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� VACNTs are grown on both sides of 
graphite substrate in one-step CVD. 
� Bipolar supercapacitor is fabricated with 

double sided graphite/VACNTs. 
� State-of-art volumetric energy and 

power among CNTs based 
supercapacitors. 
� Compact and low loss bipolar device is 

obtained without sacrificing stability.  
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A B S T R A C T   

The electrochemical capacitor (EC) is a key enabler for the miniaturized self-powered systems expected to 
become ubiquitous with the advent of the internet-of-things (IoT). Vertically aligned carbon nanotubes (VACNTs) 
on graphite holds promise as electrodes for compact and low-loss ECs. However, as with all ECs, the operating 
voltage is low, and miniaturization of higher voltage devices necessitates a bipolar design. In this paper, we 
demonstrate a bipolar EC using graphite/VACNTs electrodes fabricated using a joule heating chemical vapor 
deposition (CVD) setup. The constructed EC contains one layer of double-sided VACNTs on graphite as bipolar 
electrode. Compared to a series connection of two individual devices, the bipolar EC has 22% boost in volumetric 
energy density. More significant boost is envisaged for stacking more bipolar electrode layers. The energy 
enhancement is achieved without aggravating self-discharge (71.2% retention after 1 h), and at no sacrifice of 
cycling stability (96.7% over 50000 cycles) owing to uniform growth of VACNTs and thus eliminating cell 
imbalance problems.   

1. Introduction 

Miniaturized self-powered systems with harvest-store-use 

architectures have been recognized as a key enabler to the internet-of- 
things (IoT) [1,2]. Electrochemical capacitors (ECs), also known as 
supercapacitors, are characterized by an extremely long cycle life, high 
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bipolar fabrication procedure. 
Fabrication of VACNTs based bipolar ECs has not been demon

strated. The obstacles for the demonstration are related to the difficulties 
in both electrode and device design and engineering. VACNTs are syn
thesized with CVD methods on substrates, and the choice of substrate 
material determines the feasibility of their use in bipolar designs. A 
smart design of VACNTs based bipolar ECs would be to directly use the 
substrate as a bipolar plate to save weight and space. Rigid and bulky 
wafers are not an option, not only because of a large weight and volume 
fraction of inactive components in the final product, but also their 
insulating nature rules out the stack structure design. For the use of 
freestanding VACNTs films [17] in bipolar ECs, it is necessary to use an 
additional layer as a bipolar plate, and the interface between the 
VACNTs and the bipolar plate must be optimized. Taking into account 
the factors discussed above, the substrate of VACNTs should be light, 
highly conductive, chemically inert and at the same time facilitate good 
contact with VACNTs. In this sense, graphite film is a perfect fit because 
of its chemical stability, and the possibility of enabling a seamless 
bonding structure. Additional merit is the flexibility of graphite film 
makes it possible to engineer devices in diverse form factors for minia
ture systems applications. It can thus be postulated that the 
above-mentioned tip-growth VACNTs on graphite with a seamless 
bonding structure [27] could be an excellent prototype for VACNTs bi
polar ECs. To that end, VACNTs of the same quality must be grown on 
the other side of the graphite substrate, which is a demanding task. 

The high quality tip-growth graphite/VACNTs electrodes for minia
ture ECs were fabricated with a cold-wall CVD system [27]. Usually, 
cold-wall CVD systems are equipped with a localized heater that raises 
the substrate temperature to initiate VACNTs growth. With the same 

setup, bipolar electrodes can only be fabricated by running the same 
process two times, in order to grow on both sides. The repeated process 
increases time consumption and potentially leads to non-uniformity of 
VACNTs quality. The non-uniformity can be caused by any difference in 
parameter control between the two successive runs, and also because the 
VACNTs grown during the first run must undergo an additional process 
run that involves high temperature growth conditions, the quality can 
thus be different from that of VACNTs grown on the other side during the 
second run. To eliminate the concerns, it is preferable to grow VACNTs 
simultaneously on both sides of the substrate. Base-growth VACNTs on 
both sides of copper foils were grown using conventional quartz tube 
furnaces [34–36] where the copper substrates were heated up by heating 
elements along the quartz tube. Compared with cold-wall systems, these 
methods pose disadvantages in terms of energy consumption, process 
speed, and scalability. Since graphite is both electronically and ther
mally conductive, a new CVD method can be developed by using the 
graphite substrate directly as a heating element in cold-wall systems. 
The current directly runs through the graphite that is heated up through 
the joule heating effect. The substrate temperature and ramping rate can 
be regulated by controlling the input power. In this way, VACNTs grow 
on both sides of the substrate in a single run. A double-side VACNTs on 
graphite material was fabricated with such a self-joule heating CVD 
method for thermal applications [37]. However, the VACNTs growth 
was based on base-growth mechanism, therefore lacking the advantages 
of seamless bonding structure and ease of catalyst removal, and it cannot 
be directly used as EC electrodes for miniature systems that require low 
loss. 

In this work, we are dedicated to developing a new process for 
fabricating tip-growth VACNTs on both sides of highly oriented graphite 

Fig. 1. a) Schematic of VACNTs grown 
using conventional CVD, with Fe catalyst 
and Al2O3 diffusion barrier layer beneath. b) 
VACNTs grown using odako-growth, with Fe 
and Al2O3 on top of the VACNT array. c) 
Conventional cold-wall VACNTs CVD setup, 
with VACNTs grown on a Si chip placed on a 
graphite heater. d) Joule heating CVD setup, 
with VACNTs grown directly on the graphite 
foil used as the heater. e-f) Photos of the 
experimental setup before and after VACNTs 
CVD growth, respectively.   
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films, and demonstrate the first VACNTs based miniature bipolar ECs. 
With an energy-saving, fast and scalable self-joule heating CVD method, 
VACNTs were grown on both sides of the graphite substrate in one 
process run, with the feature of tip-growth and excellent contact to the 
substrate. After a plasma treatment to remove the catalyst layer, the 
materials were used for bipolar ECs of an efficient design. The demon
strated bipolar ECs exhibited non-impaired performance compared with 
single units. The presented electrode and fabrication strategy provide 
hints for developing advanced ECs for miniaturized self-powered 
systems. 

2. Double-sided graphite/VACNT (DSGC) bipolar electrodes 

Conventional VACNTs CVD utilizes a catalyst structure consisting of 
a ceramic barrier layer with a metal catalyst layer on top. Fig. 1a shows 
the structure of an array of VACNTs synthesized this way. During the 
CVD process, VACNTs grow upward from the metal particles, which are 
immobilized by the ceramic layer [38]. However, this leaves the cata
lysts at the interface between each VACNTs and the underlying sub
strate, most notably the ceramic layer which aggravates self-discharge 
and prevents a good electrical connection which is crucial for EC 
applications. 

In order to form a seamless connection between the VACNTs and the 
underlying carbon substrate, so-called “odako” growth can be used. By 
reversing the catalyst layer structure, and depositing Fe catalyst un
derneath an alumina layer, the catalyst stays on top of the VACNTs 
array, forming bundles of VACNTs with alumina flakes on top [24], as 
shown in Fig. 1b. This method can form a seamless, covalent bonding 
between the VACNTs and the topmost graphene layer [25,39] and has 

previously been demonstrated as a good candidate for EC electrode 
material [27]. 

The double-sided graphite/VACNTs (DSGC) bipolar electrode ma
terial was fabricated through a recently developed joule heating CVD 
method [37]. The method is based on a cold-wall CVD system, where the 
substrate for VACNTs synthesis is placed on a graphite heater in a low 
pressure chamber, as seen in Fig. 1c. However, rather than placing the 
chip on a heater, a 25 μm thick pyrolytic graphite sheet (PGS) from 
Panasonic was used as both substrate and heater, enabling growth on a 
larger area and simultaneously on both sides of the substrate. In prin
ciple, PGS can be thinned down mechanically through e.g. scotch tape 
method [40]. 

The catalyst layer consisted of 2 nm Fe and 3 nm Al2O3, consecu
tively deposited by an electron beam evaporator (AVAC HVC600). The 
VACNTs CVD setup is shown schematically in Fig. 1d. The graphite foil 
was fastened between two electrodes inside the reaction chamber. The 
process took place at a low pressure in a vacuum chamber with a gas 
inlet for reactant gases. The sample was heated by joule heating from an 
applied current through the graphite sheet, regulated with a thermo
couple in contact with the substrate. The temperature was ramped up to 
500 ∘C at a rate of 300 ∘C/min with a flow of 837 sccm of H2, and sub
sequently held stable for 3 min for reduction of catalyst and cracking of 
the alumina layer. In the growth step, the temperature was then quickly 
ramped up to 650 ∘C and a flow of 240 sccm C2H2 for 10 min was 
introduced into the chamber. Fig. 1e and f shows the CVD setup before 
and after the growth of a DSGC. VACNTs have grown on the entire area 
between the electrodes. 

Besides DSGC, we fabricated another version of EC electrodes: single- 
sided graphite/VACNTs (SSGC) to be used as end electrodes in bipolar 

Fig. 2. SEM images of the VACNT arrays 
grown on both sides of a graphite foil. a) The 
as-grown VACNT arrays are broken up into 
segments with an intact alumina layer on 
top. b) Higher magnification of VACNT ar
rays. c) Magnification of a single VACNT 
bundle caused by one alumina sheet. d-f) 
Corresponding images of VACNT arrays after 
plasma etching and the removal of alumina. 
g) Side view of the double-sided graphite/ 
VACNTs hybrid material. h) Magnification 
of the VACNT arrays from the side. i) 
Zoomed out view of the double-sided 
graphite/VACNTs hybrid.   
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