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Abstract

The identification of peptide sequences and their post-translational modifications (PTMs) is a
crucial step in the analysis of bottom-up proteomics data. The recent development of open
modification search (OMS) engines allows virtually all PTMs to be searched for. This not only
increases the number of spectra that can be matched to peptides but also greatly advances the
understanding of biological roles of PTMs through the identification, and thereby facilitated
quantification, of peptidoforms (peptide sequences and their potential PTMs). While the benefits
of combining results from multiple protein database search engines has been established
previously, similar approaches for OMS results are missing so far. Here, we compare and combine
results from three different OMS engines, demonstrating an increase in peptide spectrum matches
of 8-18%. The unification of search results furthermore allows for the combined downstream
processing of search results, including the mapping to potential PTMs. Finally, we test for the
ability of OMS engines to identify glycosylated peptides. The implementation of these engines in
the Python framework Ursgal facilitates the straightforward application of OMS with unified
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parameters and results files, thereby enabling yet unmatched high-throughput, large-scale data

analysis.
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INTRODUCTION

After transcription of a gene and translation of mRNA, the synthesized protein can undergo
a variety of modifications. These post-translational modifications (PTMs) result in a
multitude of variations, also called proteoforms, produced from a single gene. These
proteoforms can differ in their structure, localization and enzymatic activity, thus increasing
complexity from genome to proteome level!=>. PTMs often allow for subpopulations of the
proteome to be changed within seconds by simple attachment or detachment of specific
PTMs. As a result, intricate networks of PTMs are involved in the regulation of virtually all
biological processes, in all three domains of life®. For instance phosphorylation, one of the
best-studied PTMs, is the driving force of many signaling cascades’®. In contrast to this
simple phosphate modification, protein glycosylation is one of the most complex PTMs?. It

1,12 including the

has been shown to be involved in a multitude of cellular processes
formation of biofilms, microbial communities crucial for virulence and antimicrobial
resistance of various pathogens!3-!4. Many more PTMs are known to be correlated with a

15 including a complex system of histone modifications!®. Thus,

variety of human diseases
gaining a better understanding of the biological roles and regulation of PTMs can not only
provide deeper insights into cell biology but is also of great biomedical relevance. However,
the complexity of PTMs, their often low abundance as well as their non-template-driven

biosynthesis makes their analysis challenging.

Mass spectrometry is the method of choice for studying whole proteomes and related PTMs.
Commonly, there are two approaches, namely top-down and bottom-up proteomics, for the
analysis of whole proteins and peptides resulting from proteolytic digestion, respectively.
The identification of intact proteoforms in top-down proteomics provides unique
opportunities, such as insights into relationships between PTMs on the same protein!”.
However, technical challenges, both in the mass spectrometric measurement of intact
proteoforms and the downstream analysis of resulting spectra, have limited the large-scale
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application of top-down proteomics so far. Bottom-up proteomics, on the other hand, has
been widely applied due to its relatively simple setup, resulting in the broad availability of
bioinformatic tools. In order to identify peptides from bottom-up proteomics data, most
commonly a protein database search is performed, comparing precursor mass (MS1 level)
and peptide fragmentation spectra (MS2 level) to theoretical spectra derived from in silico
digests of a protein database. For the identification of PTMs, different search engines allow
for either a closed or an open modification search to be performed.

In a closed search (CS), a limited number of modifications is defined and during the search
the masses of the modifications are added to each potential modified residue. This addition
of variable modifications in a protein database search exponentially increases the search
space, since each peptide with modifiable residues is searched in all possible combinations,
i.e. including all peptidoforms. Therefore, the search for all potential modifications has long
been virtually impossible, due to the lack of optimized computational resources!8. In
contrast, an open modification search (OMS) allows to search for all modifications within a
user-defined mass range, e.g. +500 Da. In its simplest form, the precursor mass tolerance in
protein database searches can be increased to the desired mass range and the mass of peptide
modifications is determined as the mass difference between precursor and peptide mass!?.
However, this approach does not account for fragment ions that are shifted as a result of a
modification.

Recently, a variety of dedicated OMS engines such as MODa??, PIPI?!, MSFragger?? and
TagGraph?3 have been developed, increasing the speed and accuracy of this approach, and
taking into account shifted fragment ions through different search strategies. MODa, PIPI
and TagGraph employ a strategy in which sequence tags (short substrings of a peptide
sequence) are matched to measured spectra (TagGraph uses de novo search results for this);
multiple matching tags are then aligned and the delta masses between the tags and/or
between the sum of the tags and the precursor mass is reported as mass(es) of the
modification(s). In contrast, MSFragger generates a fragment ion index that is used for the
matching of peaks in measured spectra. Through a recent update of the algorithm, shifted
ion indexes can be generated as well, allowing for the assignment of modified fragment ions
as well as the localization of modifications2*. These varied approaches have greatly
advanced OMSs. Nevertheless, as for CSs, the choice of the most suitable OMS engine is
left to the user and since each OMS engine comes with its own advantages and
disadvantages, the decision becomes difficult.

Additionally, taking advantage of the diversity in search algorithms, the combination of
results from multiple search engines has been shown to increase the number of
identifications for CS approaches?>2%, At the same time, combining results from different
search engines can be used to re-evaluate false discovery rates (FDRs) for peptide spectrum
matches (PSMs) and thereby increase their reliability?>~28, Different methods have been
developed for this task, including machine learning approaches?’. In general, this builds on
the intuitive assumption that PSMs independently identified by multiple tools tend to be
more reliable than PSMs only identified by a single engine. However, the approach to
combine results from different search engines has not been applied to OMSs yet.
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In this work, we provide a unified scriptable access to various OMS engines. We compare
the results from different OMS engines in regard to their level of disagreement on PSMs for
the same spectra. Furthermore, we show that combining results from different engines
increases the number of peptide identifications and can aid in the identification of PTMs.
Finally, comparisons with traditional CS approaches reveal large overlaps, indicating the
potential to use OMS as a standard search approach. However, taking the example of
glycosylation, we also reveal limitations of the OMS approach.

MATERIAL AND METHODS

Implementation of OMS engines in Ursgal

126 and an extensive,

The Python framework Ursgal has previously been described in detai
continuously updated documentation is available (https://ursgal.readthedocs.io/en/latest).
The OMS engines MODa (v. 1.61)20, PIPI (v. 1.4.6)2!, MSFragger (v. 2.3)%2 and
TagGraph?3 have been implemented as protein database search engines. The tools PTM-
Shepherd®? and PTMiner3! have been included for the downstream processing of mass
differences reported by OMS engines. All relevant parameters to execute these engines have
been unified and are available within Ursgal’s uparams. An overview of all parameters,
engine specific parameters, parameter translations between engines, and more can be found

in the documentation as well as through an interactive, searchable Dash app user interface.

Results from each tool are converted into a unified comma separated values file (CSV)
format, in which each row contains a PSM, corresponding to a spectrum, and all properties
of the PSM are listed in distinct columns (e.g. “Spectrum Title”, including the file name and
spectrum ID; “Sequence”, referring to the peptide sequence; “Modifications”, PTMs given
as PSI-MS terms together with their position and separated by semicolons; “Protein ID”*;
engine scores, etc). For the results of OMS engines, this format has been extended by a
“Mass Difference” column, comprising the mass difference(s) reported by the engine in Da.
PTMs assigned by downstream processing tools are included in the column “Mass
Difference Annotations”. If a PTM could not be assigned, the mass difference is updated to
the corresponding binned mass difference peak.

Further details, including example scripts for the use of OMS and downstream processing
engines can be found in the Ursgal GitHub repository (https://github.com/ursgal/ursgal). The
current version of Ursgal has been uploaded to Zenodo with the following permanent digital
object identifier https://doi.org/10.5281/zenodo.4299358.

Datasets and protein databases

Four datasets were used: two Homo sapiens datasets, one Haloferax volcanii dataset and one
Escherichia coli dataset. The first H. sapiens dataset (PXD004452), an in-depth proteomics
dataset, was published by Bekker-Jensen et al32. The second H. sapiens dataset
(PXDO013715), which is a glycoproteomic dataset, was published by Brown et al.33 The E.
coli dataset (PXD000498) was published by Schmidt et al3*. Details on the sample
preparation and mass spectrometric measurements for all these datasets can be found in the
original publications. Finally, the H. volcanii dataset represents a glycoproteomic analysis,
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with details about the sample preparation and analysis of results given in the PRIDE
description (PXD021874). Raw files were converted into mzML using msConvert within the
ProteoWizard Toolkit>> (v. 3.0.19046).

Protein databases for H. sapiens (UP000005640) and E. coli (UPO00000625) were
downloaded from UniProt on November 18, 2019 and June 13, 2020, respectively. The H.
volcanii (https://doi.org/10.5281/zenodo.356563 1) reference proteome was acquired from
the Archaeal Proteome Project3¢. The target decoy databases were generated the same way
for all three organisms: the reference databases were first supplemented with the cRAP
database (https://www.thegpm.org/crap/) of common contaminants before generating decoys
by peptide shuffling using the generate_target_decoy_1_0_0 node within Ursgal. Different
decoys were generated depending on the enzyme used for the respective datasets (Trypsin or
GluC).

Open modification search

The OMS pipeline was set up within Ursgal (v. 0.6.7)%6 and included the conversion of
mzML files to mgf format using pymzML (v. 2.4.6)3’ before the main search was carried out
by three search engines, namely MODa (v. 1.61)20, PIPI (v. 1.4.6)2! and MSFragger (v.
2.3)22.If not defined otherwise, Ursgal default values within the profile QExactive+ were
used. Carbamidomethylation of C was set as the fixed modification and the enzyme for in
silico digestion was set as either trypsin or gluc depending on the input file. Precursor and
fragment mass tolerances as well as modification sizes used for each dataset are summarized
in Table 1. The parameter moda_high_res was set to False. Mapping of peptide sequences to
proteins was done using the upeptide_mapper_1_0_0 node.

Closed search

The CS pipeline was set up within Ursgal®® (v. 0.6.7) similarly to the OMS pipeline. The
following search engines were used: X! Tandem3® (v. Vengeance), MSFragger?2 (v. 2.3), and
MS-GF+3? (v. 2019.07.03). In addition to setting the fixed modification as
Carbamidomethylation of C, the following variable modifications were used: methionine
oxidation and N-terminal acetylation. The remaining parameters and processing steps were
similar to those of the OMS except that the modifications were only allowed within the
range of the precursor mass tolerance.

Statistical post-processing

Results from fractions of the same sample were merged before post-processing with
Percolator*? (v. 3 4) to determine PEPs. For individual search engine results, validated
results were filtered by a PEP < 1%. For the combined PEP approach26, unfiltered but
validated results of all employed engines were subjected to the combine_pep_1_0_0 node
and results were subsequently filtered by a combined PEP < 1%. In order to remove
conflicting PSMs for the same spectra, sanitizing was performed using the corresponding
Ursgal node. PSMs were ranked based on their combined PEP and only the best scoring
PSM per spectrum was accepted. Given that some engines report multiple PSMs per
spectrum, individual search engine results were also sanitized as described above, using the
PEP instead of combined PEP. To merge rows corresponding to the same PSM, minimum
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values of combined PEP and Bayes PEP were maintained in the case of the combined PEP
approach, while minimum values for PEP were considered for the individual PEP approach.

Analyses of mass differences

Mass differences identified during OMS were analyzed using PTM-Shepherd (v. 0.3.5)
which was implemented in Ursgal. Results from either single OMS engine analyses, filtered
by 1% PEP and sanitized, or combined results from multiple OMS engines, filtered by 1%
combined PEP and sanitized, were used as input files for PTM-Shepherd. Parameters for
PTM-Shepherd runs were based on parameters used in the OMSs for each dataset. In
addition to that, the bin size for mass differences was set to 0.2 mDa, and the minimum
relative peak intensity was set to 0.01. It should be noted that PTM-Shepherd allows only
one mass difference per PSM, which is why multiple mass differences reported (e.g. by
MODa) were summed up into one combined mass difference. Furthermore, MODa reports
mass differences as whole integers instead of floats as the other employed OMS engines. For
the analysis of mass differences from only MODa results, these values were used, whereas
for the analysis of combined OMS results, mass differences were recalculated as the
difference between the precursor mass and the mass of the peptide (including fixed
modifications).

Comparisons between OMS engine results

Results of different OMS engines were compared using the Ursgal venndiagram_1_1_0
node. Comparisons between open search engines’ identifications were performed at the
peptide level and the spectrum level. To further check for disagreements between engines,
spectra identified by different engines were analyzed for corresponding peptide assignments
of each engine and disagreements were further investigated by comparing amino acids as
well as peptide lengths.

Comparisons between OMS and CS

Combined results from all OMS engines were compared to combined results from all CS
engines in regard to peptide and spectra identifications. Equivalent to the comparison of
results from different engines in OMS, peptides mapped to the same spectra by both
searches were compared. Disagreements were further investigated by comparing amino
acids as well as peptides’ lengths. In addition, glycopeptides and corresponding spectra
identified through CS (including through the use of glycopeptide-focused search engines)
were compared to open search results that were processed as described below.

Glycoproteomic analyses

For the glycoproteomic analysis of human datasets, pGlyco*! (v. 2.0) was employed as
implemented in Ursgal, which can be considered a CS using a glycan database in addition to
a protein database. Parameters were based on those used in the CS approach (see above), and
default values were used if not indicated otherwise. Glycopeptides matched by pGlyco were
statistically post-processed using the pGlyco-internal FDR estimation algorithm. Results
were filtered by a g-value < 1%.

J Proteome Res. Author manuscript; available in PMC 2021 July 06.
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The relatively short, linear N-glycans of H. volcanii allowed for them to be included as
potential modifications in CSs using the same engines and parameters as described above.
The included potential modifications were the only differences and contained
oligosaccharides for each step of the AglB- and Agl15-dependent N-glycosylation
pathways*2 as well as two hexoses as O-glycans. Since some engines do not allow multiple
modifications for the same amino acid, each oligosaccharide was searched for in a separate
run. Results were then combined after individual statistical post-processing with Percolator
for each modification. Glycopeptide PSMs were selected as PSMs containing a modification
with at least one hexose.

For the OMS approach, mass differences were post-processed with PTM-Shepherd (see
above). Afterwards, mass differences were mapped to glycan masses from a human glycan
database, downloaded from glySpace using GlycReSoft*3, for the human dataset and to
glycan masses used as modifications in the CS for the H. volcanii dataset. For matches
between reported mass differences and glycan masses a mass tolerance corresponding to the
used precursor mass tolerance was allowed.

OMSs have become increasingly popular for the analysis of bottom-up proteomics data.
Through the integration of various OMS engines in UrsgalZ®, we provide a scriptable
interface to these tools within the widely used Python environment (https://github.com/
ursgal/ursgal). The unification of search parameters and output formats ensures that complex
workflows can be easily generated and facilitates the straightforward comparison and
downstream processing of results.

The combination of different OMS engines increases the number of identified peptides.

The combination of results from multiple search engines has previously been shown to be
beneficial for the number of identifications as well as their reliability>>-2%. However, this
approach has not been applied to OMSs yet. Therefore, we have analyzed an in-depth human
proteomics dataset (PXD004452)%4, using three OMS engines (MODa, PIPI and
MSFragger) to evaluate the applicability of this approach (Fig. 1).

The comparison of the results for each search engine, filtered by 1% posterior error
probability (PEP), showed a higher number of peptide sequence identifications for
MSFragger (149,426) than for MODa (123,765) and PIPI (101,063). While the majority of
peptide sequences was identified by multiple engines (62%), the substantial number of
unique identifications by each engine indicated that a combination of results could be
beneficial (Fig. 1a). However, the estimation of PEPs for each individual engine’s results
prevents a simple merge of the identifications, since this would lead to an accumulation of
false positive identifications. Therefore, in order to combine results from different search
engines, while controlling the PEP at the same time, a combined PEP approach was
employed as described previouslyZ®. As expected, the overlap of identified peptide
sequences between the engines increased substantially (Fig. 1b). Furthermore, the number of
identified peptides increased for each individual engine, most strikingly for MODa and PIPI.
This indicates that the combination of multiple search engine results, and the concomitant
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re-ranking of PSMs, helps to recover PSMs with PEPs > 1% for their individual search
engine results. However, in order to compare the total number of identifications from the
combined PEP approach with identifications from single search engines, results were
sanitized to remove conflicting PSMs from different engines. While this removed around
15,000 peptide sequences (Fig. S1), the remaining total of 162,019 identified peptide
sequences represents an increase of 8.4% in comparison to the best single search engine, i.e
MSFragger (Fig. 1¢). For comprehensive datasets from Haloferax volcanii (PXD021874)
and Escherichia coli (PXD000498)3* (Fig. S2), both of which have less complex proteomes
than Homo sapiens, the same trend in regard to the total number of peptide identifications
was observed, with an increase of 15.0% and 17.9%, respectively (Fig. 1c).

It should be noted that the number of spectra with corresponding PSMs slightly decreased
by 3.5% in the human dataset employing the combined PEP approach in comparison to the
best performing search engine (Fig. S3). Lower identification rates by single engines, e.g.
PIPI identified 50% less PSMs than MSFragger, might have contributed to this effect, since
the overlap between the OMS engines was limited by the engine with the lowest
identification rate. However, for the H. volcanii and E. coli datasets, the total number of
identified spectra increased by 6.9% and 3.1%, respectively. For all datasets, the number of
overlapping spectra between all engines increased substantially, indicating a higher degree
of agreement between the engines (see below).

Differences in PSM assignments between search engines are largely attributed to
differences in peptide length

While the comparison of results from different search engines is often focused on the
number of identified peptides or PSMs24, the level of (dis-)agreement on PSMs between
various tools is rarely analyzed. However, this is of special interest for the combination of
multiple OMS results, since PSM agreements are considered more reliable than PSMs that
show disagreements between search engines. Therefore, we have determined how often
engines map the same spectra to the same peptide sequence, i.e. how often they agree on
PSMs. When considering 1% PEP-filtered PSMs from individual search engine analyses of
the human dataset, 84% of all spectra that resulted in peptide identifications for all three
search engines, showed agreements in the corresponding PSMs (Fig. 2a). This is similar to
the level of agreement for the combined PEP results (82%), however, the number of
overlapping spectra, and therefore the total number of PSM agreements, increased
substantially by roughly 60% (Fig. 2b). The number of spectra that showed an overlap
between two search engines was comparable in both approaches, but the percentage of PSM
agreements increased from 75% to 84% for the individual and combined PEP approach,
respectively (Fig. 2¢.d).

Importantly, the vast majority of differences in PSM assignments between search engines
comprised length variations of the matched peptide (with the shorter peptide being a full
substring of the longer peptide) (Fig. 2). This indicates that part of the mass differences (of
shorter peptides) were attributed to additional amino acids. While, as a result, PSMs for
these spectra differed, they did not represent clear disagreements between the engines,
especially since the OMS engines employed here reported mass differences rather than
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defined PTMs. These mass differences could subsequently be mapped to additional (or
fewer) amino acids and/or PTMs. Similarly, differences in < 3 amino acids could be
explained by mass shifts due to modifications like amidation/deamidation that lead the
conversion of amino acids. Besides these differences in PSM assignments, only 1% to 3% of
PSMs were associated with completely different peptide identifications between the search
engines, representing clear disagreements between the engines. Similar trends were observed
for the H. volcanii and E. coli datasets, however, with an overall lower level of PSM
differences (Fig. S4). While the observed ratio of PSM disagreements was close to the 1%
PEP threshold, it should be noted that this does not allow for conclusions about the overall
PEP, since only a subset of PSMs was taken into account (spectra with PSM assignments by
multiple engines). Furthermore, PSM disagreements could also indicate chimeric spectra
instead of false assignments by either engine.

For further downstream processing of OMS results, differing PSMs for single spectra were
reconciled using the Ursgal sanitize node. PSMs of one spectrum were ranked according to
their score (combined PEP) and only the best scoring PSM was accepted. The combined
PEP approach is beneficial to this process, since the number of engines that assign the same
PSM affects the final score that is used for the ranking of differing PSMs.

Unified OMS results facilitate the combined post-processing of mass differences

Mass differences can be mapped to known PTMs in order to gain more information about
the corresponding type of the modification. This post-processing includes the fitting of mass
difference profiles and their matching to databases of known PTMs3031:4546 Recently,
several tools have been developed for this purpose, including PTM-Shepherd3° and
PTMiner!, both of which have been implemented in Ursgal, allowing for the unified post-
processing of combined OMS results. Using PTM-Shepherd as an example, we observed
that mass difference profiles varied substantially between the different OMS engines (Fig.
3). PIPI identified a comparatively small range and overall lower number of mass
differences. MODa reports mass differences only as integers, which limits its use for PTM
mapping. For the combined OMS results, mass differences of MODa results were therefore
recalculated as the difference between the precursor mass and the peptide mass (including
fixed modifications). The mass difference profile of the combined OMS results is most
similar to the one of MSFragger. Nevertheless, some mass differences, e.g. 42.01 Da
(acetylation) and 79.97 (phosphorylation), were more prominently observed in results from
MODa and/or PIPI and are therefore more abundant in the combined OMS results as well.
For the datasets of H. volcanii and E. coli, the mass difference profile is less complex (Fig.
S5 and S6), which is in line with the lower complexity of the respective proteomes.
Nevertheless, for PIPI a lack of mass differences in the higher mass range is confirmed in
the H. volcanii dataset.

OMS and CS lead to complementing results.

OMS:s are often performed in conjunction with CSs, e.g. as cascaded searches in which
unidentified spectra in a CS are subsequently analyzed with an OMS*’. However, increasing
evidence suggests that OMSs can reliably identify unmodified peptides as well, questioning
the need for cascaded search approaches or even CSs in general®2-2*, Therefore, we
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compared the results from the combined OMS approach to results from a combined CS
approach. In both cases, three search engines were used and results were filtered by 1%
combined PEP. For the human proteome dataset, the OMS approach identified almost 30%
more peptide sequences in 72% more spectra (Fig. 4). A large overlap between both
approaches on the peptide and spectrum level, as well as a high level of agreement on PSMs
for the same spectra, indicated that unmodified peptides are indeed readily identified by the
OMS approach. Even when taking into account only modifications that are commonly
included in CSs (oxidation of M, acetylation of protein N-termini), the OMS approach
identified more than twice as many unique peptide sequences as the CS approach.
Nevertheless, unique identifications from the CS approach increased the total number of
identified peptides by 12%. Similar trends were observed for the H. volcanii and E. coli
datasets (Fig. S7).

Interestingly, a large part of the PSM differences between the OMS and CS approach was
due to the identification of longer peptide sequences in the CS (Fig. 4c). Surprisingly, the
vast majority of shorter peptides assigned by OMS engines (MSFragger and MODa)
harbored mass differences that were attributed to an addition of K or R by PTM-Shepherd.
This means that instead of matching a sequence with a missed cleavage site (within the limit
of maximum missed cleavage sites), MSFragger and MODa frequently added the additional
amino acid as a mass difference. This effect is reduced in the combined PEP results (Fig. 3,
insets), highlighting another advantage of this approach since a matching behavior like this
is in most cases not desired because it would complicate the interpretation of additional
modifications on peptides with (potential) missed cleavage sites.

Complex glycopeptide identifications remain challenging for OMS engines

Recent studies suggested that OMS engines can be used for the identification of
glycosylated peptides and/or the generation of glycan databases for subsequent
glycopeptide-specific searches*8-!. We therefore compared the combined OMS results to
glycopeptide identifications from the established, specialized search engine pGlyco (v.
2.0)*!, which uses a glycan database and could therefore be seen as a glycopeptide-centric
CS approach. Since the regular human proteome dataset yielded only a few glycopeptide
identifications (Fig. 5a,d), we analyzed a human dataset that focused on N-
glycoproteomics33 (Fig. 5b.e). While OMS engines could identify a large number of N-
glycopeptides, only 50% of the spectra identified by the glycopeptide-centric CS were
included in the OMS results. In addition, for only a subset (710 out of 1450) of these
spectra, the mass shifts identified in the OMS approach could be matched to NV-glycans.
While this subset of spectra showed a high level of PSM agreement (>98%) between the
open modification and CS results, a closer look into the remaining spectra revealed
differences in the identified peptide sequence for 49% of the spectra (Fig. Se). For the
majority of these differences, the OMS engines matched longer peptide sequences to the
spectra than the CS engine. This means that mass differences were attributed to additional
amino acids by the OMS but to N-glycans by the glycopeptide-centric CS. Interestingly, a
much lower level of PSM differences was observed for the H. volcanii dataset (Fig. 5c.f).
This could be explained by the fact that H. volcanii synthesizes linear N-glycans, which
comprise four to five monosaccharides*? and are therefore smaller and less complex than
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human N-glycans. While, due to variations in the fragmentation behavior of different types
of glycosylation, we differentiated between N- and O-glycopeptides in our analysis (Fig. 5
and Fig. S8, respectively), the same tendencies were observed regardless of the glycan type.

DISCUSSION

Over the last years, OMS engines have matured into invaluable tools for comprehensive
bottom-up proteomics, facilitating the analysis of a broad variety of PTMs. This work now
provides a unified, scriptable access to multiple OMS engines through their integration into
the Python framework Ursgal. Comparisons between MSFragger, MODa and PIPI showed
large overlaps and only little PSM disagreements between the engines. These results
provided the basis for the application of a combined PEP approach, which demonstrated its
usefulness by increasing the number of peptide identifications by 8—18%. Furthermore, the
unified and combined results of all OMS results can be post-processed using PTM-Shepherd
or PTMiner, also included in Ursgal, facilitating the mapping of mass differences to known
PTMs. The use of additional OMS engines could lead to further increases in identification
rates, especially if tools with complementing search algorithms are used. For example,
TagGraph performs an OMS using de novo search results?3, is implemented in Ursgal, and
could benefit from the availability of multiple de novo search engines within Ursgal.
However, the unique scoring and statistical post-processing algorithm employed by
TagGraph complicates its integration in a combined PEP approach. Nevertheless, the
modular structure of Ursgal allows for the straightforward implementation of additional
tools, e.g. search engines like MetaMorpheus>2 or post-processing tools like Crystal-C33,

Comparisons with CS results showed a large overlap and small number of PSM
disagreements between open modification and CS results. While these results indicate a
potential for the replacement of CS approaches with OMSs, especially since the latter led to
a higher number of identifications, employing both approaches still provides the most
comprehensive results. The unified, scriptable access to both, open modification and CS
engines within Ursgal allows for the straightforward generation of workflows taking
advantage of both approaches.

Furthermore, we showed limitations in the identification of complex modifications like
glycosylation. OMSs showed a lower glycopeptide identification rate in comparison to
glycopeptide-centric CSs and a high degree of PSM differences was observed between the
two approaches. This demonstrates the usefulness of specialized search engines, which, as in
the case of pGlyco, include the search for glycopeptide-specific fragment ions like oxonium-
and Y-ions. This is in line with the recent development of glycopeptide-centric versions of
OMS engines, e.g. MSFragger-Glyco>* and MetaMorpheus O-Pair Search™, the former of
which allows searching for oxonium- and Y-ions. However, these tools and search modes
take advantage of glycan databases, which are not comprehensively available for all types of
glycosylation or all organisms. Therefore, it had been suggested, and successfully applied,
that explorative OMSs could be used to identify present glycan masses and thereby generate
glycan databases for the respective dataset/organism*3-!. The differences between OMS and
glycopeptide-specific CSs that we observed in the example datasets here are less likely to
affect this approach. Even though OMS engines tended to attribute part of the glycan mass

J Proteome Res. Author manuscript; available in PMC 2021 July 06.



1duosnuey Joyiny 1duosnue|y Joyiny 1duosnuely Joyiny

1duosnue|y Joyiny

Schulze et al.

Page 12

to additional amino acids, alternative mass differences did not match to glycan masses and
would therefore not be added to a glycan database. Furthermore, glycan compositions
potentially falsely added to a glycan database would undergo additional scrutiny in
subsequent glycopeptide-centric searches and therefore do not necessarily lead to false
glycopeptide identifications. Nevertheless, a more sophisticated post-processing for potential
glycopeptide identifications from OMSs seems to be required to take full advantage of OMS
engines for the generation of glycan databases as well as for the direct and reliable
identification of glycopeptides.

In conclusion, we demonstrated the feasibility and advantages of combining results from
multiple OMS engines as well as some limitations of this approach. The scriptable interface,
simple extensibility and open access of Ursgal facilitates the broad application of this
approach as well as the integration of future improvements.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The combination of results from different OMS engines lead to an increase in identified
peptide sequences.

Venn diagrams comparing peptide sequences identified by the OMS engines MSFragger
(orange), MODa (blue) and PIPI (green) are shown, considering only PSMs filtered by 1%
PEP for each engine separately (a), and representing results from a combined PEP approach
with PSMs filtered by 1% combined PEP (b). Both Venn diagrams show results for the
human dataset. Comparable results for E. coli and H. volcanii are presented in Fig. S1. (¢),
Across three studied datasets, the number of identified peptide sequences based on PSMs
filtered by 1% PEP for each engine (light colors) is compared to those found in PSMs
filtered by 1% combined PEP (dark colors). Results are presented for each individual engine
as well as the merged results of all engines (red). It should be noted that for merged results
of PSMs filtered by 1% individual engine PEP, the overall PEP may be as high as 3%.
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Results were sanitized (using Ursgal, see Methods for details), accepting only the best
scoring PSM per spectrum. For (a) and (b) this sanitizing step was performed at the single
engine level, to represent peptide sequences identified by each individual engine. For
merged results of all engines within (c) however, sanitizing was performed over results from
all engines, accepting only the best scoring PSM per spectrum for conflicting matches
between different engines.
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Figure 2. Differences in PSM assignments between different OMS engines were mainly driven by
differences in peptide length and reduced by the combined PEP approach.

Spectra for which PSMs were identified by all three engines (a, b) as well as spectra for
which PSMs were identified by two engines (c, d) were analyzed for agreements (orange)
and differences (blue), i.e. whether at least one engine identified a different peptide sequence
than the other(s). PSMs were filtered by 1% individual engine PEP in (a) and (c) in contrast
to a filtering by 1% combined PEP in (b) and (d). Spectra with PSM differences were sorted
into three categories: (i) peptide sequences with differing lengths, for which the shorter
peptide is a substrings of the longer one (dark blue); (ii) peptides with one to three differing
amino acids (medium blue); and (iii) peptides differing in any other way (light blue,
considered clear disagreements). The results here represent the human dataset. Similar
results for E. coli and H. volcanii are shown in Fig. S3.
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Figure 3. The unified post-processing of OMS results assisted in interpreting varied mass
difference profiles of different OMS engines.

Mass differences from combined results of all employed OMS engines (a), filtered by 1%

combined PEP, as well as mass differences from results of MSFragger (b), MODa (¢), and
PIPI (d), filtered by 1% individual PEP, were post-processed using PTM-Shepherd. Results
are presented as histograms giving the number of PSMs for each 0.05 Da mass difference

bin, omitting PSMs with no mass difference, or mass differences corresponding to isotopic

peak selection. Results were sanitized on the individual engine level (b-c) or for the

combination of all engines (a) before post-processing with PTM-Shepherd. Annotations for

the most prominent mass differences are given. Insets represent enlarged areas of the mass

differences corresponding to acetylation (left) and addition of K (right), highlighting

differences between the engines and the combined PEP approach. The number of all
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identified PSMs (“Total PSMs”) is given for all subfigures as well as the number of PSMs
that contain mass shifts shown in the profiles (““With mass shift”). It should be noted that
PSMs containing multiple mass differences are counted multiple times. While results for the
H. sapiens dataset are shown here, mass difference profiles for the E. coli and H. volcanii
datasets can be found in Fig. S5 and S6, respectively.
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Figure 4. OMS, in comparison to CS, increased the number of identified peptide sequences and
spectra, including the vast majority of identifications by CS.

Combined results from three OMS engines (red; MSFragger, MODa and PIPI) are compared
to combined results from three CS engines (yellow; MSFragger, MS-GF+ and X!Tandem)
for identified peptide sequences (a) and spectra (b). Results were filtered by 1% combined
PEP and sanitized for each approach separately. Of the 246,028 commonly identified
spectra, the percentage of PSM agreements (orange) and differences (blue) between the
OMS and CS approach is given (c). Spectra with PSM differences are put in four categories:
(1) spectra for which OMS engines matched a peptide sequences that is a substring of the
one matched by CS engines (peptide length CS > OMS); (ii) spectra for which CS engines
matched a peptide sequences that is a substring of the one matched by OMS engines
(peptide length OMS > CS); (iii) spectra for which the peptide sequences matched by OMS
and CS engines differed by one to three amino acids; and (iv) spectra with peptide sequences
differing between OMS and CS in any other way (considered clear disagreements). These
results correspond to the H. sapiens dataset. Fig. S7 shows similar outcomes for E. coli and
H. volcanii datasets.
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Figure 5. The identification of complex N-glycopeptides remains challenging for OMS engines.
Venn diagrams are shown comparing all spectra identified by the combined OMS approach

(light red), with a subset of spectra matched to peptides containing mass shifts that were
mapped to known N-glycans (dark red), and all spectra identified by the combined CS
approach (light yellow), with a subset of spectra matched to N-glycopeptides (dark yellow).
These comparisons are shown for (a), the H. sapiens in-depth proteomics dataset
(PXDO004452), (b) the H. sapiens glycoproteomic dataset (PXD013715), and (c), the H.
volcanii dataset (PXD021874). Results were filtered by 1% combined PEP and sanitized for
each approach separately. For each subfigure, three groups of spectra are analyzed in more
detail: (i) spectra with N-glycopeptides identified in both approaches, CS and OMS; (ii)
spectra matched to N-glycopeptides by CS engines but for which OMS engines identified
peptides with mass shifts that could not be mapped to known N-glycans; and (iii) spectra
matched by OMS engines to peptides with mass shifts that are annotated as N-glycans while
the CS approach did not match them to N-glycopeptides. (d), (e), and (f) present PSM
agreements (orange) and differences (blue) in each of these three categories for the datasets
corresponding to (a), (b), and (c), respectively. The following types of differences are
considered: peptide sequences with differing lengths, for which either OMS or CS identified
the shorter peptide that is a substrings of the longer one; peptides with one to three differing
amino acids; and peptides differing in any other way (considered clear disagreements). It
should be noted that H. volcanii glycopeptides harbor linear N-glycans with up to five
monosaccharides, i.e. less complex N-glycans than H. sapiens’. Furthermore, results from
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CSs can contain multiple glycans per peptide, while combinations of glycans have not been
included in the matching of OMS results.
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Table 1.

OMS parameters used for all analyzed datasets.
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Dataset Maximum modification
size (Da)

H. sapiens (PXD004452)  +4000
H. sapiens (PXD013715)  +4000
H. volcanii (PXD021874)  +2000
E. coli (PXD000498) +2000

Minimum modification
size (Da)

=200
=200
-2000
-2000

Precursor mass

tolerance (ppm)*

Fragment mass
tolerance (ppm)

+20

*

for PSMs is given by the precursor true mass tolerance.
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For OMSs using MSFragger, the maximum/minimum modification size is technically given as precursor mass tolerance while the final tolerance
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