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Abstract

Molluscs biomineralize structures that vary in composition, form, and function, prompting questions about the geneticmechanisms

responsible for their production and the evolution of thesemechanisms. Chitons (Mollusca, Polyplacophora) are a promising system

forstudiesofbiomineralizationbecausetheybuilda rangeofcalcifiedstructures includingshellplatesandspine-or scale-likesclerites.

Chitons also harden the calcified teethof their rasp-like radulawith a coat of iron (asmagnetite). Herewepresent thegenomeof the

West Indian fuzzy chiton Acanthopleura granulata, the first from any aculiferan mollusc. The A. granulata genome contains

homologs of many genes associated with biomineralization in conchiferan molluscs. We expected chitons to lack genes previously

identified from pathways conchiferans use tomake biominerals like calcite and nacre because chitons do not use thesematerials in

their shells. Surprisingly, theA. granulata genomehas homologs ofmany of these genes, suggesting that the ancestralmolluscmay

have had amore diverse biomineralization toolkit than expected. TheA. granulata genome has features thatmay be specialized for

iron biomineralization, including a higher proportion of genes regulated directly by iron than other molluscs. A. granulata also

produces two isoforms of soma-like ferritin: one is regulated by iron and similar in sequence to the soma-like ferritins of other

molluscs,and theother is constitutively translatedand isnot found inothermolluscs.TheA.granulatagenomeisa resource for future

studies of molluscan evolution and biomineralization.
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Significance

Chitons are molluscs that make shell plates, spine- or scale-like sclerites, and iron-coated teeth. Currently, all molluscs

with sequenced genomes lie within one major clade (Conchifera). Sequencing the genome of a representative from

the other major clade (Aculifera) helps us learn about the origin and evolution of molluscan traits. The genome of the

West Indian Fuzzy Chiton, Acanthopleura granulata, reveals chitons have homologs of many genes other molluscs use

to make shells, suggesting all molluscs share some shell-making pathways. The genome of A. granulata has more

genes that may be regulated directly by iron than other molluscs, and chitons produce a unique isoform of a major

iron-transport protein (ferritin), suggesting that chitons have genomic specializations that contribute to their produc-

tion of iron-coated teeth.
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Introduction

Animals construct hardened structures by combining organic

and inorganic components, a process termed biomineraliza-

tion. To do so, they secrete proteins that initiate and guide the

crystallization of inorganic molecules. Animals also incorpo-

rate proteins into biomineralized structures, enhancing their

strength and flexibility (Cölfen 2010). Molluscs have long

been models for studying the genetic mechanisms associated

with biomineralization because they craft a wide range of

materials into shells, spines, scales, and teeth (McDougall

and Degnan 2018). The ability of molluscs to produce diverse

biomineralized structures likely contributes to their remark-

able morphological and ecological diversity.

Chitons (Polyplacophora, fig. 1A) are a promising model

for investigating mechanisms of biomineralization because

they build diverse mineralized structures distinct from those

of other molluscs (supplementary fig. 1, Supplementary

Material online). The shells of all molluscs are composed of

calcium carbonate (CaCO3), commonly in its crystal forms

aragonite or calcite. Most molluscs build shells with alternat-

ing layers of aragonite and calcite, and many add an inner-

most layer of brick-like aragonite discs known as nacre. In

contrast, chitons construct eight interlocking shell plates

(fig. 1B) exclusively from aragonite and do not produce nacre.

Also unlike other molluscs, chitons embed a network of sen-

sory structures, termed aesthetes, into their shell plates. In

some species, the aesthete network includes eyes with

image-forming lenses made of aragonite (Speiser et al.

2011; Li et al. 2015) (fig. 1C). To protect the soft girdle tissue

surrounding their shell plates, chitons produce scale- or spine-

like sclerites, which are also made of aragonite (Schwabe

2010; Sigwart et al. 2014; Checa et al. 2017).

Chitons biomineralize their teeth (fig. 1D) from a unique

combination of materials. Most molluscs have a feeding or-

gan, the radula, that bears rows of teeth built from chitin and,

in many species, hardened with minerals such as calcium car-

bonate or silica. Chitons instead harden the cores of their

teeth with calcium phosphate (as apatite), and then reinforce

their cutting edges with iron (as magnetite) (Lowenstam

1962). These iron coatings allow chitons to scrape algae

from rocks without rapidly dulling or damaging their teeth.

Chitons produce new teeth throughout their lives, making

new rows within days (Shaw et al. 2002; Joester and

Brooker 2016). To make new teeth, chitons continuously se-

quester iron from their diet and circulate high concentrations

of iron in their hemolymph (Kim et al. 1989; Shaw et al. 2002,

2010). Continuous iron biomineralization presents a physio-

logical challenge to chitons because free iron causes oxidative

stress (Dixon and Stockwell 2014).

To date, most investigations of biomineralization in mol-

luscs have focused on species from the classes Bivalvia and

Gastropoda. These, together with Monoplacophora,

Cephalopoda, and Scaphopoda make up the clade

Conchifera. The sister clade to Conchifera is Aculifera, which

is made up of Polyplacophora, Solenogastres, and

Caudofoveata (the latter two classes referred to collectively

as Aplacophora). Conchifera and Aculifera diverged approxi-

mately 550 Ma (Vinther et al. 2012; Kocot et al. 2020). To

make robust predictions about molluscan evolution, recon-

structions of ancestral character states must include informa-

tion from both conchiferans and aculiferans (Sigwart and

Sutton 2007; Kocot et al. 2011; Smith et al. 2011; Vinther

et al. 2012). Despite increasing numbers of sequenced mol-

luscan genomes (e.g., Takeuchi et al. 2012; Zhang et al. 2012;

Simakov et al. 2013; Albertin et al. 2015; G�omez-Chiarri et al.

2015; Modica et al. 2015; Kenny et al. 2015; Barghi et al.

2016; Davison et al. 2016; Murgarella et al. 2016; Adema

et al. 2017; Du et al. 2017; Nam et al. 2017; Schell et al.

2017; Sun et al. 2017; Wang et al. 2017; Calcino et al.

2018; Gerdol et al. 2018; Li et al. 2018; Liu et al. 2018;

Renaut et al. 2018; Belcaid et al. 2019; Cai et al. 2019;

Kijas et al. 2019; Masonbrink et al. 2019; McCartney et al.

2019; Zarrella et al. 2019; Sun et al. 2020), genomic resources

for aculiferans remain unavailable. To advance the study of

molluscan evolution and to better understand the genetic

mechanisms of biomineralization, we sequenced the genome

of the West Indian fuzzy chiton Acanthopleura granulata.

Exploring the A. granulata genome allowed us to: 1) identify

genes chitons may use to build their shell plates, sclerites, and

teeth; 2) seek genomic signatures associated with the biomin-

eralization of iron and themitigation of iron-induced oxidative

stress; and 3) better understand the origin and evolution of

biomineralization in molluscs.

Results and Discussion

We sequenced the genome of a single male specimen of

A. granulata. We combined reads from one lane of Illumina

HiSeq X paired-end sequencing (124Gb of 2� 150bp reads,

�204 � coverage) with reads from four Oxford Nanopore

flowcells run on the GridION platform (22.87Gb, 37� cover-

age). Using the hybrid assembler MaSuRCA and optical map-

ping, we produced a haploid genome assembly for

A. granulata that is 606.9 Mp, slightly smaller than the 743

Mp haploid genome size estimated by flow cytometry

(Roebuck 2017). The assembledA. granulata genome consists

of 87 scaffolds ranging in size from 50.9 to 0.05Mb, plus a

single mitochondrial genome of 15,665bp. Previous studies

across chitons found haploid chromosome numbers of any-

where from 6 to 16, and noted the presence of micro-

chromosomes (Odierna 2008). Several of the scaffolds from

the A. granulata genome are similar in length to intact chro-

mosomes from other molluscs (Sun et al. 2020; Bai et al.

2019), so we are confident that, at a minimum, several scaf-

folds represent complete arms of chromosomes. To verify

completeness of the assembly, we mapped genomic short-

read data to the genome; 85.31% of readsmapped perfectly,
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so we are confident the assembly encompasses a majority of

sequencing data. The A. granulata genome has an N50 value

of 23.9 Mp and a BUSCO completeness score of 97.4%,

making it more contiguous and complete than most currently

available molluscan genomes (supplementary fig. 2; supple-

mentary table 1; visualized in supplementary fig. 3,

Supplementary Material online).

We generated genemodels forA. granulata by 1) sequenc-

ing transcriptomes from eight different tissues from the same

specimen used for genome sequencing, 2) combining these

transcriptomes into a single assembly and aligning the com-

bined transcriptome to the genome, and 3) training de novo

gene predictors using both our combined transcriptome and

protein sequences predicted from the transcriptomes of other

chitons. Following these steps, we produced a set of 81,691

gene models that is 96.9% complete according to a BUSCO

transcriptomic analysis. This score is similar to the complete-

ness score of the A. granulata genome, so it is likely this set of

gene models missed few genes, if any, in the genome assem-

bly. However, of the BUSCO genes expected to be single copy

in all animals, 17.2% were represented by multiple gene

models. Using Markov clustering to eliminate redundant iso-

forms, we generated a reduced set of 20,470 gene models

that is 94.7% complete. In this smaller set of gene models,

only 0.5% of the BUSCO genes have multiple copies,

supporting Markov clustering as an effective method for re-

ducing the redundancy of gene models. To characterize pro-

teins based on shared functional domains and sequence

similarity, we analyzed the set of 20,470 gene models with

InterProScan. We identified at least one GO term for 12,301

genes and a Pfam match for 15,710 genes (4,792 unique

PFAM domains). We also conducted a KEGG analysis and

identified 7,341 proteins that may be homologous to those

that are parts of characterized molecular pathways.

To provide a robust data set for phylogenetic analysis and

gene family evolution analyses, we identified homologous

genes shared between A. granulata and other molluscs. We

used the larger set of gene models from A. granulata to en-

sure a more complete input data set, knowing that any du-

plicate gene models for the same locus would cluster within

the same orthologous group. We compared gene models

from the A. granulata genome to those from the genomes

of 19 other lophotrochozoans, including 14molluscs, 2 annel-

ids, 1 brachiopod, 1 phoronid, and 1 nemertean. This resulted

in 59,276 groups of homologous sequences including 3,379

found in all 20 genomes.

We used a tree-based approach to identify orthologous

genes shared among all 20 taxa and reconstructed molluscan

phylogeny using the 2,593 orthologs present in at least 17 of

the 20 genomes we searched. This data set totaled 950,322
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FIG. 1.—(a) TheWest Indian Fuzzy Chiton Acanthopleura granulata. Photograph by David Liittschwager. (b) A single shell plate from A. granulata. Scale

bar indicates 5mm. (c) The eyes (white arrowhead) and aesthete pores (black arrowhead) of A. granulata. Scale bar indicates 200lM. Photograph by David

Liittschwager. (d) Teeth from the anterior-most region of the radula of A. granulata. The larger teeth, used for feeding, are mineralized with iron oxide

(orange) and capped with magnetite (black). Scale bar indicates 300lM. (e) A genome-based phylogeny of Mollusca showing chitons as sister to all other

molluscs with available genomes.
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amino acid positions with 16.2% missing data. We recovered

A. granulata as the sister taxon of all other molluscs with

sequenced genomes (fig. 1E). We conducted an additional

phylogenetic analysis that included more taxa by using tran-

scriptomes in addition to genomes and recovered

Acanthopleura within the family Chitonidae in the order

Chitonida, consistent with recent phylogenetic studies of chi-

tons based on fewer loci (Irisarri et al. 2020); (supplementary

fig. 4, Supplementary Material online).

The A. granulata Genome Differs from Conchiferan
Genomes in Content and Organization

The A. granulata genome has a heterozygosity of 0.653%,

making it one of the least heterozygous molluscan genomes

sequenced to date (supplementary fig. 5, Supplementary

Material online). High heterozygosity in animals is often at-

tributed to high rates of gene flow associated with broadcast

spawning and far-dispersing larvae (Sol�e-Cava and Thorpe

1991), and it is frequently noted as an obstacle to genome

assembly in molluscs (Zhang et al. 2012; Wang et al. 2017;

Powell et al. 2018; Thai et al. 2019). We expected the ge-

nome of A. granulata to have high heterozygosity because

this species of chition is a broadcast spawner with a wide

geographic range (Glynn 1970). To compare heterozygosity

across molluscs, we selected a set of high-quality molluscan

genomes for which short-read data are available (supplemen-

tary table 1, Supplementary Material online). Using k-mer-

based analysis, we found the highest heterozygosity among

the seven genomes we analyzed was 3.15% in the blood

clam Scapharca broughtonii, and the other genomes had het-

erozygosities between those of A. granulata and

S. broughtonii. Our findings indicate that heterozygosity

may be influenced by more than an animal’s reproductive

mode, larval type, and geographic range (Romiguier et al.

2014; supplementary table 2, Supplementary Material on-

line), and that molluscan genomes should not be assumed

to have high heterozygosity.

TheA. granulata genome is arranged differently than other

molluscan genomes and has fewer repetitive elements.

Compared with a non-molluscan lophotrochozoan, Lingula

anatina (a brachiopod), A. granulata has more repetitive ele-

ments of certain types in its genome. Conversely,A. granulata

has fewer of many types of repetitive elements in its genome

than conchiferan molluscs (supplementary table 3 and sup-

plementary fig. 6, Supplementary Material online). This sug-

gests multiple proliferations of repetitive elements during

molluscan evolution. Repetitive elements contribute to struc-

tural changes in genomes by providing breakpoints that in-

crease the likelihood of chromosomal rearrangements

(Weckselblatt and Rudd 2015). Consistent with this predic-

tion, synteny is lower between A. granulata and all conchi-

feran molluscs we examined than it is between any two of

these conchiferans, and the genomes of conchiferans and

A. granulata have little synteny with the genome of

L. anatina (supplementary fig. 7, Supplementary Material on-

line). A recent study of bilaterian ancestral linkage groups

(ALGs) found greater synteny in ALGs between a scallop

and non-molluscs than between other bivalves and the

same non-molluscs (Wang et al. 2017), but not all molluscan

classes were examined for ALGs. Molluscan genomes appear

to rearrange frequently across evolutionary time, and perhaps

rearrange more frequently in conchiferans due to the prolif-

eration of repetitive elements.

The Hox cluster is a widely conserved set of regulatory

genes that together contribute to the patterning of the

anterior-posterior axes in bilaterian animals. In lophotrocho-

zoans, the genes are typically collinear, beginning with Hox1

and ending with Post1. Although several gastropods and

bivalves possess intact Hox clusters, this cluster is dispersed

in some bivalves and some cephalopods (Albertin et al. 2015;

Barucca et al. 2016; Belcaid et al. 2019; Wang et al. 2017;

Peng et al. 2020; Gąsiorowski and Hejnol 2020). We found

the Hox cluster of A. granulata is collinear with the Hox clus-

ters of most other molluscs but lacks Post1 (fig. 2). Living

chitons are divided into orders Lepidopleurida and

Chitonida, and Chitonida is divided into suborders

Acanthochitonina andChitonina, withA. granulata belonging

to the latter (Sirenko 2006). A previous study found two spe-

cies of chitons from suborder Acanthochitona are missing the

Hox gene Post1 (Wanniger and Wollesen 2019; Huan et al.

2019). Post1 is present in aplacophorans and in almost all

conchiferan molluscs (Iijima et al. 2006). This suggests Post1

was lost in either the common ancestor of Chitonida or the

common ancestor of all living chitons. In conchiferan mol-

luscs, Post1 helps specify the posterior of an animal during

development and helps pattern shell formation (Lee et al.

2003; Fröbius et al. 2008; Schiemann et al. 2017; Huan

et al. 2019). In the absence of Post1, A. granulata and other

chitons must use other regulatory genes to help pattern their

body axes and biomineralized structures.

A. granulata Shares Many Biomineralization Genes with
Conchiferan Molluscs

We expected chitons to lack many genes previously identified

from biomineralization pathways in conchiferans because

their shell plates and sclerites lack both calcite and nacre

(materials that most conchiferans incorporate into shells).

We determined orthogroups across A. granulata and several

other molluscs with whole-genome data, and were surprised

to find orthologs in the A. granulata genome of many genes

that contribute to biomineralization in conchiferans (supple-

mentary table 4 and supplementary fig. 8, Supplementary

Material online; supplementary data available via Dryad). For

example, we found two homologs of Pif in the A. granulata

genome. In pterid bivalves, Pif mRNA encodes a peptide that

is cleaved into two functional proteins, PIF97 and PIF80

Varney et al. GBE
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(Suzuki et al. 2009). These proteins have different roles in

biomineralization: PIF80 binds nacre and aids in nacre forma-

tion (Suzuki et al. 2009), whereas PIF97 binds to chitin and

guides the growth of calcium carbonate crystals (Suzuki et al.

2013). One homolog of Pif in the A. granulata genome,

g24122, codes for a protein that is similar to PIF97 but not

to PIF80, suggesting that the A. granulata Pif does not code

for a protein similar to PIF80. On a phylogeny including pro-

tein sequences from orthogroups with sequences similar to

PIF, as well as known PIF protein sequences identified in other

molluscs, A. granulata PIF falls in a monophyletic clade with

other known PIF proteins to the exclusion of proteins with

similar sequences that are not PIF (supplementary fig. 8A,

Supplementary Material online, clade labeled PIF). The second

homolog of Pif in the A. granulata genome, g24110, codes

for a protein that is “PIF-like.” A “PIF-like” protein in Lymnaea

stagnalis is associated with shell biomineralization (Ishikawa

et al. 2020). On a phylogeny including PIF and “PIF-like”

sequences, theA. granulata “PIF-like” homolog falls in a clade

with the L. stagnalis “PIF-like” protein sequence, and not in

the clade with PIF. This suggests that “PIF-like” proteins are

the products of genes that are not Pif (supplementary fig. 8A,

Supplementary Material online, clade-labeled PIF-like). Further

supporting the distinction between Pif and Pif-like genes, we

found that the Pif and “PIF-like” genes are located on differ-

ent scaffolds in the genome of A. granulata, suggesting the

genes have independent origins.

We examined the expression of transcripts for the A. gran-

ulata Pif and Pif-like homologs and found both homologs have

similar patterns of mRNA expression. The expression of the

mRNA from the Pif (Pif97) homologwas highest in girdle tissue

and lowest in the radula, suggesting that the protein produced

by Pifmay play a role in sclerite formation in A. granulata and

perhaps in other chitons (supplementary table 5,

Supplementary Material online). The expression of mRNA

from the “Pif-like” homolog was also highest in the girdle of

A. granulata compared with other tissues, so the “PIF-like”

protein encoded by these transcripts may also be involved in

the production of sclerites. We hypothesize that the last com-

monancestor of extantmolluscs used a protein similar to PIF97

to help build mineralized structures, and that production of

PIF80 is novel to bivalves. Further study is needed to determine

the independent evolution and functions of PIF and “PIF-like”

proteins in molluscan biomineralization.

FIG. 2.—Synteny of Hox genes between Acanthopelura granulata and other taxa. The presence of a gene is indicated by a box of the corresponding

color. Continuous black lines indicate that the Hox genes in this species were located on a contiguous genomic scaffold. Broken black lines indicate that

gene(s) are located on multiple genomic scaffolds. A double slash indicates genes are located on a single contiguous scaffold but separated by greater

distances than those in most other taxa.

Iron-Responsive Genome of the Chiton A. granulata GBE

Genome Biol. Evol. 13(1) doi:10.1093/gbe/evaa263 Advance Access publication 15 December 2020 5

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article/13/1/evaa263/6035137 by guest on 28 August 2021



The ancestral mollusc likely produced mineralized struc-

tures, but whether the ancestral mollusc had a single shell,

multiple shell plates, or sclerites remains a matter of debate

(Kocot 2013; Scherholz et al. 2013; Vinther et al. 2017;

Giribet and Edgecombe 2020). Molluscs form mineralized

structures by making extracellular matrices from organic com-

ponents, such as polysaccharides and proteins, and then hard-

ening them with minerals (Furuhashi et al. 2009). Similarities

between the extracellular matrices of different biomineralized

structures suggest these structures share developmental

mechanisms. The A. granulata genome includes genes that

code for proteins characterized from the extracellular matrices

of conchiferans. Chitin is a major component of the extracel-

lular matrices of all molluscan shells and radulae, and the

A. granulata genome contains genes for chitin synthase, chi-

tinase, and chitin-binding proteins. Additionally, we found

homologs of genes that code for dermatopontin (supplemen-

tary fig. 8B, Supplementary Material online) and laminin (sup-

plementary fig. 8C, Supplementary Material online), two

proteins expressed in the extracellular matrices of conchifer-

ans that increase the elasticity and flexibility of their shells

(Gaume et al. 2014; supplementary table 4 and supplemen-

tary fig. 8, Supplementary Material online). In phylogenetic

analyses, the A. granulata homologues identified here group

with protein sequences from known shell matrix components

in other taxa, indicating that these proteins may also be in-

volved in biomineralization in chitons.

Silk-like structural proteins are components of many bio-

logical materials, including shells (Eisoldt et al. 2011;

McDougall et al. 2016; Xu et al. 2016), and several

A. granulata genes are similar to genes known to code for

silk-like proteins. These proteins are “silk-like” because they

contain highly repetitive sequences of amino acids that fold

into secondary structures (commonly b-pleated sheets) that

impart flexibility, a phenomenon first documented in spider

silk (Lewis 2006; Eisoldt et al. 2011). Silk-like domains can

facilitate the precipitation and crystallization of minerals that

help form structures such as bones and shells (Xu et al. 2016).

We found 31 genes in the A. granulata genome that code for

proteins with silk-like domains, 23 of which have high se-

quence similarity to genes associated with biomineralization

in other molluscs (supplementary table 6, Supplementary

Material online). We found 27 of these 31 genes from the

A. granulata genome code for proteins with signal peptides,

indicating they may be secreted as part of the extracellular

matrix during biomineralization (supplementary table 6,

Supplementary Material online). We also found genes that

code for three collagens, one chitinase, and one carbonic

anhydrase, all possible contributors to shell formation and

repair in chitons (Patel 2004; supplementary table 6,

Supplementary Material online). Several of the genes encod-

ing proteins with silk-like domains are highly expressed in the

girdle of A. granulata, suggesting a role in the mineralization

of sclerites (supplementary fig. 9, Supplementary Material

online).

A. granulataHasMore Genes with Iron Response Elements
than Other Molluscs

Chitons have more iron in their circulatory fluid (hemolymph)

than any other animal studied to date (Kim et al. 1988). Iron

presents physiological challenges to animals because it can

cause oxidative stress. We hypothesize that the ability of chi-

tons to biomineralize iron requires them to respond quickly to

changes in concentration of this potentially toxic metal. To

assess the iron-responsiveness of the A. granulata genome,

we searched it for iron response elements (IREs), three-

dimensional hairpin structures that form in either the 30 or

50 untranslated regions (UTRs) of mRNA molecules and con-

trol translation via the binding of iron regulatory protein (IRP;

supplementary fig. 10, Supplementary Material online). We

also examined IREs in several high-quality molluscan genomes

that include UTRs as part of their available annotation data. All

of the molluscan genomes we examined had similar propor-

tions of 3’ to 5’ IREs (fig. 3A). Despite having the fewest gene

models, the genome of A. granulata has more IREs than the

genomes of any other mollusc we examined. We predicted

271 IREs in the A. granulata genome, compared with an av-

erage of 119 IREs across other molluscan genomes (supple-

mentary table 7, Supplementary Material online). The highest

number of predicted IREs in a conchiferan came from the

genome of the blood clam S. broughtonii, which had 201.

The blood clam is so named because it is one of relatively few

molluscs that produces hemoglobin for use as a respiratory

pigment (Kawamoto 1928; Manwell 1963; Read 1966;

Collett and O’Gower 1972; Bai et al. 2019). We expect

A. granulata and S. broughtonii have more IREs in their

genomes than other molluscs because they must absorb

and transport larger amounts of iron to produce iron-coated

teeth and hemoglobin, respectively.

We next examined the expression of genes that contain a

50 IRE across tissues of A. granulata, genes that would be

expected to be expressed at higher levels in the presence of

iron than in the absence of iron. We divided the radula of

A. granulata into four regions based on the amount of iron

present in each (supplementary fig. 1C, Supplementary

Material online). We found a number of genes with 50 IREs

that are expressed at relatively high levels in the three iron-rich

anterior regions of the radula compared with other tissues of

A. granulata (fig. 3B). We then asked if these genes might

have roles in the biomineralization of the radula. We used

Gene Ontology (GO) analysis to compare the functions pre-

dicted for the protein sequences coded by the genes with 50

IREs to the functions predicted for the protein sequences

coded by the full set of genes from the A. granulata genome.
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We found that genes with a 50 IRE that are highly expressed in

the anterior of the radula are more likely than other genes to

be associated with the molecular functions “response to in-

organic substance,” “response to calcium ion,” and

“response to metal ion” (supplementary fig. 12,

Supplementary Material online). This suggests that genes

with a 50 IRE that are highly expressed in the radula may be

involved in the biomineralization of the apatite (calcium phos-

phate) cores of teeth and their magnetite (iron) caps. A pre-

vious study by Nemoto et al. identified a novel

biomineralization protein (RTMP1) in the radula of another

species of chiton (Cryptochiton stelleri), and proposed that

RTMP1 played a role in iron biomineralization (Nemoto

et al. 2019). We examined the mRNA of RTMP1 in

C. stelleri and did not detect an IRE in either its 50 or 30 UTR.

Thus, there are genes that may contribute to iron biominer-

alization in the chiton radula whose expression levels are not

influenced by IREs.

Two Isoforms of Ferritin May Provide Chitons with Tissue-
Specific Protection from Oxidative Stress

All metazoans require iron. However, free iron poses a threat

to animals because it catalyzes the production of reactive ox-

ygen species that inflict damage on DNA and tissues (Dixon

and Stockwell 2014). To transport iron safely, metazoans use

the iron-binding protein ferritin. Previous work suggests that

chitons use ferritin to transport iron to their radula (Kim et al.

1988). An IRE is present in the 50 UTR of the heavy chain (or

soma-like) ferritin mRNA that is expressed by all metazoans

(Piccinelli and Samuelsson 2007). We found two isoforms of

heavy chain ferritin in our genemodels forA. granulata: a first

isoform (isoform 1) that contains the conserved 50 IRE, and a

second isoform (isoform 2) that does not (fig. 4A; supplemen-

tary table 8, Supplementary Material online).

Isoform 1 of ferritin from A. granulata contains an IRE in its

50 UTR, allowing this isoform to be translated only in the pres-

ence of free iron. By regulating the translation of ferritin, cells

FIG. 3.—IREs in theAcanthopleura granulata genome. (a) The number of IREs in several molluscan genemodel sets, and relative proportions of 50 and 30

IREs. A. granulata has more IREs than any other molluscs examined, but the relative proportions of 50 and 30 IREs appear consistent across molluscan

genomes. (b) The relative expression (log10(TPM)) of transcripts containing IREs in the different tissues of A. granulata. The radula is divided into four

developmentally distinct regions: R1, themost anterior region, contains teeth used for feeding; R2 contains teeth that are developed but are not yet used for

feeding; R3 contains developing teeth that contain iron oxide; and R4, the most posterior region, contains developing teeth that have yet to be coated with

iron. We found lower expression of most IRE-containing genes in the anterior regions of the radula.

Iron-Responsive Genome of the Chiton A. granulata GBE
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can transcribe ferritin mRNA continuously so they are primed

to produce large quantities of ferritin protein rapidly if con-

ditions require it. If no free iron is present, IRP will bind to the

IRE and block translation. We found isoform 1 of ferritin is

expressed at high levels in all the non-radula transcriptomes

we sequenced for A. granulata, including those for the foot,

girdle, gonad, and ctenidia. Isoform 1 is also expressed in all

four regions of the radula, although at lower levels in the

anterior, iron-rich regions than in other tissues (fig. 4B).

Thus, when A. granulata needs to bind excess iron, it may

be able to rapidly produce isoform 1 of ferritin protein

throughout its body. We examined other mollusc genomes

and transcriptomes and found a ferritin isoform present in all

of them that is similar to A. granulata isoform 1 and contains

the 50 IRE (supplementary table 8, Supplementary Material

online).

Isoform 2 of ferritin in A. granulata lacks the 50 IRE present

in isoform 1. We identified an alternative transcription initia-

tion site downstream of ferritin exon 1 in the A. granulata

genome. Isoform 2 of ferritin, initiated at this downstream

site, contains a different exon 1 than isoform 1 of ferritin,

but shares exons 2–4 with isoform 1 (fig. 4). We examined

other molluscan genomes and transcriptomes and did not

find evidence for expression of a ferritin isoform similar to

A. granulata isoform 2 (data available on Dryad). In

A. granulata, isoform 2 is expressed at lower levels than

isoform 1 throughout all body tissues (foot, girdle, gonad,

ctenidia). Isoform 2 is expressed in the posterior region of

the radula where iron mineralization does not occur, but its

expression is almost undetectable in the iron-rich regions of

the radula. Without the 50 IRE, translation of the mRNA of

isoform 2 is not blocked in the absence of free iron. We hy-

pothesize that chitons use isoform 2 of ferritin to produce a

low level of ferritin protein constitutively in tissues outside

their radula as protection from the high concentrations of

iron in their circulatory fluid. The 50 IRE in ferritin is an impor-

tant regulatory mechanism for protein production. In rats, for

example, the expression of ferritin mRNAs is relatively con-

stant across tissues but protein levels vary (Rogers and Munro

1987). Further, mutations in the 50 IRE of ferritin cause hyper-

ferritinemia in mammals, an iron-related medical condition

caused by an overproduction of ferritin protein (Thomson

et al. 1999).

Conclusions

The A. granulata genome is the first available genome for any

chiton or any aculiferan. The information it provides improves

our understanding of the evolution of biomineralization

across Mollusca as well as lineage-specific innovations within

chitons. Chitons are a valuable system for investigating bio-

mineralization because they produce shell plates, sclerites,

and iron-clad teeth. The unique combination of structures
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FIG. 4.—The two isoforms of heavy-chain ferritin present in Acanthopleura granulata. (a) The locations of the transcription initiation sites and exons of

isoform 1 of ferritin (orange, above) and isoform 2 of ferritin (blue, below). A 50 IRE (red) is present in the 50 UTR of isoform 1, but not in isoform 2. (b) Relative

expression of both isoforms of ferritin across A. granulata tissues. The radula is divided into four developmentally distinct regions as in fig. 3. Isoform 1 is

expressedmore highly throughout the body than isoform 2. Isoform 2 is expressed at lower levels in the anterior (iron-rich) regions of the radula than in other

tissues. We visualized data with (�(TPM)) to allow both data ranges to appear legibly on the same graph.
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produced by chitons makes the A. granulata genome a re-

source for future studies of biomineralization. Althoughmany

genes involved in molluscan shell secretion are rapidly evolv-

ing (Jackson et al. 2006; Kocot et al. 2016), we were able to

identify homologs of many conchiferan biomineralization

genes in the A. granulata genome. The expression of several

genes associated with conchiferan shell secretion in the girdle

of A. granulata suggests these genes may function in sclerite

biomineralization in chitons. This suggests a common under-

lying molecular mechanism for the biomineralization of con-

chiferan shells and aculiferan sclerites, structures known to

share some developmental pathways even though they arise

via different cell lineages (Wollesen et al. 2017).

All metazoans require iron, but they must balance iron use

against potential oxidative damage. Regulating iron is a par-

ticular concern for chitons because they biomineralize their

teeth with magnetite. The genome of A. granulata contains

more genes with IREs than the genome of any other mollusc

examined to date, indicating it has a larger proportion of

genes regulated directly by iron. We identified two isoforms

of ferritin in A. granulata, one that is iron-responsive and a

second that is constitutively translated. We propose the sec-

ond isoform of ferritin protects tissues outside the radula from

oxidative stress by binding free iron. Chitons are an emerging

model for studies of both biomineralization and iron homeo-

stasis. The A. granulata genome will aid future studies by

suggesting specific proteins and pathways to target with

comparative studies of gene expression and gene

manipulation.

Materials and Methods

Specimen Collection and Preservation

We collected a single male specimen of Acanthopleura gran-

ulata from Harry Harris State Park in the Florida Keys (Special

Activity License #SAL-17-1983-SR).We cut the majority of the

foot into�1-mm2 cubes and froze them at�80 �C.We froze

additional pieces of foot, girdle (dissected such that the tissue

sample would not contain shell secretory tissue), ctenidia, go-

nad, and radula in RNAlater and stored them at �80 �C as

well.

Genome and Transcriptome Sequencing

We extracted high molecular weight DNA from frozen sam-

ples of foot tissue from A. granulata using a CTAB-phenol

chloroform method (available on Dryad). We cleaned DNA

for short-read generation with the Zymo Clean and

Concentrator Kit. For library preparation and sequencing,

we sent cleaned DNA to the Genomics Services Lab at

HudsonAlpha (Huntsville, AL), where it was sheared with a

Covaris M220 to an average fragment size of 350bp. These

fragments were used to prepare an Illumina TruSeq DNA PCR-

Free library, which was sequenced using one lane of an

Illumina HiSeq X (2 � 150bp paired-end reads).

For long-read sequencing, we cleaned DNA and enriched it

for higher-molecular weight fragments by performing two

sequential purifications using 0.4� AmPureXP magnetic

beads. We generated long reads with four flow cells on an

Oxford Nanopore Technologies GridION. We prepared two

sequencing libraries with ligation kit LSK-108 and sequenced

them on FloMin106 (R9.4.1) flow cells. We prepared the

other two sequencing libraries with the updated ligation kit

LSK-109 and sequenced them on R9.4.1RevD flow cells. We

generated 2.19, 4.41, 7.87, and 8.4Gb, respectively, across

the four flow cells, for a total of 22.87Gb, or>20� coverage

with long-reads. Reads were base called with Guppy 4.0. We

trimmed long reads with PoreChop (Wick 2018), which was

set to remove chimeras (approximately 0.0005% of reads)

and all residual adapter sequences.

To generate transcriptomes, we used the Omega Bio-tek

EZNA Mollusc RNA Kit to extract RNA from girdle, ctenidia,

gonad, foot, and four regions of radula (representative of

visibly different stages of iron mineralization) of the same in-

dividual of A. granulatawe used for genome sequencing. We

synthesized and amplified complementary DNA (cDNA) from

each tissue using the SmartSeq v4 Ultra Low-input RNA kit

(Clontech) from 1ng of input RNA with 17 cycles of PCR. We

created eight dual-indexed sequencing libraries with the

Illumina Nextera XT kit, using 1ng of input cDNA. We sent

the eight libraries to Macrogen (Seoul, South Korea) where

they were pooled and sequenced on one lane of an Illumina

HiSeq 4000 (2 � 100bp paired-end reads). Using a similar

approach, we generated transcriptomes from several addi-

tional species of chitons and from a variety of tissues:

Chiton marmoratus (decalcified valve), Chiton tuberculatus

(radula), Acanthopleura gemmata (girdle and mantle),

Cryptoplax larvaeformis (girdle), Callochiton sp. (whole ani-

mal), Chaetopleura apiculata (girdle), Hanleya hanleyi (man-

tle), Leptochiton asellus (mantle) Nutallochiton mirandus

(girdle), Tonicia schrammi (decalcified valve), Katharina tuni-

cata (radula), and Lepidozona mertensi (radula).

Genome and Transcriptome Assembly and Quality
Assessment

We initially assembled the chiton genome with MaSuRCA v.

3.3.5 (Zimin et al. 2013), which consolidates paired-end data

into super reads and then uses long-read data to scaffold and

gap-fill. This produced an assembly with 2,858 contigs. We

filtered and collapsed heterozygous contigs with Redundans

v. 0.14a (Pryszcz and Gabald�on 2016), decreasing the assem-

bly to 1,285 contigs. To ensure that no contigs were incor-

rectly removed, we verified that all pre-Redundans contigs

mapped to the post-Redundans assembly with bowtie2

(Langmead and Salzberg 2012); all contigs mapped and

thus nonredundant data were not deleted. To help

Iron-Responsive Genome of the Chiton A. granulata GBE
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decontaminate reads and contigs, we used the Blobtools2

Interface to create blob plots (Blaxter and Challis 2018).

Because Blobtools uses the NCBI nucleotide database to de-

termine the identity of each scaffold, and chordate sequences

vastly outnumber molluscan sequences in NCBI, Blobtools

identified a large proportion of scaffolds as chordate. We

identified contaminants as sequences that differed from the

majority of scaffolds in both GC content and coverage and

used BLAST to verify these sequences as bacterial before re-

moving them from the assembly.

We scaffolded this reduced assembly with one lane of

Bionano SAPHYR optical mapping, using two enzymes

(BssSI and DLE1) and Bionano Solve v3.4’s scaffolding soft-

ware, which resulted in 87 scaffolds. We ran REAPR v. 1.0.18

(Hunt et al. 2013), which map short read data and collect

mapping statistics simultaneously, to determine accuracy of

the assembly overall relative to all short-read data generated,

and found despite reducing heterozygosity in the final assem-

bly, 85.31% of paired-end reads map perfectly back to the

genome assembly, indicating a complete genome assembly

relative to the paired-end data.

To assess our genome assembly, we ran QUAST v. 5.0.2

(Gurevich et al. 2013). We assessed genome completeness

with BUSCO v. 4.0.2 (Sim~ao et al. 2015), using the propor-

tions of nuclear protein-coding genes thought to be single-

copy in the genomes of diverse metazoans (Metazoa odb9

data set) and estimating the proportion of those that were

complete, duplicated, fragmented, and absent.

We assembled the eight A. granulata transcriptomes and

the transcriptomes of other chiton tissues listed above with

Trinity v. 2.84 (Grabherr et al. 2011), using the –trimmomatic

and –normalize reads flags. We ran CD-Hit v. 4.8.1 (Fu et al.

2012) on each transcriptome separately to cluster isoforms.

We also generated a composite transcriptome of all of the

A. granulata tissues (eight total transcriptomes including four

separate radula regions) by combining reads and then follow-

ing the same process described above. We used this compos-

ite transcriptome for annotation.

Genome Annotation

To annotate the A. granulata genome, we first generated a

custom repeat library with RepeatModeler v. 2.0 (Smit and

Hubley 2015), which was used in all subsequent analyses. We

trained MAKER v. 2.31.10 (Cantarel et al. 2008) on the com-

posite transcriptome described above as well as predicted

protein sequences from the tissues of other species of chitons

listed above. Using the highest quality gene models from the

first as a maker-input gff3 (AED < 0.5), we ran a second

round of MAKER. From these resulting gene models, we

used those with an AED < 0.25 to train Augustus v3.0.3

(Stanke et al. 2006): we extracted gene models from the ge-

nomic scaffolds along with 1,000bp of flanking sequence on

either side to ensure complete genes, and ran them through

BUSCO to produce an Augustus model (.hmm) file.

Separately, we ran PASA 2.4.1 (Haas et al. 2003) on our com-

posite transcriptome to maximize mapping transcripts to the

genome assembly. We were unable to use Evidence Modeler

(EVM; Haas et al. 2008) to combine lines of evidence because

high levels of alternative splicing caused EVM to consistently

reduce the number of “passing” genemodels to under 5000.

We instead combined results from PASA and a trained

Augustus run using the intersect tool in BEDtools v. 2.29.2

(Quinlan and Hall 2010), which removed identical sequences.

This yielded a set of 81,691 gene models. When we ran a

BUSCO v. 3.9 analysis (Metazoa odb9 data set), we found a

15.2% duplication rate. To decrease duplications caused by

transcripts predicted for the same locus by both Augustus and

PASA that varied in length (and thus were not removed by the

BEDtools intersect tool), we clustered the first set of gene

models using cdhit-EST v. 4.8.1 (Fu et al. 2012), which we

ran with the slow-but-accurate (�g) flag and with a cluster

threshold value of 0.8. This produced a set of 20,470 genes.

All commands we used are available in supplementary appen-

dix 1, Supplementary Material online.

To identify annotated proteins in A. granulata, we first

used Transdecoder (Douglas 2018) to produce peptide files

of predicted proteins. We ran Interproscan on the set of

20,470 genes referenced above to identify GO terms and

Pfam matches for proteins where possible. We used

GHOSTX in the Kaas pipeline (Moriya et al. 2007) to identify

KEGG pathways via comparisons to all the availablemolluscan

taxa (Lottia gigantea, Pomacea canaliculata, Crassostrea gigas,

Mizuhopecten yessoensis, andOctopus bimaculoides). Finally,

we looked for shared GO terms between specific taxa with

OrthoVenn (Xu et al. 2019), comparing A. granulata to Lottia

gigantea, Chrysomallon squaminiferon, Octopus bimacu-

loides, and Crassostrea gigas (supplementary fig. 13,

Supplementary Material online).

Hox Gene Annotation and Genomic Comparisons

We located the Hox cluster of A. granulata by first creating a

BLAST database of the A. granulata scaffolds and then que-

rying this database with available chiton Hox sequences

(Wanninger and Wollesen 2019). We marked A. granulata

sequences with a BLAST hit at e-value 1e-8 as potential Hox

sequences. We found one clear match for each previously

identified chiton Hox gene, all in a single cluster within one

scaffold. To verify the absence of Post1, we queried the

A. granulata database with Post1 sequences from five other

molluscs (Wanninger and Wollesen 2019). All matched with

low support to the existing A. granulata Post2 sequence, so

we concluded that Post1 is absent from the A. granulata ge-

nome assembly. We further verified the absence by querying

the A. granulata transcriptomes from different tissues for

Post1 sequences. A Post1 query returned hits that all matched
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already-annotated Hox sequences, with the best hit matching

Post2.

To graphically examine synteny between A. granulata and

other molluscan genome assemblies, we loaded each assem-

bly and annotation into the online COGE SynMap2 (Haug-

Baltzell et al. 2017) server and compared A. granulata to eight

other annotated genomes with default SynMap2 settings.

These default settings are strict; to note two regions as syn-

tenic, 5 or more genes must share an order with fewer than

20 additional genes between them. We exported dotplots for

each pair of genomes to visualize syntenic regions (or lack

thereof), where dots then represent shared regions of five

or more orthologous genes without major changes in sur-

rounding gene content. Scaffolds in each dotplot were sorted

by length, but differing assembly qualities made some dot-

plots difficult to read due to a high number of very small

scaffolds. We assessed heterozygosity of several molluscan

genomes and A. granulata by downloading raw paired-end

datawhen possible and using GenomeScope2 online (Vurture

et al. 2017). We began with a k-mer of 21 for all taxa; if this

model failed to converge, or if the homozygous and hetero-

zygous peaks collapsed in the model, we re-ran the analysis

with k-mer values of 17, 19, and 31. One taxon (Lottia) did

not produce separate peaks at any k-mer value; for all others,

we selected the optimal k-mer size based on the best-fitting

model (minimizing error percentage).

To permit direct comparisons of repeat content within

A. granulata and other molluscs, we ran RepeatModeler

v2.2 (Smit and Hubley 2015) on the scaffolds of a subset of

genome assemblies and A. granulata. We used the same de-

fault parameters for each run and quantified the number of

elements in each repeat family identified by RepeatModeler

for each genome assembly we analyzed (LINEs, SINEs, etc.).

Orthology Inference

To identify orthologous genes shared between A. granulata

and other molluscs, we used OrthoFinder v. 2.3.7 (Emms and

Kelly 2015). We analyzed three separate sets of data: 1)

A. granulata and genomes of 19 other lophotrochozoans,

including 14 other molluscs, 2 annelids, 1 brachiopod, 1 phor-

onid, and 1 nemertean; 2) A. granulata, a subset of the above

molluscan genomes, and Lingula anatina for detailed compar-

isons of biomineralization genes and; 3) A. granulata and an

expanded set of data including both genomes and transcrip-

tomes, including several transcriptomes from aculiferans

other than A. granulata. For all three analyses we used the

unclustered 81,691 gene set for A. granulata, knowing that

duplicated gene models would cluster together. We removed

sequences from our orthogroups that were identical to longer

sequences where they overlapped, as well as fragmented

sequences shorter than 100 amino acids. We retained

orthogroups that had a minimum of four taxa, aligned the

sequences within them with MAFFT (Katoh et al. 2002), and

cleaned mistranslated regions with HmmCleaner (Di Franco

et al. 2019). We used AlignmentCompare (https://github.

com/kmkocot/basal_metazoan_phylogenomics_scripts_01-

2015; last accessed December 29, 2020) to delete sequences

that did not overlap with all other sequences by at least 20

AAs (starting with the shortest sequence meeting this

criterion).

Phylogenetic Analyses

For species tree reconstruction, in cases where two or more

sequences were present for any taxon in a single-gene align-

ment, we used PhyloPyPruner 0.9.5 (https://pypi.org/project/

phylopypruner/; last accessed December 29, 2020) to reduce

the alignment to a set of strict orthologs. This tool uses single-

gene trees to screen putative orthogroups for paralogy. To

build single-gene trees based on orthologs, we trimmed align-

ments with BMGE v1.12.2 (Criscuolo and Gribaldo 2010) and

constructed approximately maximum likelihood trees for each

alignment with FastTree2 (Price et al. 2010) using the “slow”

and “gamma” options. We then used these alignments in

PhyloPyPruner with the following settings: –min-len 100 –

min-support 0.75 –mask pdist –trim-lb 3 –trim-divergent

0.75 –min-pdist 0.01 –trim-freq-paralogs 3 –prune MI. For

data sets 1 (“genomes”) and 3 (“all_taxa”), only orthogroups

sampled for at least 85% of the total number of taxa were

retained for concatenation. For data set 2 (“biomin_subset”),

only orthogroups sampled for all eight taxa were retained.

Phylogenetic analyses were conducted on the supermatrix

produced by PhyloPyPruner v. 1.0 in IQ-TREE v. 1.6.12

(Nguyen et al. 2015) using the PMSF model (Wang et al.

2018) with a guide tree based on the LG model.

Topological support was assessed with 1,000 rapid

bootstraps.

Screening for Known Biomineralization Genes

To identify biomineralization genes in the chiton genome, we

began by running OrthoFinder v. 2.3.7 on the gene models of

select genomes (corresponding to taxon set #2 described in

the Orthology inference section above): Lingula anatina,

Pinctada fucata, Lottia gigantea, Haliotis rufescenes,

Scapharca broughtonii, Bathymodiolus platifrons, and

Acanthopleura granulata. Once we obtained this set of

orthogroups, we created a local BLAST protein database

from the orthogroups and queried it for known biominerali-

zation genes. We used a previously identified protein se-

quence for each gene of interest from NCBI (supplementary

table 9, Supplementary Material online) as a query and set an

e-value cutoff of 1e-8 to identify the OrthoFinder

orthogroup(s) that contain that biomineralization gene of in-

terest. We aligned the putative matching orthogroup, the

query sequence for the gene of interest, and the sequences

of other orthogroups that were returned as hits by our blast

search with MAFFT with the default settings. We then
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constructed a phylogenetic tree in IQ-TREE 2 v.1.3.11.1 to

verify that the query sequence (the known protein sequence)

fell within the orthogroup identified rather than within an

orthogroup with a similar protein sequence due to conserved

domains.

In the specific case of the PIF protein, to distinguish be-

tween PIF and PIF-like proteins in A. granulata, we supple-

mented the OrthoFinder orthogroup including PIF from

Pinctada fucata with other published PIF sequences from

Hyriopsis cumingii, Mytilus coruscus, Pinctada maxima,

Pinctada margaritifera, and Pteria penguin, as well as the

L. stagnalis PIF-like protein sequence. We aligned the sequen-

ces with Mafft with default settings and constructed a phylo-

genetic tree in IQ-TREE 2 v 1.3.11.1.

Silk-like proteins share similar amino acid composition

throughout Metazoa, but the genes that code for them are

difficult to identify in genomes because their highly repetitive

sequences are often missed by traditional gene annotation

tools (McDougall et al. 2016). We looked for silk-like proteins

with SilkSlider (McDougall et al. 2016), run with default set-

tings but using SignalP v. 4.01 (Nielsen 2017), which identifies

potential silk-like proteins by locating low-complexity repeti-

tive domains and signal peptides. The 31 proteins identified as

silk-like by SilkSlider were then uploaded to the SignalP 5.0

webserver (Almagro Armenteros et al. 2019) for further pre-

dictions of signal peptides associated with extracellular

localization.

To locate and quantify IREs, we screened the 20,470-gene

A. granulata gene model set using the SIREs 2.0 (Campillos

et al. 2010) web server. We also ran SIREs on the subset of

genomes used for biomineralization analyses (see OrthoFinder

above) for comparison. We compensated for differences in

annotation methods by first clustering all coding sequences

from each genome with CD-Hit-EST (Fu et al. 2012) with a

cluster threshold of 0.8 (tomatch the threshold value we used

earlier to reduce redundancy in the annotations of the

A. granulata genome). We then ran SIREs on each of these

sets of predicted transcripts. We only accepted predicted IREs

scored as “high quality” according to the SIREs metric (indi-

cating both sequence and structural characteristics of a func-

tional IRE). We pulled chiton genes containing a high quality

IRE from the eight different tissue transcriptomes generated

for genome annotation and assessed expression by mapping

each back to the genome with Salmon v. 0.11.3 (Patro et al.

2017) to generate quantifications of reads per transcript, and

running these quantifications through edgeR (Robinson et al.

2010) to account for transcript length (TPM) and permit direct

comparisons of gene expression. We also separated 30 and 50

IREs by subsetting the high quality IREs based on whether the

IRE was located at the beginning or end of the sequence. We

made heatmaps with log-transformed data to compensate

for outliers in expression levels with R package prettyheatmap

(Kolde 2012). We then analyzed the GO terms enriched in the

separate sets of 50- and 30-containing genes that were highly

expressed in the radula with GOrilla (Eden et al. 2009), using

the complete protein set as a background data set and the

sets of IRE-containing genes as the target list.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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sequencing is deposited in the Alabama Museum of Natural

History Invertebrate Zoology collection under catalog number

21276.
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