
Domain Model Discovery from Textbooks for Computer Programming Intelligent
Tutors

Rabin Banjade, Priti Oli, Lasang Jimba Tamang, Jeevan Chapagain, Vasile Rus
Department of Computer Science, Institute of Intelligent Systems

University of Memphis, Memphis, TN, USA
{rbnjade1, poli, ltamang, cjeevan, vrus} @memphis.edu

Abstract

We present a novel approach to intro-to-programming
domain model discovery from textbooks using an over-
generation and ranking strategy. We first extract candi-
date key phrases from each chapter in a Computer Sci-
ence textbook focusing on intro-to-programming and
then rank those concepts according to a number of met-
rics such as the standard tf-idf weight used in informa-
tion retrieval and metrics produced by other text rank-
ing algorithms. Specifically, we conduct our work in the
context of developing an intelligent tutoring system for
source code comprehension for which a specification of
the key programming concepts is needed - the system
monitors students’ performance on those concepts and
scaffolds their learning process until they show mas-
tery of the concepts. Our experiments with program-
ming concept instruction from Java textbooks indicate
that the statistical methods such as KP Miner method
are quite competitive compared to other more sophisti-
cated methods. Automated discovery of domain models
will lead to more scalable Intelligent Tutoring Systems
(ITSs) across topics and domains, which is a major chal-
lenge that needs to be addressed if ITSs are to be widely
used by millions of learners across many domains.

Introduction

Domain modeling is the task of specifying the units of
knowledge, also called Knowledge Components (KCs), in
a target domain such as physics, biology, or computer pro-
gramming. A domain model includes a structure that speci-
fies the relationship among the KCs, typically in the form
of a prerequisite knowledge structure suggesting a spe-
cific trajectory towards mastery, i.e., a particular order in
which students should master the KCs (Goldin, Pavlik Jr,
and Ritter 2016; Koedinger, Corbett, and Perfetti 2012;
Chau et al. 2020). Domain model can also link the KCs
to specific learning activities or objects that allow learners
to master those KCs through practice. We can make an ar-
gument that domain modeling should be expanded to in-
clude all key concepts, skills, ideas, principles, other types
of knowledge such as procedures and processes, and the val-
ues, identity, and epistemology of the community of experts
or professionals active in the target domain. That is, if the

Copyright © 2021by the authors. All rights reserved.

goal of instruction is to prepare a successful expert in a do-
main, besides the KCs in textbooks, a learner must learn,
for instance, the values of the experts in the target domain
and therefore domain models must specify those additional
aspects of becoming an expert in a community of experts.
However, a broader discussion about what a domain model
is or should be is beyond the scope of this paper.

In this work, our goal is to automatically discover a stan-
dard domain model by extracting key concepts or KCs from
textbooks. Our work is done in the context of developing
and investigating the effectiveness of an ITS for source code
comprehension. A typical ITS works with students through
various instructional activities to help them master key con-
cepts of a target domain. The underlying domain model
guides the functionality of ITSs and has a major impact on
the system’s effectiveness to induce learning gains and on
the overall student learning experience.

The key concepts in a target domain that students need to
master are often specified by experts such as domain experts,
pedagogical experts, and ITS designers. This expert-driven
approach is tedious, expensive, time-consuming, and makes
ITS development hard to scale across domains. Furthermore,
expert-defined domain models can be error prone or inade-
quate for instructional purposes as “experts may forget the
difficulties that novice learners face.” (Goldin, Pavlik Jr, and
Ritter 2016; Koedinger, Corbett, and Perfetti 2012). This can
have negative consequences on assessing learners’ knowl-
edge state, which leads to poor adaptivity of ITSs and, con-
sequently, a negative impact on the effectiveness and overall
quality of the provided instruction.

To overcome the above-mentioned challenges, there is a
need for automated or semi-automated methods. In this pa-
per, we investigate and propose a novel automated method
for domain model discovery, particularly focusing on com-
puter programming textbooks. Such an automation has sev-
eral advantages. First, it relieves the need for handpicking
key concepts as the textbook authors already put much ef-
fort in doing so. Second, it helps discover the ordering of
KCs necessary for tutoring systems as textbooks present the
KCs in a particular order (which could be refined based on,
for instance, student performance data). Third, automating
knowledge discovery from the textbooks will save a lot of
time and effort for tutoring system developers. In particular,
it will help with porting an ITS platform from one domain



to another more easily thus leading to more scalable ITSs
across topics and domains.

Our approach to automatically extract domain models
from textbooks is to rely on keyphrase extraction methods
to identify a domain’s KCs. The problem of extracting KCs
from a Computer Science textbook poses several unique
challenges and opportunities. For instance, Computer Sci-
ence textbooks contain domain-specific words such as for to
describe the concept of loops, and therefore this keyphrase
requires special handling to distinguish it from the regular
preposition for. Furthermore, Computer Science textbooks
contain many code examples and their plain text explana-
tions, so, there is a practical need for distinction between the
two. Typical keyphrase extraction methods work primarily
on pure text. This combination of code and text in Com-
puter Science textbooks is also a great opportunity for do-
main modeling as it facilitates the linking of KCs to spe-
cific learning activities such as code comprehension activi-
ties. For instance, a Java code example in an intro to Java
programming textbook can be linked to the key concepts
it covers by inspecting the KCs mentioned in the explana-
tory text. Furthermore, intro to programming textbooks doc-
ument major misconceptions students exhibit while learning
programming. Our goal is to expand a typical domain model
with the key misconceptions students have, critical for feed-
back opportunities in ITSs. In sum, our work on automated
discovery of domain modeling addresses the following four
key tasks: (1) knowledge component extraction, (2) prereq-
uisite knowledge structure discovery (3) linking of KCs to
learning objects/activities, which in our case, a knowledge
object is a Java example in the textbook, and (4) misconcep-
tion extraction.

The outline of the paper is as follows. The next section,
Related Work briefly highlights key prior efforts in the areas
of automated extraction of domain models and the related
area of automatic domain model refinement as well as previ-
ous efforts on general techniques for keyword or keyphrase
extraction from texts. The Approach section outlines the key
steps of the proposed approach to domain modeling extrac-
tion from intro-to-programming textbooks. The following
section presents details about the experiments we conducted
and the results obtained. The Conclusions section summa-
rizes the contributions of the paper and outlines future work.

Related Work
In this section, we briefly review prior efforts related to au-
tomated extraction of domain models and the related area
of automatic domain model refinement and previous efforts
on general techniques for keyword or keyphrase extraction
from texts.

When developing domain models, there are three signifi-
cant information sources: experts, textbooks (written by do-
main experts), and learner data. We will briefly review work,
focusing primarily on extracting or refining domain models
from data (text or structured data). For instance, student per-
formance data is often used as input to domain modeling
methods in the form of a Q-matrix linking knowledge com-
ponents to instructional items in a domain, such as solutions
to problems, steps in a solution, or a student explanation.

Such Q-matrices are useful primarily for well-defined do-
mains and less so for ill-defined domains (Goldin, Pavlik Jr,
and Ritter 2016). Given such a Q-matrix, one can infer a
set of latent variables that can partition a set of instructional
items based on learner responses to those items. Prediction
of student performance based on the discovered latent skills
is used to evaluate the inferred domain model. There are sev-
eral issues with such approaches to domain model discovery:
(1) interpreting what skills the latent variables represent and
(2) the need for student performance data. The latter is quite
challenging when developing domain models for emerging
domains such as data science or nanotechnology for which
student data may not yet be available. Often Q-matrix-based
approaches start with a domain model which is another chal-
lenge as they require some other source for the start domain
model. The main goal is such cases is to refine the start do-
main model based on student performance data, i.e., discov-
ering a new set of skills in the form of latent variables that
best predict student performance.

Extracting KCs from textbooks has been explored before
for the domain of information retrieval. For instance, Chau
and colleagues (Chau et al. 2020) adopted a supervised ma-
chine learning approach based on a set of expert-defined fea-
tures. The features they used fall into three broad categories:
linguistic, positional, or statistical. Similar to our work, they
use an over-generation and ranking approach. They first gen-
erated a large set of candidate keyphrases and then applied a
selection criterion or filter to rank and detect the true domain
concepts. Unlike us, they use a part-of-speech tagger to iden-
tify noun phrases together with a set of regular expressions.
They retain only noun phrases of up to 4 tokens as candidate
keyphrases. As we explain later, the use of a part-of-speech
tagger does not provide good results for Computer Science
textbooks. We do consider candidate phrases as having up to
4 tokens similar to them but we do not limit ourselves to only
noun phrases as other phrases can indicate key programming
concepts such as sorting. They compared their approach to
a number of baseline methods and some off-the-shelf algo-
rithms such as TextRank (Mihalcea and Tarau 2004), which
we have used and reported in this work as well.

The extraction of keyphrases from text has been explored
quite extensively for various purposes. (Dominowska and
Ragno 2009) used keyphrase extraction from query logs
to create a content-to-keyphrase index. Similarly, (Zhang,
Zincir-Heywood, and Milios 2005) investigated various
keyphrase extraction algorithms in the context of Web docu-
ment corpora. They compared three different algorithms TF-
IDF, KEA, and key term, and showed that narrative text clas-
sification could significantly improve keyphrase extraction.
Keyphrase extraction is also useful for generating questions
from documents. (Subramanian et al. 2017) used a two-
stage framework to generate questions from documents us-
ing extracted keyphrases. Furthermore, keyphrase extraction
was applied to different kinds of text: news articles (Marujo
et al. ), scientific articles (Nguyen and Kan 2007), medical
documents (Sarkar 2009), or online policies (Audich, Dara,
and Nonnecke 2016).

There are basically two types of keyphrase extraction ap-
proaches: supervised, and unsupervised. We focus on un-



supervised approaches. One of the well-known and widely
used unsupervised algorithms in keyphrase extraction re-
lies on the TF-IDF weighting method, which uses term fre-
quency and inverse document frequency to rank keyphrases
(Salton, Wong, and Yang 1975). (Witten et al. 2005) used a
classifier based on Bayes’ theorem to classify words in doc-
uments (preferably from the same domain) as being a key-
word/keyphrase or not. (El-Beltagy and Rafea 2009) pro-
posed the KP-Miner algorithm, a variant of the TF-IDF al-
gorithm which prioritizes multiword key phrases by intro-
ducing a boosting factor and considering the number of doc-
uments equal to 1 for IDF calculation for such terms. RAKE
(Rose et al. 2010) is a statistical unsupervised keyphrase ex-
traction algorithm based on the observations that keywords
frequently contain multiple words with standard punctua-
tion or stop words, i.e., functioning words like ‘and,’ ‘of,’
‘the,’ etc. with minimum lexical meaning. YAKE (Campos
et al. 2020) is an online keyword extraction tool which builds
upon statistical text features extracted from a single docu-
ment to identify and rank the most important keywords.

Apart from the statistical methods mentioned, another
class of unsupervised key phrase extraction algorithms fo-
cuses on co-occurrence analysis. A co-occurrence graph is
generated where nodes are key phrases, and links indicate
whether they co-occur, e.g., within a span of text whose size
can be controlled. (Mihalcea and Tarau 2004) proposed a
graph-based keyword extraction approach. Their TextRank
algorithm generates a graph based on a co-occurring anal-
ysis of words in a window of a given length (e.g., 3-
5 tokens). The PageRank (Page et al. 1999) algorithm is
then applied on the co-occurrence graph to distinguish the
important nodes or phrases in the graph. Similarly, Top-
icRank (Bougouin, Boudin, and Daille 2013) is a graph-
based keyphrase extraction algorithm in which nodes rep-
resent topics that consist of sets of candidate terms clustered
around shared sub-terms. SingleRank (Wan and Xiao 2008)
is also a graph-based keyword extraction algorithm that
ranks phrases in the text based on their word weights. Sin-
gleRank is an extension of TextRank by assigning weights
to the graph edges. We applied those graph-based algorithms
to our data and report results for comparison purposes.

The Approach
We adopted an over-generation and ranking approach to dis-
cover the KCs of the intro to programming domain. Our in-
puts are Computer Science textbooks. In particular, the unit
of processing are chapters in such books. For instance, a
document is a chapter for computing TF-IDF weights. We
have experimented with the following unsupervised meth-
ods: TF-IDF, KP-Miner and YAKE (statistical methods) and
TextRank, TopicRank, and SingleRank (graph-based meth-
ods). To the best of our knowledge, domain model discov-
ery for intro to computer programming from textbooks has
not been studied before. As a result, there is no benchmark
dataset for this problem.

There are several advantages of using textbooks to extract
domain models. First, textbooks describe a target domain’s
knowledge with an instructional purpose in mind. The au-
thors of textbooks spend significant efforts to define the key

concepts, present them in a specific order, and provide plenty
of instructional activities to practice those concepts. Further-
more, the textbooks’ structure in chapters and sections facil-
itates the extraction of key concepts using, for instance, sta-
tistical methods. It enables the organization of the extracted
key concepts in more complex structures such as prerequi-
site knowledge structures and taxonomies.

As already noted, intro-to-programming textbooks have a
peculiarity in that they contain both code examples and re-
lated explanatory text. Since our main objective here is to
extract the KCs, we focus only on the text explanations in-
stead of code examples. The code examples generally con-
tain comments in text form that explain the code as well.
Often, those comments repeat concepts described in the sur-
rounding explanatory text as well and are therefore redun-
dant for our purposes. It is possible to extract more abstract
concepts directly from code, e.g., by performing a static syn-
tax analysis of the code but is beyond the scope of this paper.
It should be noted that there is a major disadvantage of such
methods - the extracted concepts are harder to interpret. For
these reasons, we focus here primarily on extracting the text
portions of intro-to-programming textbooks. To extract the
descriptive text from textbooks, we developed a Naive Bayes
classifier that can classify each line in textbooks as either
explanatory text or code. This classifier had a classification
accuracy of 94% with F-score of 0.9. The explanatory text,
thus extracted is used for further analysis. We used the fol-
lowing textbook Introduction to JAVA programming (Liang
2011) for our experiments.

Annotation of Key Concepts

In order to evaluate the performance of the proposed meth-
ods for key concept extraction, we needed to create a gold
standard of such KCs, i.e., a set of true concepts related to
intro to programming. To best of our knowledge, there is no
standard benchmark readily available and therefore, we cre-
ated a gold standard ourselves. We started with the key con-
cepts at the end of the chapters that the author of the Intro-
duction to JAVA Programming textbook selected. The list of
concepts at the end of each chapter are not complete and thus
we manually extracted all the key concepts from two sample
chapters(loops and sorting). We recruited two graduate stu-
dents in Computer Science with expertise in computer pro-
gramming and who were trained on and followed a similar
annotation coding procedure to the one described in (Wang
et al. 2020), except that the guidelines were not restricted to
consider only noun phrases as key concepts. Our annotators
separately annotated the key concepts in each chapter and
then discussed the annotated concepts with each other to ac-
count for missing key concepts and solve any disagreements.
For the initial set of key concepts extracted by each author,
the inter-annotator agreement, as measured by Kappa statis-
tic, was κ = 0.88.

Candidate Concept Generation

We process each chapter as an input document for candi-
date extraction in our textbook, there are 33 chapters. All n-
grams (n = 1...4) are considered candidate keyphrases. We
used this n-gram range for extracting candidate key concepts



based on a quick analysis of the textbook by ourselves as
well as based on literature, e.g., Chau and colleagues (Chau
et al. 2020) define domain concepts as “single words or short
phrases of two to four words.” The candidate n-grams con-
tain stop words and punctuation marks. We do not remove
stop words for candidate key phrase selection because im-
portant key concepts might contain stop words as in contin-
uation of loop or pre-test and post-test loop. Furthermore,
some key phrases like ‘for loop’, ‘while loop’ contain stop
words ‘for’ and ‘while’ which are important key concepts in
computer programming.

We do not filter candidate key phrases based on the Part
of Speech (POS) sequence of candidate keywords because
ready-to-use taggers became inadequate for keyphrases such
as for loop, while loop, or merge sort and special POS tag-
gers are not available for computer programming related
texts.

Ranking of Candidate Keywords

We rank candidate keyphrases from our previous step using
statistical and graph based methods as described next.

Statistical Methods For Key Concept Extraction

• TFIDF: In information retrieval, TFIDF is used as a way
to quantify how important each word/token is for a partic-
ular document for retrieval purposes, i.e., with respect to
being able to distinguish that document from others for re-
trieval purposes. Also, due to its relative simplicity and in-
terpretability it can also serve as a solid baseline. Specifi-
cally, TF-IDF assigns each candidate keyphrase a weight
based on the following formula:

TFIDF = tf ∗ idf

where, tf = term frequency and idf = inverse document
frequency.

In our case, a higher TFIDF score means the keyphrase
occurs a lot in the current document/chapter (high term
frequency) and not so much in other documents/chapters
(high inverted document frequency). For instance, the
chapter of loops will refer to loops a lot (high term fre-
quency) whereas many other chapters will do less so (high
inverted document frequency).

• KP-Miner: The KP-Miner algorithm is based on assump-
tion that occurrences of keyphrases is much less frequent
than the occurrence of single terms within the same docu-
ment. It uses a boosting factor for compound terms in or-
der to remove bias, e.g., imposed by the TF-IDF method.
The KP-Miner algorithm computes a weight for each can-
didate keyphrase based on the following equation:

wij = tfij ∗ idf ∗Bi ∗ Pf

where, wij = weight of term tj in Document Di

tfij = frequency of term tj in Document Di

idf = log2N/n where N is the number of documents in
the collection and n is number of documents where term
tj occurs at least once. If term is a compound term, n is
set to 1.

Bi = boosting factor associated with document Di

Pf = the term position associated factor. If position rules
are not used this is set to 1

• YAKE: YAKE considers phrases that do not begin and
end with stop words. YAKE makes use of five features for
candidate keyphrase ranking: casing (gives more impor-
tance to capitalized words and acronyms), word position
(gives more importance to words at the beginning of the
document), word frequency (frequency of terms), word
relatedness to context (qualifies word relatedness based
on words present on the left and right side vicinity) and
word different sentence (quantifies how often a word ap-
pears within different sentences).

Graph-Based Methods For Ranking of Key Words

• TextRank: TextRank sorts candidate keyphrases by gen-
erating first an undirected and unweighted graph - an edge
between words is created if the words represented in the
corresponding graph nodes co-occur within a window of
M words. The PageRank (Page et al. 1999) algorithm is
then run on the graph to compute a score for each node Vi

based on the following equation:

S(Vi) = (1− λ) + λ ∗
∑

jǫN(Vi)

1

N(Vj)
S(Vj)

where N(Vi) represents co-occurring terms of Vi, N(Vj)
represents neighbours of Vj and λ is the probability of
transition between nodes.

• SingleRank: SingleRank extends the TextRank algorithm
by incorporating weights for the edges. An edge weight
is equal to the number of co-occurrences of the two
words. After computing a scoring function similar to Tex-
tRank, the constituent words’ score is summed up and
top-ranking keywords are returned.

• TopicRank: For TopicRank, the preprocessed candi-
date keyphrases are grouped into different topics using
a hierarchical agglomerative clustering method (Papa-
giannopoulou and Tsoumakas 2020). A graph of topics
is created and edges are weighted based on phrases’ off-
set positions in the text. TextRank is then used to rank the
topics and a keyphrase candidate is selected from each of
the N most important topics.

Evaluation and Results

We conducted a set of experiments using the over-generation
and ranking approach based on the ranking methods outlined
above. For each method, we extracted KCs and compared
them to the key concepts extracted by our annotators from
two sample chapters in the textbooks, as mentioned earlier.
However, it should be noted that all the chapters from the
textbook were used to extract KCs.

We evaluated the KCs extraction in two ways. First, we
did an exact match between the KCs produced by any of the
above mentioned methods and the gold standard KCs and
report average precision, recall, and F1 score for the top 100
KCs extracted by each algorithm - see table 1. These three
measures are standard for the assessment of key phrases.
evaluation (Boudin 2016). It should be noted that we used



rank 100 for this evaluation to be able to report precision
and recall while at the same time use a reasonable number
of candidate KCs. The gold standard for the two chapters
contain 37-52 concepts only.

As a second evaluation approach, we computed relaxed
precision (Elhadad et al. 2015) at rank k = 10, 20, 30, 50.
We labeled each candidate key phrase as a key concept if
there is any word overlap between the predicted key phrase
and the gold standard phrase (both in the case of continuous
and discontinuous spans). We also analyzed if the meaning
conveyed by the gold standard and extracted KC is simi-
lar. For example, we deemed merge sort algorithm as a KC
although the gold standard specifies merge sort as a KCs.
The reason is because both refer to the same key concept i.e.
merge sort algorithm. We show the results for relaxed preci-
sion at different ranks in table 2 where we also show recall
along with relaxed precision.

Algorithm Precision Recall F1 score

TF IDF 0.10 0.44 0.16
KP-Miner 0.14 0.60 0.23
YAKE 0.11 0.47 0.18
TextRank 0.07 0.29 0.11
TopicRank 0.09 0.37 0.14
SingleRank 0.13 0.55 0.21

Table 1: Average precision and recall at k = 100

k 5 10 20 30 50
P/R P/R P/R P/R P/R

TF-IDF .6/.07 .65/.15 .65/.23 .5/.23 .38/.26

KP-Mnr .6/.12 .75/.17 .65/.28 .60/.34 .44/.42

YAKE .7/.12 .6/.17 .6/.17 .52/.25 .36/.34

Text-R .7/.02 .6/.08 .55/.14 .65/.14 .42/.19

Topic-R .6/.08 .4/.12 .30/.17 .35/.17 .3/.21

Single-
R

.6/.12 .7/.17 .60/.25 .6/.30 .46/.34

Table 2: Average relaxed precision (P) and recall (R) at k =
5, 10, 20, 30, 50

At a closer look of the results, in particular those shown in
table 1, we note that statistical methods outperform graph-
based methods for KC extraction for the intro to program-
ming domain. This could be an effect of the way we calcu-
lated precision and recall based on exact match and the fact
that most of the key concepts in computer programming are
n-grams where n>1. The better performance of KPMiner
might be attributed to the fact that for n-grams with n>1,
it considers document frequency as 1, giving more impor-
tance to multi-word key concepts. Also worth considering,

TF IDF: loop, number, body, loop body, variable,
following, condition, display, iteration, value,
loop continuation condition

KP MINER: loop, write program, loop body, following,
write, continuation condition, loop continuation, loop
continuation condition, chapter loop, prime number,
while loop

YAKE: loop continuation condition, loop chapter loops,
numbers write program, loop body, number, enter,
chapter loop, loop continuation, loop chapter loop,
loop body loop, write loop

TextRank: loop, loop end loop, syntax of for loop, write
nested for loop, following loop, checking loop control,
program, example of while loop, nested for, using for-
loop

TopicRank: loop, number, user, loop body, statement,
input, string, example, next guess, year

SingleRank: loop, syntax of for loop, loop body loop,
pretest loop, posttest loop, following loop,
use break in loop, used in loop statement

Table 3: Top 10 ranked KCs using the various methods. True
KCs are shown in italic bold

TF-IDF weighs terms unique to a particular chapter higher
(due to higher IDF) which could be one of the potential rea-
sons for better performance for the task of domain modeling.
For example: loop continuation condition is only mentioned
and explained in the chapter on loops out of the whole text-
book. Graph-based methods do not seem to perform as well
as the statistical methods, as shown in table 1. There is one
exception - the SingleRank method. This could potentially
be due to the co-occurrence frequency consideration by the
SingleRank algorithm - key concepts frequently occur in a
particular chapter. If we consider the results in table 2, we
notice that the graph-based algorithms are on par with statis-
tical algorithms. We notice that graph-based algorithms tend
to select key phrases highly relevant to a given chapter, but
many of these cannot be considered key concepts for intro-
to-programming domain modeling. One such example is the
’syntax of for loop’ phrase which is one of the top-ranked
key phrases by the graph-based algorithms. We consider it a
key concept for relaxed precision because of the presence of
the keyword loop, but we do not consider it a key concept
for standard precision and recall calculation.

Table 3 shows the top 10 ranked KCs for one of the
chapters in the textbooks for each of the methods we ex-
perimented with.

Conclusions

In this paper, we evaluated statistical and graph-based meth-
ods for domain model extraction and presented the results
of applying those methods to extract KCs for the target do-
main of intro to computer programming. The results sug-
gest that unsupervised key phrase extraction methods can be
used for domain model discovery from Computer Science
textbooks. We plan to extend this work by inferring a pre-
requisite knowledge structure as well as to link instructional



tasks to the KCs extracted. Such automated discovery of do-
main models will lead to more scalable ITSs across topics
and domains.

Acknowledgement

This work has been supported by two NSF awards: the
Learner Data Institute (NSF; award 1934745) and CSEdPad:
Investigating and Scaffolding Students’ Mental Models dur-
ing Computer Programming Tasks to Improve Learning, En-
gagement, and Retention (NSF award 1822816). The opin-
ions, findings, and results are solely the authors’ and do not
reflect those of NSF.

References

Audich, D. A.; Dara, R.; and Nonnecke, B. 2016. Extract-
ing keyword and keyphrase from online privacy policies. In
2016 Eleventh International Conference on Digital Informa-
tion Management (ICDIM), 127–132. IEEE.

Boudin, F. 2016. pke: an open source python-based
keyphrase extraction toolkit. In Proceedings of COLING
2016, the 26th International Conference on Computational
Linguistics: System Demonstrations, 69–73.

Bougouin, A.; Boudin, F.; and Daille, B. 2013. Topicrank:
Graph-based topic ranking for keyphrase extraction.

Campos, R.; Mangaravite, V.; Pasquali, A.; Jorge, A.;
Nunes, C.; and Jatowt, A. 2020. Yake! keyword extraction
from single documents using multiple local features. Infor-
mation Sciences 509:257–289.

Chau, H.; Labutov, I.; Thaker, K.; He, D.; and Brusilovsky, P.
2020. Automatic concept extraction for domain and student
modeling in adaptive textbooks. International Journal of
Artificial Intelligence in Education 1–27.

Dominowska, E., and Ragno, R. 2009. Key phrase extrac-
tion from query logs. US Patent 7,577,643.

El-Beltagy, S. R., and Rafea, A. 2009. Kp-miner: A
keyphrase extraction system for english and arabic docu-
ments. Information systems 34(1):132–144.

Elhadad, N.; Pradhan, S.; Gorman, S.; Manandhar, S.; Chap-
man, W.; and Savova, G. 2015. Semeval-2015 task 14:
Analysis of clinical text. In proceedings of the 9th Interna-
tional Workshop on Semantic Evaluation (SemEval 2015),
303–310.

Goldin, I.; Pavlik Jr, P. I.; and Ritter, S. 2016. Discovering
domain models in learning curve data. Design Recommen-
dations for Intelligent Tutoring Systems 115.

Koedinger, K. R.; Corbett, A. T.; and Perfetti, C. 2012.
The knowledge-learning-instruction framework: Bridging
the science-practice chasm to enhance robust student learn-
ing. Cognitive science 36(5):757–798.

Liang, D. 2011. Introduction to java programming.

Marujo, L.; Gershman, A.; Carbonell, J.; Frederking, R.; and
Neto, J. P. Supervised topical key phrase extraction of news
stories using crowdsourcing, light filtering and co-reference
normalization.

Mihalcea, R., and Tarau, P. 2004. Textrank: Bringing order
into text. In Proceedings of the 2004 conference on empiri-
cal methods in natural language processing, 404–411.

Nguyen, T. D., and Kan, M.-Y. 2007. Keyphrase extrac-
tion in scientific publications. In International conference
on Asian digital libraries, 317–326. Springer.

Page, L.; Brin, S.; Motwani, R.; and Winograd, T. 1999.
The pagerank citation ranking: Bringing order to the web.
Technical report, Stanford InfoLab.

Papagiannopoulou, E., and Tsoumakas, G. 2020. A review
of keyphrase extraction. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery 10(2):e1339.

Rose, S.; Engel, D.; Cramer, N.; and Cowley, W. 2010. Au-
tomatic keyword extraction from individual documents. Text
mining: applications and theory 1:1–20.

Salton, G.; Wong, A.; and Yang, C.-S. 1975. A vector space
model for automatic indexing. Communications of the ACM
18(11):613–620.

Sarkar, K. 2009. Automatic keyphrase extraction from
medical documents. In International Conference on Pattern
Recognition and Machine Intelligence, 273–278. Springer.

Subramanian, S.; Wang, T.; Yuan, X.; Zhang, S.; Ben-
gio, Y.; and Trischler, A. 2017. Neural models for key
phrase detection and question generation. arXiv preprint
arXiv:1706.04560.

Wan, X., and Xiao, J. 2008. Single document keyphrase ex-
traction using neighborhood knowledge. In AAAI, volume 8,
855–860.

Wang, M.; Chau, H.; Thaker, K.; Brusilovsky, P.; and He, D.
2020. Concept annotation for intelligent textbooks. arXiv
preprint arXiv:2005.11422.

Witten, I. H.; Paynter, G. W.; Frank, E.; Gutwin, C.; and
Nevill-Manning, C. G. 2005. Kea: Practical automated
keyphrase extraction. In Design and Usability of Digital
Libraries: Case Studies in the Asia Pacific. IGI global. 129–
152.

Zhang, Y.; Zincir-Heywood, N.; and Milios, E. 2005. Nar-
rative text classification for automatic key phrase extraction
in web document corpora. In Proceedings of the 7th annual
ACM international workshop on Web information and data
management, 51–58.


