
Joint Graph Embedding and Alignment with Spectral Pivot
Paris A. Karakasis

∗

University of Virginia

Charlottesville, Virginia, USA

karakasis@virginia.edu

Aritra Konar
∗

University of Virginia

Charlottesville, Virginia, USA

aritra@virginia.edu

Nicholas D. Sidiropoulos

University of Virginia

Charlottesville, Virginia, USA

nikos@virginia.edu

ABSTRACT
Graphs are powerful abstractions that naturally capture the wealth

of relationships in our interconnected world. This paper proposes

a new approach for graph alignment, a core problem in graph

mining. Classical (e.g., spectral) methods use fixed embeddings for

both graphs to perform the alignment. In contrast, the proposed

approach fixes the embedding of the ‘target’ graph and jointly op-

timizes the embedding transformation and the alignment of the

‘query’ graph. An alternating optimization algorithm is proposed

for computing high-quality approximate solutions and compared

against the prevailing state-of-the-art graph aligning frameworks

using benchmark real-world graphs. The results indicate that the

proposed formulation can offer significant gains in terms of match-

ing accuracy and robustness to noise relative to existing solutions

for this hard but important problem.

CCS CONCEPTS
•Mathematics of computing→ Graph algorithms; Approxi-
mation algorithms; • Information systems → Data mining.

KEYWORDS
graph alignment; graph embedding; spectral methods; alternating

optimization

ACM Reference Format:
Paris A. Karakasis, Aritra Konar, and Nicholas D. Sidiropoulos. 2021. Joint

Graph Embedding and Alignment with Spectral Pivot. In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD ’21), August 14–18, 2021, Virtual Event, Singapore. ACM, New York,

NY, USA, 9 pages. https://doi.org/10.1145/3447548.3467377

1 INTRODUCTION
Graph-based representation models have become powerful for en-

coding relational structures that are encountered in our intercon-

nected world, such as co-authorship networks, protein-protein in-

teraction networks, and social networks. In this paper we study

the fundamental problem of graph alignment, which aims to find

an alignment of the vertices of two graphs such that the number

of induced edge disagreements is minimized. This problem has

∗
Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00

https://doi.org/10.1145/3447548.3467377

applications in a wide variety of disciplines, including spanning

computer vision, image and social network analysis, pattern recog-

nition, bioinformatics and neuroscience (see [11] and references

therein). On the other hand, graph alignment is a demanding com-

binatorial problem. As a result, the need for efficient and scalable

algorithms capable of providing good approximate solutions is

imperative.

The graph alignment problem can be divided into different sub-

categories. Given a pair of graphs with the same number of nodes,

the case of exact graph alignment is known as the graph isomor-

phism problem. Correspondingly, the problem of exact alignment

of a graph to a part of another graph is called the subgraph isomor-

phism problem. Inexact graph alignment refers to problems where

exact matching is impossible. In its most general form, the graph

alignment problem is equivalent to a quadratic assignment problem

(QAP) [43], which is known to be NP-hard [36]. In that regime,

there is a pressing need for algorithms which are both theoretically

sound and highly scalable.

Towards this end, various concepts and tools used for mining

graph information are being increasingly employed for graph align-

ment as well. One such concept that has recently received signifi-

cant attention is that of learning efficient representations of graphs,

known as graph embeddings. Graph embedding approaches can be

usually viewed as finding mappings that embed nodes, subgraphs,

or even whole graphs in some cases, as points in a low-dimensional

vector space [5, 22]. The main goal of these approaches is to capture

valuable graph structural information and properties in geometric

relationships in the embedding space, where downstream tasks can

be performed naturally and at lower complexity. Finding efficient

graph representations is challenging and determining which type

of embedding method is most suitable is application-specific [5].

In the context of graph alignment, the most common category

of embedding methods is that of node embeddings. For a given 𝑛-th
order graph G = (V, E), the representation learning problem can

be stated as finding a function 𝑓 : V → R𝑑 , usually for 𝑑 ≪ 𝑛,

that encodes structural information and properties of each node.

Regarding the usefulness of such mappings in aligning graphs, one

may argue that an efficient embedding method should represent

nodes that have similar structural properties by similar embedding

vectors. If this holds, then two nodes, that belong to different graphs

and have similar embedding vectors, would be candidates for a pos-

sible match. Hence, the graph alignment problem can be expressed

in terms of the node embeddings of the given pair of graphs, and

as a result, may potentially lead to more tractable formulations of

the graph alignment problem.

The majority of node embedding algorithms relies on what we

call direct encoding methods [22] and can be roughly divided into

two subcategories: i) the matrix factorization-based approaches,

like the Graph Factorization algorithm [1], GraRep [6], and HOPE

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

851

https://doi.org/10.1145/3447548.3467377
https://doi.org/10.1145/3447548.3467377

[35]; and ii) the random walk-based approaches, like DeepWalk

[37], node2vec [21], and HARP [8]. Surprisingly, the authors of

[38] showed that some of the random walk-based models can be

accommodated under the matrix factorization framework with

closed form expressions, when viewed under a negative sampling

‘lens’. Based on that observation, the same authors proposed the

NetMF method for computing node embeddings [38]. Under the

subcategory of matrix factorization-based methods, we can also

place the rich family of the so called spectral methods. The spectral

decomposition of a matrix representation of a graph, such as its

adjacency or Laplacian matrix, has been also proven to be a solid

and efficient basis for creating graph representations for numerous

graph mining problems, including graph alignment.

Contributions: In this paper, we introduce a new framework for

graph alignment that “pivots” around the (fixed) spectral embed-

ding of the ’target’ graph to jointly compute the optimal node

embeddings of the ’query’ graph and the one-to-one correspon-

dence mapping that aligns the two graphs. We cast our formulation

as a non-convex optimization problem and propose an alternating

optimization algorithm. Finally, we test our method on real life

graphs, and compare it with other state-of-the-art baselines. Our

results reveal that the proposed algorithm can obtain significant

improvement in performance (with regards to correctly aligning

edges) relative to the prior art at affordable complexity.

2 RELATED WORK
Previous approaches [10, 12, 30] have formulated graph alignment

as a Quadratic Programming (QP) problem. Because of its combi-

natorial nature, graph alignment is either solved exactly in very

restricted settings (e.g., on trees [26], planar graphs [24], and graphs

with bounded eigenvalue multiplicity [3]) or else approximately,

using various optimization approaches (see [25, 27, 45, 48]).

A different approach to the graph alignment problem employs

spectral methods [43], which exploit information conveyed by the

eigenvectors of the adjacency matrix. Since [43], numerous spectral

approaches have been proposed. Prominent among these is IsoRank

[42], which uses random walks with restarts to align nodes across

two graphs based on their topological similarities. More recent

methods include EigenAlign (EA) and LowRankAlign (LRA)[18].

EA computes the leading eigenvector of a function of the adjacency

matrices of the two graphs and then performs a maximum weight

bipartite matching optimization to construct an alignment. LRA

solves the QAP problem over the relaxed feasible set of orthogonal

matrices and then produces an estimate of the permutation matrix

by searching in a reduced space, which is determined by the solution

of the first step.

Going beyond spectral embeddings, employing node embeddings

has proven to be very fruitful for graph matching, although much

remains to be done in this direction. One example of embedding

based methods is REGAL [23], which computes degree-based fea-

tures from a node’s neighborhood at different hop-lengths, and

then uses an implicit factorization of the resulting feature matrix to

form embeddings that are suitable for network alignment. Recently,

the same authors proposed CONE-Align[9], which uses the NetMF

node embeddings [38] of the two graphs and adopts the frame-

work presented in [20] to produce a matching based on aligning

the representations of the embedding subspaces. In both methods,

the final matching is performed by using kd-trees for fast nearest

node embedding search. The problem of jointly learning embedding

vectors and matching the nodes of two graphs has also attracted

interest, including [44], where a Gromov-Wasserstein discrepancy

based learning framework was proposed. The main motivation be-

hind joint embedding and matching is that if we know that the

two graphs are quasi-isomorphic, this can help learn better node

embeddings from and for both graphs. Conversely, such embeddings

will naturally be better-suited to aid the alignment task.

3 PROBLEM FORMULATION
Given a pair of (possibly directed) unweighted graphs of the same

order, graph alignment is the problem of finding a bijection between

the vertex sets that minimizes the number of edge disagreements.

In other words, let G1 and G2 be a pair of graphs on 𝑛 vertices with

respective adjacency matrices A1 ∈ {0, 1}𝑛×𝑛 and A2 ∈ {0, 1}𝑛×𝑛 .
Then, the problem can be formulated as the optimization problem

min

P∈P𝑛

A1 − PA2P𝑇

2
𝐹
, (1)

where ∥·∥𝐹 denotes the Frobenius norm of a matrix, while the

feasible set P𝑛
denotes the set of all 𝑛 × 𝑛 permutation matrices,

which can be compactly expressed as

P𝑛
:=

{
P ∈ R𝑛×𝑛+ | P𝑇 P = PP𝑇 = I𝑛

}
. (2)

Note that the cost function of (1) can be expressed as

A1 − PA2P𝑇

2
𝐹
= ∥A1∥2𝐹 + ∥A2∥2𝐹 − 2 trace

(
A𝑇
1
PA2P𝑇

)
.

Hence, problem (1) is equivalent to

max

P∈P𝑛
trace

(
A𝑇
1
PA2P𝑇

)
, (3)

which, in its general form, corresponds to a NP-hard problem;

the Quadratic Assignment Problem (QAP). Moreover, computing

an approximate solution within a factor better than 2
log𝑛1−𝜖

of

the optimum is, in general, not feasible in polynomial time either

[39]. However, several algorithms have been designed to provide

approximate solutions. We refer the reader to [18] for a brief review

of these methods and to [4, 17, 33] for a more extensive review.

An alternative approach to graph alignment, that has consti-

tuted the basis of many recently proposed works, aims to perform

alignment based on learned representations of the nodes of the

two graphs. The advantage of using node embedding methods for

graph alignment is that, in contrast to the NP–hard problem (3),

if E1, E2 ∈ R𝑛×𝑑 denote 𝑑-dimensional node embeddings (with

𝑑 << 𝑛) of G1 and G2 respectively, then the alignment problem can

be casted as the following Linear Assignment Problem (LAP)

min

P∈P𝑛
∥E1 − PE2∥2𝐹 ⇔ max

P∈P𝑛
trace

(
PE2E𝑇1

)
, (4)

which can be solved optimally using the Hungarian algorithm [36].

However, for large number of nodes, the Hungarian algorithm is

impractical, since it has a complexity of O
(
𝑛3

)
. Hence, devising

scalable algorithms that can provide approximate solution has at-

tracted the interest of many researchers. One popular choice that

has been adopted lately by many [9, 20, 46] is using an approxi-

mate Earth Mover Distance solver based on the Sinkhorn algorithm

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

852

[13], the complexity of which is O
(
𝑛2

)
(up to logarithmic terms

[2, 13]). Therefore, solving the graph alignment problem by utilizing

discriminative node embeddings has great potential.

4 PROPOSED APPROACH
Most of the state-of-the-art graph embedding based approaches aim

to solve the graph alignment problem after fixing the embeddings,

which are learned separately for each graph. While using fixed

node embeddings to cast graph alignment as a LAP is a promising

approach, the main drawback of such a scheme is that the quality

of the obtained solution is dependant, to a large degree, on the ade-

quacy of the selected embeddings for the graph alignment task. In

contrast, we propose to learn the embeddings of the target graph af-

ter fixing those of the query, while simultaneously searching for the

permutation that best aligns the embeddings. This offers additional

degrees of freedom compared to the fixed node embeddings based

formulations, and greater potential for devising high performance

graph alignment methods.

More specifically, in our present work, we aim to combine the

merits of (learned) node embedding and spectral based methods

for the task of performing graph alignment by considering the fol-

lowing joint problem: first, we compute the spectral embedding

of the target graph and fix it. Next, we “pivot” around this fixed

node representation to simultaneously search for the optimal node

embeddings of the second graph and the optimal one-to-one cor-

respondence mapping. Specifically, given two adjacency matrices

A1 and A2, we consider low dimensional linear embeddings of the

form

E𝑖 = A𝑖Q𝑖 , for 𝑖 = 1, 2, (5)

where Q𝑖 ∈ R𝑛×𝑑 denotes the dimensionality reduction matrix of

graph 𝑖 . Then, after fixing the node embeddings of the first graph

to be the top-𝑑 principal components of A1, we calculate a node

assignment between the two graphs and the linear node embeddings

of the second graph by solving an optimization problem of the form

min

P, Q2

∥E1 − PA2Q2∥2𝐹 ,

s.t. P ∈ P𝑛 .
(6)

Although the above problem is not convex, conditionally optimal

solutions can be obtained for the two optimization sub-problems

that emerge after fixing one of the optimization variables. This

observation suggests a natural alternating optimization algorithm

for (6). However, as it was noted for a closely related optimization

problem in [20, 46], and we also verified in our context, plain vanilla

alternating minimization tends to quickly converge to bad local

minima. In order to evade the phenomenon described above, we

propose a variation of problem (6), based on two observations, and

an algorithmic approach.

First, from (2), we note that the set of 𝑛-dimensional permuta-

tion matrices can be expressed as the set of non-negative matrices

that are also orthonormal. Although seemingly redundant, another

equivalent and useful description of this set can be obtained by con-

sidering it as the intersection of the set of left stochastic matrices

(non-negative matrices with each column summing to 1) and the

set of orthonormal matrices. Moreover, in the case of isomorphic

graphs, the optimal matrices {Q𝑖 }2𝑖=1 should exhibit the same align-

ment structure as the optimal embeddings. In other words, in the

case where the adjacency matrices A1 and A2 are permuted ver-

sions of each other obeying the relation A2 = PA1P𝑇 , the optimal

matrices Q∗
1
and Q∗

2
should satisfy

Q∗
1
= PQ∗

2
. (7)

In applications, the target and query graphs are seldom isomorphic.

The further the two graphs are from being isomorphic, the less

relation (7) will hold.
Taken together, these considerations suggest the following vari-

ation of (6)

min

P, Q2

∥E1 − PA2Q2∥2𝐹 + 𝜆 ∥Q1 − PQ2∥2𝐹 ,

s.t. P ≥ 0, 1𝑇𝑛P = 1𝑇𝑛 , P𝑇 P = PP𝑇 = I𝑛,
(8)

where 1𝑛 denotes the 𝑛-dimensional vector of ones and 𝜆 > 0 is a

penalty parameter that regulates the emphasis placed on the second

term and should be tuned accordingly to how far are the considered

graphs from being isomorphic. Meanwhile, the constraints P ≥ 0
(element-wise non-negativity) and 1𝑇𝑛P = 1𝑇𝑛 impose that matrix

P is left stochastic. In the next section, we devise an algorithmic

approach for solving the above problem.

5 ALGORITHMIC APPROACH &
EVALUATION

Note that problem (8) is non-convex, as the cost function is the

composition of a bilinear function of the variables with a convex

function, and the permutation constraints are combinatorial. In or-

der to effectively deal with the permutation constraints, we consider

the following equivalent form of (8)

min

U, W, Q2

∥E1 − UA2Q2∥2𝐹 + 𝜆 ∥Q1 − UQ2∥2𝐹

s.t. W ≥ 0, 1𝑇𝑛W = 1𝑇𝑛 ,

U𝑇U = UU𝑇 = I𝑛, U = W,

(9)

where we have replaced P with the new variables {U,W} which
collectively impose the permutation constraint. Instead of enforcing

the equality constraint between U and W exactly, we consider the

following “penalty” formulation

min

U, W, Q2

∥E1 − UA2Q2∥2𝐹 + 𝜆 ∥Q1 − UQ2∥2𝐹 + 𝜌 ∥U −W∥2𝐹

s.t. W ≥ 0, 1𝑇𝑛W = 1𝑇𝑛 , U𝑇U = UU𝑇 = I𝑛,
(10)

wherewe have augmented the cost function of the previous problem

with a proximal regularization term that penalizes the violation of

the equality constraint between the variables U and W, with the

level of tolerable violation regulated by the non-negative penalty

parameter 𝜌 .

Note that problem (10) is block-separable in the variables U and

{W,Q2}. We exploit this structure to devise an alternating optimiza-

tion algorithm for obtaining approximate solutions of this problem.

At each iteration of the algorithm, we compute the conditionally

optimal solution w.r.t. one of the variable blocks, while the other is

kept fixed. Specifically, given the current iterates U𝑘 ,W𝑘 ,Q𝑘
2
, at the

𝑘-th iteration, the proposed algorithm entails solving the following

sub-problems in cyclic fashion.

Q𝑘+1
2

= argmin

Q2

E1 − U𝑘A2Q2

2
𝐹
+ 𝜆

Q1 − U𝑘Q2

2
𝐹
, (11)

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

853

W𝑘+1 = argmin

W

W − U𝑘

2
𝐹
, s.t. W ≥ 0, 1𝑇𝑛W = 1𝑇𝑛 , (12)

U𝑘+1 ∈ argmin

U

E1 − UA2Q𝑘+1
2

2
𝐹
+ 𝜆

Q1 − UQ𝑘+1
2

2
𝐹
+ 𝜌

U −W𝑘+1

2
𝐹
,

s.t. U𝑇U = UU𝑇 = I𝑛 .
(13)

Note that for a given U𝑘
, the updates of W𝑘+1

and Q𝑘+1
2

can be

carried out simultaneously. Since we compute the conditionally

optimal updates at each step, it follows that the algorithm mono-

tonically reduces the cost function of problem (10) over iterations.

Coupled together with the fact that the cost function is bounded

from below (a trivial lower bound being 0), we conclude that the

iterates generated by the algorithm attain convergence in terms of

the cost function. Furthermore, we have the following result.

Proposition 5.1. Every limit point of the iterates generated by
Algorithm 1 is a stationary point of problem (10).

Proof. We invoke the main result of [7], which asserts that ev-

ery limit point of the iterates generated by two-block alternating

optimization is a stationary point provided that: (a) each block up-

date is conditionally optimal, and (b) the constraint set in each block

sub-problem is compact. It is easy to see that the first condition

is satisfied by Algorithm 1. Regarding the second condition, note

that constraint set of sub-problem (12) is compact, as each column

lies in the probability simplex, whereas the set of orthonormal ma-

trices (which constitutes the constraint set of sub-problem (13)) is

also compact [41, p. 4]. This leaves sub-problem (11), which being

unconstrained, at first glance, does not appear to have a compact

constraint set. However, since we apply a proximal term in the cost

function that restricts Q2 to be close to (U𝑘)𝑇Q1, this implicitly
enforces Q2 to lie in a compact set. In other words, for every choice

of regularization parameter 𝜆, there exists a bounded ℓ2-ball (with

radius dependent on 𝜆) inside which the solution of (11) lies. Hav-

ing guaranteed that the requisite conditions for convergence are

obeyed by the iterates generated by Algorithm 1, the result then

follows. □

However, attaining convergence does not guarantee that equality

between the iterates U and W is achieved in general, which in

turn implies that the algorithm may not return a valid permutation

matrix. Consequently, as a post-processing step, we employ a greedy

maximum-weight bipartite matching algorithm [28] on the last

U iterate to obtain the final alignment. The overall algorithm is

outlined in Algorithms (1) and (2).

Next, we consider the computational complexity of solving each

of the above sub-problems and demonstrate that they admit closed-

form solutions.

5.1 Updating matrix Q2

The sub-problem (11) that corresponds to the update of Q𝑘
2
is an

unconstrained least squares problem, as it is equivalent to

Q𝑘+1
2

= argmin

Q2

[E1√
𝜆Q1

]
−
[
U𝑘A2√
𝜆U𝑘

]
Q2

2
𝐹

. (14)

Algorithm 1 Proposed Algorithm for Graph Alignment

Input: A1 ∈ {0, 1}𝑛×𝑛 , A2 ∈ {0, 1}𝑛×𝑛 , U0 ∈ R𝑛×𝑛 , 𝑑 ∈ [𝑛],
𝜆 ∈ R+, 𝜌 ∈ R+

Output: P ∈ P𝑛

function Graph_Alignment(A1, A2, U0
, 𝑑 , 𝜆, 𝜌)

[U1, 𝚺1,V1] = svd (A1, ‘econ’)
E1 = U1 (:, 1 : 𝑑)
Q1 = V1 (:, 1 : 𝑑) [𝚺1 (1 : 𝑑, 1 : 𝑑)]−1

C1 =

[
E1,

√
𝜆Q1

]
L = chol

(
A𝑇
2
A2 + 𝜆I𝑛

)
𝑘 = 0

while terminating_condition is FALSE do

Q𝑘+1
2

= L−1
(
L𝑇

)−1 [
A𝑇
2

(
U𝑘

)𝑇
E1 + 𝜆

(
U𝑘

)𝑇
Q1

]
C2 =

[
A2Q𝑘+1

2
,
√
𝜆Q𝑘+1

2

]
W𝑘+1 = ColumnwiseSimplexProjection

(
U𝑘

)
U𝑘+1 = Procustes

(
C1,C2,W𝑘+1, 𝜌

)
𝑘 = 𝑘 + 1

end while
P = GreedyMatching

(
U𝑘

)
end function

Algorithm 2 Orthogonal Procrustes

Input: C1 ∈ R𝑛×2𝑑 , C2 ∈ R𝑛×2𝑑 , W ∈ R𝑛×𝑛 , 𝜌 ∈ R+
Output: U∗ ∈

{
U ∈ R𝑛×𝑛

�� U𝑇U = UU𝑇 = I𝑛
}

function Procustes(C1, C2,W, 𝜌)

M = C1C𝑇
2
+ 𝜌W

[X, 𝚺,Y] = svd (M)
U∗ = XY𝑇

end function

Algorithm 3 Columnwise Projection onto the probability simplex

Input: W ∈ R𝑛×𝑛
Output: W∗ ∈

{
W ∈ R𝑛×𝑛

�� W ≥ 0, 1𝑇W = 1𝑇
}

function ColumnwiseSimplexProjection(W)

for i = 1,. . . , n do
Sort W(:, 𝑖) into 𝝁𝑖 : 𝜇𝑖

1
≥𝜇𝑖

2
≥...≥𝜇𝑖𝑛

Find 𝜌𝑖 = max

{
𝑗 ∈ [𝑛] : 𝜇𝑖

𝑗
− 1

𝑗

(∑𝑗

𝑟=1
𝜇𝑖𝑟 − 1

)
> 0

}
𝜃𝑖 = 1

𝜌𝑖

(∑𝜌𝑖

𝑟=1
𝜇𝑖𝑟 − 1

)
W∗ (:, 𝑖) = max

{
W(:, 𝑖) − 𝜃𝑖1𝑛, 0𝑛×1

}
end for

end function

Hence, the optimal solution must obey the normal equations, which,

for problem (14), are given by(
A𝑇
2
(U𝑘)𝑇U𝑘A2 + 𝜆(U𝑘)𝑇U𝑘

)
Q𝑘+1
2

= A𝑇
2
(U𝑘)𝑇 E1 + 𝜆(U𝑘)𝑇Q1 .

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

854

As we enforce orthonormality constraints on U at every iteration,

the above condition simplifies to(
A𝑇
2
A2 + 𝜆I𝑛

)
Q𝑘+1
2

= A𝑇
2
(U𝑘)𝑇 E1 + 𝜆(U𝑘)𝑇Q1, (15)

which necessitates solving a total of 𝑑 linear systems of equations.

It is evident that the main computational overhead stems from

computing the Cholesky factorization of the positive-definitematrix

A𝑇
2
A2 + 𝜆I𝑛 , which requires 𝑛3/3 flops in the worst-case. Since it is

only the right-hand sides of the linear equations which are updated

over iterations, it suffices to perform this decomposition only once
prior to the start of the algorithm, as by caching the factorization

we can re-utilize it to solve the linear systems arising over iterations.

Hence, the complexity that is initially incurred in computing the

Cholesky decomposition is amortized over the iterations of the

algorithm. Within each alternating optimization step, solving the 𝑑

linear systems via forward-backward substitution incurs complexity

𝑂 (𝑑𝑛2).

5.2 Updating matrix W
The update of variableW𝑘+1

is given by problem (12), which cor-

responds to computing the Euclidean projection of the matrix U𝑘

onto the set of left stochastic matrices. The optimal solution can be

obtained by separately projecting each column of U𝑘
onto the prob-

ability simplex. The projection of each column can be computed

with complexity 𝑂 (𝑛 log𝑛) [15]. Therefore, the overall complexity

of updating matrixW is 𝑂 (𝑛2 log𝑛). In Algorithm 1, the function

the computes the updated version of matrixW is denoted as Colum-

nwiseSimplexProjection and it is presented in Algorithm 3.

5.3 Updating matrix U
In order to derive a closed-from expression for the update of U𝑘+1

,

we first expand the cost function of (13) and exploit the orthonormal

property of U to arrive at the problem

U𝑘+1 ∈ argmax

U𝑇U=UU𝑇 =I𝑛
trace

(
U𝑇M𝑘

)
,

(16)

where we have defined the matrix

M𝑘
:= E1 (A2Q𝑘+1

2
)𝑇 + 𝜆Q1 (Q𝑘+1

2
)𝑇 + 𝜌W𝑘+1 . (17)

Note that (16) is an instance of the well-known Orthogonal Pro-

crustes problem [16, 19, 40]. Denoting the singular value decompo-

sition ofM𝑘
by XΣY𝑇 , it can be shown that the optimal solution of

(16) is given by

U𝑘+1 = XY
𝑇

, (18)

which incurs complexity 𝑂 (𝑛3).

Overall complexity of the proposed algorithm. Let𝑇 denote the num-

ber of iterations of the alternating minimization procedure. Then,

the complexity of the algorithm scales as

𝑛3/3 +𝑂 (𝑛2 log𝑛) +𝑂 (𝑇𝑛3) +𝑂 (𝑇𝑑𝑛2).

The main computational bottleneck in our algorithm is the calcu-

lation of the singular value decomposition for solving the Orthog-

onal Procrustes problem (update of matrix U). Since we run our

algorithm for few tens of iterations in our experiments across all

datasets, we can treat 𝑇 as a constant, which results in an overall

complexity of 𝑂 (𝑛3).

6 EXPERIMENTAL EVALUATION
In this section, we compare the performance of our proposed tech-

nique against well known existing network alignment methods

on real world graphs. The comparison is carried out in terms of

accuracy and of required wall time.

6.1 Baselines
Next, we briefly introduce the algorithms that we employed as

performance benchmarks in our experiments:

• Umeyama’s Method [43]: A classical spectral-embedding

based alignment method, which entails computing the com-

plete set of eigenvectors of both adjacency matrices A1 and

A2 in order to construct a similarity matrix between the

vertex sets of the two graphs. Then, the matrix is used to

instantiate a LAP, the solution of which corresponds to the

final estimate of the alignment.

• IsoRank1 [42]: A spectral method which considers a reg-

ularized form of the QAP (3) and applies random walks

with restarts to compute the PageRank eigenvector of the

normalized Kronecker product graph A1 ⊗ A2 (with a pre-

determined alignment prior serving as the “teleportation”

vector). The solution is projected onto the set of permuta-

tion constraints via a bipartite matching step to obtain the

final alignment. We point out that for the case of undirected,

unattributed graphs (which constitutes the focus of our ex-

periments in this paper), IsoRank is a special case of the more

general FINAL algorithm [47].

• Low-Rank Align (LRA)2 [18]: A recent two-step spectral

alignment method for approximately solving the QAP for-

mulation of graph alignment (3) on undirected graphs. In

the first step, LRA solves a rank-𝑘 approximation of the or-

thogonal relaxation of the underlying QAP. At the second

step, a variation of the QAP problem with two optimization

variables is proposed, and an alternating optimization frame-

work is adopted. The update of one variable entails solving a

discrete optimization problem, which is heuristically solved

by searching in a reduced space (determined by the solution

of the first step), while the update of the second variable

boils down to solving a LAP. In our experiments, we use the

default parameter setting, while the number of considered

eigenvectors, 𝑘 , was equal to 2.

• CONE-Align3 [9]: A recently proposed joint embedding

and alignment meta-algorithm comprising three stages. In

the first stage, the NetMF method [38] is used to obtain node

embeddings of the two graphs. Then, [9] aims to rule out

any rotational ambiguities between the node embeddings by

adopting the Wasserstein-Procrustes framework presented

in [20]. In the last step, 𝑘𝑑-trees for fast nearest node embed-

ding search are employed with the aim of obtaining the final

alignment. In our experiments, we use the default settings

1
https://github.com/sizhang92/FINAL-network-alignment-KDD16

2
https://github.com/SoheilFeizi/spectral-graph-alignment

3
https://github.com/GemsLab/CONE-Align

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

855

Table 1: Summary of network statistics: the number of ver-
tices (𝑛), the number of edges (𝑚), and the network type.

Graph 𝑛 𝑚 Network Type

C. Elegans 277 2,105 Interactome

arenas-Email 1,133 5,451 Communications

polBlog 1,224 16,714 Social

Airports 1,574 17,215 Infrastructure

A. Thaliana 2,082 4,145 Interactome

Japanese Book 3,177 7,998 Word Adjacency

HomoSapiens 3,890 38,292 Interactome

ca-GrQc 5,242 14,490 Co-authorship

for all the parameters except for the embedding dimension

𝑑 where we also use the values presented in Table 2. We ob-

served that the output of the final 𝑘𝑑-tree stage does not find

a one-to-one correspondence mapping in all cases. In these

cases, we applied a greedy bipartite matching algorithm [28]

on the 𝑘𝑑-tree output to obtain a bijective mapping .

6.2 Datasets
The real-world datasets we used in our experiments were obtained

from standard network repositories [29, 31] and are listed in Ta-

ble 1. These include (i) interactomes (C. Elegans, A. Thaliana

and HomoSapiens), where the vertices are proteins and the edges

correspond to their interactions, (ii) a communications network rep-

resenting email exchanges amongmembers of a university (arenas-

Email), (iii) a social network (polBlog) where the vertices represent

blogs and the edges denote followings between blogs, (iv) an in-

frastructure network comprising the connections between airports

in the US (Airports), (v) a word adjacency network constructed

from a Japanese text (Japanese Book), and (vi) a co-authorship

network representing collaborations between scientists involved in

co-authoring a scientific publication (ca-GrQc).

6.3 Experimental Setup
In our experiments, we adopt the experimental setup that, among

others, the authors of [14, 18, 27, 34] also consider. Given a dataset,

we restrict ourselves to its largest (strongly) connected component.

If the original graph is directed, we convert it into undirected form

by performing a symmetrization step. Additionally, we remove all

self-loops and edge weights. Hence, every graph that we consider

in our experiments is a simple, undirected, unweighted graph (G1).
In order to create an instance of the graph alignment problem, for

each graph (G1), we construct a “noisy" and permuted version of

that graph, by randomly adding new edges with probability 𝑝𝑒 , i.e.,

we generate a random Erdos-Renyi graph G (𝑛, 𝑝𝑒), with adjacency

matrix Q. Then, we create the adjacency matrix of G2 as

A2 = P [A1 + (1𝑛×𝑛 − A1) ∗ Q] P𝑇 , (19)

where the operator “∗” denotes the Hadamard (element-wise) prod-

uct and P ∈ P𝑛
denotes a randomly generated permutation matrix.

The number of additional edges that eventually appear in A2 is

controlled by varying the noise level 𝑝𝑒 , such that the expected

percentage of extra edges in G2 is equal to a fixed number between

1% and 20% of the total edges in G1. Moreover, for each noise-level,

we averaged our results over 20 Monte-Carlo runs. Notice, that

while the considered problem setup guarantees the existence of an

alignment (i.e., ∃ P∗ ∈ argminP∈P𝑛

A1 − PA2P𝑇

2
𝐹
), the unique-

ness of the minimizer is not guaranteed, in general, because of

the possible presence of topologically-invariant subgraphs, such

as cliques and star graphs [32]. Consequently, our aim is to com-

pute an alignment between the two graphs which can minimize the

induced edge disagreements without having any apriori knowledge.

6.4 Evaluation Metrics
In our experiments, we evaluate the performance of all considered

methods based on the ratio of the number of edge overlaps induced

by the algorithm over the number of edges in G𝐴 (Edge correctness).

In general, the higher the score, the better. Perfectly aligning the

edge-set of G1 with its counterpart in G2 results in the maximum

correctness score of 1.

6.5 Initialization, convergence criteria, and
parameter selection

Initialization: In Algorithm 1, we require to specify an initial

choice of the variable U0
. As our problem formulation is non-

convex, this choice of initialization is of significant importance.

Given an instance of graph alignment, however, it is a non-trivial

task to “handcraft” a meaningful initialization. Hence, in our ex-

periments, we use our proposed algorithm to refine the solutions

provided by the considered baselines. More specifically, we use the

output produced by CONE-Align (i.e., the output of the 𝑘𝑑-tree

stage) to initialize our algorithm. This choice is determined by our

empirical observation that CONE-Align achieves the best trade

off between accuracy and complexity among the considered base-

lines, as well as by the substantial and consistent improvement we

obtained after using it as initialization for our method.

Convergence criterion: In order to use Algorithm 1, we need to

specify a termination criterion. In our experiments, we terminate

Algorithm 1 when the relative change of factor U,

U𝑘−U𝑘−1

𝐹√
𝑛

is

smaller than a predetermined threshold or when the number of

iterations exceeds a predetermined number of iterations, 𝐾𝑚𝑎𝑥 .

Specifically, we set threshold = 10
−2

and 𝐾𝑚𝑎𝑥 = 60.

Choice of parameters: Our algorithm requires specification of

three parameters: (i) the embedding dimension 𝑑 ≤ 𝑛, (ii) the pa-

rameter 𝜆 which reflects the level of non-isomorphism between

the two graphs, and (iii) the penalty parameter 𝜌 which regulates

the degree of violation of the equality constraint between variables

U and W. The complete set of parameters can be found listed in

Table 2. Regarding the choice of the first parameter, we observed

that increasing the embedding dimension linearly with the size of

the graph G1 always yields best performance, i.e., the larger the

graph, the greater the number of pivots of the target graph G1 and

the node embedding dimension of the query graph G2 required for

obtaining a high-quality solution. Meanwhile, in our experimental

setup, as the noisy graph G2 with extra edges becomes less iso-

morphic compared to G1 with increase in noise-level, we gradually

decrease the value of 𝜆 from its initial setting in the noiseless (i.e.,

isomorphic) case, which was determined via trial-and-error. Finally,

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

856

Table 2: Summary of parameters used for each dataset in
our experiments: the embedding dimension (𝑑), the “isomor-
phism” parameter (𝜆) for each noise-level (from left to right
- noiseless (0%) to highest noise-level (20%)), and the penalty
parameter (𝜌).

Graph 𝑑 𝜆 𝜌

C. Elegans 128 [5, 5, 5, 5, 5, 5] 0.1

arenas-Email 256 [20, 20, 20, 20, 20, 20] 0.2

polBlog 256 [20, 20, 20, 20, 20, 20] 0.1

Airports 350 [30, 30, 30, 30, 30, 30] 0.3

A. Thaliana 520 [9, 9, 9, 9, 9, 9] 0.1

Japanese Book 750 [14.5, 14.5, 14.5, 14.5, 14.5, 14.5] 0.1

HomoSapiens 750 [13.3, 13.3, 13.3, 13.3, 13.3, 13.3] 0.1

ca-GrQc 950 [4, 4, 4, 4, 4, 3.9] 0.1

regarding the choice of the penalty parameter, for a given dataset,

we observed that fixing 𝜌 to a modest value in the interval [0.1, 0.3]
works well across all noise-levels. Throughout our experiments,

we observed that our proposed approach is not very sensitive to

parameter tuning.

6.6 Results and Discussion
In this section, we present the results of our experiments obtained

with our proposed graph alignment method and contrast it with

that of the selected baselines. In Figure (1), we illustrate the accuracy

scores, in terms of edge correctness, that each method achieved.

Our main findings are as follows

• In the presence of noise, our method outperforms all base-

lines, often by a significant margin. It is also evident that the

performance of our method is the least sensitive to noise, as

its accuracy score degrades more gracefully compared to the

other methods. For the highest noise level scenario, where

the considered graphs differ by up to 20% in terms of number

of edges and are far away from being near-isomorphic, the

improvement in performance can be as large as 80 − 100%

over the next best competitor (e.g., see results for polBlogs

and A.Thaliana). This observation implies that the com-

puted alignment successfully identifies a subset of edges in

graph G2 that has high overlap with the edges of graph G1,

even in the presence of strong noise.

• In the noiseless setting, (i.e., the isomorphic case), it can

be seen that our method does not attain the optimal score

in general. We attribute this to the fact that CONE-Align

does not perform well in this scenario, and consequently the

initialization offered by it to our algorithm is non-ideal. Fur-

thermore, we noted that by increasing the maximum number

of iterations to a larger value, we can refine the solution of

CONE-Align to attain the optimal edge correctness score.

However, such a step comes at the expense of increased com-

plexity and is thus formally omitted from our experimental

settings.

• In terms of timing, Figure (2) reveals that our algorithm

is more time consuming compared to the baselines, which

is a consequence of the fact that we have to perform an

0 2 4 6 8 10 12 14 16 18 20

Percentage of added edges

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
d
g
e
 C

o
rr

e
c
tn

e
s
s

C. Elegans

CONE

Umeyama

LowRank-Align

IsoRank

CONE + Proposed

0 2 4 6 8 10 12 14 16 18 20

Percentage of added edges

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
d

g
e

 C
o

rr
e

c
tn

e
s
s

Arenas email

CONE

Umeyama

LowRank-Align

IsoRank

CONE + Proposed

0 2 4 6 8 10 12 14 16 18 20

Percentage of added edges

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
d

g
e

 C
o

rr
e

c
tn

e
s
s

Polblogs

CONE

Umeyama

LowRank-Align

IsoRank

CONE + Proposed

0 2 4 6 8 10 12 14 16 18 20

Percentage of added edges

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
d

g
e

 C
o

rr
e

c
tn

e
s
s

Airports

CONE

Umeyama

LowRank-Align

IsoRank

CONE + Proposed

0 2 4 6 8 10 12 14 16 18 20

Percentage of added edges

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
d

g
e

 C
o

rr
e

c
tn

e
s
s

A. Thaliana

CONE

Umeyama

LowRank-Align

IsoRank

CONE + Proposed

0 2 4 6 8 10 12 14 16 18 20

Percentage of added edges

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
d

g
e

 C
o

rr
e

c
tn

e
s
s

Japanese book

CONE

Umeyama

LowRank-Align

IsoRank

CONE + Proposed

0 2 4 6 8 10 12 14 16 18 20

Percentage of added edges

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
d

g
e

 C
o

rr
e

c
tn

e
s
s

Homo sapiens

CONE

Umeyama

LowRank-Align

IsoRank

CONE + Proposed

0 2 4 6 8 10 12 14 16 18 20

Percentage of added edges

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
d

g
e

 C
o

rr
e

c
tn

e
s
s

ca-GrQc

CONE

Umeyama

LowRank-Align

IsoRank

CONE + Proposed

Figure 1: Edge correctness vs. noise level across networks.
For each value of noise level (𝑝𝑒), 10 different realizations of
the graphs G2, with a certain percentage of additional edges
and under a different and random permutation, were gener-
ated. The number of additional edges varied from 0 to 20%

of the total number of edges of the fixed graph G1.

SVD at each step of the alternating minimization procedure.

However, the the complexity of our algorithm is by no means

unaffordable, exhibiting a run-time that is of the same order

as that of CONE-Align on all datasets, with the exception of

A.Thaliana.

7 CONCLUSIONS & FUTURE WORK
In this work, we proposed a novel formulation of the classical graph

alignment problem, which combines the merits of the prominent

class of spectral methods and the promising class of graph em-

bedding based methods. In order to examine its effectiveness, we

developed an alternating minimization algorithm to solve it and we

compared it against the prevailing state-of-the-art graph alignment

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

857

0 2 4 6 8 10 12 14 16 18 20

Percentage of added edges

0.2

0.4

0.6

0.8

1

1.2

1.4

W
a
ll

T
im

e
(s

)

C. Elegans

CONE

Umeyama

LowRank-Align

IsoRank

CONE + Proposed

0 2 4 6 8 10 12 14 16 18 20

Percentage of added edges

1

2

3

4

5

6

7

8

9

W
a
ll

T
im

e
(s

)

Arenas email

CONE

Umeyama

LowRank-Align

IsoRank

CONE + Proposed

0 2 4 6 8 10 12 14 16 18 20

Percentage of added edges

2

4

6

8

10

12

14

W
a

ll
T

im
e

(s
)

Polblogs

CONE

Umeyama

LowRank-Align

IsoRank

CONE + Proposed

0 2 4 6 8 10 12 14 16 18 20

Percentage of added edges

5

10

15

20

25

30

35

40

45

W
a

ll
T

im
e

(s
)

Airports

CONE

Umeyama

LowRank-Align

IsoRank

CONE + Proposed

0 2 4 6 8 10 12 14 16 18 20

Percentage of added edges

50

100

150

200

250

300

W
a

ll
T

im
e

(s
)

A. Thaliana

CONE

Umeyama

LowRank-Align

IsoRank

CONE + Proposed

0 2 4 6 8 10 12 14 16 18 20

Percentage of added edges

50

100

150

200

250

W
a

ll
T

im
e

(s
)

Japanese book

CONE

Umeyama

LowRank-Align

IsoRank

CONE + Proposed

0 2 4 6 8 10 12 14 16 18 20

Percentage of added edges

50

100

150

200

250

300

350

400

450

W
a

ll
T

im
e

(s
)

Homo sapiens

CONE

Umeyama

LowRank-Align

IsoRank

CONE + Proposed

0 2 4 6 8 10 12 14 16 18 20

Percentage of added edges

200

400

600

800

1000

1200

W
a
ll

T
im

e
(s

)

ca-GrQc

CONE

Umeyama

LowRank-Align

IsoRank

CONE + Proposed

Figure 2: Wall time (in seconds) vs. noise level for different
networks.

frameworks on real life graphs. Our results show that our proposed

framework achieves much higher alignment accuracy relative to

the prior art, in challenging problem instances involving noisy real-

life graphs. This currently comes at the cost of higher complexity

due to SVD, but a key point is that existing frameworks leave a

lot of room for improvement in terms of the attainable alignment

accuracy. Designing more efficient and scalable methods for solv-

ing the proposed formulation, as well as evaluating the quality of

the obtained embeddings for other downstream tasks (such as link

prediction) are the subject of ongoing research.

ACKNOWLEDGMENTS
This research has been partially supported by the National Science

Foundation under Grants IIS-1908070 and ECCS-1807660.

REFERENCES
[1] Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski,

and Alexander J Smola. 2013. Distributed large-scale natural graph factorization.

In Proceedings of the 22nd international conference on World Wide Web. 37–48.
[2] Jason Altschuler, Jonathan Niles-Weed, and Philippe Rigollet. 2017. Near-linear

time approximation algorithms for optimal transport via Sinkhorn iteration. In

Advances in neural information processing systems. 1964–1974.
[3] László Babai, D Yu Grigoryev, and David M Mount. 1982. Isomorphism of graphs

with bounded eigenvalue multiplicity. In Proceedings of the fourteenth annual
ACM symposium on Theory of computing. 310–324.

[4] Rainer E. Burkard. 2013. Quadratic Assignment Problems. In Handbook of
Combinatorial Optimization. Springer New York, 2741–2814. https://doi.org/10.

1007/978-1-4419-7997-1_22

[5] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. 2018. A com-

prehensive survey of graph embedding: Problems, techniques, and applications.

IEEE Transactions on Knowledge and Data Engineering 30, 9 (2018), 1616–1637.

[6] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. Grarep: Learning graph rep-

resentations with global structural information. In Proceedings of the 24th ACM
international on conference on information and knowledge management. 891–900.

[7] Bilian Chen, Simai He, Zhening Li, and Shuzhong Zhang. 2012. Maximum block

improvement and polynomial optimization. SIAM Journal on Optimization 22, 1

(2012), 87–107.

[8] Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. 2017. Harp: Hier-

archical representation learning for networks. arXiv preprint arXiv:1706.07845
(2017).

[9] Xiyuan Chen, Mark Heimann, Fatemeh Vahedian, and Danai Koutra. 2020. Consis-

tent Network Alignment with Node Embedding. arXiv preprint arXiv:2005.04725
(2020).

[10] Minsu Cho, Jungmin Lee, and Kyoung Mu Lee. 2010. Reweighted random walks

for graph matching. In European conference on Computer vision. Springer, 492–
505.

[11] Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. Thirty

years of graph matching in pattern recognition. International journal of pattern
recognition and artificial intelligence 18, 03 (2004), 265–298.

[12] Timothee Cour, Praveen Srinivasan, and Jianbo Shi. 2007. Balanced graph match-

ing. In Advances in Neural Information Processing Systems. 313–320.
[13] Marco Cuturi. 2013. Sinkhorn distances: Lightspeed computation of optimal

transport. In Advances in neural information processing systems. 2292–2300.
[14] Tyler Derr, Hamid Karimi, Xiaorui Liu, Jiejun Xu, and Jiliang Tang. 2019. Deep

adversarial network alignment. arXiv preprint arXiv:1902.10307 (2019).

[15] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. 2008. Effi-

cient projections onto the l 1-ball for learning in high dimensions. In Proceedings
of the 25th international conference on Machine learning. 272–279.

[16] Lars Eldén and Haesun Park. 1999. A Procrustes problem on the Stiefel manifold.

Numer. Math. 82, 4 (1999), 599–619.
[17] Frank Emmert-Streib, Matthias Dehmer, and Yongtang Shi. 2016. Fifty years

of graph matching, network alignment and network comparison. Information
sciences 346 (2016), 180–197.

[18] Soheil Feizi, Gerald Quon, Mariana Mendoza, Muriel Medard, Manolis Kellis, and

Ali Jadbabaie. 2019. Spectral alignment of graphs. IEEE Transactions on Network
Science and Engineering (2019).

[19] Gene H. Golub and Charles F. Van Loan. 1996. Matrix Computations (third ed.).

The Johns Hopkins University Press.

[20] Edouard Grave, Armand Joulin, and Quentin Berthet. 2019. Unsupervised align-

ment of embeddings with wasserstein procrustes. In The 22nd International
Conference on Artificial Intelligence and Statistics. 1880–1890.

[21] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[22] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation learning

on graphs: Methods and applications. arXiv preprint arXiv:1709.05584 (2017).
[23] Mark Heimann, Haoming Shen, Tara Safavi, and Danai Koutra. 2018. Regal:

Representation learning-based graph alignment. In Proceedings of the 27th ACM
International Conference on Information and Knowledge Management. 117–126.

[24] John E Hopcroft and Jin-Kue Wong. 1974. Linear time algorithm for isomorphism

of planar graphs (preliminary report). In Proceedings of the sixth annual ACM
symposium on Theory of computing. 172–184.

[25] Bo Jiang, Haifeng Zhao, Jin Tang, and Bin Luo. 2014. A sparse nonnegative matrix

factorization technique for graph matching problems. Pattern Recognition 47, 2

(2014), 736–747.

[26] Paul J Kelly et al. 1957. A congruence theorem for trees. Pacific J. Math. 7, 1
(1957), 961–968.

[27] Aritra Konar and Nicholas D. Sidiropoulos. 2020. Graph Matching via the lens of

Supermodularity. IEEE Transactions on Knowledge and Data Engineering (2020).

[28] Bernhard Korte and Dirk Hausmann. 1978. An analysis of the greedy heuristic

for independence systems. In Annals of Discrete Mathematics. Vol. 2. Elsevier,
65–74.

[29] Jérôme Kunegis. 2013. Konect: the koblenz network collection. In Proceedings of
the 22nd International Conference on World Wide Web. 1343–1350.

[30] Marius Leordeanu, Martial Hebert, and Rahul Sukthankar. 2009. An integer

projected fixed point method for graph matching and map inference. In Advances

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

858

https://doi.org/10.1007/978-1-4419-7997-1_22
https://doi.org/10.1007/978-1-4419-7997-1_22

in neural information processing systems. 1114–1122.
[31] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford large network

dataset collection.

[32] Yongsub Lim, U Kang, and Christos Faloutsos. 2014. Slashburn: Graph compres-

sion and mining beyond caveman communities. IEEE Transactions on Knowledge
and Data Engineering 26, 12 (2014), 3077–3089.

[33] Eliane Maria Loiola, Nair Maria Maia de Abreu, Paulo Oswaldo Boaventura-Netto,

Peter Hahn, and Tania Querido. 2007. A survey for the quadratic assignment

problem. European journal of operational research 176, 2 (2007), 657–690.

[34] Huda Nassar, Nate Veldt, ShahinMohammadi, Ananth Grama, and David F Gleich.

2018. Low rank spectral network alignment. In Proceedings of the 2018 World
Wide Web Conference. 619–628.

[35] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-

metric transitivity preserving graph embedding. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discovery and data mining. 1105–
1114.

[36] Christos H Papadimitriou and Kenneth Steiglitz. 1998. Combinatorial optimization:
algorithms and complexity. Courier Corporation.

[37] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 701–710.

[38] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.

Network embedding as matrix factorization: Unifying deepwalk, line, pte, and

node2vec. In Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining. 459–467.

[39] Sartaj Sahni and Teofilo Gonzalez. 1976. P-complete approximation problems.

Journal of the ACM (JACM) 23, 3 (1976), 555–565.

[40] Peter H Schönemann. 1966. A generalized solution of the orthogonal procrustes

problem. Psychometrika 31, 1 (1966), 1–10.
[41] Mark R Sepanski. 2007. Compact lie groups. Vol. 235. Springer Science & Business

Media.

[42] Rohit Singh, Jinbo Xu, and Bonnie Berger. 2007. Pairwise global alignment of

protein interaction networks by matching neighborhood topology. In Annual
International Conference on Research in Computational Molecular Biology. Springer,
16–31.

[43] Shinji Umeyama. 1988. An eigendecomposition approach to weighted graph

matching problems. IEEE transactions on pattern analysis and machine intelligence
10, 5 (1988), 695–703.

[44] Hongteng Xu, Dixin Luo, Hongyuan Zha, and Lawrence Carin. 2019. Gromov-

wasserstein learning for graph matching and node embedding. arXiv preprint
arXiv:1901.06003 (2019).

[45] Mikhail Zaslavskiy, Francis Bach, and Jean-Philippe Vert. 2008. A path following

algorithm for the graph matching problem. IEEE Transactions on Pattern Analysis
and Machine Intelligence 31, 12 (2008), 2227–2242.

[46] Meng Zhang, Yang Liu, Huanbo Luan, and Maosong Sun. 2017. Earth mover’s

distance minimization for unsupervised bilingual lexicon induction. In Proceed-
ings of the 2017 Conference on Empirical Methods in Natural Language Processing.
1934–1945.

[47] Si Zhang and Hanghang Tong. 2016. Final: Fast attributed network alignment.

In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 1345–1354.

[48] Feng Zhou and Fernando De la Torre. 2012. Factorized graph matching. In 2012
IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 127–134.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

859

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Proposed Approach
	5 Algorithmic Approach & Evaluation
	5.1 Updating matrix Q2
	5.2 Updating matrix W
	5.3 Updating matrix U

	6 Experimental Evaluation
	6.1 Baselines
	6.2 Datasets
	6.3 Experimental Setup
	6.4 Evaluation Metrics
	6.5 Initialization, convergence criteria, and parameter selection
	6.6 Results and Discussion

	7 Conclusions & Future work
	Acknowledgments
	References

