNNs-BIP 400-400-400 94.19% 0.14% 94.35%
ScSr-SNNs 400-400-400c 94.25% 0.18% 94.46%

ScSr-SNNs-BIP 400-400-400c 94.79% 0.22% 95.07%
a G represents Gated Recurrent Unit (GRU) layer.
b L represents long-short term memory (LSTM) layer.
c Skip connections from first layer to third layer.

Table 5: Performances on N-TIDIGITS
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5.5 DvsGesture

The DvsGesture dataset (Amir et al., 2017) have recordings of 29 different individuals

(subjects) performing hand and arm gestures. 11 hand and arm gestures are recorded

using a DVS camera under three different lighting conditions for one subject in each

trail. There are 122 trails in total. Samples from the first 23 subjects are used for

training and the last 6 subjects are used for testing. The problem is to classify the action

sequence video into an action label. Each action (sample) is recorded for about 6 s.

Similar to the preprocessing steps in (Shrestha et al., 2017), only the first 1.5 second of

action video for each class are used to classify the actions. The temporal resolution of

simulation is 5 ms which means it takes 300 time steps for each sample.

Since a neuron with self-recurrent connection and the BIP method only need to

communicate itself within the layer, these two proposed methods are also applicable to

spiking CNNs. As shown in Table 6, our proposed method on spiking CNNs can achieve

the performance about 2% better than the best results of existing works with the same

or similar network sizes. Note that the self-recurrent connections and BIP only increase

2 additional tunable parameters for each neuron. Therefore, the total number of tunable

parameters keeps at the same level.

Method Network Accuracy

TrueNorth (Amir et al., 2017) CNN-based 16 layers 91.77%
SLAYER (Shrestha et al., 2017) CNN-based 8 layers 93.64%

RNN (He et al., 2020) CNN-based 92.01%
LSTM (He et al., 2020) CNN-based 93.75%
SNN (He et al., 2020) CNN-based 8 layers 93.40%

Sr-SNNs-BIP CNN-based 8 layers 95.49%

Table 6: Performances on DvsGesture
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5.6 N-MNIST

The N-MNIST (Orchard et al., 2015) dataset is a neuromorphic version of the MNIST

dataset generated by tilting a Dynamic Version Sensor (DVS) in front of static digit

images on a computer monitor. The movement induced pixel intensity changes at each

location is encoded as spike trains. Each sample contains two kinds of ON and OFF

events spike events which represent the increment and decrement of the intensity. The

recorded sample of the N-MNIST is a spatio-temporal pattern with 34 × 34 × 2 spike

sequences lasting for 300ms with a resolution of 1us. In the experiments, we follow

the preprocessing steps in (Zhang and Li, 2020) to reduce the time resolution of the N-

MNIST samples by 3000 times to speed up the simulation. Therefore, the preprocessed

samples only have about 100 time steps. Whether a channel has a spike at a certain time

step of the preprocessed sample is determined by if there’s at least one spike among the

corresponding 3000 time steps of the original sample. In addition, in the experiment,

only the first 30 time steps of each sample are used for training and inference.

Same as the experiment on DvsGesture, a spiking CNN network is adopted for the

simulation on N-MNIST. The self-recurrent connections and the BIP method are ap-

plied to the two convolution layers. As shown in Table 7, the proposed method achieves

99.32% accuracy which outperform the state-of-the-art performance in (Zhang and Li,

2020). According to the experimental results on DvsGesture and N-MNIST, it implies

that the proposed method can also benefit the learning of Spiking CNNs.
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Method Network Accuracy Time Steps

HM2BP (Jin, Zhang, and Li, 2018) 400-400 98.88% 600
SLAYER (Shrestha et al., 2017) 12C5-P2-64C5-P2 99.22% 300
TSSL-BP (Zhang and Li, 2020) 12C5-P2-64C5-P2 92.28% 30

Sr-SNNs-BIP 12C5-P2-64C5-P2 99.32% 30

Table 7: Performances on N-MNIST

6 Analysis

6.1 Effects of Self-recurrent Connections

In the proposed method, the self-recurrent connections are constructed so that the net-

work can realize recurrent behaviors similar to those of more complex RSNNs while the

error gradients can be calculated more straightforwardly. The weights of self-recurrent

connections are randomly initialized following the normal distribution with the mean

of 0 and std of 1. By the BP method, the weights of the connections can be trained to

minimize the loss function.

We take the well-trained ScSr-SNN on TI46-Alpha as an example. The network

contains 3 layers with 400 neurons in each layer. We record the weights of self-recurrent

connections after training. Figure 5 shows the distribution of the 1200 self-recurrent

weights. As shown, there’re about 60% positive self-recurrent connections. From the

network perspective, the well-trained self-recurrent weights guarantee the complex dy-

namics of the RSNNs and minimize the output loss. From the single neuron level, on

one hand, the positive self-recurrent connections refresh the information of the neuron

and thus maintain the single-neuron memory. On the other hand, the negative self-

recurrent connection depresses the neuron and can be considered as a regulation for the

neuron’s activity.
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Figure 5: Weights distribution of well-trained self-recurrent connections

6.2 Effects of Skip Connections

The skip connections mainly play three roles. First, the skip connections combined with

self-recurrent connections introduce additional recurrent structures and thus further en-

hance neural dynamics. Second, the skip connections pass high-level information to

a certain layer and introduce more features. Finally, the skip connections provide an

alternative path for the gradient.

When the network goes deeper, the effects of skip connections become even stronger.

We compare two structures, ScSr-SNNs-BIP and Sr-SNNs-BIP, on the TI-Alpha dataset.

The networks have six hidden layers with 100 neurons in each layer. The only differ-

ence between these two networks is that ScSr-SNNs-BIP has skip connections from

the first layer to the fifth layer. As shown in Figure 6, with the skip connections, the
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performance can be improved for more than 1.5%. Apart from the performance im-

provement, the ScSr-SNNs-BIP network can also achieve the same loss with up to 50

fewer epochs than Sr-SNNs-BIP. The network dynamics and more features introduced

by skip connections lead to the performance improvement. In the meanwhile, the faster

convergence is benefited from the additional path to pass the backpropagated errors.
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Figure 6: Effects of skip connections

When the network goes deeper, there are many possible ways to connect non-

adjacent layers with skip connections. It’s necessary to know if more skip connections

mean better performance. We conduct a few experiments on the TI46-Alpha dataset.

The network has 4 hidden layers with 200 neurons in each layer. As shown in Table 8,

we compare two kinds of connections. The one skip connections network only has skip

connections from the first hidden layer to the third hidden layer. The two skip con-

nections means the first hidden layer to the third hidden layer and the second hidden

layer to the fourth hidden layer are both connected. The results show that the proposed

methods with only skip connections from the first layer to the third layer achieve the
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best result no matter whether the BIP method is applied. This may be because one skip

connections can enrich the network dynamics while multiple skip connections lead to

the instability of the network and also cause complexity for the proposed BP method to

well train the network.

Structures Best

Feedforward SNNs 92.08%
ScSr-SNNs: one skip connections 94.27%
ScSr-SNNs: two skip connections 93.56%

ScSr-SNNs-BIP: one skip connections 95.04%
ScSr-SNNs-BIP: two skip connections 94.76%

Table 8: Performances on TI46-Alpha with more layers

6.3 Computational Efficiency

Owing to the simple structure of self-recurrent connections, the proposed structure has

lower computational complexity compared to fully connected RSNNs. For a layer with

n neurons, the proposed self-recurrent connections and BIP method only introduce 2n

more tunable parameters. However, for a fully connected recurrent layer, it has n2 pa-

rameters in the recurrent weight matrix. During simulation, the time cost mainly comes

from the error backpropagated through recurrent connections, because the gradient must

be calculated time step by time step. Thus, the proposed structure can be more efficient

than fully connected RSNNs.

More specifically, we use the networks in the experiments of TI46-Alpha as an ex-

ample. Each network has 3 hidden layers with 400 neurons in each layer. In addition,

the inputs have 78 channels and the output layer has 26 neurons. Therefore, the number

of tunable parameters of the feedforward network is 361, 600. For the proposed method,
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Sr-SNNs have 362, 800 parameters and Sr-SNNs-BIP have 364, 000 parameters. Thus,

by comparing the number of parameters, we can conclude that there’s almost no com-

putational overhead by applying self-recurrent connections and the BIP method. After

implementing the skip connections, ScSr-SNNs have 522, 800 parameters and ScSr-

SNNs-BIP have 524, 000 parameters. The largely increased number of parameters may

result in additional computational cost. Thus, a trade-off between the cost and perfor-

mance should be taken into consideration when applying the skip-connections.

Moreover, compared to existing methods, the proposed method can train networks

over a short temporal window of a few time steps (low latency) which leads to more

efficient training. For TI-Alpha, we use 100 time steps to simulate each sample while

(Wijesinghe et al., 2019) requires 600 time steps and (Zhang and Li, 2019b) need 700

time steps.

6.4 Firing Activity

When considering the implementation of the proposed structure on neuromorphic hard-

ware, low power consumption becomes an important constraint. In most cases, the

power consumption is highly related to the firing rate of the whole network. A good

network should not only demonstrate decent performance but also keeps relatively low

firing activities.

To demonstrate the firing sparsity of the proposed networks, we select the well-

trained ScSr-SNN on TI46-Alpha. We randomly apply one sample to the well-trained

network from the test set. The firing rate of each hidden neuron is recorded. As shown

in Figure 7, about 55% neurons are silent while 26% neurons have firing rates less than
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10%. In addition, only less than 3% neurons have firing rates that are higher than 40%.

Therefore, from the firing activity point, the proposed method also demonstrates decent

computational efficiency.
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Figure 7: Firing acitivity of well-trained ScSr-SNNs-BIP

7 Conclusion

In this work, we propose the novel Skip-Connected Self-Recurrent SNNs (ScSr-SNNs)

with backpropagated intrinsic plasticity (BIP). The benefits of each proposed method

can be summarized as below:

• Self-recurrent Connections: (1) With the self-recurrent connections, the network

can realize recurrent behaviors similar to those of more complex RSNNs. (2) A
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neuron loses all its information after generating a spike and resetting membrane

potential to 0. With the positive self-recurrent connections, such information will

be obtained by the neuron again. This process can maintain the single-neuron

memory. (3) The structure is easy to interpret due to the independence of neurons

in each layer. (4) It simplifies the forward and backward computation in the

recurrent structure.

• Skip connections: (1) The skip connections combined with self-recurrent connec-

tions introduce additional recurrent structure as demonstrated in the paper. Thus,

it further enhances network dynamics. (2) The skip connections pass high-layer

information to a certain layer and introduce more features. (3) The skip connec-

tions provide an alternative path for the gradient.

• BIP: The BIP together with the BP method can improve the learning performance

by concentrating on the output loss.

Moreover, the proposed methods can be easily applied to deep networks such as deep

RSNNs and spiking CNNs.

On the speech datasets and neuromorphic datasets, we demonstrate that the pro-

posed ScSr-SNNs with the BIP method significantly outperform the existing works in-

cluding the state-of-the-art BP method in (Zhang and Li, 2019b). These great boosts

also reveal the effectiveness of the proposed structures and methods.

This work has been prototyped based on the widely adopted Pytorch framework

and will be made available to the public. We believe the proposed structures and BIP

method will benefit the brain-inspired computing community from both a structural and
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algorithmic perspective.
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