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Abstract—In biological brains, recurrent connections play a
crucial role in cortical computation, modulation of network
dynamics, and communication. However, in recurrent spiking
neural networks (SNNs), recurrence is mostly constructed by
random connections. How excitatory and inhibitory recurrent
connections affect network responses and what kinds of connec-
tivity benefit learning performance is still obscure. In this work,
we propose a novel recurrent structure called the Laterally-
Inhibited Self-Recurrent Unit (LISR), which consists of one
excitatory neuron with a self-recurrent connection wired together
with an inhibitory neuron through excitatory and inhibitory
synapses. The self-recurrent connection of the excitatory neuron
mitigates the information loss caused by the firing-and-resetting
mechanism and maintains the long-term neuronal memory. The
lateral inhibition from the inhibitory neuron to the corresponding
excitatory neuron, on the one hand, adjusts the firing activity of
the latter. On the other hand, it plays as a forget gate to clear the
memory of the excitatory neuron. Based on speech and image
datasets commonly used in neuromorphic computing, RSNNs
based on the proposed LISR improve performance significantly
by up to 9.26% over feedforward SNNs trained by a state-of-the-
art backpropagation method with similar computational costs.

Index Terms—Recurrent spiking neural networks, Spiking
neural networks structure, Self-recurrent connections, Inhibition

I. INTRODUCTION

Recurrence is ubiquitous in the brain and involved in most
of the brain’s dynamics. Recurrent connections between neu-
rons play diverse functional roles for storing spatial patterns
in memory [1], [2], winner-take-all decision making [3], [4],
oscillations of multiple types [5], object recognition in the
visual system [6], [7], and so on. Inspired by the connectivity
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in brain, recurrent connections have been widely applied in ar-
tificial neural networks (ANNs). During the past few decades,
various structures of recurrent neural networks (RNNs) have
been proposed such as Long Short Term Memory (LSTM) [8],
Echo State Networks (ESN) [9], Deep RNNs [10], Gated
Recurrent Units (GRU) [11], and Legendre Memory Units
(LMU) [12].

As a brain-inspired computational model, spiking neural
networks (SNNs) are considered as the third-generation of
artificial neural networks with the more biologically realistic
spiking neuron model. There is theoretical evidence supporting
that SNNs possess greater computational power over tradi-
tional ANNs [13]. In ANNs, neurons process continuous-
valued inputs with continuous outputs generated through an
activation function. However, the spiking neurons mimic the
biological neurons’ behavior and explicitly model the all-or-
none firing spikes across both spatial and temporal domains.
Unlike recurrence in traditional ANNs that has been well
studied with various structures proposed, the exploration of
recurrent SNNs (RSNNs) is still immature due to the complex
spatial-temporal dynamics.

Randomly connected recurrent layers or reservoirs are the
most common structures for RSNNs. Among them, the Liquid
State Machine (LSM) [14] is one of the most widely adopted
architectures and has been demonstrated on tasks like speech
recognition [15], [16], image classification [17], and so on. The
LSM consists of a single randomly connected recurrent reser-
voir layer followed by one readout layer. Its recurrent weights
are typically either fixed or trained by unsupervised learning
methods like spike-timing-dependent plasticity (STDP) [18]
with only the readout layer trained by supervision [15], [16],
[19]. In recent years, the standard LSM has been extended
to multiple reservoirs by applying different parts of the input
signals to corresponding reservoirs [17], [20].

Apart from LSM, [21] proposed an architecture called
long short-term memory SNNs (LSNNs). Its recurrent layer
consists of a regular spiking portion with both inhibitory and
excitatory spiking neurons and an adaptive neural population.
The recurrent connections are trained by the backpropagation
through time (BPTT) method. [22] demonstrates training of
deep RSNNs by a backpropagation (BP) method called ST-
RSBP. [23] proposed a recurrent structure in which the recur-
rent layer is organized in C clusters of excitatory neurons and a



central cluster of inhibitory neurons. The recurrent connections
in all of these works are sparsely and randomly generated with
certain probabilities. Whether a neuron is connected to another
neuron in the same layer is determined by the probability.
However, the randomly generated connections may not be
optimal and thus limit the performance. In addition, the
complex network dynamics created by the random recurrent
connections also hinder the network training from learning
tools and severely limit the practical application of RSNNs.

On the other hand, [24] proposed a recurrent structure
named ScSr-SNNs. In its recurrent layer, each recurrent neuron
only has a self-recurrent connection to the neuron itself.
Although such a structure is easy to implement, its connections
are so simple that it cannot exploit the full power of recurrence.

In this paper, we proposed a novel recurrent structure for
SNNs called Laterally-Inhibited Self-Recurrent Unit (LISR).
The LISR contains one excitatory neuron with a tunable
self-recurrent connection wired together with an inhibitory
neuron. In addition, the excitatory neuron has a fixed excitatory
connection to the inhibitory neuron while the inhibitory neuron
introduces lateral inhibition through a fixed inhibitory con-
nection to the excitatory neuron. This proposed connectivity
not only offers a structured approach for designing high-
performance RSNNs but also mitigates the training challenges
resulting from random recurrent connections as in the prior
works. We evaluate the proposed structure trained by a state-
of-the-art BP algorithm of SNNs on speech dataset TI46 [25],
neuromorphic speech dataset N-TIDIGITS [26], and neuro-
morphic image dataset DVS-Gesture [27]. The networks with
the proposed LISR outperform the best-reported performance
obtained from the existing works on all of the three datasets. In
addition, without increasing the computational cost, it achieves
up to 9.26% performance improvement compared to the same
size feedforward network trained by the BP method.

II. METHODOLOGY

A. Spiking Neuron Model

In this work, the leaky integrate-and-fire (LIF) neuron
model [28], one of the most prevalent choices for describing
dynamics of spiking neurons, is adopted.

The neuronal membrane voltage up(t) of postsynaptic neu-
ron p at time t is given by

τm
dup(t)

dt
= −up(t) +RIp(t), (1)

where R and τm are the effective leaky resistance and time
constant of the membrane, Ip(t) the integrated input current.

The neuron p is driven by the input current which is
the weighted summation of postsynaptic current (PSC) from
presynaptic neuron with the following general form:

Ip(t) =
∑
q

wpqaq(t) (2)

where wpq is the synaptic weight from presynaptic neuron q
to postsynaptic neuron p, and aq(t) the PSC induced by the
spikes from neuron q.

The postsynaptic current (PSC) aq(t) is converted from the
presynaptic spikes through a synaptic model. We adopt the
first-order synaptic model [28] which is defined as

τs
daq(t)

dt
= −aq(t) + sq(t), (3)

where τs is the synaptic time constant, sq(t) the spiking events
of presynaptic neuron q. sq(t) can be expressed as

sq(t) =
∑
t
(f)
q

δ(t− t(f)q ), (4)

where δ is the Dirac delta function and t(f)q denotes the firing
time of presynaptic neuron q.

During the simulation, we use the fixed-step first-order Euler
method to discretize continuous membrane voltage updates
into discrete time steps. Since the ratio of R and τm can be
absorbed into the synaptic weights, (1) can be converted to

up[t] = θmup[t− 1](1− sp[t− 1]) +
∑
q

wpqaq[t], (5)

where θm = 1− 1
τm

and the 1−sp[t−1] term reflects the effect
of firing-and-resetting mechanism. The spiking neuron gener-
ates an output spike when up[t] reaches the predetermined
threshold Vth and reset the up[t] to the rest potential.

B. Laterally-Inhibited Self-Recurrent Unit

In this part, we present the structure for the proposed
Laterally-Inhibited Self-Recurrent Unit (LISR). It has clear
and structured recurrent connections which can benefit the
network in several aspects.

Fig. 1. Laterally-Inhibited Self-Recurrent unit.

In the recurrent layer, neurons are grouped into pairs.
Each LISR consists of one excitatory neuron (E) with a self-
recurrent connection and its corresponding inhibitory neuron
(I). As shown in Fig. 1, there are three recurrent connections
in a LISR, including a self-recurrent connection of E, an
excitatory recurrent connection from E to I, and an inhibitory
recurrent connection from I to E. Among these recurrent
connections, the self-recurrent connection is trained by the
learning rule while the weights of the other two connections



are fixed. In addition, the neurons of two adjacent layers are
fully connected. In this work, we suppose all the recurrent
connections have delay of 1 time step and feedforward con-
nections have no delay.

In the rest of this paper, we use e and i in the subscript
to denote the variables of the excitatory neuron and inhibitory
neuron, respectively. For the inhibitory neuron, by introducing
the excitatory recurrent connection, the expression of the
neuron model changes from (5) to

ui[t] = θmui[t− 1](1− si[t− 1]) + Ii[t] + weae[t− 1] (6)

where we is the fixed weight of the excitatory connection and
ae[t− 1] the PSC of the excitatory neuron.

Similarly, the membrane potential of the excitatory neuron
can be concluded as

ue[t] = θmue[t− 1](1− se[t− 1]) +
∑
q

weqaq[t]

+ wsae[t− 1] + wiai[t− 1] (7)

where ws is the weight of self-recurrent connection, wi the
fixed weight of the inhibitory connection, and ai[t − 1] the
PSC of the inhibitory neuron.

In the proposed LISR, the excitatory neuron with self-
recurrent connection plays a major role in information pro-
cessing and feature extraction while receiving lateral inhibition
from the inhibitory neuron. Thus, the following analysis is
focused on the excitatory neuron.

[29] introduced the idea of connecting neurons back to
themselves for ANNs. It claimed that a kind of longer-term
memory can be formed by making part of the recurrent weight
matrix close to the identity matrix. It is the same as adding
self-recurrent connections to part of hidden neurons. After
that, [30] proposed an independently recurrent neural net-
work (IndRNN) for ANNs with self-recurrent connections. It
demonstrated that multiple self-recurrent layers can be stacked
to construct a deep network and the deep ANNs can be trained
robustly. Moreover, [24] demonstrated the implementation of
self-recurrent connections in SNNs. It also showed that the
self-recurrent structure can realize recurrent behaviors similar
to the more complex RSNNs.

In our approach, the self-recurrent connection is only
applied to the excitatory neuron. As expressed in (7), the
neuron resets its membrane potential to 0 after firing. All
the previous information accumulated in this neuron is lost.
Despite the fact that the firing-and-resetting mechanism keeps
the dynamics and oscillation of the network [5], there are
still situations in which maintaining long-term memories of
neurons is beneficial. Thus, self-recurrent connection plays the
role of refreshing the memory. In this work, the self-recurrent
connection is initialized to be a non-negative value then is
trained by the learning algorithm. After training, the weights
of self-recurrent connections are learned to determine how
much previous information should be kept. Although the self-
recurrent connections have other benefits as demonstrated in
[24], [30], in this work, they are mainly used to mitigate the

information loss caused by the firing-and-resetting mechanism.
Thus, the temporal contextual information is refreshed and
held in the internal states of the recurrent structure.

On the other hand, the excitatory neuron also accepts
inhibition from the inhibitory neuron. Its membrane potential
is depressed by a fixed amount when a spike comes from
the inhibitory connection. In other words, while previous
information is kept through the self-recurrent connection, the
inhibitory connection determines when the existing informa-
tion should be abandoned. Therefore, the inhibition serves
as a gating mechanism to control the flow of information
through neurons. In the meanwhile, the inhibitory neuron
accepts inputs from presynaptic layer and the corresponding
excitatory neuron. The weights connected to presynaptic layer
are trained to learn when the inhibition should be generated.
From the network perspective, the inhibitory connections also
play roles such as filtering input signals, regulating network
activities, and maintaining network dynamics [5], [31].

Moreover, the proposed LISR only contains recurrent con-
nections inside itself. Thus, unlike most existing RSNN works
that the networks only have one recurrent layer, this structured
unit can be readily exploited as a basic building block for
constructing multi-layered networks. Fig. 2 demonstrates a
deep SNN implementing the proposed LISR. The network
has l + 1 hidden layers with full connections between the
adjacent layers. Each layer is constructed by repeating LISRs.
The LISRs of the same layer are independent without recurrent
connections between each other. In addition, each LISR has
three recurrent connections as introduced in this section. In
Section IV, we demonstrate that this deep SNN structure can
learn the spatial-temporal inputs information effectively.

Fig. 2. Deep SNN based on LISR.

C. Backpropogation Method

Due to the structured connections of LISR, the BP method
can be efficiently applied. In this work, we adopt the Tempo-
ral spike sequence learning via backpropagation (TSSL-BP)
method proposed in [32] to train the whole network. TSSL-
BP is a BP method directly training the SNNs. It captures the
error backpropagation across two types of inter/intra-neuron
dependencies and leads to state-of-the-art performance with
low latency. The TSSL-BP is derived for feedforward SNNs



and self-recurrent connections in [32] and [24]. In this paper,
we follow the same idea but extend it to the proposed structure.

First, we denote the loss function as

L =

Nt∑
k=0

E[tk], (8)

where Nt is the total time steps and E[tk] the loss at tk.
From (5), the membrane potential up[t] of the neuron p at

time t demonstrates contribution to all future fires and losses
of the neuron. Therefore, the error gradient with respect to
the presynaptic weight wpq from neuron q to neuron p can be
defined as

∂L

∂wpq
=

Nt∑
k=0

∂E[tk]

∂wpq
=

Nt∑
k=0

k∑
m=0

∂E[tk]

∂up[tm]

∂up[tm]

∂wpq

=

Nt∑
m=0

aq[tm]

Nt∑
k=m

∂E[tk]

∂up[tm]
=

Nt∑
m=0

aq[tm]δp[tm],

(9)

where δp[tm] denotes the error for neuron p at time tm and is
defined as:

δp[tm] =

Nt∑
k=m

∂E[tk]

∂up[tm]
=

Nt∑
k=m

∂E[tk]

∂ap[tk]

∂ap[tk]

∂up[tm]
. (10)

In this work, the neurons in the output layer are regular
feedforward neurons without recurrent connection. Therefore,
the weights of output neuron o are updated by

∂L

∂woq
=

Nt∑
m=0

aq[tm]

Nt∑
k=m

∂E[tk]

∂ao[tk]

∂ao[tk]

∂uo[tm]
, (11)

where ∂E[tk]
∂ao[tk]

depends on the choice of the loss function.
For the neurons in the hidden layer, we derive the learning

rule for the excitatory neuron e and the inhibitory neuron i in
the layer l separately. In the rest of the paper, variables asso-
ciated with neurons in the layer l have (l) as the superscript.

The weights update of neuron e and neuron i still follows
the (9). However, due to their special recurrent connections,
the derivations of δ(l)e and δ(l)i , the error backpropagated from
postsynaptic layer, are different.

For the excitatory neuron, in addition to the error signals
from the postsynaptic layer, the error backpropagated from
the self-recurrent connection and the excitatory recurrent con-
nection should also be taken into consideration. Thus, the
backpropagated error can be calculated by:

δ(l)e [tm] =

Nt∑
j=m

j∑
k=m

∂a
(l)
e [tk]

∂u
(l)
e [tm]

N(l+1)∑
p=1

(
∂u

(l+1)
p [tk]

∂a
(l)
e [tk]

∂E[tj ]

∂u
(l+1)
p [tk]

)

+

Nt∑
j=m+1

j∑
k=m

∂a
(l)
e [tk]

∂u
(l)
e [tm]

(
∂u

(l)
e [tk + 1]

∂a
(l)
e [tk]

∂E[tj ]

∂u
(l)
e [tk + 1]

)

+

Nt∑
j=m+1

j∑
k=m

∂a
(l)
e [tk]

∂u
(l)
e [tm]

(
∂u

(l)
i [tk + 1]

∂a
(l)
e [tk]

∂E[tj ]

∂u
(l)
i [tk + 1]

)
.

(12)

where N (l+1) denotes the number of neurons in the layer l+1.
By changing the order of summation, (12) is written as

δ(l)e [tm] =

Nt∑
k=m

∂a
(l)
e [tk]

∂u
(l)
e [tm]

N(l+1)∑
p=1

wpeδ
(l+1)
p [tk]

+

Nt−1∑
k=m

∂a
(l)
e [tk]

∂u
(l)
e [tm]

wsδ
(l)
e [tk + 1]

+

Nt−1∑
k=m

∂a
(l)
e [tk]

∂u
(l)
e [tm]

weδ
(l)
i [tk + 1],

(13)

where δ(l+1)
p [tk] is the error of the neuron p in the layer l +

1 at time tk, δ(l)e [tk + 1] and δ
(l)
i [tk + 1] the errors of the

excitatory neuron itself and the inhibitory neuron at time tk+1
respectively.

(13) reveals that membrane potential u(l)e of the excitatory
neuron in layer l influences its (unweighted) PSC a

(l)
e through

spikes, and a
(l)
e further affects the membrane potentials of

its postsynaptic neurons. Its first term reflects that the error
of the excitatory neuron is accumulated from the errors of
all postsynaptic layer neurons. The second and third terms
indicate that the errors are also backpropagated from the
excitatory neuron itself and the inhibitory neuron.

Similarly, the error of inhibitory neuron can be obtained by

δ
(l)
i [tm] =

Nt∑
k=m

∂a
(l)
i [tk]

∂u
(l)
i [tm]

N(l+1)∑
p=1

wpiδ
(l+1)
p [tk]

+

Nt−1∑
k=m

∂a
(l)
i [tk]

∂u
(l)
i [tm]

wiδ
(l)
e [tk + 1],

(14)

where the first term represents errors from postsynaptic layer
and second term is the error from the excitatory neuron.

In addition, the calculation of the term ∂a[tk]
∂u[tm] is one of the

key contributions of [32]. We do not repeat the steps but treat
it as a known term in this paper.

III. EXPERIMENTAL SETTINGS

In this work, the proposed LISR structure is evaluated on
three datasets, speech dataset TI46 [25], neuromorphic speech
dataset N-TIDIGITS [26], and neuromorphic image dataset
DVS-Gesture [27]. The LISR networks in the experiments are
formed such that all the hidden layers are composed of LISRs.
In other words, a hidden layer with n neurons has n

2 LISRs
with n

2 excitatory neurons and n
2 inhibitory neurons.

All reported experiments are conducted on an NVIDIA
Titan XP GPU. The implementation of the proposed structure
and the BP method is based on the Pytorch framework [33].

A. Parameter Settings

In the SNNs of the experiments, the fully connected weights
between layers are initialized by the He Normal initialization
proposed in [34]. The self recurrent weights are initialized to
0.5 while the weights of the excitatory recurrent connection
and the inhibitory recurrent connection are fixed to 1 and
−2, respectively. AdamW [35] is adopted as the optimizer.



The simulation step size is set to 1 ms. Other parameters
are summarized in Table I. The hyperparameters and weights
initialization are empirically tuned.

TABLE I
PARAMETER SETTINGS

Parameter Value Parameter Value
τm 64 ms τs 8 ms
Vth 1 mV Vrest 0 mV

batch size 100 learning rate 0.0005

B. Loss Function

For the BP method used in this work, the loss function can
be defined by any errors that measure the distance between
the actual outputs and the desired outputs. In our experiments,
since hundreds of time steps are required for simulating speech
and video inputs, we choose the accumulated output PSCs to
define the error which is similar to the firing count used in
many existing works [36], [37].

We suppose the simulation time steps for a sample is Nt.
Furthermore, for neuron o of the output layer, we define
the desired output as do and real output as ro where ro =∑Nt

k=1 ao[tk] and do is manually determined. Therefore, the
loss is determined by the square error of the outputs

L =

Nt∑
k=1

E[tk] =
N(out)∑
o

1

2
(do − ro)

2, (15)

where N (out) is the number of neurons in the output layer.
Furthermore, the error at each time step is simply defined

by the averaged loss through all the time steps:

E[tk] = L/Nt, Eo[tk] =
(do − ro)

2

2Nt
. (16)

With the loss function defined above, the error δ can be
calculated through the (10), (13), and (14).

C. Datasets

TI46 speech corpus [25] contains spoken English alphabets
and digits audios from 16 speakers. In our experiments, the
full alphabets subset of the TI46 is used. We name this subset
TI46-Alpha in the rest of the paper. The TI46-Alpha has 4142
and 6628 spoken English examples in 26 classes for training
and testing, respectively. The continuous temporal speech
waveforms are preprocessed by Lyon’s ear model [38] which
is the same as the preprocessing steps in [22]. The sample rate
of this dataset is 12.5 kHz. The decimation factor of Lyon’s
ear model is 125. The Matlab implementation of Lyon’s ear
model is available online [39]. Each sample is encoded into
78 channels. In our experiments, the preprocessed real-value
intensities are directly applied as the inputs.

The N-TIDIGITS [26] is the neuromorphic version of the
speech dataset Tidigits [40]. The original audios are processed
by a 64-channel CochleaAMS1b sensor and recorded as the
spike responses. The dataset contains both single-digit samples
and connected-digit sequences with a vocabulary consisting of

11 digits including “oh,” “zero” and the digits “1” to “9”. In the
experiments, only the single-digit samples are used. In total,
there are 55 male and 56 female speakers with 2475 single-
digit samples for training and the same number of samples
for testing. In the original dataset, each sample has 64 input
channels and takes about 0.9 s. To speed up the simulation,
each sample is reduced to 300 time steps by compressing the
time resolution from 1 us to 3 ms. During the compression, a
channel has a spike at a certain time step in the preprocessed
sample if it contains at least one spike in the corresponding
time window of the original sample.

The DVS-Gesture dataset [27] consists of recordings of
29 different individuals (subjects) performing hand and arm
gestures. The spikes are generated from natural motion. There
are 122 trials in total. Each trial contains the recording for
one subject by a dynamic vision sensor (DVS) camera under
one of the three different lighting conditions. In each trial, 11
hand and arm gestures of the subject are recorded. We follow
the same preprocessing procedures in [37]. Samples from the
first 23 subjects are used for training and the other 6 subjects
for testing. During preprocessing, the trials are separated into
individual actions (gestures). The task is to classify the action
sequence video into an action label. Each action (sample) lasts
for about 6 s. In addition, two channels with 128×128 pixels
in each channel are recorded. In the experiments, only the first
1.5 s of action video for each sample are used. We compress
the temporal resolution to 5 ms which means it takes 300
time steps for each sample. Similar to the preprocessing of
N-TIDIGITS, the input pixel has a spike at a certain time step
in the preprocessed sample if it contains at least one spike in
the corresponding 5 ms time window of the original sample.

IV. EXPERIMENTAL RESULTS

A. TI46-Alpha

Table II demonstrates the experimental results on TI46-
Alpha dataset. The network for the proposed LISR structure
only has one hidden layer with 800 neurons. In other words,
the hidden layer contains 400 LISRs with 400 excitatory
neurons and 400 inhibitory neurons. In the last two rows
of Table II, we compare performance between the proposed
structure and feedforward SNN. These two experiments have
the same network size, learning rule, preprocessing steps,
and hyperparameters. The only difference is the network
structure in the hidden layer. As shown, by implementing the
proposed structure, the network can achieve 5.03% perfor-
mance improvement with almost the same number of tunable
parameters. In addition, performance of the existing works on
the TI46-Alpha dataset are also listed.

In [41], the LSM with randomly connected reservoir is
adopted. The state vector of the reservoir is used to train
the single readout layer using the non-spiking BP method.
The result indicates that only training the single readout layer
of a recurrent LSM with random recurrent connections is
inadequate. [22] demonstrates performance of the deep RSNNs
trained by a spike-train level BP method. Its experiment con-
tains three hidden layers with two feedforward layers and only



TABLE II
ACCURACY ON TI46-ALPHA

Network Structure Learning Rule Hidden Layers # Params # Time Steps # Epochs Accuracy
LSM [41] Non-spiking BP 2000 52, 000 − − 78%

Feedforward SNN [36] HM2BP 800 83, 200 700 200 89.92%
RSNN [22] ST-RSBP 400− 400− 400 363, 313 700 100 93.35%

Sr-SNN [24] TSSL-BP 800 84, 000 100 300 93.06%
Feedforward SNN TSSL-BP 800 83, 200 100 300 91.05%
LISR (This work) TSSL-BP 800 83, 600 100 300 96.08%

TABLE III
ACCURACY ON N-TIDIGITS

Network Structure Learning Rule Hidden Layers # Params # Time Steps # Epochs Accuracy
Feedforward SNN [36] HM2BP 250− 250 81, 250 300 300 89.69%

GRU [26] Non-spiking BP 200− 200− 100 314, 700 − − 90.90%
Phase LSTM [26] Non-spiking BP 250− 250 818, 750 − − 91.25%
Feedforward SNN TSSL-BP 400 30, 000 300 300 84.84%
LISR (This work) TSSL-BP 400 30, 200 300 300 94.10%

RSNN [22] ST-RSBP 400− 400− 400 351, 241 300 300 93.90%
ScSr-SNN [24] TSSL-BP 400− 400− 400 512, 400 300 300 95.07%

Feedforward SNN TSSL-BP 400− 400− 400 350, 000 300 300 91.03%
LISR (This work) TSSL-BP 400− 400− 400 350, 600 300 300 96.65%

TABLE IV
ACCURACY ON DVS-GESTURE

Network Structure Learning Rule Hidden Layers # Params # Time Steps # Epochs Accuracy
Feedforward SNN [42] STBP P4− 512 1, 054, 208 60 100 87.50%

RNN [42] Non-spiking BP P4− 512 1, 316, 352 60 100 52.78%
LSTM [42] Non-spiking BP P4− 512 5, 250, 560 60 100 88.19%

Feedforward SNN TSSL-BP P4− 512 1, 054, 208 300 100 88.19%
LISR (This work) TSSL-BP P4− 512 1, 054, 464 300 100 89.93%

the second hidden layer has random recurrent connections.
Moreover, [24] presents the network with the self-recurrent
connections for each neuron in the hidden layer. The whole
network is also trained by the TSSL-BP method.

Among all the results, our proposed method outperforms
the result in [22] by 2.73%. Furthermore, it achieves the
best performance with only a similar or smaller number of
parameters which leads to high-efficient training and inference.

B. N-TIDIGITS

In Table III, we demonstrate performance of the proposed
structure on the N-TIDIGITS dataset by two networks. The
first network only has one hidden layer with 400 neurons while
another network has three hidden layers with 400 neurons
in each layer. All the hidden layers are implemented with
the proposed LISR. Similarly, the feedforward SNNs with
the same network size are also tested. By comparing with
the feedforward counterparts, the proposed structure is not
only effective for the single-layer network but also highly
improves performance with multiple hidden layers. For the
single-layer network, the proposed method can impressively
improve performance by 9.26% compared to the feedforward
SNN with a similar number of parameters.

Performance is also compared with the feedforward net-
works trained by HM2BP [36], RSNNs trained by ST-
RSBP [22], and the Skip-Connected Self-Recurrent SNN

(ScSr-SNN) trained by TSSL-BP [24]. As shown, the pro-
posed method outperforms the state-of-the-art results in the
existing works. In addition, the LISR structure also achieves
more than 5% better performance than the widely-adopted
recurrent structures of ANNs, the GRU and LSTM, on this
dataset. One possible reason for the LISR network significantly
outperforming ANNs is that the dataset is neuromorphic based
with spikes as inputs. Thus, the SNNs are more likely to handle
the spatial-temporal information inside the dataset effectively.

C. DVS-Gesture

In the experiments on the DVS-Gesture dataset, all the
networks have the same size. The inputs are first processed
by the pooling layer of 4 × 4 pooling kernel size. Thus, the
inputs to the 512 neurons hidden layer have 2 channels with
the size of 32× 32 in each channel.

As demonstrated in Table IV, the proposed LISR structure
can improve performance by up to 2.43% compared to the
same size feedforward SNNs trained by TSSL-BP [32] or
STBP [43]. In addition, performance of the proposed method
also outperforms the ANN structures including vanilla RNN
and LSTM. In [42], a rate-coding-inspired loss function is pro-
posed for enhancing performance of ANNs on neuromorphic
image datasets. However, our proposed method still achieves
more than 1.74% performance improvement over the rate-



coding-inspired loss function, and our method uses a much
smaller number of parameters.

V. DISCUSSION

From the results of the three datasets above, the proposed
LISR structure presents powerful learning ability and demon-
strates the best performance compared to the existing works.
To better understand the proposed structure, in this section,
we demonstrate more analysis of the effects of the LISR.

A. Firing Activity

To analyze firing events, we select two well-trained net-
works, one feedforward SNN and one LISR network. Both of
the networks have only one hidden layer with 800 neurons. An
alphabet sample with ’A’ speech of the TI46-Alpha dataset is
used for the experiment.

Fig. 3 presents the firing events of all neurons in the
hidden layer of the two networks. Each blue dot in the figure
represents a spike. For the LISR network, the first 400 neurons
are excitatory and the other 400 neurons are inhibitory. As
shown in Fig. 3, the activity of the LISR network is denser
than the activity of the feedforward network. Even for the
excitatory neurons which receive strong inhibition from the
inhibitory neuron, more firing events are observed compared
to the neurons in the feedforward network.
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Fig. 3. Firing events on a TI46-Alpha sample.

Moreover, we calculate the firing rate of each neuron in
the hidden layers of the feedforward network and the LISR
network. In Fig. 4, the firing rates of the networks are catego-
rized into seven groups. The number of neurons that have firing
rates within certain thresholds is summed together. As shown
in Fig. 4, about half of the neurons in the feedforward network
are silent while only 14.375% neurons have firing rates greater
than 10%. However, for the same input sample, only 23%
neurons of the LISR network are silent. In the meanwhile,
more than 48% neurons have firing rates greater than 20%,
and 12.125% neurons have more than 30% firing rates.

As illustrated above, the LISR network enhances the net-
work activity so that more neurons are involved in learning and
information processing. Moreover, since the spatial-temporal
information is passed through spikes, the neuron requires a
certain level of activity to transfer and filter information.
Furthermore, only when the activity is high enough can the
neuron be sensitive to the small inputs. Therefore, the proposed
structure benefits the network performance by refreshing and
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Fig. 4. Firing rates on a TI46-Alpha sample.

gating the information maintained inside the neurons as well
as adjusting the network activities. On the other hand, although
the overall firing rates of the LISR network are slightly higher,
its firing activity is still sparse with more than half of neurons
having a firing rate of 10% or lower. Thus, the sparsity of firing
events, which is one of the crucial features of biologically
inspired networks, is maintained.

B. Computational Complexity

The proposed method also contributes to the high-efficient
training and inference of the network. For a hidden layer
with n neurons, since the weights of excitatory and inhibitory
connections are fixed and only self-recurrent connections are
trained, the implementation of LISR only introduces 2.5n
more parameters for the forward pass and 0.5n parameters
for the backward pass. The number of additional recurrent
weights is small compared to the parameters between layers.
Since the computational cost of simulation is highly related to
the number of parameters, the LISR network can enhance the
network performance with almost no additional cost compared
to feedforward SNN. In addition, the TSSL-BP [32], which can
train networks over a short temporal window of a few time
steps, is adopted as the learning rule for the proposed method
to further reduce the computational overhead.

VI. CONCLUSION

In this paper, we proposed a novel recurrent structure
called the Laterally-Inhibited Self-Recurrent Unit (LISR). We
demonstrate the proposed structure and illustrate that the
LISR can be easily applied to deep RSNNs. In addition, the
learning rule is derived to be eligible to train this unique
structure. In the results, the proposed method is evaluated
on three datasets cover speeches, neuromorphic speeches, and
neuromorphic images. The experimental results consistently
show that the proposed structure can outperform the existing
methods as well as the feedforward counterparts with a similar
or smaller number of parameters. The impressive performance
improvement comes from the refreshing and gating mecha-
nism, and the regulation of network activities introduced by
the LISR network. In the future, we would like to evaluate the
effectiveness of the proposed structure on hardware. We hope
this work would advance the research on structures of SNNs
and the neuromorphic computing community.
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