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An ethical decision-making framework with serious

gaming: a smart water case study on flooding

Gregory Ewing and Ibrahim Demir
ABSTRACT
Sensors and control technologies are being deployed at unprecedented levels in both urban and rural

water environments. Because sensor networks and control allow for higher-resolution monitoring

and decision making in both time and space, greater discretization of control will allow for an

unprecedented precision of impacts, both positive and negative. Likewise, humans will continue to

cede direct decision-making powers to decision-support technologies, e.g. data algorithms. Systems

will have ever-greater potential to effect human lives, and yet, humans will be distanced from

decisions. Combined these trends challenge water resources management decision-support tools to

incorporate the concepts of ethical and normative expectations. Toward this aim, we propose the

Water Ethics Web Engine (WE)2, an integrated and generalized web framework to incorporate voting-

based ethical and normative preferences into water resources decision support. We demonstrate

this framework with a ‘proof-of-concept’ use case where decision models are learned and deployed

to respond to flooding scenarios. Findings indicate that the framework can capture group ‘wisdom’

within learned models to use in decision making. The methodology and ‘proof-of-concept’ system

presented here are a step toward building a framework to engage people with algorithmic decision

making in cases where ethical preferences are considered. We share our framework and its cyber

components openly with the research community.
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HIGHLIGHTS

• Water Ethics Web Engine (WE)2 is a web framework to incorporate voting-based ethical

preferences into water resources decision support.

• We share (WE)2 openly at our project repository: https://github.com/uihilab/

waterethicswebengine.

• A proof-of-concept use case is presented where decision models are learned and deployed with

flooding scenarios.

• Results indicate that the framework can capture group ‘wisdom’ in learned models.
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INTRODUCTION
Sensor networks, which is built on the back of the latest

digital communication technologies, are increasingly being
deployed in urban sewer networks and at the regional

scales to monitor flooding and water quality of rivers

(Habibi et al. ; Mullapudi et al. ; Jones et al. ;

Yildirim & Demir ). Concurrently, control technologies

are being deployed alongside sensors which allow for oper-

ators to actively manipulate these systems in places and in a
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way that was previously inconceivable (Kerkez et al. ;

Mullapudi et al. ). Furthermore, the continued adoption

of control technologies also introduces new stakeholders by

which our water environment is actively manipulated

(Rentsch ). These new technologies allow for higher-

resolution monitoring via novel sensors (Sermet et al.

), social media (Sit et al. ), and decision making

(Demir et al. ; Sermet et al. ) both in time and

space. Where historically our water infrastructure, such as

stormwater ponds, were designed as passive structures

there is now the capability to control releases actively and

precisely from a growing, distributed amount of water infra-

structure, oftentimes as small as stormwater ponds.

A proliferation of new sensing and control locations

means considerably more complex systems to address per-

sistent water resources challenges such as flooding and

water quality. Yet, to do so requires harnessing the unprece-

dented complexity of these new systems. Toward this end,

there is a growing body of research on control schemes for

water systems (Overloop ; Mollerup et al. ; Schütze

et al. ). Recent studies mainly focus on the challenges of

controller design to meet the objectives of physically based

water quantity (flooding; Sadler et al. ; Mullapudi

et al. ; Sun et al. ) and sometimes quality (total sus-

pended solids or different ‘indicator’ pollutants; Muschalla

et al. ; Sharior et al. ; Troutman et al. ). The col-

lective work demonstrates the potential for improved system

performance with a coordinated and increasingly automated

control approach and the promise of the new ‘smart’ water

paradigm.

However, little work exists to determine whether con-

trol schemes with physically based objectives are

consistent with socially normative expectations of ‘right’

and ‘wrong’ actions. Because the primary objective of

these control studies is to investigate the performance of

control strategies, many experimental designs use toy net-

works or simplified abstractions of real networks. One

consequence of this experimental design is that the social

and economic variations within and across the network

are not considered in the development of control schemes,

nor in determining the impact of the controller perform-

ance. Yet, when considering the deployment of these

distributed technologies across an entire city or region,

these demographic factors become relevant. Consider the
://iwaponline.com/jh/article-pdf/23/3/466/892491/jh0230466.pdf
case, for example, where some flooding is an inevitable out-

come within the catchment area of a stormwater network

with dynamic control capabilities; how ought a controller

act to consider the societal implications of such flooding?

Or, if a control scheme consistently recommends distribut-

ing damages in poor neighborhoods and benefits in richer

neighborhoods, ought its directives to be followed? These

normative questions of ought – across populations, land-

scapes, communities, etc. – pose serious ethical and moral

dilemmas, especially where negative impacts are unavoid-

able and uneven.

While the ethical questions of civil infrastructure are as

old as the infrastructure itself, the challenge to incorporate

moral and ethical preferences into the automated, algorithmic

decision-making tools that water resources management will

rely upon are, indeed, new. The novelty of this challenge is

supported by two trends. First, because sensor networks and

control systems allow for higher-resolution monitoring and

decision making in both time and space, it follows that greater

discretization of control will allow for an unprecedented pre-

cision of impacts, both positive and negative. A second and

complimentary trend is as the complexity of systems grows,

humans will continue to cede direct decision-making powers

to decision-support technologies such as data algorithms

(Sermet & Demir , ). Systems will have ever-greater

potential to effect human lives, and yet, humans will be insu-

lated from these direct decisions. An important topic to

explore is whether decision-support tools for water resources

management can integrate socially normative expectations

with physically based objectives.

Individual to institutional: ethics, morality, and

machines

The challenge to consider social concepts into what are see-

mingly technical problems is non-trivial. The social and the

technical are intertwined to make a sociotechnical problem

(Jonoski ; Vojinović & Abbott ). This understanding

motivates our review of both social and technical work as it

relates to our efforts. Generally, we can consider ethics and

morality along a spectrum that spans from the individual to

the institutional. At the individual level, ‘normative’ ethics

considers theories and schema to determine the appropriate

actions of an individual or an agent. At the institutional
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level, studies of ethics and morals consider the power struc-

tures that shape norms, their compliance, and their impact

on individuals and groups. Work in biology, philosophy, psy-

chology, and sociology investigates questions along with this

spectrum. The field of machine ethics complements the

efforts from the natural and social sciences by developing

methods to incorporate decision making into artificial tech-

nologies that are consistent with human’s (society’s)

normative expectations of their behavior (Moor ).

Here, we provide a brief background on these fields and

how they relate to incorporating normative ethics into

smart water systems. Though some disciplines make distinc-

tions between ethics and morality, we use them as

interchangeable in the context of this effort. For consistency

within various disciplines, we defer to their respective termi-

nology when referencing their work.

Normative ethical theories in philosophy

In the study of ethics, or moral philosophy, there are three

fundamental traditions: deontological, consequential, and

virtue. Respectively, these camps choose to inspect morality

from three overlapping, but not identical, questions: ‘What is

the right thing to do?’, ‘How is the best possible state of

affairs achieved?’, and ‘What qualities make for a good

person?’ (Grayling ). Importantly, each of these ques-

tions, and the responses of the ethical theories, are posed

for individuals.

The deontological approach, or duty ethics, considers an

action to be moral based upon a set of rules that deem an

action permissible, impermissible, or obligatory (Alexander

& Moore ). A strength of the deontological approach

is the clarity of the rule to direct actions. However, multiple

rules can require contradicting actions, which is a key weak-

ness of a purely deontological approach.

In contrast, the consequentialist tradition judges the cor-

rectness of an act on its outcome (Sinnott-Armstrong ),

in that the correct action is the action that leads to the

best outcome by some specified objective function, such as

maximizing happiness or minimizing costs. Egalitarianism

and utilitarianism are well-known consequentialist moral

theories. A concern for consequential approaches is which

factors should be included in determining the normative

value of an outcome. Though both consequential in the
om http://iwaponline.com/jh/article-pdf/23/3/466/892491/jh0230466.pdf
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approach, utilitarian and egalitarian models can produce

incompatible solutions due to which factors are given impor-

tance. This tension is referred to as the equality-efficiency or

the fairness-efficiency dilemma (Binmore ).

In the virtue ethics tradition, virtues are the fundamen-

tal, irreducible unit by which to define normativity,

meaning that they are derivative to neither the outcome of

actions (consequential) nor duty to perform an action (deon-

tological) (Hursthouse & Pettigrove ). In agent-based

virtue ethics, agents’ motivations ascribe the rightness and

wrongness of an act and agents learn virtue from ‘exemplars

of goodness’ (Zagzebski ). This understanding buoys the

concept of learning models of normative behavior by observ-

ing the human performance of similar tasks.

Morality in the sciences

Evolutionary biology tells us that morals are adaptations to

social living; when prehistoric humans began to form

larger groups, survival was dependent upon the group, and

therefore, what was best for it could supersede the priorities

of the individual (Krebs ). Psychology and the disci-

plines of biology are interested in the mechanisms and

processes of the human brain as they relate to developing

and making moral judgments (Haidt ). As a distinction

from other fields, sociology interrogates morality at scales

beyond the individual. When sociology does focus on the

morality of individuals, it is almost always in relation to a

larger group. Contemporary sociology of morality includes

both moral theorizing and experimental science to uncover

moral truths (Bykov ). Work is not a shared substantive

focus, but the recognition that moral evaluations and categ-

orizations are an essential part of struggles in ‘social fields’

(Hitlin & Vaisey ).

When considering how to incorporate moral and nor-

mative sentiments into intelligent infrastructure, the

sociological literature provides intriguing insights. The

theory of ‘thick’ and ‘thin’ moral concepts contends that

there are thin moral concepts that are ‘methodologically

tractable’, through hypothetical situational tests. Conversely,

thick concepts – like dignity, integrity, humanness, etc. – do

not lend themselves to parsimonious description or

measurement, making thick concepts more difficult to

explore by the experiment (Abend ). Furthermore,
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there is a lack of evidence for how thin and thick concepts

relate to each other. Thus, a holistic approach would incor-

porate exercises in which feedback on both thin and thick

moral concepts can be collected. Furthermore, other studies

show that higher social class predicts increased unethical

behavior (Piff et al. ), that lower-class individuals are

more likely to be compassionate to another’s suffering

(Stellar et al. ), that different social classes use different

criteria in anticipated cost–benefit analyses (Trautmann

et al. ), and that lower-class individuals are more likely

to perform an unethical act if the act was to the benefit of

others (Dubois et al. ). Together, these findings clarify

the process and partners needed when operationalizing

feedback on normative expectations of smart water systems.

Integrating moral and normative sentiments into

intelligent systems

Machine learning (ML), artificial intelligence (AI), and data

algorithms generally have been – and stand to be – applied

in a wide range of scenarios from data augmentation

(Demiray et al. ) to forecasting (Sit & Demir ; Xiang

et al. ). There is, however, growing acknowledgement

that, unexamined, these techniques can institutionalize the

biases and structural prejudices that persist in the world,

especially in decision-making contexts that directly affect

humans such as in job hiring, evaluating credit scores, and

predicting repeat offenders during parole processes (O’Neil

). Consequently, popular culture, industry, government,

and academia have focused attention upon the intentional

and ethical application of AI and created a proliferation of

AI ethics frameworks (Hagendorff ; Jobin et al. ).

Two primary concerns of deploying these technologies in a

complex world are as follows: (1) their instantiated purpose

and behavior may not be well understood and (2) the systems

may take irrevocable acts before humans have the data to dis-

cern their error (Samuel ).

These concerns connect to the questions of building fra-

meworks and governance models to responsibly integrate

algorithms into systems that affect humans. Toward this

aim, the agenda of ‘society-in-the-loop’ (SITL) proposes to

build an algorithmic social contract where human-in-the-

loop principles and general stakeholder values are inte-

grated into an iterative development process (Rahwan
://iwaponline.com/jh/article-pdf/23/3/466/892491/jh0230466.pdf
). In its proposal, SITL forwards the tenets of algorith-

mic regulation (O’Reilly ). The algorithmic regulation

proposed requires a deep understanding of the desired out-

come that outcomes are monitored, that the algorithm

adjusts based on new data, and periodic deeper analysis

on algorithm performance.

Recent work in machine ethics can be understood in the

context of building methodologies and frameworks toward

SITL and algorithmic regulation (Tolmeijer et al. ). A

crowdsourced, voting approach has been proposed as a flex-

ible method to incorporate moral sentiments for AI

applications (Conitzer et al. , ). Crowdsourced

voting has already been tested on a massive scale to query

preferences on resolving moral dilemmas of autonomous

vehicles using a pairwise comparison experimental setup

(Awad et al. ). After data collection, concepts from com-

putational social choice (Chevaleyre et al. ) and ML

classification techniques can be used together to build pre-

ference models of individuals and groups (Noothigattu

et al. ). These preference models, which in theory rep-

resent the real sentiments of the participants, can then be

used in decision-support algorithms. Two examples of this

process are in the development of an algorithm to decide

tiebreaks in a theoretical kidney exchange market (Freed-

man et al. ) and an algorithm to support a fair and

efficient dispatch of food donations (Lee et al. ). Criti-

cally, these examples apply voting-based preference

aggregation within a larger, participatory framework. We

observe that such frameworks to generally be able to (a)

identify relevant belief features to base decisions upon; (b)

assay preference along each relevant belief feature using

pairwise comparison testing; (c) learn a preference model

from the preference assays; (d) use the learned preference

model in experimental decision-making scenarios; (e) ana-

lyze the outcomes of the preference model and identify if/

where model-driven outcomes are incongruous with stated

values or objectives; and (f) iterate on and/or deploy the

learned preference model. In the ‘Materials and methods’

section, we provide further details for this process.

Currently, open frameworks which support all or part of

the above workflow are limited (if any) in the literature. Pre-

vious studies have built custom web-voting applications

(step b) for their specific applications but did not share gen-

eralized source code. Other studies used proprietary web
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platforms to collect preference data. Furthermore, we are

unaware of any framework that has shared analytical tools

for post-play data processing and preference model

development.

Toward this end, we propose an integrated and general-

ized framework to incorporate voting-based ethical and

normative preferences into water resources decision-support

schemes. We then demonstrate the framework with a proof-

of-concept use case where decision models are learned and

deployed to respond to flooding scenarios. The results indi-

cate that the framework can capture group ‘wisdom’ in

learned models and use this to make decisions. Further-

more, we share our generalized framework openly with

the research community.

The remaining sections are organized as follows. Sec-

tion ‘Materials and methods’ provides details on the

methodology of each step of the framework listed above,

and cyber components used in handling the step. Section

‘Results and discussion’ demonstrates the framework with

a proof-of-concept use case for decision making for flood

response with a discussion of the framework. Finally, the

‘Conclusion’ presents the larger context of incorporating

normative expectations into smart water systems.
MATERIALS AND METHODS

In this section, we describe the approach and technologies

used to employ the methodological framework introduced

previously. First, we describe how to identify relevant

belief features. Next, we describe the process employed to

collect people’s preferences. This subsection includes a

description of the generalized web framework developed

to collect voting-based preferences, its web architecture,

game play, and database architecture. Finally, this section

details the post-play data analysis to derive preference

models, how to use them to make decisions, and the ana-

lytics toolbox developed to support this exercise.

Identifying and assaying relevant belief features

Example methodologies to identify relevant belief features

for decision making (step a) can be found in Lee et al.

() and Freedman et al. () and include survey and
om http://iwaponline.com/jh/article-pdf/23/3/466/892491/jh0230466.pdf

021
interview techniques. Relevant belief features are those

that someone would use to make a deliberative action. For

example, in the case of choosing between two flooding out-

comes, relevant belief features to be considered could be

public costs, private costs, injuries, deaths, and environ-

mental impact. Once belief features have been established,

different scenarios can be created that vary along with the

belief features. The scenarios are presented to individuals

in pairs. Participants must choose which outcome they

prefer from each pair presented to them. Their choices are

recorded and used later to learn a preference model.

To collect preference data from participants, we built an

integrated web-based serious gaming platform. Serious

gaming is used in a variety of fields for training, decision

making, and education (Susi et al. ). In water resources,

serious gaming is used to explore the multifaceted chal-

lenges such as multi-hazard mitigation (Carson et al. ).

Web-based serious gaming offers easily accessible and

user-friendly interfaces with flexible architectures for var-

ious skill levels (Xu et al. ). In many serious gaming

applications, the game play offers the user an opportunity

to explore real problems and strategies without the conse-

quences of their actions impacting the real world. Instead,

play informs a value system that guides behavior and

action during a future, real-world event. Play is recognized

as an important feature in the development of value systems

and morals in humans. Furthermore, actions within the con-

text of play (i.e. games) give rise to different value systems

compared with a work context, even when considering the

same topic (Bargheer ). These value systems result in

different moral treatments of the same topic which can

result from starting in the context of play or work. Gamifica-

tion allows for parsimonious yet engaging descriptions of

the ethical dilemmas at hand. More engaged users are

more likely to play for longer and contribute more to the

model development. The following subsections describe

the web architecture, game play, and database architect of

our serious game approach.

Water Ethics Web Engine (WE)2 architecture

The Water Ethics Web Engine (WE)2 is an open and inte-

grated framework that allows a rapid deployment of web

applications to investigate moral preferences via pairwise
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comparisons. The framework is comprised of a PHP-based

application engine and use case web template and includes

a database architecture on the back end (Figure 1). Full

documentation of the framework and source code can be

found in GitHub: https://github.com/uihilab/WaterEthics-

WebEngine. Researchers provide their application and

experimental information to the engine via two configur-

ation files (site_meta.json and scenarios.json) using the

JavaScript Object Notation (JSON) format. These files,

along with supplied images, are stored on a Web server

and accessed during the game play by the application

engine. Data generated during the game play are logged in

a web-accessible database. Once data are collected,

researchers have access to analytics tools and a portal for

data export.

Case study information described above is stored on a

Web server in a unique directory. When a user navigates

their browser to the specific game version, given to them by

the researcher, the engine generates the Web page from the

content stored in case study files (i.e. the site metadata, scen-

ario content, and the images). Scenarios displayed to

participants are chosen randomly from the total set supplied.
Game play

Users are presented with a homepage that provides a brief

mission statement on the purpose of the game and a

button to start the game play. During the game play, users

are presented with two scenario windows displayed side-

by-side. In each scenario windows are the descriptions of
Figure 1 | System architecture of the web-based decision-making framework. The

application engine, database, and researcher-supplied data are located on a

Web server. When clients, or users, navigate to a project directory, the

application engine builds the project using the information supplied in the

static JSON files. After the game play, the researcher may use the post-play

analytical tools to investigate results and learn preference models.

://iwaponline.com/jh/article-pdf/23/3/466/892491/jh0230466.pdf
the event and an action button with a user-defined decision,

e.g. ‘Flood This’ or ‘Save This’. Descriptions come in some

combination of three forms: an image, info bar, and written

description. All description types are supplied by the

researcher and are customizable. Users are instructed to

use the descriptions to determine what outcome they

prefer for the scenario. To choose the preferred decision,

users click on the action button on which the decision is

recorded, and a new scenario is displayed. Once the user

has provided their preference for all scenarios, they will be

guided to a results page that provides the user with a descrip-

tion of their aggregate preferences in relation to all others

who have played the game and to the absolute possible out-

comes along the belief features provided in the descriptions.

Post-play analysis

In this section, we describe the methods used in the post-

play analysis. This includes learning preference models,

making decisions with these models, and the iterative pro-

cess of improving and deploying them. We also describe

our analytic toolkit to facilitate these efforts.

Learning preference models

By using the paired comparison experimental design, parsi-

monious random utility models can be leveraged to learn

preference models for individuals or groups (step c)

(Tsukida & Gupta ). When a participant votes that

they prefer one outcome over another, one can hypothesize

that the outcome has, on average, a greater utility. It is

assumed that the utility of a decision relies on weighing

the tradeoffs of each option across the belief features that

describe them. When participants provide decisions across

a set of scenarios, they provide a classified dataset from

which a preference model can be learned via classification

techniques used in machine learning.

There are numerous methods of using pairwise compari-

son data to build preference models (Conitzer et al. ;

Noothigattu et al. ; Lee et al. ; Freedman et al.

). Here, we employ the Thurstone’s Law of Comparative

Judgement Case V model to convert paired comparisons

into group quality scores (Tsukida & Gupta ). For a

group of participants who have made judgments on the

https://github.com/uihilab/WaterEthicsWebEngine
https://github.com/uihilab/WaterEthicsWebEngine
https://github.com/uihilab/WaterEthicsWebEngine
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same scenarios, an estimate of the mean quality difference

between option A and B, μAB, is calculated for each scenario

as follows:

μAB ¼ Φ�1 CA,B

CA,B þ CB,A

� �
(1)

where Φ�1(x) is the inverse cumulative distribution function

(CDF) of the standard normal distribution, and CA,B, CB,A

are the number of votes for each option received. For

example, CA,B ¼ 27 would mean that 27 people prefer out-

come A over outcome B.

Mean differences can be related to scenario belief fea-

tures as:

μAB ¼ βT (XA �XB) (2)

where XA, XB are the vectors of the belief features for

option A and option B, respectively. The learned preference

model of the group is the estimate of the belief feature

weighting factors of βT and can be found using linear

regression, or other classification techniques, given that:

μAB,1
μAB,2

..

.

μAB,n

2
6664

3
7775 ¼ βT

(XA �XB) 1

(XA �XB) 2

..

.

(XA �XB) n

2
6664

3
7775 (3)

where μAB,i is the estimated mean utility difference of scen-

ario i of the n shared scenarios and (XA �XB)i is the

difference in belief features of i of the n shared scenarios.

After a preference model βT is learned, we can investi-

gate its behavior. To do so, we need to calculate μAB in

Equation (2) using the belief features of new scenarios. If

μAB is positive, then choice A is selected. If μAB is negative,

then choice B is selected. Decisions generated using the pre-

ference model can then be compared against various

benchmarks, such as the historical performance of a

system or against some specified definition of fairness and

efficiency. Committing to this activity will require a reflec-

tion on whether the algorithm is meeting its purpose. After

interrogating the behavior of the learned preference

model, the researcher has a clear choice to continue to
om http://iwaponline.com/jh/article-pdf/23/3/466/892491/jh0230466.pdf
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refine the preference model iteratively or incorporate the

preference model into their operation. As a practical

matter, one can choose to pursue both continuously and

simultaneously.

To facilitate the workflow of data retrieval, learning pre-

ference models, and using them to make decisions on new

scenarios, we developed a data analytics toolkit using the

Python programming language. The toolkit includes a data

service interface with a PostgreSQL database, data struc-

tures and methods to streamline the workflow. The toolkit

and documentation of workflow are provided in the project

repository.
RESULTS AND DISCUSSION

In this section, the web framework and methodology are

applied in a proof-of-concept use case with a group of under-

graduate engineering students at the University of Iowa

(n ¼ 409). The use case explores the preferences of individ-

uals to flood scenarios and the result of using their

preference models to make decisions.

Between 1980 and 2018, Iowa experienced 26 flood

disasters where damages exceeded $1 billion (Immerman

& Immerman ). Most recently, damages due to the

spring 2019 flooding events in Iowa are estimated at $1.6

billion (Hardy & Cannon ). Furthermore, between

1988 and 2016, there were a total of 951 flood-related pre-

sidential disaster declarations in the state (Eller ). In

total, the sum of damages over the last 40 years is esti-

mated at $41 billion, or a little more than $1 billion per

year. In response, the State of Iowa has supported flood

mitigation and flood preparedness through the Iowa

Flood Center (IFC) and the Iowa Watershed Approach

(Weber et al. ). Yet still, when floods occur, the

response requires lay people and decision makers alike to

make fraught decisions that take on ethical and moral

dimensions (Bosman et al. ; Kelley ; Marso ).

Furthermore, actions taken in the lead up to and during

a flood event can result in litigation from damaged parties

which contribute to a fractured response. As such,

decision-support recommendations from a voting-based fra-

mework could increase confidence and coordination in a

community’s flood response.
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The primary goal of this use case was to demonstrate

how voting-based preferences of specific flooding scenarios

can be used to decide responses for a collection of flood

scenarios. A secondary goal is to analyze the cumulative

effect of these responses. To design flooding scenarios to

use with the web-based ethics framework, we first deter-

mined relevant belief features. Belief features were chosen

in an exploratory fashion based upon stated priorities of sta-

keholders as detailed in news publications and personal

experience. Relevant belief features used to describe the

impact of various flooding outcomes, such as public costs,

private costs, injuries, deaths, and environmental damage.

Given the proof-of-concept nature of our application, the

process of identifying and clarifying relevant belief features
Figure 2 | Example scenario and game play provided by the (WE)2 framework. Participants are

photos, info bars, and text (displayed when information button, button is click). Upon

participant is served another scenario.

://iwaponline.com/jh/article-pdf/23/3/466/892491/jh0230466.pdf
is beyond the scope of this paper. Next, 17 different scen-

arios were randomly generated. Scenarios present two

options of flooding outcomes and consist of two assets

with varying descriptors (e.g. flood national chain grocer

in low-income neighborhood or flood middle-income

multi-family home). For each asset, unitless values were

assigned for the impact of flooding along with each belief

feature. Furthermore, each asset description includes an

illustration and a text (Figure 2).

To collect preference data, we had freshmen vote on a

five-scenario subset of the 17 scenarios during an ethics

module in the University of Iowa, College of Engineering’s

Introduction to Engineering Problem Solving course. To

build class section-specific preference models, all students
served multiple scenarios where they are provided two outcomes and their descriptions as

clicking the action button, e.g. ‘Flood This’, the response is logged in the database and the
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within a section were served the same five scenarios

(Table 1). All responses were recorded in a web-accessible

database and related to unique user ids and the class section

keyword name.

To learn models from the collected data, votes were

aggregated by class section. Participants who did not pro-

vide a vote for all five scenarios were not included in

model generation. Preference models were learned using

multiple linear regression. Five models were learned includ-

ing one for each class section and one model that is the

average of the four class sections. Five model parameters

(β values) describe each model, one parameter for each

belief feature provided in scenarios (Figure 3 and Table 2).

A negative model parameter indicates the model’s prefer-

ence to minimize the impact along the given dimension. A

positive model parameter indicates the preference to maxi-

mize the impact along the given dimension. This is due to
Table 1 | Each class section is referenced by a letter, section name

Section name N Scenarios

a 103 2, 3, 10, 15, 16

b 111 2, 3, 4, 5, 6

c 106 8, 9, 10, 11, 12

d 89 13, 14, 15, 16, 17

N details that how many students provided preferences through the game play. Scenarios

column lists which five scenarios were served to each class section.

Figure 3 | Learned preference models for each of the four class sections and their

average. Negative beta values indicate a preference to minimize the impact for

a category.
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the experimental design and our definition of marginal uti-

lity. For example, if it is preferred to minimize public

costs, then the difference in public cost between the pre-

ferred option and the undesired option would be negative;

or, that the preferred option results in fewer public costs.

This negative value is multiplied by a negative β value to

result in a positive contribution to the utility of that

choice. All learned models minimize public costs to some

degree; model a gives the most priority to public cost mini-

mization and model c gives the least. However, no model

gives minimizing public cost the highest utility against the

other belief features. Models b, d, and Average give the high-

est utility to private cost minimization. Models a and c give

the highest utility to the minimization of injuries. However,

model a maximizes the minimization of public costs, private

costs, and injuries almost equally.

To analyze the impact of the learned models, we simu-

lated decisions on all 17 scenarios using the learned

models. To add reference outcomes, we also simulated

decisions of five models that, respectively, only prioritized

one of the belief features. In effect, these reference models

made decisions based on a single criterion instead of some

combination of the five criteria of the learned models.

Decisions, realizing the flood of the left or right scenario,

for all 17 scenarios were made (Figure 4). The procedure

is as follows: the dot product was taken between the

vector (XA �XB) and each of the ten βT models. The

result, the mean utility difference between option A (left)

and option B (right) determines how each model would

decide between the two outcomes; for a negative difference,

chose option A (left), and for a positive difference, chose

option B (right). Ties, which only occurred with the refer-

ence models, were noted and interpreted as that outcome

could go either way. In general, learned models voted simi-

larly, showing the agreement of vote on 11 out of 17

scenarios.

To compare how the outcomes differed between the

models, we calculated the total impact each model avoided

along with each belief feature and normalized them against

the minimum and maximum possible avoidable damage

(Figure 5(a)). A score of one indicates that the maximum

damage was avoided, while a score of zero indicates that

the minimum damage was avoided. All learned models

avoided high levels of death and environmental impacts,



Table 2 | Beta values for each preference model used to make decisions

Experimental model
Beta values
Public Costs Private Costs Injuries Deaths Environmental Impact

a � 0.42 � 0.42 � 0.46 � 0.24 � 0.24

b � 0.21 � 0.48 0.00 � 0.16 � 0.07

c � 0.03 � 0.17 � 0.74 � 0.35 � 0.46

d � 0.17 � 0.22 0.14 0.13 � 0.09

Average � 0.21 � 0.32 � 0.26 � 0.15 � 0.21

Minimize Public Costs � 1 – – – –

Minimize Private Costs – � 1 – – –

Minimize Injuries – – � 1 – –

Minimize Deaths – – – � 1 –

Minimize Environmental Damages – – – – � 1

Models a, b, c, and d are the learned models from each class section, and Average is the average of each of these learned models. These models weigh multi-dimensional effects to deter-

mine a decision. These models contrast with the reference models, which only consider the impact along with a single category.

Figure 4 | Voting results from each of the five learned models and five reference models.

Each model was used to vote, left or right, on the outcome of all scenarios

generated for the flooding use case.
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while showing less agreement and less ability to avoid public

costs. The same exercise was performed for the reference

models (Figure 5(b)). Although each model scored maxi-

mally in their respective categories, it does not suggest

with these example scenarios that it is a productive strategy

to prioritize only one category over all others.

Because each of the 17 scenarios has only two options,

flood left or flood right, there are 217 – or 131,072 – unique

decision combinations. We normalized and ranked all out-

comes along with each category, allowing us to build

percentile curves (Figure 6). Only model a score above

the 50th percentile in all categories. The remaining four

learned models performed above the 50th percentile in all

but one category, public costs. Across the five categories

and five models, 17 out of the 25 outcome scores ranked

above the 90th percentile, which indicates strong perform-

ance for all learned models.

To compute an overall outcome score for each of the 217

voting possibilities, we performed a simple summation of

the normalized outcome scores of each category for each

model. These overall scores, too, were ranked and percentile

scores calculated (Table 3 and Figure 5(c)). Shockingly,

model a achieved the highest possible overall score of

3.922 (out of a maximum of 5) for rank 1 of 217. Model c

achieved a cumulative outcome score of 3.849 for a rank

of 6 of 217. All learned models achieved scores that put

them in the 98th percentile of all outcomes in avoiding



Figure 5 | Outcome scores are calculated as the avoided damage along a belief feature

normalized by the maximum possible avoidance. Outcome scores were cal-

culated for the learned models (a) and reference models (b). A model’s

cumulative outcome score is calculated as the sum of all outcome scores.

Each model’s cumulative score is ranked against all possible cumulative out-

comes (c). Model a performed achieved the highest possible overall outcome

score of 3.92 and a rank of 1 in 217.
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total damages. Interestingly, only one of the single objec-

tives, reference models performed better than any of the

learned models.
DISCUSSION

The framework presented here demonstrates the ability to

use a voting-based system to aggregate human preferences

to ethical decisions in smart water systems. Collected data

can be used to learn models of preferred behavior which

can then be used to make decisions on new scenarios.

This data-driven approach is novel in helping researchers

learn the utility function from a large, potentially very

large cohort of people and not assume an understanding

of the utility function to be used to judge outcomes a

priori. To this end, water professionals and researchers can

investigate how algorithmic components of smart water sys-

tems or disaster response perform in relation to people’s

normative expectations of right and wrong.

The framework follows a consequentialist ethical

theory, as the definitions of utility and performance rankings

are based upon the outcomes of each scenario. However,

learning utility functions without any a priori knowledge

mitigates the limitations of traditional consequentialist

approaches. As discussed earlier, consequentialist

approaches come with limitations such as what factors

(belief features) to use to describe outcomes and the fair-

ness-efficiency tradeoffs between the following different

moral theories (utilitarian vs. egalitarian strategies). One

strength of this approach is that belief features may also be

crowdsourced, which allows many people to define an

inclusive list of important belief features. Another strength

is that by learning the models of action from people’s

decision, it is unnecessary to proclaim beforehand what fair-

ness-efficiency tradeoffs should be made. Instead, the

fairness-efficiency priorities are captured within the learned

models. However, these learned models may not agree with

the institutional understanding of rights or justice. Further

effort may be required to integrate learned preference

models with our ideals and aspirational sense of justice

and fairness. Finally, this approach currently does not

address the difficulty of decision making under uncertainty.

This is an area of future work. Overall, we identify the



Figure 6 | Ranking curves for each of the five learned models along each of the five relevant belief features. Overall, the learned models performed well. Model a, which had the highest

cumulative score when considering minimization of damages, scored highest among the models in three categories: deaths, injuries, and public costs. Yet, it also performed the

worst in minimizing private costs and was third in environmental impact minimization.
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inability of a single person, namely the researcher, to insert

bias into the calculations as a positive outcome of using this

framework.

Results from the experiment show the remarkable possi-

bility for the models to choose outcomes that rank highly

when considering the cumulative outcome. Models a and

c appear to achieve their astonishingly high ranking because

they chose outcomes that did not favor private cost minimiz-

ation at the expense of public costs. This observation is
://iwaponline.com/jh/article-pdf/23/3/466/892491/jh0230466.pdf
supported by the β values for public and private costs that

are equal for model a. These findings are relevant only

within the context of our theoretical proof-of-concept.

More robust studies are required to make that claim gener-

ally. Furthermore, the cumulative scores and ranking

method used here communicate only a single concept of

‘success’. It is reasonable to justify other performance

metrics beyond summing the normalized results of each cat-

egory. Rather, the cumulative outcome score analysis can be



Table 3 | Cumulative impact scores for each learned and reference model in the rank

order

Experimental model
Cumulative
outcome Percentile Rank

a 3.922 0.99999 1

c 3.849 0.99995 6

Average 3.726 0.99944 73

Minimize Injuries 3.699 0.99911 117

d 3.555 0.99406 779

b 3.447 0.98280 2,254

Minimize Deaths 3.423 0.97894 2,760

Minimize Environmental
Damages

3.376 0.96988 3,948

Minimize Private Costs 3.219 0.92303 10,089

Minimize Public Costs 2.708 0.66605 43,772

A total of 217 possible outcomes.
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instructive as a first step toward an application-specific

evaluation technique.

Critiques of paired comparison for modeling moral pre-

ferences follow two forms: misplaced moral subject and lack

of meaning of dilemmas descriptors. The first form states

that the subject, or the moral actor, in the dilemma should

move from the individual to the institutional. Consider the

Trolley Problem, a classic philosophical dilemma in which

the subject, the trolley driver, must choose between two

bad decisions (Thomson ). One could ask: How did

society fail to enforce safety standards such that an individ-

ual must intervene in a life and death scenario? Or, why has

society allowed public infrastructure to be so underfunded

that it poses the risk of catastrophic failure? Broadly, this

critique emphasizes that moral and ethical dilemmas

should be interrogated from an institutional or societal

level and not exclusively at the individual. As such, a goal

of smart water research and institutional design may ask:

how can organizations be structured such that moral

decisions made by an autonomous agent are minimized?

The second criticism is that the characteristic classifiers

used in the moral dilemmas under describe scenarios and, in

doing so, elicit not a users’moral ideas but their biases along

the dimension of the classifiers (Everett Jaques ). Put

another way, if an experimental setup provides only infor-

mation on the age or race of a candidate to receive

medical treatment what is the experiment doing but forcing
om http://iwaponline.com/jh/article-pdf/23/3/466/892491/jh0230466.pdf
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participants to display their ageist and racist biases to make

healthcare decisions? And, by extension, if we use these

data to learn a model of ‘ethical’ decision making, are we

not simply training a model to be biased just like us?

These criticisms are addressed in the methodological

design. Contextually, pairwise comparison preference test-

ing should not be understood to possess deep ethical or

normative meaning independently of all the exercises in

the stated framework. Next, because it is not well under-

stood how thin moral concepts relate to thick moral

concepts (Abend ), we cannot a priori assume that

these thin normative preferences collected in pairwise com-

parison tests translate to thicker concepts. As such, thicker

moral and ethical concepts can be incorporated via activi-

ties beyond pairwise comparison testing, such as the

numerous rounds of interviews with stakeholders (Lee

et al. ). Finally, strong reaction to an action or a

method derived from the framework is itself a measure of

normative values and can be integrated via the iterative pro-

cess; collect data and act upon both thin and thick concepts

of morality to improve system performance.

In practice, it is unlikely that a strictly consequentialist

framework would be operational in real-world scenarios.

Instead, a hybrid decision-making process would be

employed. For example, a system could trigger automatic

human oversight if a decision is anticipated to reach a speci-

fied damage threshold. Likewise, because the learned

models predict whether one outcome is better than another,

a mean utility difference between two outcomes close to

zero suggests that there is a very weak preference. Thus, in

these cases, a human review could also be triggered. These

rule-based heuristics can set guardrails on the strictly conse-

quentialist models, while also providing further opportunity

for society-in-the-loop principles. Furthermore, a critical

step for future work will be to explore how decisions derived

from (WE)2 preference models impact system outcomes via

their integration with hydraulic models.
CONCLUSION

Societal values are embedded into our built world – water

systems are no exception – but these values are rarely

inspected as part of the scoping of technical solutions.
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Instead, values are treated as priors – immutable, unstated,

and implicit as they relate to the objectives of infrastructure.

Yet, our infrastructure itself evolves. Increasing resolution in

sensing and control of our water environment will allow for

unprecedented precision of impacts, both positive and nega-

tive. At the same time, humans will continue to cede direct

decision-making powers to decision-support technologies

such as data algorithms. This new paradigm of smart and

autonomous water systems will create new operational

capabilities and new opportunities to [re]evaluate these

values and explicitly incorporate them into operations.

The methodology and ‘proof-of-concept’ presented here

are a first step toward building a framework for engaging

people in algorithmic decision making in cases where nor-

mative and ethical preferences are considered. We

developed the web-based (WE)2, which is a generalized fra-

mework with serious gaming to collect normative

preferences through paired comparison testing. Although

our framework was designed for water applications, the fra-

mework is generalizable and can be used for any paired

comparison exercise in any field. Preferences collected

using (WE)2 can then be used with our data analytics tool-

box to build decision-support preference models and

investigate their behavior. These resources, including docu-

mentation and tutorials, are shared openly and can be

found in the project repository.

We observe that the strength of this framework is that it

can prime conversations on values and system expectations

at every step of the process, forwarding an iterative process.

By doing so, practitioners can work to unobscure AI, ML,

and data-driven techniques from behind jargon and demys-

tify the ‘black box’ processes of decision-support

algorithms. We anticipate benefits in deploying our inte-

grated framework in education, operational, and outreach

contexts.

Efforts toward incorporating ethics and norms into

smart systems must be considered in a sociotechnical con-

text. Importantly, this means that the solution to the

development of a technology that is faithful to a society’s

values may not necessarily be technical in nature at all.

Instead, findings from studies could support a structural,

social solution as opposed to a solution reliant upon a tech-

nological artifice. Though aspects of the work can be

technological, it should not preclude results finding that a
://iwaponline.com/jh/article-pdf/23/3/466/892491/jh0230466.pdf
structural or institutional solution is preferred. The appli-

cation of AI, ML, and data-driven techniques to water

sector problems does not alone make a system ‘smart’.

Instead, ‘smart’ water should be conceived as the use of

these tools to forward an explicitly recognized objective of

the society.
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