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ABSTRACT

Mining dense subgraphs is an important primitive across a spec-
trum of graph-mining tasks. In this work, we formally establish
that two recurring characteristics of real-world graphs, namely
heavy-tailed degree distributions and large clustering coefficients,
imply the existence of substantially large vertex neighborhoods
with high edge-density. This observation suggests a very simple
approach for extracting large quasi-cliques: simply scan the vertex
neighborhoods, compute the clustering coefficient of each vertex,
and output the best such subgraph. The implementation of such a
method requires counting the triangles in a graph, which is a well-
studied problem in graph mining. When empirically tested across
a number of real-world graphs, this approach reveals a surprise:
vertex neighborhoods include maximal cliques of non-trivial sizes,
and the density of the best neighborhood often compares favorably
to subgraphs produced by dedicated algorithms for maximizing
subgraph density. For graphs with small clustering coefficients, we
demonstrate that small vertex neighborhoods can be refined using a
local-search method to “grow” larger cliques and near-cliques. Our
results indicate that contrary to worst-case theoretical results, min-
ing cliques and quasi-cliques of non-trivial sizes from real-world
graphs is often not a difficult problem, and provides motivation for
further work geared towards a better explanation of these empirical
successes.
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1 INTRODUCTION

Motivation and Overview: The task of extracting dense sub-
graphs from a given graph constitutes a key primitive in graph
mining, with applications ranging from graph compression [8], to
discovering protein complexes in protein-protein interaction net-
works [4, 28], to identifying spam farms in Web graphs [18, 22],
and event detection in network streams [3, 9].

Depending on the particular metric employed for quantifying
subgraph density, various formulations have been proposed for
extracting different classes of dense subgraphs. The archetypal
dense subgraph is a clique, i.e., a subgraph where every pair of
vertices share an edge. A clique is said to be maximal if it isn’t
included within a larger clique, and the largest such clique is the
maximum clique of a graph. The set of all maximal cliques in a graph
can be listed using the classic Bron-Kerbosch algorithm [7], albeit
at exponential worst-case complexity. Meanwhile, the problem of
extracting the maximum clique is NP-hard [17]- even for power-
law graphs [16].

Consequently, a different line of work has focused on develop-
ing less stringent, polynomial-time formulations for mining dense
subgraphs. The seminal work of Goldberg [20] established that
the problem of finding the subgraph with maximum average de-
gree (widely known as the DENSESTSUBGRAPH problem) can be
solved via a sequence of maximum-flow problems. Follow-up work
by Charikar [10] showed that a simple greedy vertex-peeling al-
gorithm, that runs in linear-time, provides a 1/2 approximation
for the problem and is near-optimal in practice. However, it was
pointed out in [32] that adopting such a metric in practice can po-
tentially yield the entire graph as the densest subgraph. As a result,
Tsourakakis [31] introduced the more general problem of finding
the subgraph which maximizes the average number of induced k-
cliques (known as the k-CLIQUEDENSESTSUBGRAPH problem), and
provided exact flow-based algorithms and greedy approximation
algorithms for the task. It was also shown that this approach yields
smaller, denser subgraphs compared to DENSESTSUBGRAPH.

Another line of work utilizes a different relaxation of the no-
tion of a clique, known as quasi-cliques, to find dense subgraphs.
Formally, a a-quasi-clique is a subgraph with edges greater than
a fixed fraction a € (0,1) of the edges in a clique of the same
size. Recently, Tsourakakis et al. introduced the OPTIMALQUASI-
Cr1QUE (OQC) formulation in [32] for mining quasi-cliques pos-
sessing a large number of edges with respect to a random null
model. The OQC problem is not known to be NP-hard; however,
to the best of our knowledge, it does not admit an exact solution in
polynomial-time either. Tsourakakis et al. [32] proposed a simple
greedy vertex-peeling algorithm (GREEDYOQC) and a local-search
method (LocALSEARCHOQC) for extracting approximate solutions
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for the problem, and demonstrated that they can work well in prac-
tice. Later, Cadena et al. [9] applied semidefinite relaxation (SDR)
[25] to the problem, and provided sufficient conditions under which
SDR can guarantee a high-quality approximate solution. However,
the high complexity incurred in solving the semidefinite program
is a limitation of the approach.

Approach and Contributions: In this paper, we study the general
problem of mining dense subgraphs from undirected graphs. In
contrast to the prevailing approaches outlined above, we advocate
a very simple method which can be summarized as follows: visit
every vertex in the graph, compute the edge-density of the subgraph
induced by its one-hop neighbors, and output the “best” (in a certain
sense). This simply entails computing the local clustering coefficient
[27] of every vertex, which can be accomplished by enumerating all
triangles in the graph - a task for which there exist several efficient
algorithms [23, 33].

While the approach may seem apriori naive (it only considers
one-hop neighborhoods), we provide theoretical justification for
it by establishing the following result: if a graph possesses a large
global clustering coefficient [35] and a heavy-tailed degree distri-
bution [5] (two recurring traits of real-world networks [15, 35]),
then it includes large and dense vertex neighborhoods. Our work is
motivated by the result of [19], which established that the aforemen-
tioned properties of real-world networks imply that neighborhood
subgraphs form communities with low conductance scores. How-
ever, to the best of our knowledge, the question of whether these
properties also imply that vertex neighborhoods themselves consti-
tute large and dense subgraphs (in the sense of being quasi-cliques)
has not been studied prior to our present work. More specifically,
our result differs from that of [19] in the following aspects.

o The authors of [19] use a probabilistic existence argument to
show that high global clustering coefficients and power-law
degree distributions imply that there exists a vertex neighbor-
hood with low conductance. While we utilize the same prob-
abilistic argument and the same twin graph characteristics,
our result formally shows the existence of neighborhoods
of non-trivial sizes possessing high edge-density, which is a
very different metric than conductance, and necessitates a
different line of analysis compared to that used in [19].

e In [19], it is also shown that the aforementioned properties
of a graph imply the existence of a k-core!, which is a partic-
ular type of dense subgraph. Here, we restrict our attention
to vertex neighborhoods, and adopt the edge-density of a
subgraph as our notion of density. In general, these two no-
tions of density are not directly comparable. Moreover, the
result of [19] relies on an argument that requires the graph
to grow asymptotically in size. In contrast, we provide a
non-asymptotic analysis to establish our result, albeit at the
expense of making an explicit assumption on the power-law
exponent of the degree distribution.

It has further been shown [21] that irrespective of the degree dis-
tribution, graphs with high global clustering coefficients admit a
decomposition as a union of vertex disjoint subgraphs, each of

LA k-core is the maximal subgraph of a graph where every vertex is connected to at
least k other vertices.

which is guaranteed to possess a certain minimum edge and trian-
gle density. We point out that where neighborhoods are concerned,
high edge and triangle density are necessary, but not sufficient
to guarantee the presence of dense neighborhoods of non-trivial
sizes. As a counter-example, consider a graph which is a union of
disjoint 4-cliques. In this case, the global clustering coefficient is the
maximum possible value 1, and each vertex neighborhood is simply
a triangle, which also attains maximum edge and triangle density.
To rule out such unfavorable cases, we employ the power-law de-
gree assumption, which is commonly observed in many real-world
networks.

In order to test our hypothesis regarding the existence of such
large neighborhood subgraphs with high edge-density, and to gauge
the empirical efficacy of our approach, we carried out a series of
experiments on 15 different publicly available datasets, with the
GRrREEDYOQC algorithm of [32] and the sophisticated maximum
flow-based algorithm of [26] for computing the triangle-densest
subgraph [31] used as benchmarks. We point out that these base-
lines are not neighborhood based, and constitute dedicated algo-
rithms for dense subgraph discovery. Our main empirical findings
can be summarized as follows:

e For graphs which obey our sufficient conditions, we dis-
covered that neighborhoods can surprisingly form maximal
cliqgues and quasi-cliques of non-trivial sizes. Furthermore,
the quality of these neighborhood subgraphs is comparable,
or even better compared to the baselines. While these results
validate the essence of our theoretical argument, they also
reveal the conservative nature of our analysis, as we obtain
better results in practice.

e For graphs with low global clustering coefficients, neighbor-
hoods with high local clustering coefficients can be small
in size. However, we demonstrate that they can serve as
good seed sets for a local-search algorithm proposed in [32].
We provide empirical justification for our choice by demon-
strating that it is consistently better in terms of size and
edge-density compared to subgraphs obtained via other sim-
ple seeding strategies such as the core decomposition and
selecting neighborhoods with high average degree. Refining
our neighborhoods via this algorithm allows us to obtain
cliques and near-cliques of even better quality compared to
the baselines.

Finally, we note that, while the scope of our algorithmic contri-
butions is limited, our main purpose is to highlight the fact that
substantially large dense neighborhoods exist in real-world graphs.
On the theoretical side, we provide practical sufficient conditions
on the graph characteristics (in terms of power-law degree distribu-
tions and clustering coefficients) to quantify the existence of such
large, dense neighborhoods. On the practical side, via extensive
experiments, we verify that such neighborhoods are of comparable,
or even better quality, compared to a range of baselines, and when
refined using a local search algorithm they yield state-of-the-art
results. Our findings suggest that contrary to worst-case complex-
ity results [13, 16, 17], it is possible to extract large cliques and
near-cliques from real-world graphs using a very simple approach —
and this is quite remarkable.



2 PRELIMINARIES

Given a simple, unweighted, undirected graph G := (V,E) onn
vertices, the neighborhood of a vertex v € V is the subset of vertices
Ny € V that share an edge with v. This can be expressed as

Ny ={ueV:(uv)ye&ELVoveV. (1)

The degree of vertex v € V is dy, := |Ny|. A wedge is a path of
length 2 formed by an unordered pair of edges {(s,v), (v, t)} that
share a common vertex v. A wedge is said to be closed if its end
points (s, t) are connected by an edge. Let wy, := (dZ") denote the

number of wedges centered at vertex v and wﬁf) denote the corre-
sponding number of closed wedges. The local clustering coefficient
of v is then the fraction of wedges centered at v that are closed, i.e.,
(c)
w
Cpi=—2,YoveV. (2)

Wy
Let w := ), Wy be the total number of wedges in G. The global
clustering coefficient of G is the overall fraction of wedges in G that

are closed, i.e., .

Cy = — wg)c). (3)
Define a probability mass function p on the vertices of G that
assigns each vertex v € V a probability equal to the fraction of
overall wedges centered at v, i.e.,

Po = E,VUE(V. 4
w

It is known [19, Claim 4.2] that the above twin definitions of cluster-
ing coefficients obey the following relation with respect to (w.r.t.)
the distribution p.

EplCol = G 5)
Given a subset of vertices S € V, define E(S) as the subset of &
containing edges only between the vertices in S. For the subgraph
Gs = (8,8(8)) induced by S, let e(S) = |E(S)| denote the
number of edges in Gg. The density of a subgraph is measured via
its edge-density

508) = &), ©

(2)

which quantifies how closely G resembles a clique on |S| vertices
in terms of edges, i.e., 8(S) = 1 when § is a clique. Given a pa-
rameter a € (0,1), a subgraph Gg is said to be a a—quasi-clique
if 8(8S) > a, i.e., if the number of its edges is at least as large as a
fixed fraction « of the edges in a clique on |S| vertices.

3 VERTEX NEIGHBORHOODS AS DENSE
SUBGRAPHS

In this section, we analyze whether vertex neighborhoods them-
selves can be potential candidates for dense subgraphs in real-world
graphs. Our starting point is the following simple observation which
states that the edge-density of a vertex neighborhood equals its
local clustering coefficient.

LemMA 3.1. Forall S = Ny, 8(S) = Cyp.

ProoF. Observe that every edge in Ny, induces a closed wedge
centered at v, which implies that e(Ny) = wgf). Furthermore, as
dy = |[Ny|, we have (IAgvl) = wy. O
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Figure 1: Ilustration of the upper bound (8) and lower bound (9) on the
probability of a vertex neighborhood being a a—quasi-clique for C;, = 0.7.
The purple crosses mark the feasible region.

If we treat C,, as a random variable with distribution p, an imme-
diate consequence of the above lemma and (5) is the following
equation

Ep[6(No)] = Cg. (7)
which implies that for graphs with large global clustering coeffi-
cients, the edge-density of a vertex neighborhood is also large on
average. If a vertex v € V is sampled with probability p,, we can
establish the following bounds on the probability of Ny, being an
a—quasi-clique.

LEMMA 3.2. Forall a > Cy,

C
Pr{S(Ny) = a} < f,v vewV. ®)
Meanwhile, for a < Cy,
Cyg—a
Pr{6(Ny) = a} > 1 NYouedV. 9)
-a

ProoF. The upper bound (8) follows as a simple consequence of
Markov’s inequality. To establish the lower bound (9), we use the
following result extracted from [19, Theorem 4.6]

1-Cy

Pr{Cy, < a} < . (10)

1-«a
Combining the above inequality with Lemma 3.1 yields the desired
claim. O

Clearly, the lower bound (9) is more informative compared to the
upper bound (8), as Markov’s inequality typically yields a loose
bound on the tail probability. Note that for large Cy, the lower
bound (9) can yield a non-trivial result. This can be observed from
Figure 1, which illustrates the bounds as a function of & for C4 = 0.7.
For example, when a = 2/3, observe that the probability of a vertex
neighborhood Ny, being a 2/3—quasi-clique is at least 10%. It is also
evident that the bounds diverge as a approaches the mean Cy. It is
only in the extreme case of Cg4 = 1, that the bounds coincide to yield
Pr{6(Ny) > a} = 1. This result can be explained by the fact that
for Cg = 1, the graph G is a union of disjoint cliques. Consequently,
any vertex neighborhood is also a clique (being the subgraph of a
clique), which is always a quasi-clique for every choice of a.

Additional insight regarding the behavior of the distribution
about the mean Cy can be obtained by analyzing the variance of
8(Ny). To this end, we will require the following result.



LEMMA 3.3. V,[6(Ny)] < Cy(1 - Cy)

Proor. Note that the second-order moment of the random vari-
able C,, can be bounded as

EplC3] = Z poCl < Z PoCo = Cy, (11a)
veV veV
where the inequality stems from the fact that C,, € [0,1],V v € V.
Combining the result with (5) and Lemma 1, we obtain

Vp[8(No)] = Ep[CE] - (BplCol)?

< Cy(1-Cy), (12

which establishes the desired claim. o

The result implies that for low Cy, the variance is small, and thus
the values of 5(Ny) are likely to be “close” to the mean Cy. In
other words, it is unlikely that many neighborhoods exhibit high
edge-density. Conversely, as the obtained bound is symmetric about
Cg = 1/2, for large Cgy, the vertex neighborhoods with edge-density
close to C, are likely candidates for being dense subgraphs.

While the aforementioned results suggest that graphs with high
global clustering coefficients harbor potentially many dense ver-
tex neighborhoods, as pointed out in the introduction, high edge-
density alone is a necessary, but not sufficient condition for the
existence of large, dense vertex neighborhoods.

Thus far, our analysis has only been reliant on the clustering
coefficient of a graph. We now attempt to incorporate another
salient characteristic of real-world graphs into our analysis: heavily-
skewed degree distributions. It is well known that the degree distri-
bution of many graphs can be well approximated by a power-law
[35]. Let (din> dmax) denote the smallest degree > 1 and the largest
degree of a graph respectively, and let D := {dpin, - - , dmax} de-
note the set of unique degrees in G. For a given degree d € D,
let ngy denote the number of times a vertex v € V takes value d.
In order to facilitate analysis, we make the following simplifying
assumptions:

(C1) The power law exponent of the degree distribution of G is
y = 2, which is fairly reasonable as y typically takes values
in the range [1.75, 3] for real world networks 2. This enables
us to express

ng=cnd2¥de®D, (13)

where ¢ € R denotes the normalization constant of the de-
gree distribution.

(C2) The set D does not contain any “missing” degrees, i.e, there
exists a vertex of degree d for every possible choice of d
satisfying dmin < d < dmax-

Our objective is now to combine both aspects (skewed degree
distributions and high clustering coefficients) to formally establish
the existence of vertex neighborhoods of non-trivial sizes with high
edge density. In order to do so, we take recourse to the probabilistic
method [2], a classical and powerful technique in combinatorics for
certifying the existence of combinatorial objects possessing certain
properties within a probability space. We proceed by first defining
the following pair of “bad” events:

2This choice is made for convenience and brevity of exposition; we can handle other
values of y > 2 as well, but the derivations are more cumbersome, see Remark 1.

(A) a vertex sampled with probability p, has a neighborhood
with “low” edge-density,

(B) a vertex sampled with probability p,, has a “small” degree,
i.e., a neighborhood of small size.

If we can establish that the probability of either event occurring is
strictly less than 1, then it implies the existence of a vertex neigh-
borhood which simultaneously possesses high edge-density and
non-trivial size. The exact notions of “low” edge-density and “small”
neighborhood size will be quantified next.

Note that (10) already provides an upper bound on the probability
of event A occurring. We now seek to establish an upper bound

. . i
on the probability of event B. For a given parameter § € ( d:::( s 1),

define d := fdpyax and let S 7 denote the set of all vertices having
degree greater than 1 but lesser than equal to d, i.e.,

S;={v eV :dpin < dy < d}. (14)

We also define a set D C D to be the subset of all unique degrees
of G not exceeding d, i.e.,

D:={deD :dpin <d<d}. (15)

Armed with these definitions, we can derive the following upper
bound on the probability of sampling a vertex with a degree smaller
than a fraction § of the largest degree dmax.

ﬁ dmax —log ﬁ

dmax—log dr.nin )

dmin—1

Lemma 3.4. Pr{v € S;} <

ProoFr. The probability of event B can be expressed as

Wo ZveSd Wou
P €S;}= v = —_— = = 16
ro d} Z P Z w 2oeV Wo (19

UESd’ UESd’

Exploiting the twin facts that w, = (dzv), V v € V and that the
degree distribution of G obeys a power law of the form (13), we ob-

tain the following expressions for the numerator and denominator
of (16)

> we % d(d—l)d_zz% Z(l—é),

3. L L
vESH deD deD (17)
1
D owe =3 dd-ndt = % (1—3).
veV deD deD
This allows us to further simplify (16) to

D] -4 1/d

Pr{v e §;} = m (18)

dmax ’
D - 5 1/d

In order to derive an upper bound on (18), we exploit the following
general fact regarding partial harmonic sums (see [11, Appendix A,

p. 1154])
utl gy ‘1 I dx
-~ < - < —_ 19
./l x_Zn_,/,lx (19)



where (I, u) are integers that obey 1 < I < u and denote the lower
and upper limits of the sum respectively. On computing the inte-
grals, we obtain the approximation bounds

log(u Jlr 1) <> % < log(%) (20)

n=[

Applying the lower bound to the partial harmonic sum appearing in
the numerator and the upper bound to the one in the denominator
of (18), we obtain

1D —log(%)

Pr{v e S;} < (21)

D] - log(dij:‘il)

The upper bound obtained above can be further bounded by apply-
ing the following chain of (strict) inequalities

1D —log(%) D —log(ﬁn)

D1~ tog sy | 1) -t g

dmin -

dmin

|D| - 1log B —log(d""“‘ )

dmax
121 - o 22)

dmin

|D| —logﬂ—log(@)

- dmin dmax
|D| - IOg( dmin_l ) B lOg(m)
|D| —log p

D] —bg(%)

dmin
dmin -1’

Upon defining A := and using the fact that

|D| = d - dyin + 1 = Pdmax — dmin + 1,
|D| = dmax — dmin + 1,
it simply remains to apply the chain of inequalities derived in (21)

and (22) to finally obtain the claimed upper bound on the probability
of event B

ﬂdmax - dmin +1- logﬁ

Pr{v € S} < —dm 7 1= TogA -
< Bdmax —log B
dmax — log A

|

Remark 1: Our assumption regarding the value of the power-law
exponent can be relaxed to any value y > 2 to obtain a result of a
similar flavor, at the expense of a more cumbersome analysis. Owing
to space constraints, we only sketch the requisite modifications.
The key difference for y > 2 is that the functions being summed
in the numerator and denominator of (18) are now d~Y and d'77,
which are non-increasing in d for y > 2. For such functions, the
integral approximation trick borrowed from [11, Appendix A, p.
1154] still applies, and consequently, can again be used to derive

an upper bound on (18). The exact form of the bound is dependent
on the specific value of y used, as this determines the form that the
integrals ultimately take.

Back to our present case of y = 2, define the quantities n :=

%, and fmax to be the largest value of § that satisfies

n < Cg. With Lemma 3.4 in hand, we can establish the following
theorem.

THEOREM 3.5. Under assumptions (C1) and (C2), there exists a
vertex neighborhood of size [Ny | > Pdmax and edge-density 5(Ny) >

C .
f_nq,for every choice of f € %,ﬂmax .

Proor. Since |[Ny| = dy, Y v € V, from Lemma 7 we obtain

Pr{v € 8z} = Pr{dmin < INo| < Bdmax} < 7. (24)
Meanwhile, on setting o := clg__”” in (10), we obtain

Pr{6(Ny) <a} <1-1. (25)

A simple application of the union bound then reveals that the
probability of either of the above events occurring is strictly less
than 1, thus implying that the complement “good” event occurs
with positive probability. Hence, there exists a vertex neighborhood

. . . Cy—
of size [Ny| > fdmay which is at least a <=

,7’7 quasi-clique. O

When day is large, then 5 = f, and thus the quasi-clique value
CI{ _ﬂﬁ . In this case, fmax =~ Cg, with the result

(roughly) varies like

that the allowable range of f is the interval (g‘“i“ Cg). A limitation

of our result is that it does not allow us obtain results for 8 > Cg.
However, for large Cg, we obtain a non-trivial lower bound on the
size of N and its edge-density. As an illustration of our lower
bound for a real graph, please refer to Figure 5 in the supplement.

Additionally, we point out an interesting fact about vertex neigh-
borhoods: if a neighborhood N, forms a clique on k-vertices, then
Ny U {v} is a clique on (k + 1)-vertices, which we designate as an
ego-clique. The following result asserts that such ego-cliques must
be maximal.

THEOREM 3.6. Let Ny, be a clique on k-vertices and C,1(v) =
Ny U {v} be an ego-clique on (k + 1)-vertices. Every such ego-clique
is maximal.

ProoF. Assume the contrary, i.e., that there exists a clique Cp C
V on (-vertices such that £ > k + 1 and Cy41(v) C Cp. Then, there
exists a vertex u € Cy \ Cry1(v) which is one-hop away from v,
since v € Cp. This implies that u € N(v) C Ciy1(v), which is a
contradiction. O

4 EXPERIMENTAL EVALUATION

In this section, we devise a series of experiments on a variety of
datasets that aims to address the following questions: (a) Do dense
vertex neighborhoods of non-trivial sizes exist in real-world graphs?
(b) How does the approach fare in comparison to dedicated algo-
rithms for dense subgraph discovery?



4.1 Datasets

The list of datasets used and a summary of their statistics are pre-
sented in Table 1. If the original graph is directed, a symmetrization
step is first performed. Unless specified, the datasets were obtained
from [24], and can be classified as follows:

(A) Co-authorship graphs: The vertices denote scientists, and
the edges represent collaborations between co-authors of
a scientific publication. The datasets include co-authorship
graphs constructed from arXiv submissions in three different
scientific disciplines (ARx1v-HEPPH, ARXIV-ASTROPH and
ARXIV-CONDMAT), as well as larger graphs comprising the
largest connected component of the arXiv and DBLP co-
authorship graphs (ARX1v [14] and DBLP respectively).

(B) Social networks: The vertices are people, and the edges in-
dicate “friend” relationships. The datasets include two differ-
ent snapshots of the Facebook friendship graph (FACEBoOK-A
and FACEBOOK-B [34]), friendship networks obtained from a
blogging website (BLOGCATALOG3 [30]), and a location-based
social networking website (Loc-GOWALLA).

(C) Web graphs: Vertices are web pages, while the edges denote
symmetrized hyperlinks (WEB-STANFORD and WEB-GOOGLE).

(D) Miscellaneous: An assortment of graphs drawn from dif-
ferent domains: a protein-protein interaction network (ppI1-
HuMAN), an email communications network (EMAIL-ENRON),
a router graph (ROUTER-CAIDA [12]), and an item-item co-
purchase network (AMAZON).

4.2 Assessing the Quality of Neighborhood
Subgraphs

Given a dataset, we first compute the edge-density of all vertex
neighborhoods. This requires calculating the local clustering co-
efficient of every vertex, which can be accomplished by triangle
counting - a task that incurs a worst-case complexity of o(m3/?)
for a graph with m edges. For our purposes, we employed the MAx-
imal Clique Enumerator (MACE) algorithm (the C code of which is
publicly available at [33]) to obtain triangle counts.

Next, for every unique degree in the graph, we compute the
highest neighborhood edge-density score over all vertices of that
degree and display this information on a plot versus the log of
the unique degrees. We designate such a plot as the neighborhood
density profile (NDP) of a graph, which is shown for six datasets in
Figure 2. The NDP plots in the first column represent graphs with
high global clustering coeflicients, which serve as good test beds
for our working hypothesis that vertex neighborhoods are dense
subgraphs. Meanwhile, the graphs in the second column possess
very low global clustering coefficients, and illustrate the outcome
when our sufficient conditions for high neighborhood edge-density
are not met. In each NDP plot, we mark the largest degree dmax by
a vertical magenta line, the size of the largest clique discovered by
the GREEDYOQC algorithm (for comparison) using a vertical red
line, while the global clustering coefficient is highlighted using a
black horizontal line. A feature common to all NDP plots is that
the neighborhood edge-density decreases with increase in degree,
which follows from the fact that the local clustering coefficient
of a vertex is inversely proportional to the square of its degree.
However, when the global clustering coefficient of the graph is

Table 1: Summary of graph statistics: the number of vertices (), the num-
ber of edges (m), the largest degree (dmax), the global clustering coefficient
(Cy), and the mean local clustering coefficient C.

Graph n m dimax Cy c

ARX1v-HEPPH 12,008 112K 491 0.659  0.612
ARX1V-ASTROPH 18,772 198K 504 0318  0.677
ARX1v-CONDMAT 23,133 93,497 279 0.264  0.633

ARX1V 86,376 517K 1,253 0.560  0.678
DBLP 317K 1.05M 343 0.306  0.632
FACEBOOK-A 4,039 88,234 1,045  0.519  0.605
BLOGCATALOG3 10,312 333K 3,992 0.091  0.463
FaceBook-B 63,731 817K 1,098  0.148  0.221
Loc-GOWALLA 196K 950K 14,730  0.023  0.237
WEB-STANFORD 281K 2.31M 38,625 0.008 0.598
WEB-GOOGLE 875K 5.10M 6,332 0.055 0.514
ppI-HumMAN 21,557 342K 2,130 0.119  0.207

EMAIL-ENRON 36,692 183K 1,383 0.085  0.497
ROUTER-CAIDA 192K 609K 1,071 0.061  0.157
AMAZON 334K 923K 549 0.205  0.397

large, from the NDP plots in the first column, it is evident that
vertex neighborhoods themselves constitute large (relative to the
largest degree dmax), dense subgraphs. In fact, it can be observed
that several neighborhoods N (v) attain an edge-density equal to 1,
i.e., they form a clique. Recalling the result of Theorem 3.6, it then
follows that for the ARX1v-HEPPH, and DBLP datasets, inspecting
vertex neighborhoods alone surprisingly reveals maximal cliques
of non-trivial sizes. Furthermore, for these datasets, the size of
the largest such ego-clique matches the result obtained using the
GREEDYOQC algorithm. On the other hand, for the FacEBoOK-A
dataset, the size of the largest ego-clique is roughly 6—times smaller
than that obtained by GREEDYOQC. However, it can be seen that
there do exist vertex neighborhoods of size comparable to that of
the clique discovered by GREEDYOQC, which are 0.9-quasi-cliques,
and thus, are also substantially dense. Taken together, the NDP plots
in the first column of Figure 2 provide empirical validation of our
hypothesis that graphs with power-law degree distributions and
high global clustering coefficients harbor large, dense neighborhood
subgraphs.

We now turn our attention to the second column, where C,
is small. In this case, note that the size of the densest neighbor-
hood subgraph is small with respect to the largest degree dmax. In
particular, for the BLoGCATALOG3 graph, the NDP reveals that the
neighborhood edge-density decays quickly with the degree. This
represents the worst-case scenario, where the vertex neighborhoods
themselves are not appealing candidates for being dense subgraphs
of non-trivial sizes. On the other hand, for the graphs Loc-GowALLA,
and WEB-STANFORD, there are a few dense vertex neighborhoods
which form small (relative to dmax) subgraphs of non-trivial sizes,
and represent atypical or “anomalous” regions of the graph. Note
that in terms of quality, on the Loc-GowALLA graph, the densest ver-
tex neighborhood is near-optimal in terms of size and edge-density
compared to the solution returned by GREEDYOQC, while on the
WEB-STANFORD graph, the largest ego-clique is 4 times larger in
size compared to the clique computed by GREEDYOQC.

In summary, the NDP of a graph is very informative in assessing
the edge-density of neighborhood subgraphs. It reveals the pres-
ence of large, dense neighborhood subgraphs in real-world graphs
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Figure 2: The Neighborhood Density Profile of six real-world graphs. Each
plot depicts the maximum of the edge-density of vertex neighborhoods of
a given degree versus the log of the degrees. Horizontal black line - global
clustering coefficient (Cy), red vertical line - densest subgraph returned by
the GREEDYOQC algorithm, and the magenta vertical line - largest degree
dmax- The graphs in the first column figures have high C,; values, while the
ones in the second column have small C, values.

with power-law degree distributions and high global clustering
coefficients, thereby confirming the essence of the result provided
by Theorem 3.5. Moreover, it illustrates that graphs exhibiting the
aforementioned traits often feature the surprising attribute that
neighborhoods themselves constitute maximal cliques of non-trivial
sizes, with the size of the largest clique being the same as that deter-
mined by GREEDYOQC, which is a non-neighborhood based method.
On the other hand, it also showcases that when Cy is small, then
neighborhood subgraphs may still form small, dense subgraphs
of non-trivial sizes. That being said, there also exist unfavorable
instances where neighborhood subgraphs are dense only on a very
small scale. The following section explores ways of using such
neighborhood subgraphs as seeds for a local-search method in
order to grow dense subgraphs of larger sizes.

4.3 Growing Dense Subgraphs from Vertex
Neighborhoods

In this section, we describe how the LocALSEARCHOQC algorithm
of [32] can be used to refine the quality of vertex neighborhoods.
Given an initial seed set Sp C V, the LocALSEARCHOQC algorithm
aims to maximize the edge-surplus objective function

FalS) = e(S) - a(":') (26)

by searching for vertices, which when added or deleted from the
current solution set, yields an improvement in the objective func-
tion. The procedure is continued until a locally optimal solution is
found, (i.e., until addition or deletion of a single vertex from the
solution set does not lead to an improvement in the objective), or a
maximum number of iterations Tynax are reached. While the algo-
rithm has a low run-time complexity of O(mTpax), its performance
is particularly sensitive to the choice of initialization Sy C V as the
objective function f,(S) is difficult to maximize (globally). In that
regard, we provide compelling empirical evidence that selecting
vertex neighborhoods (on the basis of their clustering coefficients)
constitutes good seeds for LocALSEARCHOQC. We devised a pair of
simple strategies for judiciously selecting seed sets via this metric
- owing to space limitations, the full details are provided in the
supplement (see strategies (S1) and (S2)).

In order to provide empirical justification for our choice, we per-
formed a comparison against a pair of low-complexity alternatives
for obtaining seed sets. These are (i) computing the core decompo-
sition of the graph [29], and (ii) selecting vertex neighborhoods on
the basis of their average degree. The first choice is motivated by
the fact that under the same general assumptions made in Theorem
3.5, aresult of a similar flavor has been established in [19] regarding
the existence of a dense core, and that the core decomposition can
be computed efficiently in linear-time [6]. As the procedure gener-
ates a hierarchy of nested subgraphs, we used the final subgraph in
the hierarchy (which is the smallest in size and the densest) as a
candidate seed. The second choice was proposed in [32] to initialize
LoCALSEARCHOQC; i.e., the neighborhood with the highest average
degree is selected as the seed. Note that computing the average
degree of a vertex neighborhood incurs the same complexity as
computing clustering coefficients. However, selecting neighbor-
hoods via this metric presently lacks theoretical justification, in
contrast to ours. The quality of the best seeds obtained by the alter-
natives is depicted in Table 2 — these results are representative of
both the best and worst outcomes. Meanwhile, the quality of the
best neighborhood obtained obtained by employing strategy (S2)
is depicted in Table 3 (see columns under Quasi-cliques with head-
ing “NB"). It is evident that our neighborhood selection strategy
consistently yields seeds that are of considerably higher quality
compared to those obtained via the alternatives (in terms of both
size and edge-density). We conclude that our mechanism of generat-
ing seeds is well suited for providing high-quality initializations for
LocALSEARCHOQC on real-world data compared to the prevailing

Table 2: Quality of subgraphs obtained via core decomposition and select-
ing neighborhoods based on average degree in terms of their size |S| and
edge-density |5(S)|.

Core decomposition Avg. degree

Graph |S| 5(S) IS 8(S)
ARXIV-ASTROPH 57 1 81 0.75
ARX1V 146 0.49 147 0.52
BLOGCATALOG3 447 0.4 1550  0.08
FaceBook-B 699 0.12 723 0.07
LOC-GOWALLA 183 0.41 162 0.27
WEB-STANFORD 387 0.29 694 017
ROUTER-CAIDA 92 0.45 91 0.31
AMAZON 497 0.013 47 0.20




baselines. Following the suggestion of [32], we set the maximum
number of iterations Tmax = 50 in our experiments.Apart from the
choice of the initial seed set Sy, the performance of the algorithm
is also dependent on the choice of the parameter ¢ € (0,1]. The
recommendation of [32] is to set &« = 1/3. However, we observed
that in practice, on many graphs, the performance of the algorithm
with neighborhood seeding can be significantly improved by simply
increasing « to much larger values. For a more thorough discussion
on selecting «, please refer to the supplement.

4.4 Main Results and Discussion

We compared our approach against two non-neighborhood based
methods - the GREEDYOQC algorithm of [32] and a sophisticated
flow-based algorithm proposed in [26] for efficently computing the
k-clique densest subgraph [31]. For the former algorithm, which
employs greedy vertex peeling to maximize the OQC function (26)
and runs in linear time O(m + n), we used a value of @ > 1/3, as it
substantially improves upon the performance reported in [32] (see
supplement for an example). Meanwhile, for a given integer k > 3,
the latter method requires a list of all k-cliques in the graph as
input. For fair comparison, we used k = 3, which reduces to listing
triangles, that we already obtained using MACE for computing
clustering coefficients. Note that for this choice of k, the algorithm
aims to compute the triangle-densest subgraph (TDS). We used the
C- based implementation developed by the authors of [26] that is
publicly available at [1] to obtain our results.

We summarize the outcomes of our experiments across all datasets
in Table 3, which displays the size of the largest clique obtained by
each method on each dataset, along with the “best” quasi-clique
(i.e., the densest subgraph that is not a clique). The algorithm of [26]
does not have any parameter to tune, and hence, we simply display
the obtained results. For GREEDYOQC, we report the largest clique
obtained by setting & = 1. Meanwhile, for LocALSEARCHOQC, the
cliques were obtained using the neighborhood seed sets (S1) and
a = 1, while the quasi-cliques were recovered using the neighbor-
hood seed sets (S2). We compared the quasi-cliques returned by
the different methods on the basis of their size, edge-density and
triangle-density. For fair comparison, we report the quasi-cliques
obtained by each method for « = 0.9 - if a method returned
a clique for this choice of «, we used the next smaller value of
a € {0.7,0.75,0.8,0.85} for which a quasi-clique is obtained. If no
quasi-clique is returned by a method for any choice of «, we leave a
blank in its corresponding location in the table. Our main findings
can be summarized as follows:

(1) The best neighborhood (without refinement) is, in general, of
much higher quality compared to the TDS computed by [26],
which requires triangle-listing as a pre-processing step. Fur-
thermore, there always exists a high quality neighborhood
quasi-clique (with & > 0.92 in all but one case) of substantial
size - refinement via LoCALSEARCHOQC mainly yields a sim-
ilar sized subgraph with improved triangle-density. Overall,
these results provide empirical validation of our hypothesis
that real-world graphs contain high-quality dense neighbor-
hood subgraphs of non-trivial sizes.

(2) The GreEDYOQC algorithm (with appropriate tuning) is well-
suited for clique discovery in general. However, on 6/15

datasets, the largest clique discovered by GREEDYOQC and
LocALSEARCHOQC is no better than the largest ego-clique.
On the remaining datasets, while the largest ego-clique can
be small relative to GREEDYOQC, by using neighborhoods
as seeds for LocALSEARCHOQC, we can discover a clique of
comparable, or even larger size.

(3) Regarding the performance of LocALSEARCHOQC and GREEDY-
0OQC, while both methods recover quasi-cliques of high qual-
ity, the former algorithm has a tendency to produce “denser”
quasi-cliques of higher triangle density compared to the
latter method.

(4) On 7/15 datasets (particularly, on collaboration networks),
we observed that GREEDYOQC produces a clique, but not any
dense quasi-cliques, with the algorithm becoming “stuck”
at the same clique for all choices of a. Such an undesirable
behavior was not observed for LocALSEARCHOQC.

To conclude, our results indicate that selecting vertex neighbor-
hoods based on their local clustering coefficient reveals dense sub-
graphs of substantial size, which can be competitive with or even
better than those obtained by dedicated methods for dense subgraph
discovery. We also demonstrated that such vertex neighborhoods
are good seeds for LocALSEARCHOQC, being substantially better
overall than seeds obtained via other simple alternatives such as the
core decomposition or choosing neighborhoods with large average
degree. Further refining neighborhoods with this simple algorithm
allows us to consistently obtain both cliques and quasi-cliques of
even higher quality compared to the baselines across a wide variety
of heterogeneous datasets.

5 CONCLUSIONS

Our main aim in this paper was to draw attention to the fact that
real-world graphs harbor dense vertex neighborhoods of non-trivial
sizes, which are often of comparable or higher quality relative to
those discovered by dedicated algorithms for maximizing subgraph
density. We provided theoretical justification of this phenomenon,
in terms of sufficient conditions (namely, a power-law degree dis-
tribution and a large global clustering coefficient) under which
such a surprising result can be expected in a real-world graph.
In practice, our conditions seem to be conservative. We also pro-
vided compelling empirical evidence that refining a judiciously
chosen neighborhood via a simple local search algorithm delivers
state-of-the-art performance at low complexity. This indicates that
discovering large cliques and near-cliques is not always hard for
real-world graphs, and provides motivation for future work that
provides a more refined analysis of these empirical results.
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SUPPLEMENTARY MATERIAL

In order to facilitate reproducibility, this section contains a detailed
description of the mechanisms used to generate the neighborhood
seed sets for initializing LocALSEARCHOQC, guidelines for choosing
the tuning parameter « in the OQC objective function (26) for both
the LocALSEARCHOQC and GREEDYOQC algorithms, and additional
experiments showcasing how the choice of these parameters in-
fluences the obtained results. Additionally, we provide an example
to illustrate the quality of the lower bound on the neighborhood
quasi-clique value derived in Theorem 3.5 on a real-world graph.

We begin by discussing the choice of a for LocALSEARCHOQC.
While the recommendation of [32] is to set @ = 1/3, the algo-
rithm performs much better in practice with a larger value. Such
a beneficial effect can be partially explained via the following in-
tuitive argument: consider the case where C > 1/3 for a given
graph G. Note that the term a(“zs‘) in fy(8S) can be interpreted
as the expected number of edges in a subgraph G of a random
Erdos-Renyi graph with edge-density «. This random graph model
serves as a null model which is used to compare and contrast the
number of edges of a subgraph G in the given graph G. We now
point out that & can also be equivalently viewed as the expected
local clustering coefficient of a random Erdos-Renyi graph. This
observation suggests that given a graph, we can set the value of
a to be equal to the average clustering coefficient C of G, as the
random Erdos-Renyi graph model will exhibit the same clustering
coefficient as G on average, and hence, may constitute a more ap-
propriate parameter setting when C > 1/3. In practice though, we
observed that irrespective of the actual value of C, it never hurts to
increase @ to a value larger than max{1/3, C}. This effect is illus-
trated via the following two strategies for generating seed sets for
the LocALSEARCHOQC algorithm.

(S1): In this strategy, from the NDP of a graph, we select all
vertices whose neighborhood density lies in the interval
[0.70,0.95]. On average, this yields a small number of 20 — 30
vertices, with the worst-case extremes arising in the case of
the FACEBOOK-A graph, where 3.5% of the 4, 039 vertices (a
total of 153) where returned and the AMazon graph, where
only 4 vertices were returned. Every such vertex v is then
combined with its neighborhood N(v) to generate a seed
set {v} U N(v), which is used as initialization for the rLo-
cALSEARCHOQC algorithm with @ = 1. For this choice of «,
the edge-surplus objective function f,(S) attaches a high
penalty to any subset of vertices which do not form a clique,
i.e., we “encourage” the algorithm to discover cliques.

(S82): In an alternative strategy, we partition the interval of neigh-
borhood density values [0.70,0.95) into 5 sets of disjoint,
equi-spaced sub-intervals [0.7,0.75),[0.75, 0.8), [0.8, 0.85),
[0.85,0.9), and [0.9,0.95). Next, we list the vertices of the
graph whose neighborhood edge-densities lie in one of these
5 sub-intervals. For graphs with small Cy the size of the list
was always < 1% of the total number of vertices, whereas
it was up to 5% for larger Cg. From each sub-interval, we
select the vertex whose neighborhood subgraph attains the
highest edge-surplus value according to (26), where the pa-
rameter @ in f,(S) is set to the lower bound of the sub-
interval; e.g., for the sub-interval [0.9 — 0.95), @ = 0.9. This

vertex v is then combined with its neighborhood to form
the seed set {v} U N(v), which is then used to initialize Lo-
cALSEARCHOQC, with the same value of « as the sub-interval
lower bound. A total of 5 such seed sets are generated (one
for each sub-interval). In this case, our objective is to induce
the algorithm to unearth large quasi-cliques.

The performance of LocALSEARCHOQC using the seeding strategy
(S1), is depicted in Figure 3 on 2 representative datasets. By setting
a = 1, LocALSEARCHOQC is indeed capable of discovering cliques
when initialized from appropriate vertex neighborhoods. While the
size of the discovered cliques is smaller than the largest ego-clique
for a small number of seeds, the majority of trials produced cliques
of larger sizes. We empirically verified that these cliques are max-
imal, which concurs with our intuition regarding the algorithm,
i.e., if the current solution set is a non-maximal clique, by design,
the algorithm will seek to add vertices which will produce a larger,
maximal clique (note that the extreme setting & = 1 discourages any
other vertices from being added in this case). A list of these maximal
cliques of size larger than the largest ego-clique for the datasets
considered are depicted in the right-hand column of Figure 3. We
point out that on the weB-GOOGLE dataset, a few seeds produced
subgraphs of small size and low density. This illustrates a potential
drawback of setting a = 1: if the initial seed set is not in the local
vicinity of a denser subgraph, then LocALSEARCHOQC compensates
by seeking out a small subgraph with low density. To appreciate
this behavior, we focus on one such seed set of size 60 and density
0.77. For this subgraph, the edge-surplus objective function has a
value of —407. When used as initialization for LocALSEARCHOQC,
the algorithm yields a subgraph of size 11 and edge-density 0.18.
However, the objective function f,(S) has a value of —45, which
marks a near 10-fold improvement over the initial set. While this
is a worst-case scenario for such a “all-or-nothing” approach, we
observed that it seldom occurs in practice (only 6/32 trials on the
WEB-GOOGLE graph and no such occurrences on the FACEBook-B
graph). Overall, our experiments indicate that these vertex neigh-
borhoods can indeed serve as favorable initialization points for
discovering maximal cliques using LocALSEARCHOQC.

As a performance benchmark, we also added the GREEDYOQC
algorithm of [32], with « also set equal to 1. Interestingly, the algo-
rithm always produced a clique with this setting on all the datasets
we tried. With regard to detecting cliques, Figure 3 reveals that the
performance of GREEDYOQC is competitive with LocALSEARCHOQC.
On the FACEBOOK-B graph, LocALSEARCHOQC detects 3 distinct
cliques of size 25, while GREEDYOQC also discovers a different clique
of the same size. Finally, on the wWEB-GOOGLE graph, the size of the
largest clique discovered by LocALSEARCHOQC is 43, which is com-
parable in size to the largest clique on 46 vertices produced by
GREEDYOQC. We also empirically observed that the clique returned
by GREEDYOQC does not subsume any of the smaller cliques pro-
duced by LocALSEARCHOQC, thereby highlighting the contrasting
nature of the two approaches.

We now focus on the effectiveness of LocALSEARCHOQC in dis-
covering large quasi-cliques when using the seeding strategy (S2).
We used GREEDYOQC again as a benchmark, with the range of pa-
rameter settings varying from a € {1/3,0.7,0.75,0.8,0.85,0.9, 1},
i.e., from the recommended setting 1/3 to the highest possible value
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Figure 3: Results of using LocALSEARCHOQC with seeds (S1) on three real-
world graphs. Left column: Edge Density versus subgraph size. The red dia-
monds denote the neighborhood subgraphs selected using the seeding strat-
egy (S1), the black vertical line highlights the size of the largest ego-clique, the
blue squares denote the subgraphs obtained using LocALSEARCHOQC with
seeds (S1) and @ = 1, and the magenta vertical line marks the size of the
largest clique returned by GREEDYOQC. Right column: list of k-cliques ob-
tained by LocALSEARCHOQC of size larger than the largest ego-clique.

1. Figure 4 displays the results of our experiments on 4 datasets,
which are representative of all the possible outcomes that we ob-
served. Regarding the performance of GREEDYOQC, we point out
that the recommended setting of @ = 1/3 can be very sub-optimal
with respect to the neighborhood subgraphs we selected. For ex-
ample, on the BLOGCATALOG3 dataset, using @ = 1/3 outputs a
subgraph on 330 vertices with edge-density 0.5, which is 33% less
dense and 10 times larger in size than the least-dense neighborhood
subgraph obtained. The algorithm demonstrates marked improve-
ment only upon using a more aggressive choice of «, with the
subgraph size decreasing and the density increasing progressively
as « is increased, and ultimately yielding a clique when o = 1.

On the BLOGCATALOG3 dataset, in terms of size and edge-density,
the quasi-cliques computed by LocALSEARCHOQC are a close match
to those computed by GREEDYOQC for a given a. On the other
hand, on the Loc-GowALLA graph, it can be noted that the initial
seed sets themselves are large quasi-cliques. In this case, further
refinement using LocALSEARCHOQC does not result in a signifi-
cant improvement, although it does identify a near-clique on 32
vertices. In comparison, the largest clique detected by GREEDYOQC
is only marginally larger than the largest ego-clique, and is much
smaller than the largest clique recovered by LocALSEARCHOQC.
On the EmAIL-ENRON graph, we observe the opposite trend, i.e.,
LOCALSEARCHOQC produces dense quasi-cliques of smaller size
compared to GREEDYOQC overall. On the ROUTER-CAIDA graph, we
made a curious observation regarding GREEDYOQC - the subgraph
produced is invariant with respect to all choices of @ > 1/3. In
this case, the algorithm completely fails to unveil any dense quasi-
cliques, while LocALSEARCHOQC discovers a 0.95-quasi-clique on
24 vertices. Furthermore, it can be seen that the clique computed
by GREEDYOQC is of size 6, which is smaller than both the largest
ego-clique and the largest clique computed by LocALSEARCHOQC.
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Figure 4: Edge density versus subgraph size for four real-world graphs as a
function of the parameter o used in LocALSEARCHOQC and GREEDYOQC. The
red diamonds denote the neighborhood subgraphs selected using the seeding
strategy (S2), the red vertical line highlights the size of the largest ego-clique,
the blue squares denote the subgraphs obtained using LOCALSEARCHOQC
with seeds (S2), the blue vertical line marks the size of the largest clique ob-
tained using LocALSEARCHOQC with seeds (S1), and the magenta triangles
denote the output of GREEDYOQC.

Finally, we compare the lower bound on the neighborhood edge-
density derived in Theorem 3.5 against its actual value for the
FACEBOOK-A graph in Figure 5. We chose this particular dataset as
it has a large value of Cy = 0.52, and its degree distribution closely
conforms with our assumptions (C1)-(C2). Note that for a fixed Cg,
the lower bound (Cy — f)/(1 — f§) decreases monotonically with
B € (duin/dmax, Cg). We plot the value of this lower bound for every
unique degree in the graph that lies between a fraction Sy, = 0.05
and fmax = Cqg of the largest degree dmax = 1,045, and also plot
the largest clustering coefficient C;, (i.e., the actual neighborhood
edge-density) for every such degree. The figure reveals that our
lower bound is pessimistic in general, although it becomes tighter
for larger degrees. A very small number of neighborhoods of large
degree also violate the lower bound, which we attribute to the
fact that there are missing degrees in practice and that the degree
distribution approximately obeys a power-law with exponent 2.
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Figure 5: Lower bound of Theorem 3.5 (blue) vs actual neighborhood edge-
density (magenta) as a function of the degree for the FACEBOOK-A graph.
Black line - Cgy, red lines — admissible range of degrees.
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