
Soft Graph Matching: Submodular Relaxation and
Lovász Extension

Aritra Konar
Dept. of Electrical and Computer Engineering

University of Virginia
Charlottesville, VA, USA

aritra@virginia.edu

Nicholas D. Sidiropoulos
Dept. of Electrical and Computer Engineering

University of Virginia
Charlottesville, VA, USA

nikos@virginia.edu

Abstract—Graph matching aims to align a pair of graphs by
minimizing their edge disagreements. As the problem is NP–
hard in the worst-case, various methods have been proposed for
approximately solving the problem. One popular approach is to
relax the combinatorial problem to a continuous formulation,
whose solution represents a soft correspondence between the
vertex-sets of the graphs. Previous work has primarily motivated
such soft matching formulations as an intermediate step towards
obtaining hard correspondences. In this paper, we depart from
this viewpoint and provide an alternate motivation for soft
matching as a means of identifying classes of topologically-
invariant subgraphs, which cannot be revealed by hard corre-
spondences. Drawing on this observation, we consider the family
of doubly-stochastic relaxations for graph matching and propose
a new convex relaxation for the problem. We establish that the
objective function of our formulation can be interpreted as the
tightest convex relaxation of the combinatorial quadratic graph
matching objective function in a certain sense, and describe an
efficient first-order algorithm for computing its solution. Through
experiments conducted on real-world data, we demonstrate the
empirical effectiveness of the algorithm relative to the prevailing
relaxations for graph matching.

I. INTRODUCTION

Graph matching refers to the problem of computing a one-
to-one correspondence mapping between the vertex sets of
a pair of graphs such that the edge-disagreements induced
by the mapping are minimized. The problem has diverse
applications ranging from bio-informatics, to computer vision,
and data mining (see [1], [2] and references therein). However,
the problem is combinatorial in nature and is known to be
notoriously difficult to solve, being equivalent to the NP–hard
quadratic assignment problem [3] in the worst-case.

In light of the above fact, approximation algorithms are
widely used with the goal of computing high-quality albeit
sub-optimal solutions for the problem. A commonly used tech-
nique is to employ a relaxation of the combinatorial constraints
and solve the resulting continuous optimization problem to
obtain a soft-correspondence matrix, whose entries indicate
the likelihood of assigning a pair of vertices to each other. In
prior work, such “soft” formulations of graph matching have
primarily been used as a means to the end of obtaining a
hard correspondence mapping, usually by performing a final

Supported by the National Science Foundation under grant IIS 1908070.

Fig. 1: Invariance classes in a graph GA. Swapping a pair of
vertices of the same color (together with their descendants, if any)
does not affect the topology of the graph. Note that a one-to-one
correspondence is incapable of revealing the invariance classes.

“hardening” step by solving a linear assignment problem with
the soft-correspondence matrix used as the objective function.

In this paper, we motivate soft matching from a different
perspective. Our starting point is the fact that real-world graphs
are often comprised of topologically invariant subgraphs such
as cliques and star graphs [4]. Consequently, performing hard
alignment may not always be meaningful, as it does not
convey any information regarding the classes of topologically-
invariant vertices. For example, consider the graph depicted in
Figure 1, where each different coloring of the vertices depicts
an invariance class. Note that exchanging labels between any
pair of vertices belonging to the same class, together with their
descendants (if any), does not affect the topology of the graph.
In such a case, given the graph and one of its isomorphic
forms, computing a one-to-one correspondence between their
vertex sets is not well motivated. Consequently, here it is of
greater importance to identify the different invariance classes
in the graphs, and it is for this task that we consider the
problem of designing an appropriate soft matching formulation
of graph matching. More specifically, our main contributions
are as follows:

1) We consider the family of doubly-stochastic (DS) relax-
ations for graph matching (which employ doubly stochas-
tic matrices as soft correspondences), and introduce a
new non-smooth, convex DS formulation. Leveraging a
recent result [5] which shows that the quadratic objective

function in graph matching is a submodular function,
we establish that our soft matching formulation can
be viewed as the tightest convex relaxation of graph
matching, within the family of DS relaxations.

2) We provide an intuitive explanation of why our formula-
tion constitutes a meaningful relaxation of graph match-
ing. We apply the insights gained to improve the potency
of our formulation for aligning unweighted graphs by
proposing practical one-hop neighborhood based edge-
weighting strategies.

3) Although our soft matching formulation is a convex prob-
lem, we show that it possesses non-Euclidean geometry,
which constitutes a major roadblock in efficiently com-
puting its solution using the standard toolkit of convex
optimization. By judiciously adapting to the geometry
of the problem, we show that a non-Euclidean projected
subgradient algorithm of Nesterov [6] can be employed
to efficiently solve the problem. We also describe a
stochastic approximation variant of the algorithm, which
endows it with the ability to scale up to larger problem
instances.

In order to put the scope of our contributions into context,
we now discuss prior and related work on soft matching
relaxations. Apart from the family of DS relaxations, other
techniques include orthogonal relaxation, semidefinite relax-
ation [7], and integer linear programming relaxations [8]. The
first method is not known to perform well in practice and
is seldomly used, while the latter two methods stem from
expensive reformulations of graph matching that entail the
introduction of a large number of variables and constraints,
and are limited to small instances. These techniques serve as
means to ultimately producing a hard alignment. Note that this
mode of use is not our primary motivation in this paper. The
class of DS relaxations, on the other hand, is naturally suited
for our interpretation of soft matching, which is the reason why
we consider it in this paper. Prevailing DS relaxations include
convex and non-convex quadratic programming formulations.
We show that our proposed convex DS relaxation is the
tightest convex relaxation in this family (in a certain sense) and
propose an algorithm for efficiently solving it that compares
very favorably to state-of-the-art baselines for solving the other
DS relaxations [9], [10] on real-world graphs. As a preview
of our main results, we used our convex formulation and the
prevailing convex formulation for performing soft matching
between the graph GA in Figure 1 and an isomorphic variant
GB . We display heatmaps of the correspondence matrices
(normalized by the largest entry) obtained as solutions to both
problems in Figure 2. Clearly, the solution of our formulation
does a much better job at delineating the invariance classes in
the graph.

Finally, we point out that a recent paper [5] also exploits
the submodularity of the graph matching objective function
to develop an iterative approximation algorithm. However,
the algorithm is combinatorial and aims to compute hard
alignments, whereas in our work we utilize the submodularity

Hard-assignment matrix

2 4 6 8 10 12 14 16 18 20
Vertices in graph A

2

4

6

8

10

12

14

16

18

20

Ve
rti

ce
s

in
 g

ra
ph

 B

(a) Permutation relat-
ing GA and GB .

Soft-assignment matrix

2 4 6 8 10 12 14 16 18 20
Vertices in graph A

2

4

6

8

10

12

14

16

18

20

Ve
rti

ce
s

in
 g

ra
ph

 B

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Optimal solution of
our formulation.

Soft-assignment matrix

2 4 6 8 10 12 14 16 18 20
Vertices in graph A

2

4

6

8

10

12

14

16

18

20

Ve
rti

ce
s

in
 g

ra
ph

 B

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Optimal solution of
prevailing formulation.

Fig. 2: Visualizing invariance classes in GA (shown in Figure 1)
and its isomorphic counterpart GB via soft correspondences. Lighter
(resp. darker) colors indicate higher (resp. smaller) correspondence
values.

property in a very different way to develop a principled convex
relaxation for soft matching.

II. PRELIMINARIES

Consider a pair of undirected graphs GA,GB on n vertices
with vertex sets VA = VB = [n] := {1, · · · , n}, and edge
sets EA, EB ⊆ [n] × [n]. Graph matching aims to compute a
bijective mapping between the vertex sets of the two graphs
which induces minimal edge disagreements. Formally, the
problem can be expressed as

min
P∈Pn

1

2
‖B−PAPT ‖2F , (1)

where A,B ∈ Sn denote the (positively weighted) adjacency
matrices of the graphs GA and GB respectively, and Pn denotes
the set of n × n permutation matrices. Note that (1) admits
the following equivalent representation

min
P∈Pn

1

2
‖BP−PA‖2F , (2)

by virtue of the unitary property of the set of matrices Pn.
Expanding the cost function of (2) and applying the same
property produces another equivalent form

min
P∈Pn

‖A‖2F + ‖B‖2F
2

− 〈BP,PA〉. (3)

Since graph matching is a NP–hard optimization problem, in
practice one often resorts to relaxing the “hard” combinato-
rial matching constraints Pn to the set of doubly-stochastic
matrices

Bn := {S ∈ Rn×n+ : S1n = 1n,S
T1n = 1n}, (4)

which constitutes the convex hull of Pn and represents “soft”
matching constraints. However, adopting such a measure
breaks the equivalence amongst the problems (1)–(3) and
produces two distinct relaxations. This raises the following
question: which relaxation should one employ in practice?
This question is considered next.

III. RELATING GRAPH MATCHING RELAXATIONS

Given a doubly-stochastic matrix S ∈ Bn, define the pair
of functions

f(S) : =
1

2
‖BS− SA‖2F (5a)

g(S) : =
‖A‖2F + ‖B‖2F

2
− 〈BS,SA〉. (5b)

Minimizing each of these functions over the set Bn yields a
distinct relaxation for the original problem (1). To be precise,

(R1) min
S∈Bn

f(S) (6)

is a relaxation of (2), and is a convex quadratic programming
(QP) problem, as the cost function is the composition of a
convex function with a linear map, and the set Bn is a bounded
polyhedron. Meanwhile,

(R2) min
S∈Bn

g(S) (7)

corresponds to a relaxation of (3) and is a non-convex QP
problem. While these relaxed problems are not equivalent,
their optimal values yield lower bounds on the optimal value
of (1), which is NP–hard to determine in general. However,
the question of which of the above relaxations yields the
tighter lower bound on the optimal value of (1) has not been
previously settled. A partial answer to this question has been
provided in [11], which establishes that for a specific family of
random graphs, the optimal value of (R2) coincides with that
of (1) almost surely, whereas the optimal value of (R1) does
not. We now extend this result 1 to the case of general graphs.
To this end, we will require the following useful result, which
is extracted from [12, Lemma 6].

Lemma 1. Given any matrix W ∈ Rn×n, for every S ∈ Bn,
we have

‖WS‖2F ≤ ‖W‖2F , and ‖SW‖2F ≤ ‖W‖2F .

Let OPT(R1) and OPT(R2) denote the optimal values of their
respective problems. With Lemma 1 in hand, we can establish
the following result.

Theorem 1. For any pair of undirected graphs GA,GB , it
holds that

OPT(R1) ≤ OPT(R2)

Proof. It suffices to show that

f(S) ≤ g(S), ∀ S ∈ Bn. (8)

To begin with, note that f(S) can be expressed as

f(S) =
‖SA‖2F + ‖BS‖2F

2
− 〈BS,SA〉, (9)

from which it is evident that f(S) and g(S) share a common
last term. Hence, the condition (8) reduces to

‖SA‖2F + ‖BS‖2F ≤ ‖A‖2F + ‖B‖2F , ∀ S ∈ Bn. (10)

According to Lemma 1, for any S ∈ Bn, we always have

‖SA‖2F ≤ ‖A‖2F , and ‖BS‖2F ≤ ‖B‖2F (11)

1The work of [11] proves a stronger result, namely that for a class of
random graph models, solving (R2) actually recovers the optimal solution of
(1) with probability 1, while solving (R1) does not. Here, our focus is not
on extending the recoverability result, but rather quantifying the relationship
between the two relaxations in terms of the optimal values that they yield for
the general graph matching problem.

Simply summing the pair of inequalities then yields the desired
claim.

While Theorem 1 establishes that (R2) is guaranteed to be a
tighter relaxation compared to (R1), it entails solving a non-
convex QP problem, which is NP–hard in general.

IV. A NEW CONVEX RELAXATION FOR GRAPH MATCHING

In this section, we introduce a new convex relaxation for
the graph matching problem (1). Our starting point is the
observation that the inner product 〈BP,PA〉 appearing in the
cost function of (3) can be equivalently expressed in quadratic
form as follows

〈BP,PA〉 = Trace(PTBPA) (12a)

= vec(P)T vec(BPA) (12b)

= vec(P)T (A⊗B)vec(P), (12c)

where we have utilized the property

vec(CXD) = (DT ⊗C)vec(X)

of the vec(.) operator, and the fact that A is symmetric.
Let m = n2, and define the m-dimensional binary vector

x := vec(P) and the m×m matrix H := A⊗B. Then, (12c)
can be expressed in quadratic form as

〈BP,PA〉 = xTHx. (13)

Observe that H can be viewed as the adjacency matrix of a
graph GH on m vertices with vertex set VH := VA × VB ;
i.e., a vertex u ∈ VH corresponds to a pair of vertices (i, j),
with i ∈ VA and j ∈ VB . An edge exists between a pair
of vertices u = (i, j) and v = (k, l) in GH if and only if
(i, k) ∈ EA and (j, l) ∈ EB . Note that the weight of such an
edge is w(u,v) := A(i,k)B(j,l). The edge set of GH is denoted
as EH ⊆ [m] × [m]. Let dH ∈ Rm represent the (weighted)
degree vector of the vertices of GH . This can be expressed as

dH = H1m = (A⊗B)(1n ⊗ 1n)

= (A1n)⊗ (B1n) = dA ⊗ dB ,
(14)

where we have invoked the mixed-product rule for Kronecker
products, and dA,dB are the (weighted) degree vectors of
GA and GB respectively. The graph Laplacian associated with
GH is then given by LH := diag(dH) − H. For any vector
z ∈ Rm, the Laplacian quadratic form associated with LH can
be written as

zTLHz =
∑

(u,v)∈EH

w(u,v)(z(u) − z(v))
2. (15)

With these definitions in place, from (15), we obtain the
following equivalent expressions

〈BP,PA〉 = xT (diag(dH)− LH)x (16a)

= dTHx−
∑

(u,v)∈EH

w(u,v)|x(u) − x(v)| (16b)

where the equalities stem from the elementary facts that α ∈
{0, 1} ⇔ α = α2 and β ∈ {−1, 0, 1} ⇔ |β| = β2.

On substituting (16b) in place of 〈BP,PA〉 in the cost
function of (3), we obtain an additional equivalent reformula-
tion of (1). However, when the “hard” combinatorial set Pn
is relaxed to the “soft” set Bn, the equivalence amongst these
formulations is again lost and we obtain the following distinct
relaxation

(R3) min
s∈Bn

{
h4(s) :=

∑
(u,v)∈EH

w(u,v)|s(u) − s(v)| − dTHs + c

}
(17)

where we have employed the definitions s := vec(S), c :=
(‖a‖22 + ‖b‖22)/2, a := vec(A), and b := vec(B). To the
best of our knowledge, such a relaxation for graph matching
has not been considered previously. Note that (R3) is a non-
smooth, convex optimization problem, being the sum of an
affine function and a graph total-variation (TV) regularization
term.

We now establish that the above relaxation possesses an
important property. To begin with, note that the bijective
mapping defined by any permutation matrix P ∈ Pn can be
equivalently represented as a perfect matching in a complete
bipartite graph GC := (LC ,RC , EC) with LC := VA and
RC := VB denoting the vertices on the “left” and “right”
hand sides of the bipartition respectively, and EC := [n]× [n]
denoting the edge set. Let M⊂ EC denote the set of perfect
matchings in GC . Then, every x = vec(P) corresponds to the
indicator vector of a perfect matching S ∈ M in GC , i.e.,

x = 1S ,S is a perfect matching in GC (18)

With this observation, (3) can be equivalently reformulated as
a subset selection problem of the form

min
S∈M

{
F (S) := −1TSH1S

}
(19)

Next, we will utilize the following key result regarding the set
function F : 2EC → R.

Lemma 2 (Proposition 1, [5]). F (S) is a monotone non-
increasing, submodular function.

Submodular functions [13] are notable for exhibiting a notion
of diminishing returns, i.e., for all A ⊆ B ⊆ EC and all e ∈
EC \ B, it holds that

f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B). (20)

A remarkable property of submodular functions is that every
such function possesses a convex extension [14] that extends
its domain from the vertices of the unit hypercube {0, 1}m
to the entire hypercube [0, 1]m, widely known as the Lovász
extension. The Lovász extension fL : Rm → [0, 1]m of a
submodular function F takes the form of the support function

fL(x) = max
g∈BF

gTx (21)

of the set

BF := {y ∈ Rm : y(EC) = F (EC); y(S) ≤ F (S), ∀ S ⊆ EC},
(22)

which is the base polytope associated with F . We point out
that the Lovász extension fL is convex if and only if F is
submodular. Additionally, it also admits the following useful
interpretation, which is extracted from [15, Section 5.1].

Lemma 3. Given a subodular function F , define the function

w(x) :=

{
F (S), ∀ x = 1S ,S ⊆ 2[m]

+∞, ∀ x 6= {0, 1}m
(23)

Then, the Fenchel biconjugate of w is exactly the Lovász
extension of F .

In other words, the Lovász extension is the convex closure, or
the greatest convex under-estimator of the submodular function
F (in a certain sense) on the domain [0, 1]m.

While the Lovász extension enjoys these important proper-
ties, it does not admit an analytical form in general, owing
to the (potentially) exponential number of inequalities that
characterize the base polytope. However, it can be evaluated at
any point x ∈ [0, 1]m in log-linear time by utilizing Edmond’s
greedy algorithm [16]. In contrast, we now establish that for
graph matching, the Lovász extension does admit an explicit
form.

Theorem 2. The Lovász extension of the submodular function
F (S) = −1TSH1S is given by

fL(x) =
∑

(u,v)∈EH

w(u,v)|x(u) − x(v)| − dTHx.

Proof. We decompose the function F (S) as

F (S) = −1TS (diag(dH)− LH)1S

= 1
T
SLH1S − dTH1S

= G(S) +H(S)

(24)

where G(S) := 1
T
SLH1S corresponds to the graph-cut func-

tion, and is submodular, and H(S) := −dTH1S is a modular
(and hence, also submodular) function.

Since the Lovász extension of the sum equals the sum of
Lovász extensions [14], it suffices to compute the Lovász
extensions gL and hL of G and H respectively. It is known
[15, p. 165] that the Lovász extension of G(S) is the total-
variation function

gL(x) =
∑

(u,v)∈EH

w(u,v)|x(u) − x(v)|. (25)

On the other hand, H(S) is a modular function, whose Lovász
extension is simply hL(x) = −dTHx .

From the above result, we see that the convex problem
(R3) corresponds to minimizing the Lovász extension of the
submodular function F (.) over the set Bn. As a consequence
of this observation and Lemma 3, it follows that (R3) is the
closest convex problem of (1), in a certain sense. At this point,
we do not have any information regarding the relationship
between the optimal solutions of (R2) and (R3). However,
(R3) possesses the advantage of being convex and thus can

be solved optimally in polynomial-time for every instance,
in contrast to (R2), which does not admit a polynomial-time
solution in general.

V. INTERPRETATION OF L-RELAXATION

Using the fact that the Lovász extension for graph matching
can be computed explicitly, we provide a simple interpretation
of the convex relaxation (R3) (from hereon referred to as the
L-relaxation). To begin with, consider the linear programming
(LP) problem

max
s∈Bn

dTHs⇔ max
S∈Bn

Trace(dAd
T
BS) (26)

where the equivalence stems from the fact that

dTHs = (dA ⊗ dB)T vec(S) = vec(dBd
T
A)T vec(S)

= Trace(dAd
T
BS).

(27)

Note that (26) corresponds to (R3) without the total-variation
(TV) regularization term. Furthermore, the above LP problem
is equivalent to its discrete counterpart

max
P∈Pn

Trace(dAd
T
BP) (28)

since the set of doubly stochastic matrices Sn forms the
convex-hull of Pn. Consequently, the solution of the relaxed
LP problem (26) is guaranteed to be integral and optimal for
(28). In turn, (28) is equivalent to

min
P∈Pn

‖dB −PdA‖22. (29)

By the above chain of equivalences, it follows that the so-
lution of (26) computes the permutation that best aligns the
(weighted) degree vectors of the input graphs GA and GB ,
which is intuitively pleasing, as one expects vertices with
similar degrees to correspond to each other.

On adding the TV regularization term to the objective
function in (26), we obtain the L-relaxation (in maximization
form)

max
s∈Bn

{
dTHs−

∑
(u,v)∈EH

w(u,v)|s(u) − s(v)|
}

(30)

which is not equivalent to its discrete counterpart

max
x∈Pn

{
dTHx− xTLHx

}
(31)

in general. That being said, solving the relaxed problem (30)
still constitutes a meaningful measure of matching, as we now
explain.

Note that the the non-negativity of the TV term ensures that
the optimal solution of (30) is no larger than that of the LP
problem (26), and hence, is a tighter relaxation of (31). This
can be attributed to the following reason – (26) seeks to pair-up
vertices “individually” on the basis of their (weighted) degrees
alone, but does not take into consideration the alignment
induced for the one-hop neighbors of each aligned vertex-
pair, which is precisely what the TV regularization term in

(30) takes into account. To be more specific, the linear term
in the objective function of (30) can be expressed as

dTHs =
∑
u∈VH

[dH](u)s(u) =
∑

(i,j)∈VA×VB

[dA](i)[dB](j)S(i,j)

(32)
where u := (i−1)n+j for a given vertex pair (i, j) ∈ VA×VB .
Since dA,dB , s ≥ 0 and we are performing maximization, it
is evident that a larger “soft” correspondence value S(i,j) is
assigned to those pairs of vertices which have large (weighted)
degrees and are similar to each other. Meanwhile, for an edge
(u, v) ∈ EH (comprising vertex pairs u = (i, j), v = (k, l)
in GH) with weight w(u,v) = A(i,k)B(j,l), each component
w(u,v)|s(u) − s(v)| in the TV regularizer enforces smoothness
between S(i,j) and S(k,l) (in the absolute value sense), i.e.,
for a given pair of vertices with a large correspondence score
S(i,j), the TV regularizer aims to ensure that the one-hop
neighborhoods of the vertex pairs in each graph also have a
high correspondence score, with the highest emphasis placed
on those vertex- neighbor pairs that induce the largest weighted
edge-overlap. This is again intuitively pleasing, since the
overall objective of the graph matching problem is to find a
correspondence mapping between the vertex-sets of the graphs
that maximizes the total weighted edge overlap.
Weighting edges in the L-relaxation: Note that for un-
weighted, undirected graphs, the weights {w(u,v)}(u,v)∈EH in
the TV regularizer of the Lovász extension possess a nominal
value of one, i.e., all edges are assigned equal importance for
alignment. However, such a choice can be sub-optimal, as it
is completely agnostic to the structure of the graphs GA and
GB . Consequently, we prescribe the following two ways of
leveraging the structure of the graphs to design non-uniform
weights w(u,v) ∈ (0, 1] for each edge in a manner that reflects
its importance in aligning a pair of vertices.
Scheme (A): Formally, for a vertex i ∈ VA, we define its
in-neighborhood as N̄ (i) := i ∪ {j : (i, j) ∈ EA}, which
comprises the vertex itself and its one-hop neighborhood.
Given an (unweighted) edge (i, j) ∈ EA with vertex in-
neighborhoods N̄ (i) and N̄ (j) respectively, we assign it a
weight

w(i,j) = |N̄ (i) ∩ N̄ (j)|/|N̄ (i) ∪ N̄ (j)|. (33)

Note that the above choice corresponds to the Jaccard simi-
larity of the in-neighborhoods of the vertices connected by an
edge. The reasoning behind such a choice is simple: if a pair of
vertices connected by an edge have a large number of common
one-hop neighbors (i.e., the edge participates in a large number
of triangles), then the edge is assigned a higher weight. We
also compute weights w(k,l) for the edges (k, l) ∈ EB in a
similar manner, and form the weights w(u,v) = w(i,j).w(k,l),
where u = (i, k) and v = (j, l) are vertices in GH . Thus,
connected vertex pairs in GA and GB exhibiting large one-hop
neighborhood overlap will induce higher edge-weights when
paired up in GH , which in turn places greater emphasis on the
correspondence values S(i,k) and S(k,l) being similar in the
TV regularizer.

Scheme (B): If the pair of graphs being compared are near-
bipartite, or admit a hierarchical decomposition of high degree
hubs connected with multiple smaller degree spokes, then due
to the scarcity of triangles, applying the above edge-weighting
scheme is not a meaningful measure of an edge’s importance.
In such a case, we advocate assigning each edge with a weight
that corresponds to the relative degree difference (RDD) of the
vertices it connects, i.e., for each (i, j) ∈ EA, we set

w(i,j) =

(
1 + 2

|[dA](i) − [dA](j)|
[dA](i) + [dA](j)

)−1

(34)

Thus, higher the relative similarity of the degrees of the
vertices connecting an edge, the greater is the strength of
the edge. We compute edge weights for GB in a similar
manner, and form edge weights {w(u,v)}(u,v)∈EH as described
previously.

Finally, we point out that this freedom in selecting edge-
weights is unique to the L-relaxation; an analogous strategy
does not appear to carry over for the relaxations (R1) and (R2)
(simply replacing the adjacencies by the weighted adjacencies
does not result in an analogous formulation to (R3)). In
hindsight, this additional flexibility appears to stem from the
particular form of the Lovász relaxation for the graph matching
problem.

VI. ALGORITHMS

In this section, we investigate efficient means of solving the
L-relaxation (30). We point out that (30) can be equivalently
reformulated as a LP problem, albeit at the expense of intro-
ducing an additional |EH | variables and 2|EH | linear inequality
constraints. In particular, for unweighted graphs 2, we have

|EH | = (1/2)1TmH1m = (1/2)(1n ⊗ 1n)T (A⊗B)(1n ⊗ 1n)

= (1/2)(1n ⊗ 1n)T (dA ⊗ dB) = 2|EA||EB |

which entails introducing an additional O(n4) variables in
the worst-case scenario. Due to the prohibitive computational
complexity stemming from such a reformulation, we explore
alternative algorithmic approaches that are capable of intelli-
gently exploiting the structure of the problem.

To that end, note that the Lovász extension fL(s) is non-
differentiable, which suggests using a Euclidean projected
subgradient algorithm for solving (30). The algorithm requires
initialization from a point s0 ∈ Bn and then proceeds in the
following iterative fashion

sk+1 = arg min
s∈Bn

{
(gk)T s +

1

ηk
‖s− sk‖22

}
, ∀ k ∈ N (36)

where gk ∈ ∂fL(sk) denotes a subgradient of the Lovász
extension fL(s) at the current iterate s = sk and ηk > 0
is a step-size. Assuming that the subgradients of fL(s) are
bounded, i.e., there exists a G > 0 such that

‖g‖2 ≤ G, ∀ g ∈ ∂fL(s), ∀ s ∈ Bn,

2The same result is also true for weighted graphs, with A and B taken to
be the support of the non-zero edges.

using the step-size rule ηk = O(1/(G
√
k)) suffices to guar-

antee convergence to the optimal objective value of (30) at
a sublinear-rate of O(G/

√
k) [17, Theorem 3.2]. However,

such an algorithm is not appropriate here due to the following
reasons.
(a) At first glance, it appears that the convergence rate is

independent of the problem dimension m. Unfortunately,
this is only true for problems with Euclidean structure
whereas in our case, the Lovász extension possesses non-
Euclidean structure. In order to see this, we re-express
fL(s) as

fL(s) = −dTHs +
∑

(u,v)∈EH

w(u,v)|(e(u) − e(v))
T s|

= −dTHs + ‖WFT s‖1
(37)

where W := diag(w) is a diagonal matrix of the edge
weights {w(u,v)}(u,v)∈EH stacked in a vector w, and F ∈
{−1, 0,+1}m×|EH | is the directed vertex-edge incidence
matrix of GH . Note that a column of F corresponds to an
edge (u, v) ∈ EH , and is of the form f(u,v) := e(u)−e(v).
From elementary convex analysis [17], it follows that the
subdifferential set of fL(s) at a point s ∈ Bn is given by

∂fL(s) := −dH + FW∂‖s‖1,
= {−dH + FWz, ‖z‖∞ ≤ 1}.

(38)

Next, we derive a bound on norm of the subgradients of
fL(s). Given a subgradient g ∈ ∂fL(s), we obtain the
bound

‖g‖∞ ≤ ‖dH‖∞ + ‖FWz‖∞
≤ dmax(H) + ‖F‖∞‖W‖∞‖z‖∞
≤ dmax(H) + dmax(H) max(w)

= (1 + max(w))dmax(H)

= (1 + max(w))dmax(A)dmax(B),

(39)

where the operators dmax(.) and max(.) respectively de-
note the largest degree in a graph and the largest entry in
a vector, and in the third step we have utilized the fact that
‖F‖∞ = dmax(H). Since ‖g‖2 ≤

√
m‖g‖∞, we obtain

the result that the “size” of the subgradients (as measured
in the standard Euclidean sense) is directly dependent
on the problem dimension n =

√
m. Consequently, at-

tempting to solve (30) via a standard subgradient method
would result in a convergence rate O(

√
m
k) = O(n/

√
k)

that is dependent on the problem dimension, which is
undesirable for large problem instances.

(b) Additionally, performing the updates of the subgradient
algorithm (36) requires computing Euclidean projections
onto the constraint set Bn, i.e., solving a problem of the
form

sk+1 = arg min
s∈Bn
‖s− (sk − ηkgk)‖22 (40)

at every step, which is non-trivial in general. Roughly
speaking, this can be attributed to the fact that in high
dimensions the polytope Bn looks “diamond-like” with a

large number of facets, which prevents efficient compu-
tation of the Euclidean projection.

In hindsight, these drawbacks stem from the inability of the
standard projected subgradient algorithm (36) to adapt to
the non-Euclidean geometry of the objective function and
constraint set of (30). This motivates us to seek an alternative
that is capable of addressing the aforementioned problems. We
now argue that Nesterov’s Dual Averaging algorithm (NDA)
[6] is well-suited for such a task.

NDA is an iterative first-order algorithm that starts from an
initial point s0 ∈ Bn and then proceeds as follows

sk+1 = arg min
s∈Bn

{
(ḡk)T s +

1

ηk
Ψ(s)

}
, ∀ k ∈ N. (41)

The term ḡk =
∑k−1
t=0 gt is the sum of all past subgradients

and Ψ(s) is a “potential” function (to be specified shortly)
that is strongly convex on Bn. The update (41) admits the
following interpretation: at each step we seek to minimize
an averaged first-order approximation to the Lovász extension
fL(.) while the potential function serves as regularization that
curtails excessive variation in the generated iterates.

The potential function Ψ(.) is typically chosen to be attuned
to the non-Euclidean geometry of the problem. In our case,
we select Ψ(s) to be the negative entropy function, i.e.,

Ψ(s) =
∑
u∈VH

s(u)(log s(u) − 1). (42)

For this choice, we can establish the following properties of
NDA for our problem.
Near-dimension independent convergence rate: Define the
parameter β = (1+max(w))dmax(A)dmax(B). Then, for the

choice of step-size 1
β

√
logn
2k , NDA attains a convergence rate

of O(
√

n logn
k), which, for large problem instances, represents

a significant improvement over the O(n/
√
k) convergence rate

of the standard projected subgradient algorithm. The proof is
omitted due to space limitations.
Near-linear time projections: The NDA update (41) can be
further simplified to reveal a simple approach for computing
non-Euclidean projections onto the polytope Bn. Upon defin-
ing the vector rk := exp(−ηkḡk), we can rewrite the update
(41) as follows

sk+1 = arg min
s∈Bn

∑
u∈VH

{
−s(u) log rk(u) + s(u)(log s(u) − 1)

}
,

= arg min
s∈Bn

∑
u∈VH

{
s(u) log

(
s(u)

rk(u)

)
− s(u) + rk(u)

}
,

= arg min
s∈Bn

DKL(s|rk), ∀ k ∈ N.
(43)

where DKL(.|.) denotes the (unnormalized) Kullback-Leibler
(KL) divergence between a pair of vectors. In other words,
the above update corresponds to computing the KL projection
of the exponentiated vector rk onto the polytope s ∈ Bn.
While the problem does not admit a closed-form solution, it
can be efficiently solved using Sinkhorn’s matrix balancing

algorithm [18] in O(m logm) time [19], [20] (see Appendix
A for details).

From the above observations, we conclude that NDA with
negative entropy as the choice of the potential function Ψ(.)
can indeed adapt to the non-Euclidean geometry of the L-
relaxation. In practice, we employ a variant of the NDA
algorithm described in [6] which utilizes a weighted sum of
the past subgradients and a more aggressive step-size strategy.
The method is summarized in Algorithm 1, and enjoys the
same theoretical properties of the standard NDA algorithm,
but exhibits significantly better performance in practice.

Algorithm 1: Nesterov’s Weighted Dual Averaging
1 Input: fL(.), initial point s0 ∈ Bn, step-size parameter

c > 0, exit tolerance δ > 0
2 Output: A solution ŝ to the L-relaxation
3 Initialize: k ← 0, γ̂0 = 1, ḡ0 = 0
4 repeat
5 Get subgradient gk = −dH + FWsign(WFT sk)

6 Set ḡk+1 = ḡk + gk/‖gk‖∞, γ̂k+1 =
∑k

i=0 1/γ̂i
7 Set γk+1 = cγ̂k+1

8 Compute sk+1 = SINKHORN(−γk+1ḡ
k+1)

9 Set s̄k+1 = 1
k+1

∑k
i=0 s

i

10 k ← k + 1
11 until f(s̄k−1)− f(s̄k) ≤ δ
12 Return: ŝ← sk

Scalability: We now discuss an important issue regarding the
scalability of the proposed method. The key subroutine at the
heart of Algorithm 1 is the computation of the subgradient
of the TV term during each step of NDA. However, doing
so seemingly requires first forming the vertex-edge incidence
matrix F and the edge-weight vector w of GH , which in turn
requires instantiating the Kronecker product H = A ⊗ B.
Owing to the substantial space-time complexity incurred in
performing such an operation, we investigate an alternative
algorithmic approach which bypasses such a step altogether.

To that end, we note that the L-relaxation can be equiva-
lently expressed as

min
s∈Bn

{
1

|EH |

(
−dTHs +

∑
(u,v)∈EH

w(u,v)|s(u) − s(v)|
)}

(44)

In this form, the TV term corresponds to an average of a finite
sum of “atomic” TV functions

f(u,v)(s) := w(u,v)|s(u) − s(v)| = |w(u,v)f
T
(u,v)s|;

one associated with each edge (u, v) ∈ EH . Hence, if we had
the ability to sample edges uniformly at random from EH , we
could consider forming a stochastic subgradient

g(u,v) := −(1/|EH |)dH + w(u,v)sign(w(u,v)f
T
(u,v)s)f(u,v)

(45)
and employ it in the NDA algorithm in place of the batch
subgradient (see line 5, Algorithm 1). In addition to being
computationally lightweight, the stochastic subgradient de-

fined above is an unbiased estimate of the batch subgradient,
i.e., we have

Ep∼(u,v)[g(u,v)] ∈ ∂fL
(

1

|EH |
s

)
,

where the probability of sampling an edge (u, v) ∈ EH is
1/|EH | = 1/(2|EA||EB |). Furthermore, it has been shown
that using unbiased stochastic subgradients in place of batch
subgradients in NDA results in a primal convergence rate of
O(1/

√
k) (in expectation) [21]. Hence, the (expected) con-

vergence rate of stochastic-NDA does not degrade compared
to its batch version, while the per-iteration complexity is
substantially improved owing to the simplicity of the update
(45). Overall, using the stochastic variant of NDA enables us
to affect a very favorable performance-complexity trade-off.

That being said, in order to sample edges uniformly at ran-
dom from EH , it still appears necessary to form GH in the first
place by instantiating the Kronecker product A⊗B. In order
to obviate this need, we make the following key observation:
the Kronecker product of a pair of edges (i, j) ∈ EA and
(k, l) ∈ EB generates two distinct edges ((i, k), (j, l)) and
((i, l), (j, k)) in EH (the factor 2 stems from the fact that the
graphs GA and GB are undirected), and the full Kronecker
product A ⊗ B generates all such 2|EA||EB | edges in GH .
Exploiting the fact that each edge in EH arises from the
Kronecker product of a pair of unique edges in EA and EB , we
propose the following scheme for sampling edges from EH .
First, we sample an edge (i, j) ∈ EA uniformly at random
with probability (w.p.) 1/|EA|, and independently, we draw
an edge (k, l) ∈ EB uniformly at random w.p. 1/|EB |. Then,
we perform an independent coin-toss (with an unbiased coin)
to decide whether to generate the edge ((i, k), (j, l)) (heads),
i.e., or ((i, l), (j, k)) (tails). Let C = {0, 1} be a Bernoulli
random variable that denotes the outcome of the coin-toss,
with C = 1 denoting heads. Then, the prescribed sampling
scheme generates edges in GH with probability

Pr(((i, k), (j, l)) ∈ EH) = Pr((i, j) ∈ EA).Pr((k, l) ∈ EB).

Pr(C = 1)

= 1/(2|EA||EB |),
(46)

which is the desired sampling probability. This shows that
no Kronecker products are required in order to sample edges
uniformly at random from EH . Thus, the scheme provides an
efficient means of constructing the stochastic subgradient (45).

Additionally, we can also construct a mini-batch stochastic
subgradient by independently sampling K < 2|EA||EB | edges
(with replacement) from each of the graphs GA and GB
followed by drawing K edges in GH according to the scheme
described above. Let EK ⊂ EH denote the subset of K sampled
edges. Then, the resulting mini-batch stochastic subgradient
takes the form

gm = −(1/|EH |)dH +
1

K
F̄KW̄Ksign(W̄KF̄

T
Ks), (47)

where F̄K ∈ {−1, 0, 1}m×K is a matrix with the vectors
{f(u,v)}k∈K as its columns and W̄K is a diagonal matrix of the
weights of the K sampled edges K. Note that in expectation

Ep∼(u,v)(gm) ∈ ∂fL
(

1

|EH |
s

)
. (48)

Hence, the mini-batch stochastic subgradient (47) is also an
unbiased estimate of the batch subgradient, and with lower
variance compared to (45). In our experiments, when applying
the L-relaxation for large problem instances, we employ the
above mini-batching scheme (i.e., we replace the subgradient
by its mini-batch approximation (47) in (line 5, Algorithm 1)).

VII. EXPERIMENTS

In this section, we test the performance of our algorithms
for solving the L-relaxtion against the prevailing relaxation
algorithms on real-world graphs.
Baselines: We employ the classical Frank-Wolfe (FW) algo-
rithm [22] for solving the convex QP problem (R1) and the
non-convex QP problem (R2). We designate these algorithms
as FW-C and FW-NC, respectively. At a high level, both
algorithms successively linearize their respective quadratic
cost functions to solve a sequence of linear assignment prob-
lems. Since (R1) is convex, employing the step-size sequence
ηk = 2/(k + 2), guarantees a primal convergence rate (to
the optimal value of (R1)) of O(1/k) [23]. On the other
hand, for FW-NC we employ an exact line-search procedure
to select the step-size, (see details in [10]). As the problem
is non-convex, the algorithm is only guaranteed to converge
to a stationary point of (R2) [10]. In practice, the solution of
(R1) obtained via FW-C is used as initialization for FW-NC
[11]. A drawback of employing the Frank-Wolfe framework
is the high complexity incurred in solving a linear assignment
problem at each step, which is O(n3) [24] in the worst-case.

Specific details regarding implementation of the algorithms
are given below.
L-relaxation: For all datasets in this section (which are un-
weighted graphs), we added edge-weights based on the Jaccard
similarity of the vertex in-neighborhoods, as it yielded better
empirical performance compared to the RDD metric. However,
for the synthetic example depicted in Figure 1, which has no
triangles, we used the RDD-based weighting scheme. In order
to solve the L-relaxation, we employed Nesterov’s Weighted
Dual Averaging algorithm (NWDA) described in Algorithm
1. For small datasets where instantiating and storing the Kro-
necker product matrix H = A⊗B incurs a light computational
and memory footprint, we use the exact algorithm (without
stochastic approximation). In these cases, we ran the algorithm
for a maximum of 2000 iterations, and set the step-size
parameter c = 0.175 (determined via trial-and-error). On the
other hand, for larger datasets where instantiating H is not
possible, we utilized the stochastic variant of NWDA, with
the size of the mini-batch stochastic subgradient K set to
be min{|EA|, |EB |}, and the step-size parameter c = 0.25.
The maximum number of iterations was again set to be 2000.
The Sinkhorn matrix balancing sub-routine used within the

NWDA algorithm (for both the exact and stochastic variants)
was run until an exit tolerance of δ = 1e − 4 was achieved,
or a maximum of 250 iterations were reached.
Franke-Wolfe based relaxations: For FW-C, we set a max-
imum iteration counter of 200, as it enjoys a primal conver-
gence rate that is an order of magnitude greater compared
to NWDA. Meanwhile, the FW-NC algorithm is run for
only 1 − 2 iterations as a means of further refining the soft-
correspondence matrices obtained by both NWDA and FW-C.
We used the Jonker-Volgenant algorithm [25] as a sub-routine
for solving the linear assignment sub-problems arising in FW-
C and FW-NC, as it is empirically faster compared to the
classical Hungarian algorithm [24].
Experimental setup: Given a graph GA, we first retrieve the
largest connected component and then remove all weights and
self-loops. What remains is a simple, unweighted, undirected
graph. Next, we randomly perturb GA by adding new edges
with probability pe to create a “noisy” counterpart graph GĀ,
i.e., after generating a random Erdos-Renyi graph with edge-
density pe and adjacency matrix Q, we create the graph GĀ
with adjacency matrix Ā = A+(1n×n−A)∗Q (the operator
“∗” denotes the Hadamard (element-wise) product). In the
final step, we generate the graph GB with adjacency matrix
B = P∗ĀPT

∗ , where P∗ is a randomly generated permutation
matrix. Note that GB corresponds to a noisy, permuted version
of GA whose edge-set EB is a superset of EA. Thus, our
objective is to find a permutation that correctly aligns EA with
its counterpart in EB . To make the setup challenging, we set
the noise level pe to generate, on average, 20% extra edges in
GB , i.e., we set pe = 0.2|EA|/

(
n
2

)
. It is common [11] to assess

the performance of soft assignment algorithms by “hardening”
their output via linear assignment to obtain a permutation
matrix and employing the edge-correctness metric, which is
the ratio of the number of edge overlaps induced by the
resulting hard assignment and the number of edges in GA (the
maximum possible number of edges that can be overlapped).
The higher the metric, the better the performance of the
algorithm, with a maximum possible value of 1 (indicating
perfect edge alignment) and a minimum value of 0. Note
however, per our earlier discussion, that soft assignment gives
a lot more information regarding partial isomorphisms in the
graph. We report our results after averaging over 30 Monte-
Carlo realizations of GB .
Datasets: The list of datasets used together with a summary
of their descriptions can be found in Table I. The datasets
were retrieved from standard repositories [26], [27], with
each dataset corresponding to an undirected graph representing
relationships amongst different entities. As the first 3 datasets
are small in size, we explicitly compute the Kronecker product
matrix H and apply the exact NWDA algorithm for solving
the L-relaxation. For the remaining datasets, the computational
and memory footprint of instantiating H is too large and we
resort to the stochastic NWDA algorithm. Additionally, we
add an extra baseline for comparison: Umeyama’s classical
spectral alignment algorithm [28], which utilizes the eigen-
vectors of the graphs GA and GB to directly compute a hard

TABLE I: Summary of networks

Graph Vertices Edges Type

TERRORIST 64 243 Human interaction
LES MISERABLES 77 254 Literary co-occurence

POLBOOKS 105 441 Co-purchase

POLBLOGS 1, 224 16, 717 Social
CHAMELEON 2, 277 31, 356 Hyperlinks

FLIGHTS 2, 939 15, 677 Transportation
JAPANESEBOOK 3, 177 7, 988 Word adjacency

TABLE II: Average edge-correctness (with standard deviation)

Graph NWDA FW-C SPECTRAL

TERRORIST 0.59± 0.05 0.42± 0.05 0.39± 0.06
LES MISERABLES 0.57± 0.04 0.32± 0.05 0.40± 0.05

POLBOOKS 0.31± 0.04 0.18± 0.02 0.21± 0.03

TABLE III: Average edge-correctness (with standard deviation)

Graph FW-NC + NWDA FW-NC + FW-C

TERRORIST 0.84± 0.03 0.70± 0.05
LES MISERABLES 0.87± 0.04 0.77± 0.05

POLBOOKS 0.79± 0.09 0.28± 0.05

alignment.
Results: For the first 3 datasets, we report the performance
of all methods in terms of average edge-correctness (with
standard deviation) in Tables II and III, with the former
showcasing the efficacy of the spectral alignment algorithm,
NWDA and FW-C in computing a hard alignment, while
the latter displays the results when the soft-correspondences
computed by NWDA and FW-C are each refined by 2
steps of FW-NC followed by a final hard alignment step.
It is evident that both convex relaxation algorithms perform
well relative to the spectral method in the presence of high
noise, even though they are not directly geared towards hard
alignment. In particular, the solution computed by NWDA
for the L-relaxation is the best among all methods across all
datasets. Furthermore, from Table III, it can be seen that the
when the soft-correspondence computed by NWDA is used to
initialize FW-NC, simply 2 iterations suffice to obtain a very
high quality alignment, which is better than that obtained by
executing 2 steps of FW-NC with the initialization switched to
the solution of FW-C. To conclude, our experiments on these
small instances (where all algorithms can be implemented with
low memory and computational footprint) reveal that the L-
relaxation outperforms the prevailing convex relaxation (R1)
both in terms of computing hard alignments and serving as a
better initialization for FW-NC. In fact, our results indicate
that employing the L-relaxation for hard matching can even
outperform a dedicated algorithm for hard matching.

We now report the results for hard matching on the re-
maining datasets in table IV. Due to the larger scale of the
problem, we omit the FW-C algorithm due to the high per-
iteration complexity of solving a linear assignment problem
at each step, whereas for the L-relaxation, we apply the
stochastic variant of NWDA, which we dub as S-NWDA. As

TABLE IV: Average edge-correctness (with standard deviation) for
larger datasets

Graph S-NWDA S-NWDA + FW-C SPECTRAL

POLBLOGS 0.18± 0.002 0.84± 0.005 0.29± 0.002
CHAMELEON 0.20± 0.003 0.84± 0.005 0.50± 0.01

FLIGHTS 0.12± 0.002 0.70± 0.002 0.56± 0.001
JAPANESEBOOK 0.16± 0.006 0.75± 0.002 0.33± 0.01

a consequence of the stochastic nature of S-NWDA, we do not
obtain a high accuracy solution for the L-relaxation, and this is
evident in terms of the quality of the obtained hard alignment.
However, it can still serve as a high quality initialization for
a single iteration of FW-NC, which results in a very high
quality solution, vastly outperforming the spectral alignment
method.

VIII. CONCLUSION

In this paper, we considered an alternative take on soft graph
matching as a means of revealing the classes of topologically
invariant vertices. Adopting this viewpoint, we proposed a new
convex relaxation for graph matching, which we established
can be viewed as minimizing the closest convex extension of
the combinatorial graph matching objective (in a certain sense)
over the set of doubly-stochastic matrices. Additionally, we
proposed an efficient first-order algorithm that can adapt to
the non-Euclidean geometry of the problem, and described its
stochastic extension for scaling up to larger problem instances.
Our experiments on real-world data revealed the very favorable
performance of our algorithm.

REFERENCES

[1] F. Emmert-Streib, M. Dehmer, and Y. Shi, “Fifty years of graph
matching, network alignment and network comparison”, Inform. Scien.,
vol. 346, pp. 180–197, June 2016.

[2] J. Yan, X. C. Yin, W. Lin, C. Deng, H. Zha, and X. Yang, “A short
survey of recent advances in graph matching”, in Proc. of ACM Int.
Conf. on Mult. Retr., pp. 167-174, June 2016, New York City, NY.

[3] T. C. Koopmans, and M. Beckmann, “Assignment problems and the
location of economic activities”, Econometrica, pp. 53–76, 1957.

[4] Y. Lim, U. Kang, and C. Faloutsos, “Slashburn: Graph compression
and mining beyond caveman communities,” IEEE Trans. on Knowl. and
Data Eng.”, vol. 26, no. 12, pp. 3077–3089, Apr. 2014.

[5] A. Konar, and N. D. Sidiropoulos, “Iterative graph alignment via
supermodular approximation”, Proc. of IEEE Int. Conf. Data Mining,
pp. 1162–1167, Nov. 2019, Beijing, China.

[6] Y. Nesterov, “Primal-dual subgradient methods for convex problems”,
Mathem. Programm., vol. 120, no. 1, pp. 221-259, Aug. 2009.

[7] J. Peng, H. Mittelmann, and X. Li, “A new relaxation framework for
quadratic assignment problems based on matrix splitting,” Mathem.
Program. Computat., vol. 2, no. 1, pp. 59—77, 2010.

[8] G. W. Klau, “A new graph-based method for pairwise global network
alignment,” BMC Bioinformat., vol. 10, no. Suppl 1, p. S59, 2009.

[9] Y. Aflalo, A. Bronstein, and R. Kimmel, “On convex relaxation of graph
isomorphism”, in Proc. of Nat. Academ. of Sciences, vol. 112, no. 10,
pp. 2942–2947, Mar. 2015.

[10] J. T. Vogelstein, J. M. Conroy, V. Lyzinski, L. J. Podrazik, S. G. Kratzer,
E. T. Harley, D. E. Fishkind, R. J. Vogelstein, and C. E. Priebe, “Fast
approximate quadratic programming for graph matching,” PLOS one,
vol. 10, no. 4, 2015.

[11] V. Lyzinski, D. Fishkind, M. Fiori, J. Vogelstein, C. Priebe, and G.
Sapiro, “Graph matching: Relax at your own risk”, IEEE Trans. Pattern
Analys. Mach. Intell., vol. 38, no. 1, pp. 60—73, Jan. 2016.

[12] J. Bento, and S. Ioannidis, “A family of tractable graph distances”, in
Proc. of SIAM Int. Conf. Data Mining, pp. 333–341, May 2018, San
Diego, CA.

[13] S. Fujishige, “Submodular functions and optimization”, 2nd edition,
Annals of Disc. Math., vol. 58, 2005.

[14] L. Lovasz, “Submodular functions and convexity”, in Mathematical
Programming – The State of the Art, pp. 235–257, Springer Berlin
Heidelberg, 1983.

[15] F. Bach, “Learning with submodular functions: A convex optimization
perspective,” Found. Trends in Mach. Learn., vol. 6, no. 2-3, pp. 145–
373, Dec. 2013.

[16] J. Edmonds, “Submodular functions, matroids and certain polyhedra”, in
Combinatorial structures and their applications, (G. Goos, J. Hartmanis,
and J. van Leeuwen, eds.), vol. 11, Springer, 1970.

[17] S. Bubeck, “Convex optimization: Algorithms and complexity,” Found.
Trends Mach. Learn., vol. 8, no. 3-4, pp. 231—357, 2015.

[18] R. Sinkhorn, “Diagonal equivalence to matrices with prescribed row and
column sums”, The Amer. Math. Monthly, vol. 74, no. 2, pp. 402–402,
1967.

[19] M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal
transport”, Proc. Neural. Inf. Process. Syst., pp. 2292–2300, Lake Tahoe,
CA, Dec. 2013.

[20] J. Altschuler, J. Weed, and P. Rigollet, “Near-linear time approximation
algorithms for optimal transport via Sinkhorn iteration”, Proc. Neural.
Inf. Process. Syst., pp. 1964–1974, Long Beach, CA, Dec. 2017.

[21] L. Xiao, “Dual averaging methods for regularized stochastic learning
and online optimization”, J. of Mach. Learn. Res.. vol. 11, no. 88, pp.
2543-2596, Oct. 2010.

[22] M. Frank, and P. Wolfe, “An algorithm for quadratic programming”,
Naval Res. Logist. Quart., vol. 3, no. 1-2, pp. 95–110, Mar. 1956.

[23] M. Jaggi, “Revisiting Frank-Wolfe: Projection-free sparse convex opti-
mization”, in Proc. ICML, pp. 427–435, Atlanta, GA, USA, June 2013.

[24] H. W. Kuhn, “The Hungarian method for the assignment problem”, Nav.
Res. Logist. Quart., no. 1–2, pp. 83-97, 1955.

[25] R. Jonker and A. Volgenant, “A shortest augmenting path algorithm for
dense and sparse linear assignment problems”, Computing, vol. 38, no.
4, pp. 325–340, Dec. 1987.

[26] J. Leskovec, and A. Krevl, SNAP Datasets: Stanford Large Network
Dataset Collection, 2015. Available at http://snap.stanford.edu/data

[27] J. Kunegis, “Konect: The Koblenz network collection,” Proc. of WWW,
pp. 1343–1350, May 2013, Rio de Janeiro, Brazil.

[28] S. Umeyama, “An eigen-decomposition approach to weighted graph
matching problems”, IEEE Trans. Pattern Analys. and Mach. Intell.,
vol. 10, no. 5, pp. 695-–703, Sept. 1988.

APPENDIX A
SINKHORN MATRIX BALANCING

Note that the projection problem (43) is strongly convex
on Bn, and hence possesses a unique solution S∗. The KKT
conditions of (43) provides the following characterization of
the optimal solution S∗ = diag(u)Rkdiag(v), where Rk ∈
Rn×n+ is the matricized version of the vector rk, and u,v ∈
Rn+ are non-negative scaling vectors to be determined. Since
S∗ must satisfy the constraints of (43), we obtain the equations

diag(u)Rkdiag(v)1 = 1, diag(v)(Rk)T diag(u)1 = 1. (49)

This motivates using the following alternating optimization
updates for u and v,

ut+1 = 1/Rkvt, vt+1 = 1/(Rk)Tut+1, ∀ t ∈ N (50)

where the “/” operator denotes element-wise division. The
algorithm was originally proposed in [18] and only requires
matrix-vector multiplications at each iteration. It has been
shown [20] that O(m logm) alternating iterations suffice to
converge to a near-optimal solution, and it has been empiri-
cally observed that the convergence rate is often much faster
[19].

