
Enhancing Open Modification Searches via a Combined 
Approach Facilitated by Ursgal

Stefan Schulze#1,*, Aime Bienfait Igiraneza#1, Manuel Kösters2, Johannes Leufken2, 
Sebastian A. Leidel2, Benjamin A. Garcia3, Christian Fufezan4, Mechthild Pohlschröder1,*

1Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA 2Department of 
Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland 3Department of 
Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 
Philadelphia, PA 19104, USA 4Institute of Pharmacy and Molecular Biotechnology, Heidelberg 
University, 69120 Heidelberg, Germany
# These authors contributed equally to this work.

Abstract
The identification of peptide sequences and their post-translational modifications (PTMs) is a 
crucial step in the analysis of bottom-up proteomics data. The recent development of open 
modification search (OMS) engines allows virtually all PTMs to be searched for. This not only 
increases the number of spectra that can be matched to peptides but also greatly advances the 
understanding of biological roles of PTMs through the identification, and thereby facilitated 
quantification, of peptidoforms (peptide sequences and their potential PTMs). While the benefits 
of combining results from multiple protein database search engines has been established 
previously, similar approaches for OMS results are missing so far. Here, we compare and combine 
results from three different OMS engines, demonstrating an increase in peptide spectrum matches 
of 8–18%. The unification of search results furthermore allows for the combined downstream 
processing of search results, including the mapping to potential PTMs. Finally, we test for the 
ability of OMS engines to identify glycosylated peptides. The implementation of these engines in 
the Python framework Ursgal facilitates the straightforward application of OMS with unified 
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parameters and results files, thereby enabling yet unmatched high-throughput, large-scale data 
analysis.
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INTRODUCTION
After transcription of a gene and translation of mRNA, the synthesized protein can undergo 
a variety of modifications. These post-translational modifications (PTMs) result in a 
multitude of variations, also called proteoforms, produced from a single gene. These 
proteoforms can differ in their structure, localization and enzymatic activity, thus increasing 
complexity from genome to proteome level1–5. PTMs often allow for subpopulations of the 
proteome to be changed within seconds by simple attachment or detachment of specific 
PTMs. As a result, intricate networks of PTMs are involved in the regulation of virtually all 
biological processes, in all three domains of life6. For instance phosphorylation, one of the 
best-studied PTMs, is the driving force of many signaling cascades7–9. In contrast to this 
simple phosphate modification, protein glycosylation is one of the most complex PTMs10. It 
has been shown to be involved in a multitude of cellular processes11,12, including the 
formation of biofilms, microbial communities crucial for virulence and antimicrobial 
resistance of various pathogens13,14. Many more PTMs are known to be correlated with a 
variety of human diseases15, including a complex system of histone modifications16. Thus, 
gaining a better understanding of the biological roles and regulation of PTMs can not only 
provide deeper insights into cell biology but is also of great biomedical relevance. However, 
the complexity of PTMs, their often low abundance as well as their non-template-driven 
biosynthesis makes their analysis challenging.

Mass spectrometry is the method of choice for studying whole proteomes and related PTMs. 
Commonly, there are two approaches, namely top-down and bottom-up proteomics, for the 
analysis of whole proteins and peptides resulting from proteolytic digestion, respectively. 
The identification of intact proteoforms in top-down proteomics provides unique 
opportunities, such as insights into relationships between PTMs on the same protein17. 
However, technical challenges, both in the mass spectrometric measurement of intact 
proteoforms and the downstream analysis of resulting spectra, have limited the large-scale 
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application of top-down proteomics so far. Bottom-up proteomics, on the other hand, has 
been widely applied due to its relatively simple setup, resulting in the broad availability of 
bioinformatic tools. In order to identify peptides from bottom-up proteomics data, most 
commonly a protein database search is performed, comparing precursor mass (MS1 level) 
and peptide fragmentation spectra (MS2 level) to theoretical spectra derived from in silico 
digests of a protein database. For the identification of PTMs, different search engines allow 
for either a closed or an open modification search to be performed.

In a closed search (CS), a limited number of modifications is defined and during the search 
the masses of the modifications are added to each potential modified residue. This addition 
of variable modifications in a protein database search exponentially increases the search 
space, since each peptide with modifiable residues is searched in all possible combinations, 
i.e. including all peptidoforms. Therefore, the search for all potential modifications has long 
been virtually impossible, due to the lack of optimized computational resources18. In 
contrast, an open modification search (OMS) allows to search for all modifications within a 
user-defined mass range, e.g. ±500 Da. In its simplest form, the precursor mass tolerance in 
protein database searches can be increased to the desired mass range and the mass of peptide 
modifications is determined as the mass difference between precursor and peptide mass19. 
However, this approach does not account for fragment ions that are shifted as a result of a 
modification.

Recently, a variety of dedicated OMS engines such as MODa20, PIPI21, MSFragger22 and 
TagGraph23 have been developed, increasing the speed and accuracy of this approach, and 
taking into account shifted fragment ions through different search strategies. MODa, PIPI 
and TagGraph employ a strategy in which sequence tags (short substrings of a peptide 
sequence) are matched to measured spectra (TagGraph uses de novo search results for this); 
multiple matching tags are then aligned and the delta masses between the tags and/or 
between the sum of the tags and the precursor mass is reported as mass(es) of the 
modification(s). In contrast, MSFragger generates a fragment ion index that is used for the 
matching of peaks in measured spectra. Through a recent update of the algorithm, shifted 
ion indexes can be generated as well, allowing for the assignment of modified fragment ions 
as well as the localization of modifications24. These varied approaches have greatly 
advanced OMSs. Nevertheless, as for CSs, the choice of the most suitable OMS engine is 
left to the user and since each OMS engine comes with its own advantages and 
disadvantages, the decision becomes difficult.

Additionally, taking advantage of the diversity in search algorithms, the combination of 
results from multiple search engines has been shown to increase the number of 
identifications for CS approaches25,26. At the same time, combining results from different 
search engines can be used to re-evaluate false discovery rates (FDRs) for peptide spectrum 
matches (PSMs) and thereby increase their reliability25–28. Different methods have been 
developed for this task, including machine learning approaches29. In general, this builds on 
the intuitive assumption that PSMs independently identified by multiple tools tend to be 
more reliable than PSMs only identified by a single engine. However, the approach to 
combine results from different search engines has not been applied to OMSs yet.
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In this work, we provide a unified scriptable access to various OMS engines. We compare 
the results from different OMS engines in regard to their level of disagreement on PSMs for 
the same spectra. Furthermore, we show that combining results from different engines 
increases the number of peptide identifications and can aid in the identification of PTMs. 
Finally, comparisons with traditional CS approaches reveal large overlaps, indicating the 
potential to use OMS as a standard search approach. However, taking the example of 
glycosylation, we also reveal limitations of the OMS approach.

MATERIAL AND METHODS
Implementation of OMS engines in Ursgal

The Python framework Ursgal has previously been described in detail26 and an extensive, 
continuously updated documentation is available (https://ursgal.readthedocs.io/en/latest). 
The OMS engines MODa (v. 1.61)20, PIPI (v. 1.4.6)21, MSFragger (v. 2.3)22 and 
TagGraph23 have been implemented as protein database search engines. The tools PTM-
Shepherd30 and PTMiner31 have been included for the downstream processing of mass 
differences reported by OMS engines. All relevant parameters to execute these engines have 
been unified and are available within Ursgal’s uparams. An overview of all parameters, 
engine specific parameters, parameter translations between engines, and more can be found 
in the documentation as well as through an interactive, searchable Dash app user interface.

Results from each tool are converted into a unified comma separated values file (CSV) 
format, in which each row contains a PSM, corresponding to a spectrum, and all properties 
of the PSM are listed in distinct columns (e.g. “Spectrum Title”, including the file name and 
spectrum ID; “Sequence”, referring to the peptide sequence; “Modifications”, PTMs given 
as PSI-MS terms together with their position and separated by semicolons; “Protein ID”; 
engine scores, etc). For the results of OMS engines, this format has been extended by a 
“Mass Difference” column, comprising the mass difference(s) reported by the engine in Da. 
PTMs assigned by downstream processing tools are included in the column “Mass 
Difference Annotations”. If a PTM could not be assigned, the mass difference is updated to 
the corresponding binned mass difference peak.

Further details, including example scripts for the use of OMS and downstream processing 
engines can be found in the Ursgal GitHub repository (https://github.com/ursgal/ursgal). The 
current version of Ursgal has been uploaded to Zenodo with the following permanent digital 
object identifier https://doi.org/10.5281/zenodo.4299358.

Datasets and protein databases
Four datasets were used: two Homo sapiens datasets, one Haloferax volcanii dataset and one 
Escherichia coli dataset. The first H. sapiens dataset (PXD004452), an in-depth proteomics 
dataset, was published by Bekker-Jensen et al32. The second H. sapiens dataset 
(PXD013715), which is a glycoproteomic dataset, was published by Brown et al.33 The E. 
coli dataset (PXD000498) was published by Schmidt et al34. Details on the sample 
preparation and mass spectrometric measurements for all these datasets can be found in the 
original publications. Finally, the H. volcanii dataset represents a glycoproteomic analysis, 
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with details about the sample preparation and analysis of results given in the PRIDE 
description (PXD021874). Raw files were converted into mzML using msConvert within the 
ProteoWizard Toolkit35 (v. 3.0.19046).

Protein databases for H. sapiens (UP000005640) and E. coli (UP000000625) were 
downloaded from UniProt on November 18, 2019 and June 13, 2020, respectively. The H. 
volcanii (https://doi.org/10.5281/zenodo.3565631) reference proteome was acquired from 
the Archaeal Proteome Project36. The target decoy databases were generated the same way 
for all three organisms: the reference databases were first supplemented with the cRAP 
database (https://www.thegpm.org/crap/) of common contaminants before generating decoys 
by peptide shuffling using the generate_target_decoy_1_0_0 node within Ursgal. Different 
decoys were generated depending on the enzyme used for the respective datasets (Trypsin or 
GluC).

Open modification search
The OMS pipeline was set up within Ursgal (v. 0.6.7)26 and included the conversion of 
mzML files to mgf format using pymzML (v. 2.4.6)37 before the main search was carried out 
by three search engines, namely MODa (v. 1.61)20, PIPI (v. 1.4.6)21 and MSFragger (v. 
2.3)22. If not defined otherwise, Ursgal default values within the profile QExactive+ were 
used. Carbamidomethylation of C was set as the fixed modification and the enzyme for in 
silico digestion was set as either trypsin or gluc depending on the input file. Precursor and 
fragment mass tolerances as well as modification sizes used for each dataset are summarized 
in Table 1. The parameter moda_high_res was set to False. Mapping of peptide sequences to 
proteins was done using the upeptide_mapper_1_0_0 node.

Closed search
The CS pipeline was set up within Ursgal26 (v. 0.6.7) similarly to the OMS pipeline. The 
following search engines were used: X! Tandem38 (v. Vengeance), MSFragger22 (v. 2.3), and 
MS-GF+39 (v. 2019.07.03). In addition to setting the fixed modification as 
Carbamidomethylation of C, the following variable modifications were used: methionine 
oxidation and N-terminal acetylation. The remaining parameters and processing steps were 
similar to those of the OMS except that the modifications were only allowed within the 
range of the precursor mass tolerance.

Statistical post-processing
Results from fractions of the same sample were merged before post-processing with 
Percolator40 (v. 3.4) to determine PEPs. For individual search engine results, validated 
results were filtered by a PEP ≤ 1%. For the combined PEP approach26, unfiltered but 
validated results of all employed engines were subjected to the combine_pep_1_0_0 node 
and results were subsequently filtered by a combined PEP ≤ 1%. In order to remove 
conflicting PSMs for the same spectra, sanitizing was performed using the corresponding 
Ursgal node. PSMs were ranked based on their combined PEP and only the best scoring 
PSM per spectrum was accepted. Given that some engines report multiple PSMs per 
spectrum, individual search engine results were also sanitized as described above, using the 
PEP instead of combined PEP. To merge rows corresponding to the same PSM, minimum 
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values of combined PEP and Bayes PEP were maintained in the case of the combined PEP 
approach, while minimum values for PEP were considered for the individual PEP approach.

Analyses of mass differences
Mass differences identified during OMS were analyzed using PTM-Shepherd30 (v. 0.3.5) 
which was implemented in Ursgal. Results from either single OMS engine analyses, filtered 
by 1% PEP and sanitized, or combined results from multiple OMS engines, filtered by 1% 
combined PEP and sanitized, were used as input files for PTM-Shepherd. Parameters for 
PTM-Shepherd runs were based on parameters used in the OMSs for each dataset. In 
addition to that, the bin size for mass differences was set to 0.2 mDa, and the minimum 
relative peak intensity was set to 0.01. It should be noted that PTM-Shepherd allows only 
one mass difference per PSM, which is why multiple mass differences reported (e.g. by 
MODa) were summed up into one combined mass difference. Furthermore, MODa reports 
mass differences as whole integers instead of floats as the other employed OMS engines. For 
the analysis of mass differences from only MODa results, these values were used, whereas 
for the analysis of combined OMS results, mass differences were recalculated as the 
difference between the precursor mass and the mass of the peptide (including fixed 
modifications).

Comparisons between OMS engine results
Results of different OMS engines were compared using the Ursgal venndiagram_1_1_0 
node. Comparisons between open search engines’ identifications were performed at the 
peptide level and the spectrum level. To further check for disagreements between engines, 
spectra identified by different engines were analyzed for corresponding peptide assignments 
of each engine and disagreements were further investigated by comparing amino acids as 
well as peptide lengths.

Comparisons between OMS and CS
Combined results from all OMS engines were compared to combined results from all CS 
engines in regard to peptide and spectra identifications. Equivalent to the comparison of 
results from different engines in OMS, peptides mapped to the same spectra by both 
searches were compared. Disagreements were further investigated by comparing amino 
acids as well as peptides’ lengths. In addition, glycopeptides and corresponding spectra 
identified through CS (including through the use of glycopeptide-focused search engines) 
were compared to open search results that were processed as described below.

Glycoproteomic analyses
For the glycoproteomic analysis of human datasets, pGlyco41 (v. 2.0) was employed as 
implemented in Ursgal, which can be considered a CS using a glycan database in addition to 
a protein database. Parameters were based on those used in the CS approach (see above), and 
default values were used if not indicated otherwise. Glycopeptides matched by pGlyco were 
statistically post-processed using the pGlyco-internal FDR estimation algorithm. Results 
were filtered by a q-value ≤ 1%.
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The relatively short, linear N-glycans of H. volcanii allowed for them to be included as 
potential modifications in CSs using the same engines and parameters as described above. 
The included potential modifications were the only differences and contained 
oligosaccharides for each step of the AglB- and Agl15-dependent N-glycosylation 
pathways42 as well as two hexoses as O-glycans. Since some engines do not allow multiple 
modifications for the same amino acid, each oligosaccharide was searched for in a separate 
run. Results were then combined after individual statistical post-processing with Percolator 
for each modification. Glycopeptide PSMs were selected as PSMs containing a modification 
with at least one hexose.

For the OMS approach, mass differences were post-processed with PTM-Shepherd (see 
above). Afterwards, mass differences were mapped to glycan masses from a human glycan 
database, downloaded from glySpace using GlycReSoft43, for the human dataset and to 
glycan masses used as modifications in the CS for the H. volcanii dataset. For matches 
between reported mass differences and glycan masses a mass tolerance corresponding to the 
used precursor mass tolerance was allowed.

RESULTS
OMSs have become increasingly popular for the analysis of bottom-up proteomics data. 
Through the integration of various OMS engines in Ursgal26, we provide a scriptable 
interface to these tools within the widely used Python environment (https://github.com/
ursgal/ursgal). The unification of search parameters and output formats ensures that complex 
workflows can be easily generated and facilitates the straightforward comparison and 
downstream processing of results.

The combination of different OMS engines increases the number of identified peptides.
The combination of results from multiple search engines has previously been shown to be 
beneficial for the number of identifications as well as their reliability25–29. However, this 
approach has not been applied to OMSs yet. Therefore, we have analyzed an in-depth human 
proteomics dataset (PXD004452)44, using three OMS engines (MODa, PIPI and 
MSFragger) to evaluate the applicability of this approach (Fig. 1).

The comparison of the results for each search engine, filtered by 1% posterior error 
probability (PEP), showed a higher number of peptide sequence identifications for 
MSFragger (149,426) than for MODa (123,765) and PIPI (101,063). While the majority of 
peptide sequences was identified by multiple engines (62%), the substantial number of 
unique identifications by each engine indicated that a combination of results could be 
beneficial (Fig. 1a). However, the estimation of PEPs for each individual engine’s results 
prevents a simple merge of the identifications, since this would lead to an accumulation of 
false positive identifications. Therefore, in order to combine results from different search 
engines, while controlling the PEP at the same time, a combined PEP approach was 
employed as described previously26. As expected, the overlap of identified peptide 
sequences between the engines increased substantially (Fig. 1b). Furthermore, the number of 
identified peptides increased for each individual engine, most strikingly for MODa and PIPI. 
This indicates that the combination of multiple search engine results, and the concomitant 
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re-ranking of PSMs, helps to recover PSMs with PEPs > 1% for their individual search 
engine results. However, in order to compare the total number of identifications from the 
combined PEP approach with identifications from single search engines, results were 
sanitized to remove conflicting PSMs from different engines. While this removed around 
15,000 peptide sequences (Fig. S1), the remaining total of 162,019 identified peptide 
sequences represents an increase of 8.4% in comparison to the best single search engine, i.e 
MSFragger (Fig. 1c). For comprehensive datasets from Haloferax volcanii (PXD021874) 
and Escherichia coli (PXD000498)34 (Fig. S2), both of which have less complex proteomes 
than Homo sapiens, the same trend in regard to the total number of peptide identifications 
was observed, with an increase of 15.0% and 17.9%, respectively (Fig. 1c).

It should be noted that the number of spectra with corresponding PSMs slightly decreased 
by 3.5% in the human dataset employing the combined PEP approach in comparison to the 
best performing search engine (Fig. S3). Lower identification rates by single engines, e.g. 
PIPI identified 50% less PSMs than MSFragger, might have contributed to this effect, since 
the overlap between the OMS engines was limited by the engine with the lowest 
identification rate. However, for the H. volcanii and E. coli datasets, the total number of 
identified spectra increased by 6.9% and 3.1%, respectively. For all datasets, the number of 
overlapping spectra between all engines increased substantially, indicating a higher degree 
of agreement between the engines (see below).

Differences in PSM assignments between search engines are largely attributed to 
differences in peptide length

While the comparison of results from different search engines is often focused on the 
number of identified peptides or PSMs24, the level of (dis-)agreement on PSMs between 
various tools is rarely analyzed. However, this is of special interest for the combination of 
multiple OMS results, since PSM agreements are considered more reliable than PSMs that 
show disagreements between search engines. Therefore, we have determined how often 
engines map the same spectra to the same peptide sequence, i.e. how often they agree on 
PSMs. When considering 1% PEP-filtered PSMs from individual search engine analyses of 
the human dataset, 84% of all spectra that resulted in peptide identifications for all three 
search engines, showed agreements in the corresponding PSMs (Fig. 2a). This is similar to 
the level of agreement for the combined PEP results (82%), however, the number of 
overlapping spectra, and therefore the total number of PSM agreements, increased 
substantially by roughly 60% (Fig. 2b). The number of spectra that showed an overlap 
between two search engines was comparable in both approaches, but the percentage of PSM 
agreements increased from 75% to 84% for the individual and combined PEP approach, 
respectively (Fig. 2c,d).

Importantly, the vast majority of differences in PSM assignments between search engines 
comprised length variations of the matched peptide (with the shorter peptide being a full 
substring of the longer peptide) (Fig. 2). This indicates that part of the mass differences (of 
shorter peptides) were attributed to additional amino acids. While, as a result, PSMs for 
these spectra differed, they did not represent clear disagreements between the engines, 
especially since the OMS engines employed here reported mass differences rather than 
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defined PTMs. These mass differences could subsequently be mapped to additional (or 
fewer) amino acids and/or PTMs. Similarly, differences in ≤ 3 amino acids could be 
explained by mass shifts due to modifications like amidation/deamidation that lead the 
conversion of amino acids. Besides these differences in PSM assignments, only 1% to 3% of 
PSMs were associated with completely different peptide identifications between the search 
engines, representing clear disagreements between the engines. Similar trends were observed 
for the H. volcanii and E. coli datasets, however, with an overall lower level of PSM 
differences (Fig. S4). While the observed ratio of PSM disagreements was close to the 1% 
PEP threshold, it should be noted that this does not allow for conclusions about the overall 
PEP, since only a subset of PSMs was taken into account (spectra with PSM assignments by 
multiple engines). Furthermore, PSM disagreements could also indicate chimeric spectra 
instead of false assignments by either engine.

For further downstream processing of OMS results, differing PSMs for single spectra were 
reconciled using the Ursgal sanitize node. PSMs of one spectrum were ranked according to 
their score (combined PEP) and only the best scoring PSM was accepted. The combined 
PEP approach is beneficial to this process, since the number of engines that assign the same 
PSM affects the final score that is used for the ranking of differing PSMs.

Unified OMS results facilitate the combined post-processing of mass differences
Mass differences can be mapped to known PTMs in order to gain more information about 
the corresponding type of the modification. This post-processing includes the fitting of mass 
difference profiles and their matching to databases of known PTMs30,31,45,46. Recently, 
several tools have been developed for this purpose, including PTM-Shepherd30 and 
PTMiner31, both of which have been implemented in Ursgal, allowing for the unified post-
processing of combined OMS results. Using PTM-Shepherd as an example, we observed 
that mass difference profiles varied substantially between the different OMS engines (Fig. 
3). PIPI identified a comparatively small range and overall lower number of mass 
differences. MODa reports mass differences only as integers, which limits its use for PTM 
mapping. For the combined OMS results, mass differences of MODa results were therefore 
recalculated as the difference between the precursor mass and the peptide mass (including 
fixed modifications). The mass difference profile of the combined OMS results is most 
similar to the one of MSFragger. Nevertheless, some mass differences, e.g. 42.01 Da 
(acetylation) and 79.97 (phosphorylation), were more prominently observed in results from 
MODa and/or PIPI and are therefore more abundant in the combined OMS results as well. 
For the datasets of H. volcanii and E. coli, the mass difference profile is less complex (Fig. 
S5 and S6), which is in line with the lower complexity of the respective proteomes. 
Nevertheless, for PIPI a lack of mass differences in the higher mass range is confirmed in 
the H. volcanii dataset.

OMS and CS lead to complementing results.
OMSs are often performed in conjunction with CSs, e.g. as cascaded searches in which 
unidentified spectra in a CS are subsequently analyzed with an OMS47. However, increasing 
evidence suggests that OMSs can reliably identify unmodified peptides as well, questioning 
the need for cascaded search approaches or even CSs in general22,24. Therefore, we 
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compared the results from the combined OMS approach to results from a combined CS 
approach. In both cases, three search engines were used and results were filtered by 1% 
combined PEP. For the human proteome dataset, the OMS approach identified almost 30% 
more peptide sequences in 72% more spectra (Fig. 4). A large overlap between both 
approaches on the peptide and spectrum level, as well as a high level of agreement on PSMs 
for the same spectra, indicated that unmodified peptides are indeed readily identified by the 
OMS approach. Even when taking into account only modifications that are commonly 
included in CSs (oxidation of M, acetylation of protein N-termini), the OMS approach 
identified more than twice as many unique peptide sequences as the CS approach. 
Nevertheless, unique identifications from the CS approach increased the total number of 
identified peptides by 12%. Similar trends were observed for the H. volcanii and E. coli 
datasets (Fig. S7).

Interestingly, a large part of the PSM differences between the OMS and CS approach was 
due to the identification of longer peptide sequences in the CS (Fig. 4c). Surprisingly, the 
vast majority of shorter peptides assigned by OMS engines (MSFragger and MODa) 
harbored mass differences that were attributed to an addition of K or R by PTM-Shepherd. 
This means that instead of matching a sequence with a missed cleavage site (within the limit 
of maximum missed cleavage sites), MSFragger and MODa frequently added the additional 
amino acid as a mass difference. This effect is reduced in the combined PEP results (Fig. 3, 
insets), highlighting another advantage of this approach since a matching behavior like this 
is in most cases not desired because it would complicate the interpretation of additional 
modifications on peptides with (potential) missed cleavage sites.

Complex glycopeptide identifications remain challenging for OMS engines
Recent studies suggested that OMS engines can be used for the identification of 
glycosylated peptides and/or the generation of glycan databases for subsequent 
glycopeptide-specific searches48–51. We therefore compared the combined OMS results to 
glycopeptide identifications from the established, specialized search engine pGlyco (v. 
2.0)41, which uses a glycan database and could therefore be seen as a glycopeptide-centric 
CS approach. Since the regular human proteome dataset yielded only a few glycopeptide 
identifications (Fig. 5a,d), we analyzed a human dataset that focused on N-
glycoproteomics33 (Fig. 5b,e). While OMS engines could identify a large number of N-
glycopeptides, only 50% of the spectra identified by the glycopeptide-centric CS were 
included in the OMS results. In addition, for only a subset (710 out of 1450) of these 
spectra, the mass shifts identified in the OMS approach could be matched to N-glycans. 
While this subset of spectra showed a high level of PSM agreement (>98%) between the 
open modification and CS results, a closer look into the remaining spectra revealed 
differences in the identified peptide sequence for 49% of the spectra (Fig. 5e). For the 
majority of these differences, the OMS engines matched longer peptide sequences to the 
spectra than the CS engine. This means that mass differences were attributed to additional 
amino acids by the OMS but to N-glycans by the glycopeptide-centric CS. Interestingly, a 
much lower level of PSM differences was observed for the H. volcanii dataset (Fig. 5c,f). 
This could be explained by the fact that H. volcanii synthesizes linear N-glycans, which 
comprise four to five monosaccharides42 and are therefore smaller and less complex than 

Schulze et al. Page 10

J Proteome Res. Author manuscript; available in PMC 2021 July 06.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



human N-glycans. While, due to variations in the fragmentation behavior of different types 
of glycosylation, we differentiated between N- and O-glycopeptides in our analysis (Fig. 5 
and Fig. S8, respectively), the same tendencies were observed regardless of the glycan type.

DISCUSSION
Over the last years, OMS engines have matured into invaluable tools for comprehensive 
bottom-up proteomics, facilitating the analysis of a broad variety of PTMs. This work now 
provides a unified, scriptable access to multiple OMS engines through their integration into 
the Python framework Ursgal. Comparisons between MSFragger, MODa and PIPI showed 
large overlaps and only little PSM disagreements between the engines. These results 
provided the basis for the application of a combined PEP approach, which demonstrated its 
usefulness by increasing the number of peptide identifications by 8–18%. Furthermore, the 
unified and combined results of all OMS results can be post-processed using PTM-Shepherd 
or PTMiner, also included in Ursgal, facilitating the mapping of mass differences to known 
PTMs. The use of additional OMS engines could lead to further increases in identification 
rates, especially if tools with complementing search algorithms are used. For example, 
TagGraph performs an OMS using de novo search results23, is implemented in Ursgal, and 
could benefit from the availability of multiple de novo search engines within Ursgal. 
However, the unique scoring and statistical post-processing algorithm employed by 
TagGraph complicates its integration in a combined PEP approach. Nevertheless, the 
modular structure of Ursgal allows for the straightforward implementation of additional 
tools, e.g. search engines like MetaMorpheus52 or post-processing tools like Crystal-C53.

Comparisons with CS results showed a large overlap and small number of PSM 
disagreements between open modification and CS results. While these results indicate a 
potential for the replacement of CS approaches with OMSs, especially since the latter led to 
a higher number of identifications, employing both approaches still provides the most 
comprehensive results. The unified, scriptable access to both, open modification and CS 
engines within Ursgal allows for the straightforward generation of workflows taking 
advantage of both approaches.

Furthermore, we showed limitations in the identification of complex modifications like 
glycosylation. OMSs showed a lower glycopeptide identification rate in comparison to 
glycopeptide-centric CSs and a high degree of PSM differences was observed between the 
two approaches. This demonstrates the usefulness of specialized search engines, which, as in 
the case of pGlyco, include the search for glycopeptide-specific fragment ions like oxonium- 
and Y-ions. This is in line with the recent development of glycopeptide-centric versions of 
OMS engines, e.g. MSFragger-Glyco54 and MetaMorpheus O-Pair Search50, the former of 
which allows searching for oxonium- and Y-ions. However, these tools and search modes 
take advantage of glycan databases, which are not comprehensively available for all types of 
glycosylation or all organisms. Therefore, it had been suggested, and successfully applied, 
that explorative OMSs could be used to identify present glycan masses and thereby generate 
glycan databases for the respective dataset/organism48,51. The differences between OMS and 
glycopeptide-specific CSs that we observed in the example datasets here are less likely to 
affect this approach. Even though OMS engines tended to attribute part of the glycan mass 

Schulze et al. Page 11

J Proteome Res. Author manuscript; available in PMC 2021 July 06.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



to additional amino acids, alternative mass differences did not match to glycan masses and 
would therefore not be added to a glycan database. Furthermore, glycan compositions 
potentially falsely added to a glycan database would undergo additional scrutiny in 
subsequent glycopeptide-centric searches and therefore do not necessarily lead to false 
glycopeptide identifications. Nevertheless, a more sophisticated post-processing for potential 
glycopeptide identifications from OMSs seems to be required to take full advantage of OMS 
engines for the generation of glycan databases as well as for the direct and reliable 
identification of glycopeptides.

In conclusion, we demonstrated the feasibility and advantages of combining results from 
multiple OMS engines as well as some limitations of this approach. The scriptable interface, 
simple extensibility and open access of Ursgal facilitates the broad application of this 
approach as well as the integration of future improvements.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The combination of results from different OMS engines lead to an increase in identified 
peptide sequences.
Venn diagrams comparing peptide sequences identified by the OMS engines MSFragger 
(orange), MODa (blue) and PIPI (green) are shown, considering only PSMs filtered by 1% 
PEP for each engine separately (a), and representing results from a combined PEP approach 
with PSMs filtered by 1% combined PEP (b). Both Venn diagrams show results for the 
human dataset. Comparable results for E. coli and H. volcanii are presented in Fig. S1. (c), 
Across three studied datasets, the number of identified peptide sequences based on PSMs 
filtered by 1% PEP for each engine (light colors) is compared to those found in PSMs 
filtered by 1% combined PEP (dark colors). Results are presented for each individual engine 
as well as the merged results of all engines (red). It should be noted that for merged results 
of PSMs filtered by 1% individual engine PEP, the overall PEP may be as high as 3%. 
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Results were sanitized (using Ursgal, see Methods for details), accepting only the best 
scoring PSM per spectrum. For (a) and (b) this sanitizing step was performed at the single 
engine level, to represent peptide sequences identified by each individual engine. For 
merged results of all engines within (c) however, sanitizing was performed over results from 
all engines, accepting only the best scoring PSM per spectrum for conflicting matches 
between different engines.
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Figure 2. Differences in PSM assignments between different OMS engines were mainly driven by 
differences in peptide length and reduced by the combined PEP approach.
Spectra for which PSMs were identified by all three engines (a, b) as well as spectra for 
which PSMs were identified by two engines (c, d) were analyzed for agreements (orange) 
and differences (blue), i.e. whether at least one engine identified a different peptide sequence 
than the other(s). PSMs were filtered by 1% individual engine PEP in (a) and (c) in contrast 
to a filtering by 1% combined PEP in (b) and (d). Spectra with PSM differences were sorted 
into three categories: (i) peptide sequences with differing lengths, for which the shorter 
peptide is a substrings of the longer one (dark blue); (ii) peptides with one to three differing 
amino acids (medium blue); and (iii) peptides differing in any other way (light blue, 
considered clear disagreements). The results here represent the human dataset. Similar 
results for E. coli and H. volcanii are shown in Fig. S3.
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Figure 3. The unified post-processing of OMS results assisted in interpreting varied mass 
difference profiles of different OMS engines.
Mass differences from combined results of all employed OMS engines (a), filtered by 1% 
combined PEP, as well as mass differences from results of MSFragger (b), MODa (c), and 
PIPI (d), filtered by 1% individual PEP, were post-processed using PTM-Shepherd. Results 
are presented as histograms giving the number of PSMs for each 0.05 Da mass difference 
bin, omitting PSMs with no mass difference, or mass differences corresponding to isotopic 
peak selection. Results were sanitized on the individual engine level (b-c) or for the 
combination of all engines (a) before post-processing with PTM-Shepherd. Annotations for 
the most prominent mass differences are given. Insets represent enlarged areas of the mass 
differences corresponding to acetylation (left) and addition of K (right), highlighting 
differences between the engines and the combined PEP approach. The number of all 

Schulze et al. Page 19

J Proteome Res. Author manuscript; available in PMC 2021 July 06.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



identified PSMs (“Total PSMs”) is given for all subfigures as well as the number of PSMs 
that contain mass shifts shown in the profiles (“With mass shift”). It should be noted that 
PSMs containing multiple mass differences are counted multiple times. While results for the 
H. sapiens dataset are shown here, mass difference profiles for the E. coli and H. volcanii 
datasets can be found in Fig. S5 and S6, respectively.
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Figure 4. OMS, in comparison to CS, increased the number of identified peptide sequences and 
spectra, including the vast majority of identifications by CS.
Combined results from three OMS engines (red; MSFragger, MODa and PIPI) are compared 
to combined results from three CS engines (yellow; MSFragger, MS-GF+ and X!Tandem) 
for identified peptide sequences (a) and spectra (b). Results were filtered by 1% combined 
PEP and sanitized for each approach separately. Of the 246,028 commonly identified 
spectra, the percentage of PSM agreements (orange) and differences (blue) between the 
OMS and CS approach is given (c). Spectra with PSM differences are put in four categories: 
(i) spectra for which OMS engines matched a peptide sequences that is a substring of the 
one matched by CS engines (peptide length CS > OMS); (ii) spectra for which CS engines 
matched a peptide sequences that is a substring of the one matched by OMS engines 
(peptide length OMS > CS); (iii) spectra for which the peptide sequences matched by OMS 
and CS engines differed by one to three amino acids; and (iv) spectra with peptide sequences 
differing between OMS and CS in any other way (considered clear disagreements). These 
results correspond to the H. sapiens dataset. Fig. S7 shows similar outcomes for E. coli and 
H. volcanii datasets.

Schulze et al. Page 21

J Proteome Res. Author manuscript; available in PMC 2021 July 06.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



Figure 5. The identification of complex N-glycopeptides remains challenging for OMS engines.
Venn diagrams are shown comparing all spectra identified by the combined OMS approach 
(light red), with a subset of spectra matched to peptides containing mass shifts that were 
mapped to known N-glycans (dark red), and all spectra identified by the combined CS 
approach (light yellow), with a subset of spectra matched to N-glycopeptides (dark yellow). 
These comparisons are shown for (a), the H. sapiens in-depth proteomics dataset 
(PXD004452), (b) the H. sapiens glycoproteomic dataset (PXD013715), and (c), the H. 
volcanii dataset (PXD021874). Results were filtered by 1% combined PEP and sanitized for 
each approach separately. For each subfigure, three groups of spectra are analyzed in more 
detail: (i) spectra with N-glycopeptides identified in both approaches, CS and OMS; (ii) 
spectra matched to N-glycopeptides by CS engines but for which OMS engines identified 
peptides with mass shifts that could not be mapped to known N-glycans; and (iii) spectra 
matched by OMS engines to peptides with mass shifts that are annotated as N-glycans while 
the CS approach did not match them to N-glycopeptides. (d), (e), and (f) present PSM 
agreements (orange) and differences (blue) in each of these three categories for the datasets 
corresponding to (a), (b), and (c), respectively. The following types of differences are 
considered: peptide sequences with differing lengths, for which either OMS or CS identified 
the shorter peptide that is a substrings of the longer one; peptides with one to three differing 
amino acids; and peptides differing in any other way (considered clear disagreements). It 
should be noted that H. volcanii glycopeptides harbor linear N-glycans with up to five 
monosaccharides, i.e. less complex N-glycans than H. sapiens’. Furthermore, results from 
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CSs can contain multiple glycans per peptide, while combinations of glycans have not been 
included in the matching of OMS results.
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Table 1.

OMS parameters used for all analyzed datasets.

Dataset Maximum modification 
size (Da)

Minimum modification 
size (Da)

Precursor mass 
tolerance (ppm)*

Fragment mass 
tolerance (ppm)

H. sapiens (PXD004452) +4000 −200 ±5 ±20

H. sapiens (PXD013715) +4000 −200 ±10 ±10

H. volcanii (PXD021874) +2000 −2000 ±10 ±10

E. coli (PXD000498) +2000 −2000 ±5 ±20

*
For OMSs using MSFragger, the maximum/minimum modification size is technically given as precursor mass tolerance while the final tolerance 

for PSMs is given by the precursor true mass tolerance.
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