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ABSTRACT

Graphs are powerful abstractions that naturally capture the wealth
of relationships in our interconnected world. This paper proposes
a new approach for graph alignment, a core problem in graph
mining. Classical (e.g., spectral) methods use fixed embeddings for
both graphs to perform the alignment. In contrast, the proposed
approach fixes the embedding of the ‘target’ graph and jointly op-
timizes the embedding transformation and the alignment of the
‘query’ graph. An alternating optimization algorithm is proposed
for computing high-quality approximate solutions and compared
against the prevailing state-of-the-art graph aligning frameworks
using benchmark real-world graphs. The results indicate that the
proposed formulation can offer significant gains in terms of match-
ing accuracy and robustness to noise relative to existing solutions
for this hard but important problem.

CCS CONCEPTS

« Mathematics of computing — Graph algorithms; Approxi-
mation algorithms; « Information systems — Data mining.

KEYWORDS

graph alignment; graph embedding; spectral methods; alternating
optimization

ACM Reference Format:

Paris A. Karakasis, Aritra Konar, and Nicholas D. Sidiropoulos. 2021. Joint
Graph Embedding and Alignment with Spectral Pivot. In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD °21), August 14-18, 2021, Virtual Event, Singapore. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3447548.3467377

1 INTRODUCTION

Graph-based representation models have become powerful for en-
coding relational structures that are encountered in our intercon-
nected world, such as co-authorship networks, protein-protein in-
teraction networks, and social networks. In this paper we study
the fundamental problem of graph alignment, which aims to find
an alignment of the vertices of two graphs such that the number
of induced edge disagreements is minimized. This problem has
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applications in a wide variety of disciplines, including spanning
computer vision, image and social network analysis, pattern recog-
nition, bioinformatics and neuroscience (see [11] and references
therein). On the other hand, graph alignment is a demanding com-
binatorial problem. As a result, the need for efficient and scalable
algorithms capable of providing good approximate solutions is
imperative.

The graph alignment problem can be divided into different sub-
categories. Given a pair of graphs with the same number of nodes,
the case of exact graph alignment is known as the graph isomor-
phism problem. Correspondingly, the problem of exact alignment
of a graph to a part of another graph is called the subgraph isomor-
phism problem. Inexact graph alignment refers to problems where
exact matching is impossible. In its most general form, the graph
alignment problem is equivalent to a quadratic assignment problem
(QAP) [43], which is known to be NP-hard [36]. In that regime,
there is a pressing need for algorithms which are both theoretically
sound and highly scalable.

Towards this end, various concepts and tools used for mining
graph information are being increasingly employed for graph align-
ment as well. One such concept that has recently received signifi-
cant attention is that of learning efficient representations of graphs,
known as graph embeddings. Graph embedding approaches can be
usually viewed as finding mappings that embed nodes, subgraphs,
or even whole graphs in some cases, as points in a low-dimensional
vector space [5, 22]. The main goal of these approaches is to capture
valuable graph structural information and properties in geometric
relationships in the embedding space, where downstream tasks can
be performed naturally and at lower complexity. Finding efficient
graph representations is challenging and determining which type
of embedding method is most suitable is application-specific [5].

In the context of graph alignment, the most common category
of embedding methods is that of node embeddings. For a given n-th
order graph G = (V, &), the representation learning problem can
be stated as finding a function f : V — R9 usually for d < n,
that encodes structural information and properties of each node.
Regarding the usefulness of such mappings in aligning graphs, one
may argue that an efficient embedding method should represent
nodes that have similar structural properties by similar embedding
vectors. If this holds, then two nodes, that belong to different graphs
and have similar embedding vectors, would be candidates for a pos-
sible match. Hence, the graph alignment problem can be expressed
in terms of the node embeddings of the given pair of graphs, and
as a result, may potentially lead to more tractable formulations of
the graph alignment problem.

The majority of node embedding algorithms relies on what we
call direct encoding methods [22] and can be roughly divided into
two subcategories: i) the matrix factorization-based approaches,
like the Graph Factorization algorithm [1], GraRep [6], and HOPE
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[35]; and ii) the random walk-based approaches, like DeepWalk
[37], node2vec [21], and HARP [8]. Surprisingly, the authors of
[38] showed that some of the random walk-based models can be
accommodated under the matrix factorization framework with
closed form expressions, when viewed under a negative sampling
‘lens’. Based on that observation, the same authors proposed the
NetMF method for computing node embeddings [38]. Under the
subcategory of matrix factorization-based methods, we can also
place the rich family of the so called spectral methods. The spectral
decomposition of a matrix representation of a graph, such as its
adjacency or Laplacian matrix, has been also proven to be a solid
and efficient basis for creating graph representations for numerous
graph mining problems, including graph alignment.
Contributions: In this paper, we introduce a new framework for
graph alignment that “pivots” around the (fixed) spectral embed-
ding of the ’target’ graph to jointly compute the optimal node
embeddings of the ’query’ graph and the one-to-one correspon-
dence mapping that aligns the two graphs. We cast our formulation
as a non-convex optimization problem and propose an alternating
optimization algorithm. Finally, we test our method on real life
graphs, and compare it with other state-of-the-art baselines. Our
results reveal that the proposed algorithm can obtain significant
improvement in performance (with regards to correctly aligning
edges) relative to the prior art at affordable complexity.

2 RELATED WORK

Previous approaches [10, 12, 30] have formulated graph alignment
as a Quadratic Programming (QP) problem. Because of its combi-
natorial nature, graph alignment is either solved exactly in very
restricted settings (e.g., on trees [26], planar graphs [24], and graphs
with bounded eigenvalue multiplicity [3]) or else approximately,
using various optimization approaches (see [25, 27, 45, 48]).

A different approach to the graph alignment problem employs
spectral methods [43], which exploit information conveyed by the
eigenvectors of the adjacency matrix. Since [43], numerous spectral
approaches have been proposed. Prominent among these is IsoRank
[42], which uses random walks with restarts to align nodes across
two graphs based on their topological similarities. More recent
methods include EigenAlign (EA) and LowRankAlign (LRA)[18].
EA computes the leading eigenvector of a function of the adjacency
matrices of the two graphs and then performs a maximum weight
bipartite matching optimization to construct an alignment. LRA
solves the QAP problem over the relaxed feasible set of orthogonal
matrices and then produces an estimate of the permutation matrix
by searching in a reduced space, which is determined by the solution
of the first step.

Going beyond spectral embeddings, employing node embeddings
has proven to be very fruitful for graph matching, although much
remains to be done in this direction. One example of embedding
based methods is REGAL [23], which computes degree-based fea-
tures from a node’s neighborhood at different hop-lengths, and
then uses an implicit factorization of the resulting feature matrix to
form embeddings that are suitable for network alignment. Recently,
the same authors proposed CONE-Align[9], which uses the NetMF
node embeddings [38] of the two graphs and adopts the frame-
work presented in [20] to produce a matching based on aligning

852

KDD ’21, August 14-18, 2021, Virtual Event, Singapore

the representations of the embedding subspaces. In both methods,
the final matching is performed by using kd-trees for fast nearest
node embedding search. The problem of jointly learning embedding
vectors and matching the nodes of two graphs has also attracted
interest, including [44], where a Gromov-Wasserstein discrepancy
based learning framework was proposed. The main motivation be-
hind joint embedding and matching is that if we know that the
two graphs are quasi-isomorphic, this can help learn better node
embeddings from and for both graphs. Conversely, such embeddings
will naturally be better-suited to aid the alignment task.

3 PROBLEM FORMULATION

Given a pair of (possibly directed) unweighted graphs of the same
order, graph alignment is the problem of finding a bijection between
the vertex sets that minimizes the number of edge disagreements.
In other words, let G1 and G be a pair of graphs on n vertices with
respective adjacency matrices A; € {0, 1}™" and A, € {0, 1}"™",
Then, the problem can be formulated as the optimization problem

(1)

where ||| denotes the Frobenius norm of a matrix, while the
feasible set P denotes the set of all n X n permutation matrices,
which can be compactly expressed as

2
A —PA PTH ,
1 2 P

min
Pepn

P = {P er™n | pTp = ppT = In} . @)

Note that the cost function of (1) can be expressed as

”Al - PAZPTH; = A% + | Agll% — 2 trace (AITPAZPT) .
Hence, problem (1) is equivalent to
®3)

which, in its general form, corresponds to a NP-hard problem;
the Quadratic Assignment Problem (QAP). Moreover, computing
an approximate solution within a factor better than ologn'™ of
the optimum is, in general, not feasible in polynomial time either
[39]. However, several algorithms have been designed to provide
approximate solutions. We refer the reader to [18] for a brief review
of these methods and to [4, 17, 33] for a more extensive review.

An alternative approach to graph alignment, that has consti-
tuted the basis of many recently proposed works, aims to perform
alignment based on learned representations of the nodes of the
two graphs. The advantage of using node embedding methods for
graph alignment is that, in contrast to the NP-hard problem (3),
if E,Ey € R™4 denote d-dimensional node embeddings (with
d << n) of G1 and G» respectively, then the alignment problem can
be casted as the following Linear Assignment Problem (LAP)

max trace
Pepn

(aTPazpT),

4)

which can be solved optimally using the Hungarian algorithm [36].
However, for large number of nodes, the Hungarian algorithm is
impractical, since it has a complexity of O (n3) Hence, devising
scalable algorithms that can provide approximate solution has at-
tracted the interest of many researchers. One popular choice that
has been adopted lately by many [9, 20, 46] is using an approxi-
mate Earth Mover Distance solver based on the Sinkhorn algorithm

min ||Eq — PE2||fT & max trace (PEZEIT),
Pepn Pepn



Research Track Paper

[13], the complexity of which is O (n?) (up to logarithmic terms
[2, 13]). Therefore, solving the graph alignment problem by utilizing
discriminative node embeddings has great potential.

4 PROPOSED APPROACH

Most of the state-of-the-art graph embedding based approaches aim
to solve the graph alignment problem after fixing the embeddings,
which are learned separately for each graph. While using fixed
node embeddings to cast graph alignment as a LAP is a promising
approach, the main drawback of such a scheme is that the quality
of the obtained solution is dependant, to a large degree, on the ade-
quacy of the selected embeddings for the graph alignment task. In
contrast, we propose to learn the embeddings of the target graph af-
ter fixing those of the query, while simultaneously searching for the
permutation that best aligns the embeddings. This offers additional
degrees of freedom compared to the fixed node embeddings based
formulations, and greater potential for devising high performance
graph alignment methods.

More specifically, in our present work, we aim to combine the
merits of (learned) node embedding and spectral based methods
for the task of performing graph alignment by considering the fol-
lowing joint problem: first, we compute the spectral embedding
of the target graph and fix it. Next, we “pivot” around this fixed
node representation to simultaneously search for the optimal node
embeddings of the second graph and the optimal one-to-one cor-
respondence mapping. Specifically, given two adjacency matrices
A; and Ay, we consider low dimensional linear embeddings of the
form

E; =A;Q;, fori=1,2, (5)
where Q; € R denotes the dimensionality reduction matrix of
graph i. Then, after fixing the node embeddings of the first graph
to be the top-d principal components of Ay, we calculate a node
assignment between the two graphs and the linear node embeddings
of the second graph by solving an optimization problem of the form

min By — PA2Qo |7
b ©)
Pe P

Although the above problem is not convex, conditionally optimal
solutions can be obtained for the two optimization sub-problems
that emerge after fixing one of the optimization variables. This
observation suggests a natural alternating optimization algorithm
for (6). However, as it was noted for a closely related optimization
problem in [20, 46], and we also verified in our context, plain vanilla
alternating minimization tends to quickly converge to bad local
minima. In order to evade the phenomenon described above, we
propose a variation of problem (6), based on two observations, and
an algorithmic approach.

First, from (2), we note that the set of n-dimensional permuta-
tion matrices can be expressed as the set of non-negative matrices
that are also orthonormal. Although seemingly redundant, another
equivalent and useful description of this set can be obtained by con-
sidering it as the intersection of the set of left stochastic matrices
(non-negative matrices with each column summing to 1) and the
set of orthonormal matrices. Moreover, in the case of isomorphic
graphs, the optimal matrices {Q; le should exhibit the same align-
ment structure as the optimal embeddings. In other words, in the

s.t.
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case where the adjacency matrices A1 and A are permuted ver-
sions of each other obeying the relation Ay = PAlPT, the optimal
matrices Q7 and Q should satisfy

Q} =PQ;. ™)
In applications, the target and query graphs are seldom isomorphic.
The further the two graphs are from being isomorphic, the less
relation (7) will hold.
Taken together, these considerations suggest the following vari-
ation of (6)

min [|E; — PA;Qzl% + 4 [1Q1 — PQy 1%,

" ®)
T T T T

st. P>0, 1,P=1., P'P=PP! =1,

where 1, denotes the n-dimensional vector of ones and A > 0 is a
penalty parameter that regulates the emphasis placed on the second
term and should be tuned accordingly to how far are the considered
graphs from being isomorphic. Meanwhile, the constraints P > 0
(element-wise non-negativity) and 11P = 11 impose that matrix
P is left stochastic. In the next section, we devise an algorithmic
approach for solving the above problem.

5 ALGORITHMIC APPROACH &
EVALUATION

Note that problem (8) is non-convex, as the cost function is the
composition of a bilinear function of the variables with a convex
function, and the permutation constraints are combinatorial. In or-
der to effectively deal with the permutation constraints, we consider
the following equivalent form of (8)

i E; — UA2Q;]|2 + A ]|Q1 — UQy||2
v, [IE 2Q2ll% + A 11Q1 — UQqll%

sit. w0 1lw=1l ©)

vu=uuT =1, U=W,

where we have replaced P with the new variables {U, W} which
collectively impose the permutation constraint. Instead of enforcing
the equality constraint between U and W exactly, we consider the
following “penalty” formulation

min_ ||E; — UA2Qz[% + A 1Q1 — UQ,I% + pl|U - WI4
U, W, Q, (10)

st. w=>o0 1Iw=1I uvlu=uu’ =1,

where we have augmented the cost function of the previous problem
with a proximal regularization term that penalizes the violation of
the equality constraint between the variables U and W, with the
level of tolerable violation regulated by the non-negative penalty
parameter p.

Note that problem (10) is block-separable in the variables U and
{W, Q2}. We exploit this structure to devise an alternating optimiza-
tion algorithm for obtaining approximate solutions of this problem.
At each iteration of the algorithm, we compute the conditionally
optimal solution w.r.t. one of the variable blocks, while the other is
kept fixed. Specifically, given the current iterates Uk R wk R le‘, at the
k-th iteration, the proposed algorithm entails solving the following
sub-problems in cyclic fashion.

2 2
R e

o, = argmin ‘
Q2

(11)
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Algorithm 1 Proposed Algorithm for Graph Alignment

2 st W0, IZW — 155 12) Input: A; € {0,1}"™", Ay € {0,1}",U% e R™" d € [n],
F AeRy, peRy
Output: P € P"

function GRAPH_ALIGNMENT(A1, Ay, U°, d, A, p)

wh = argmin HW - Uk|
w

2

2
k+1
+p||lU-W
F PH

2
2 HQ1 —uQk+!

|E1 — UA,Qk*!

U e argmin
U

F’ [U1,%1,V1] = svd (A4, ‘econ’)
st. UTu=uu? =1,. E1=U; (51:d)
(13) Qi=Vi(51:d)[Z1(1:d,1: d)]_l
Note that for a given U¥, the updates of W**! and QIZchl can be Ci= [El’ \/IQI]
carried out simultaneously. Since we compute the conditionally L = chol (AzTAz + )\-In)
optimal updates at each step, it follows that the algorithm mono- k=0
tonically reduces the cost function of problem (10) over iterations. while terminating_condition is FALSE do
Coupled together with the fact that the cost function is bounded k41 S\ AT e\ T Y
from below (a trivial lower bound being 0), we conclude that the Q" =L (L ) [AZ (U ) Er+4 (U ) Ql}
iterates generated by the algorithm attain convergence in terms of C, = A, 0k Viok+
the cost function. Furthermore, we have the following result. 2= [ 2Q VA ]
S g

W+ = CoLUMNWISESIMPLEXPROJECTION (Uk )
PROPOSITION 5.1. Every limit point of the iterates generated by !

Algorithm 1 is a stationary point of problem (10). UK+ = ProcusTEs (Cl, Cy, WL p)

Proor. We invoke the main result of [7], which asserts that ev- k=k+1

ery limit point of the iterates generated by two-block alternating end while k
optimization is a stationary point provided that: (a) each block up- P = GREEDYMATCHING (U )
date is conditionally optimal, and (b) the constraint set in each block end function

sub-problem is compact. It is easy to see that the first condition
is satisfied by Algorithm 1. Regarding the second condition, note

that constraint set of sub-problem (12) is compact, as each column Algorithm 2 Orthogonal Procrustes

lie.s in th; 'pilobabili.ty simp}iex, where.as the sc;t ot;) orthzilormal ma- Input: C; € R™2d C, ¢ R™2 W e R"™" p e R,
trices (which constitutes t e constraint set of sub-pro em (13)? is Output: U € {Ue Rnxn| vTu=uuT = I,}

also comp?\ct 6541, ;f)i 4]. ’Il‘hls lee;ves sub-problem (1}1), which being function ProcusTES(C1, Cz, W, p)

unconstrained, at first glance, does not appear to have a compact M=C, CZT +pW

constraint set. However, since we apply a proximal term in the cost [X,%,Y] = svd (M)
function that restricts Q, to be close to (UX)TQy, this implicitly U*’:’XYT

enforces Q3 to lie in a compact set. In other words, for every choice
of regularization parameter A, there exists a bounded #»-ball (with
radius dependent on A1) inside which the solution of (11) lies. Hav-
ing guaranteed that the requisite conditions for convergence are

obeyed by the iterates generated by Algorithm 1, the result then

end function

Algorithm 3 Columnwise Projection onto the probability simplex

Input: W € R™*"

follows. O
Output: W* € {W € R”X"| W>0,1TW= lT}

However, attaining convergence does not guarantee that equality function COLUMNWISESIMPLEXPROJECTION(W)
between the iterates U and W is achieved in general, which in fori=1,..,ndo
turn implies that the algorithm may not return a valid permutation Sort W(;, i) into ”i . /Ji > l’é >.> I’lil
matrix. Consequently, as a post-processing step, we employ a greedy ) . . —_— j .
maximum-weight bipartite matching algorithm [28] on the last Find p* = max | j € [n] : yj - 7(Zr=1 Hr = 1) >0
U iterate to obtain the final alignment. The overall algorithm is ) P
outlined in Algorithms (1) and (2). o' = # ( Zf:l Hr = 1)

Next, we consider the computational complexity of solving each W*(;, i) = max {W( i) - 01, Onxl}

of the above sub-problems and demonstrate that they admit closed-
form solutions.

end for
end function

5.1 Updating matrix Q,

The sub-problem (11) that corresponds to the update of lec is an
unconstrained least squares problem, as it is equivalent to
2

Hence, the optimal solution must obey the normal equations, which,
for problem (14), are given by

E UkA,
[vio | [t e

(14)

QIZ“'1 = argmin

o (AT (U TURA, + AUR)TUF) Q5+ = AT (U9 By + 2097 Q1.

F
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As we enforce orthonormality constraints on U at every iteration,
the above condition simplifies to

(AgAz +)LI,,) k12 AT(UNTE + AU TQ,, (1)

which necessitates solving a total of d linear systems of equations.
It is evident that the main computational overhead stems from
computing the Cholesky factorization of the positive-definite matrix
A2TA2 + Al,, which requires n3/3 flops in the worst-case. Since it is
only the right-hand sides of the linear equations which are updated
over iterations, it suffices to perform this decomposition only once
prior to the start of the algorithm, as by caching the factorization
we can re-utilize it to solve the linear systems arising over iterations.
Hence, the complexity that is initially incurred in computing the
Cholesky decomposition is amortized over the iterations of the
algorithm. Within each alternating optimization step, solving the d
linear systems via forward-backward substitution incurs complexity
O(dn?).

5.2 Updating matrix W

The update of variable Wk*! js given by problem (12), which cor-
responds to computing the Euclidean projection of the matrix UX
onto the set of left stochastic matrices. The optimal solution can be
obtained by separately projecting each column of U onto the prob-
ability simplex. The projection of each column can be computed
with complexity O(nlogn) [15]. Therefore, the overall complexity
of updating matrix W is O(n? log n). In Algorithm 1, the function
the computes the updated version of matrix W is denoted as CoLum-
NWISESIMPLEXPROJECTION and it is presented in Algorithm 3.

5.3 Updating matrix U

In order to derive a closed-from expression for the update of UK*!,
we first expand the cost function of (13) and exploit the orthonormal
property of U to arrive at the problem

Uk ¢ argmax trace (UTMk), (16)

UTU=UUT=I,

where we have defined the matrix
M* = E1(A2Q5)T +2Q1(Q5™) T + oW (17)

Note that (16) is an instance of the well-known Orthogonal Pro-
crustes problem [16, 19, 40]. Denoting the singular value decompo-
sition of MK by X2Y7 | it can be shown that the optimal solution of
(16) is given by

Uk+l — XYT, (18)

which incurs complexity O(n®).

Overall complexity of the proposed algorithm. Let T denote the num-
ber of iterations of the alternating minimization procedure. Then,
the complexity of the algorithm scales as

n3/3+0(n?logn) + O(Tn®) + O(Tdn?).

The main computational bottleneck in our algorithm is the calcu-
lation of the singular value decomposition for solving the Orthog-
onal Procrustes problem (update of matrix U). Since we run our
algorithm for few tens of iterations in our experiments across all
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datasets, we can treat T as a constant, which results in an overall
complexity of O(n?).

6 EXPERIMENTAL EVALUATION

In this section, we compare the performance of our proposed tech-
nique against well known existing network alignment methods
on real world graphs. The comparison is carried out in terms of
accuracy and of required wall time.

6.1 Baselines

Next, we briefly introduce the algorithms that we employed as
performance benchmarks in our experiments:

e Umeyama’s Method [43]: A classical spectral-embedding
based alignment method, which entails computing the com-
plete set of eigenvectors of both adjacency matrices A; and
A in order to construct a similarity matrix between the
vertex sets of the two graphs. Then, the matrix is used to
instantiate a LAP, the solution of which corresponds to the
final estimate of the alignment.

e IsoRank! [42]: A spectral method which considers a reg-
ularized form of the QAP (3) and applies random walks
with restarts to compute the PageRank eigenvector of the
normalized Kronecker product graph A; ® Ay (with a pre-
determined alignment prior serving as the “teleportation”
vector). The solution is projected onto the set of permuta-
tion constraints via a bipartite matching step to obtain the
final alignment. We point out that for the case of undirected,
unattributed graphs (which constitutes the focus of our ex-
periments in this paper), IsoRank is a special case of the more
general FINAL algorithm [47].

e Low-Rank Align (LRA)? [18]: A recent two-step spectral
alignment method for approximately solving the QAP for-
mulation of graph alignment (3) on undirected graphs. In
the first step, LRA solves a rank-k approximation of the or-
thogonal relaxation of the underlying QAP. At the second
step, a variation of the QAP problem with two optimization
variables is proposed, and an alternating optimization frame-
work is adopted. The update of one variable entails solving a
discrete optimization problem, which is heuristically solved
by searching in a reduced space (determined by the solution
of the first step), while the update of the second variable
boils down to solving a LAP. In our experiments, we use the
default parameter setting, while the number of considered
eigenvectors, k, was equal to 2.

e CONE-Align® [9]: A recently proposed joint embedding
and alignment meta-algorithm comprising three stages. In
the first stage, the NetMF method [38] is used to obtain node
embeddings of the two graphs. Then, [9] aims to rule out
any rotational ambiguities between the node embeddings by
adopting the Wasserstein-Procrustes framework presented
in [20]. In the last step, kd-trees for fast nearest node embed-
ding search are employed with the aim of obtaining the final
alignment. In our experiments, we use the default settings

Uhttps://github.com/sizhang92/FINAL-network-alignment-KDD16

Zhttps://github.com/SoheilFeizi/spectral-graph-alignment
3https://github.com/GemsLab/CONE-Align
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Table 1: Summary of network statistics: the number of ver-
tices (n), the number of edges (m), and the network type.

Graph n m Network Type
C. ELEGANS 277 2,105 Interactome
ARENAS-EMAIL 1,133 5,451 Communications
POLBLOG 1,224 16,714 Social
AIRPORTS 1,574 17,215 Infrastructure
A. THALIANA 2,082 4,145 Interactome
JaraNESE Book 3,177 7,998  Word Adjacency
HoMoSAPIENS 3,890 38,292 Interactome
cA-GrQc 5,242 14,490 Co-authorship

for all the parameters except for the embedding dimension
d where we also use the values presented in Table 2. We ob-
served that the output of the final kd-tree stage does not find
a one-to-one correspondence mapping in all cases. In these
cases, we applied a greedy bipartite matching algorithm [28]
on the kd-tree output to obtain a bijective mapping .

6.2 Datasets

The real-world datasets we used in our experiments were obtained
from standard network repositories [29, 31] and are listed in Ta-
ble 1. These include (i) interactomes (C. ELEGANS, A. THALIANA
and HoMoSAPIENS), where the vertices are proteins and the edges
correspond to their interactions, (ii) a communications network rep-
resenting email exchanges among members of a university (ARENAs-
EmarIv), (iii) a social network (PoLBLOG) where the vertices represent
blogs and the edges denote followings between blogs, (iv) an in-
frastructure network comprising the connections between airports
in the US (AIRPORTS), (V) a word adjacency network constructed
from a Japanese text (JAPANESE Book), and (vi) a co-authorship
network representing collaborations between scientists involved in
co-authoring a scientific publication (ca-GRrRQc).

6.3 Experimental Setup

In our experiments, we adopt the experimental setup that, among
others, the authors of [14, 18, 27, 34] also consider. Given a dataset,
we restrict ourselves to its largest (strongly) connected component.
If the original graph is directed, we convert it into undirected form
by performing a symmetrization step. Additionally, we remove all
self-loops and edge weights. Hence, every graph that we consider
in our experiments is a simple, undirected, unweighted graph (G).

In order to create an instance of the graph alignment problem, for
each graph (G1), we construct a “noisy" and permuted version of
that graph, by randomly adding new edges with probability pe, i.e.,
we generate a random Erdos-Renyi graph G (n, p.), with adjacency
matrix Q. Then, we create the adjacency matrix of G, as

Az =P[A; + (1nxn — A1) Q] P, (19)

where the operator “+” denotes the Hadamard (element-wise) prod-
uct and P € P denotes a randomly generated permutation matrix.
The number of additional edges that eventually appear in Aj is
controlled by varying the noise level p,, such that the expected
percentage of extra edges in G is equal to a fixed number between
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1% and 20% of the total edges in G1. Moreover, for each noise-level,
we averaged our results over 20 Monte-Carlo runs. Notice, that
while the considered problem setup guarantees the existence of an
alignment (i.e., 3 P* € argminppn ||A1 - PAZPT”ZF), the unique-
ness of the minimizer is not guaranteed, in general, because of
the possible presence of topologically-invariant subgraphs, such
as cliques and star graphs [32]. Consequently, our aim is to com-
pute an alignment between the two graphs which can minimize the
induced edge disagreements without having any apriori knowledge.

6.4 Evaluation Metrics

In our experiments, we evaluate the performance of all considered
methods based on the ratio of the number of edge overlaps induced
by the algorithm over the number of edges in G4 (Edge correctness).
In general, the higher the score, the better. Perfectly aligning the
edge-set of G; with its counterpart in G results in the maximum
correctness score of 1.

6.5 Initialization, convergence criteria, and
parameter selection

Initialization: In Algorithm 1, we require to specify an initial
choice of the variable U°. As our problem formulation is non-
convex, this choice of initialization is of significant importance.
Given an instance of graph alignment, however, it is a non-trivial
task to “handcraft” a meaningful initialization. Hence, in our ex-
periments, we use our proposed algorithm to refine the solutions
provided by the considered baselines. More specifically, we use the
output produced by CONE-Align (i.e., the output of the kd-tree
stage) to initialize our algorithm. This choice is determined by our
empirical observation that CONE-Align achieves the best trade
off between accuracy and complexity among the considered base-
lines, as well as by the substantial and consistent improvement we
obtained after using it as initialization for our method.

Convergence criterion: In order to use Algorithm 1, we need to

specify a termination criterion. In our experiments, we terminate
k_yk-1

Algorithm 1 when the relative change of factor U, w is
smaller than a predetermined threshold or when the number of
iterations exceeds a predetermined number of iterations, Kmgx-
Specifically, we set threshold = 1072 and Ky = 60.

Choice of parameters: Our algorithm requires specification of
three parameters: (i) the embedding dimension d < n, (ii) the pa-
rameter A which reflects the level of non-isomorphism between
the two graphs, and (iii) the penalty parameter p which regulates
the degree of violation of the equality constraint between variables
U and W. The complete set of parameters can be found listed in
Table 2. Regarding the choice of the first parameter, we observed
that increasing the embedding dimension linearly with the size of
the graph G; always yields best performance, i.e., the larger the
graph, the greater the number of pivots of the target graph G; and
the node embedding dimension of the query graph G, required for
obtaining a high-quality solution. Meanwhile, in our experimental
setup, as the noisy graph G, with extra edges becomes less iso-
morphic compared to G; with increase in noise-level, we gradually
decrease the value of A from its initial setting in the noiseless (i.e.,
isomorphic) case, which was determined via trial-and-error. Finally,
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Table 2: Summary of parameters used for each dataset in
our experiments: the embedding dimension (d), the “isomor-
phism” parameter (1) for each noise-level (from left to right
- noiseless (0%) to highest noise-level (20%)), and the penalty
parameter (p).

Graph d A p

C. ELEGANS 128 [5, 5, 5, 5, 5, 5] 0.1
ARENAS-EMAIL 256 [20, 20, 20, 20, 20, 20] 0.2
POLBLOG 256 [20, 20, 20, 20, 20, 20] 0.1
AIRPORTS 350 [30, 30, 30, 30, 30, 30] 0.3
A. THALIANA 520 [9,9,9, 9, 9, 9] 0.1
JAPANESE Book 750 [14.5, 14.5, 14.5, 14.5, 14.5, 14.5] 0.1
HomoSariens 750 [13.3, 13.3, 13.3, 13.3, 13.3, 13.3] 0.1
ca-GrQC 950 [4, 4, 4, 4, 4, 3.9] 0.1

regarding the choice of the penalty parameter, for a given dataset,
we observed that fixing p to a modest value in the interval [0.1,0.3]
works well across all noise-levels. Throughout our experiments,
we observed that our proposed approach is not very sensitive to
parameter tuning.

6.6 Results and Discussion

In this section, we present the results of our experiments obtained
with our proposed graph alignment method and contrast it with
that of the selected baselines. In Figure (1), we illustrate the accuracy
scores, in terms of edge correctness, that each method achieved.
Our main findings are as follows

o In the presence of noise, our method outperforms all base-
lines, often by a significant margin. It is also evident that the
performance of our method is the least sensitive to noise, as
its accuracy score degrades more gracefully compared to the
other methods. For the highest noise level scenario, where
the considered graphs differ by up to 20% in terms of number
of edges and are far away from being near-isomorphic, the
improvement in performance can be as large as 80 — 100%
over the next best competitor (e.g., see results for PoLBLOGS
and A THALIANA). This observation implies that the com-
puted alignment successfully identifies a subset of edges in
graph G» that has high overlap with the edges of graph Gy,
even in the presence of strong noise.

o In the noiseless setting, (i.e., the isomorphic case), it can
be seen that our method does not attain the optimal score
in general. We attribute this to the fact that CONE-Align
does not perform well in this scenario, and consequently the
initialization offered by it to our algorithm is non-ideal. Fur-
thermore, we noted that by increasing the maximum number
of iterations to a larger value, we can refine the solution of
CONE-Align to attain the optimal edge correctness score.
However, such a step comes at the expense of increased com-
plexity and is thus formally omitted from our experimental
settings.

e In terms of timing, Figure (2) reveals that our algorithm
is more time consuming compared to the baselines, which
is a consequence of the fact that we have to perform an
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Figure 1: Edge correctness vs. noise level across networks.
For each value of noise level (p.), 10 different realizations of
the graphs G,, with a certain percentage of additional edges
and under a different and random permutation, were gener-
ated. The number of additional edges varied from 0 to 20%
of the total number of edges of the fixed graph G;.

SVD at each step of the alternating minimization procedure.
However, the the complexity of our algorithm is by no means
unaffordable, exhibiting a run-time that is of the same order
as that of CONE-Align on all datasets, with the exception of
ATHALIANA.

7 CONCLUSIONS & FUTURE WORK

In this work, we proposed a novel formulation of the classical graph
alignment problem, which combines the merits of the prominent
class of spectral methods and the promising class of graph em-
bedding based methods. In order to examine its effectiveness, we
developed an alternating minimization algorithm to solve it and we
compared it against the prevailing state-of-the-art graph alignment
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Figure 2: Wall time (in seconds) vs. noise level for different
networks.

frameworks on real life graphs. Our results show that our proposed
framework achieves much higher alignment accuracy relative to
the prior art, in challenging problem instances involving noisy real-
life graphs. This currently comes at the cost of higher complexity
due to SVD, but a key point is that existing frameworks leave a
lot of room for improvement in terms of the attainable alignment
accuracy. Designing more efficient and scalable methods for solv-
ing the proposed formulation, as well as evaluating the quality of
the obtained embeddings for other downstream tasks (such as link
prediction) are the subject of ongoing research.
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