

Print this Page for Your Records

Close Window

Control/Tracking Number: 2021-S-8353-SfN

Activity: Scientific Abstract

Current Date/Time: 7/15/2021 2:21:46 PM

Contrast versus luminance in retina and visual cortex

AUTHOR BLOCK: *L. DYBALLA¹, M. HOSEINI³, M. RUDZITE⁵, G. D. FIELD⁶, S. W. ZUCKER², *M. P. STRYKER⁴;

²Computer Sci., ¹Yale Univ., New Haven, CT; ⁴Ctr. for Integrative Neurosci, Dept Physiol, ³Univ. California Med. Sch., San Francisco, CA; ⁶Dept. of Neurobio., ⁵Duke Univ., Durham, NC

Abstract:

The traditional view is that visual cortex is concerned with contrast and discounts changes in background luminance as compared with retina. We studied responses of neurons in retina and primary visual cortex (V1) of mouse to stimuli including moving gratings and optic flows built from either dark or light dots or short line segments (Dyballa et al PNAS 2018). Stimuli subtending ~60° x 40° were presented for 1.25 sec separated by 0.75 sec mid-gray screens. We asked whether average luminance matters when comparing retinal with cortical responses.

Two interleaved stimulus sets were identical except for the background. In one, the flow stimuli background was the mid-gray of the interstimulus interval (equal background, egbg), leading to a change of 9-10% in the space-average luminance. In the other, the space-average luminance of the entire stimulus field was adjusted to a constant (equal luminance, eglum) within 0.5%; i.e., the background was slightly lightened when the dots in the flow were dark, and darkened when the dots were bright.

Most cortical cells appeared to respond similarly to the two stimulus sets, as if stimulus structure mattered but not the background change, while the responses of most retinal ganglion cells appeared to differ between the two conditions. Machine learning algorithms confirmed this quantitatively. A manifold embedding of neurons to the two stimulus sets was constructed using diffusion maps. In this manifold, the responses of the same cell to eqlum and eqbq stimuli were significantly closer to one another for V1 rather than for the retina. Geometrically, the median ratio of the distance between the responses of each cell to the two stimulus sets as compared to the distance to the closest cell on the manifold was 3.5 for V1 compared to 12.7 for retina. Topologically, the fraction of cells for which the responses of the same cell to the two stimulus sets were connected in the diffusion map datagraph was 53% for V1 but only 9% for retina; when retina and cortex were co-embedded in the manifold, these fractions were 44% and 6%.

While retina and cortex differ on average, it will be intriguing to determine whether particular classes of retinal cells behave more like V1 neurons, and vice versa.

Author Disclosure Information:

L. Dyballa: None. M. Hoseini: None. M. Rudzite: None. G.D. Field: None. S.W. Zucker: None. M.P. Stryker: None.

Linking Group (Complete): None selected

Theme and Topic (Complete): D.07.I. Processing of contrast, form, and color; D.07.j. Visual pathways – To and from the cortex

Linking Group Information (Complete):

Keyword (Complete): VISUAL CORTEX; RETINA; CONTRAST

Support (Complete): Support: Yes

Grant/Other Support: : NSF CRCNS Grant 1822598 **Grant/Other Support:** : NIH Grant EY031059

Special Requests (Complete):

How do you plan to participate in the annual meeting?: Virtual and in-person

Religious Conflict?: No Religious Conflict

Additional Conflict?: No

Is the presenting author of this abstract a high school or undergraduate student?: None Do you think media would be interested in your abstract and are you willing to share it with them?: Unsure

Status: Complete

1121 14th Street NW, Suite 1010

Access the Member Center | Accessibility Policy | Disclaimer | Contact Us