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ABSTRACT

Energy disaggregation is the task of discerning the energy con-
sumption of individual appliances from aggregated measurements,
which holds promise for understanding and reducing energy usage.
In this paper, we propose Phased, an optimization approach for
energy disaggregation that has two key features: Phased (i) exploits
the structure of power distribution systems to make use of readily
available measurements that are neglected by existing methods,
and (ii) poses the problem as a minimization of a difference of sub-
modular functions. We leverage this form by applying a discrete
optimization variant of the majorization-minimization algorithm
to iteratively minimize a sequence of global upper bounds of the
cost function to obtain high-quality approximate solutions. Phased
improves the disaggregation accuracy of state-of-the-art models by
up to 61% and achieves better prediction on heavy load appliances.
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1 INTRODUCTION

Improving the energy efficiency of smart homes via machine learn-
ing (ML) methods constitutes an important research area with
many potential benefits, such as reducing the adverse effects of en-
ergy consumption on the environment. Energy disaggregation/non-
intrusive load monitoring (NILM) seeks to break down the energy
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usage of multiple household appliances from a single aggregated
power measurement [13]. NILM benefits a plethora of applications
in the areas of energy saving, automation in smart homes, anomaly
detection, and life coaching and recommendations [23].

ManyML approaches have been proposed for NILM; see [10] and
the references therein. Because the problem can be very ill posed,
these methods are primarily supervised and require appliance-level
training data available from homes with submeters (e.g., data sum-
marized in [21]) for learning a model that generalizes to new (un-
seen) homes using only their aggregated power consumption. In
this direction, sparse coding [8, 17, 20] and matrix/tensor factoriza-
tion [4, 22, 25] approaches aim to learn a latent factor/dictionary
from a training set, which is then used for disaggregation. The work
in [17] proposed a customized dictionary learning method, where
appliance-specific bases are learned from labeled training data such
that the disaggregation error is minimized. Another approach in
[22] used nonnegative matrix factorization (NMF), where one factor
corresponds to the normalized appliance-level power consumption
as the basis. The other factor forms the basis coefficients, which are
constrained to add up to 1 for each appliance to impose the “groupin”
effect. Although they are conceptually appealing, these methods
require large training data to capture all possible appliance states,
and they depend on the (hard to validate) assumption of common
latent factors between the training and test sets. Neural network
models have been deployed for the NILM task [16, 26]. For instance,
the work in [26] proposed a network architecture, called sequence-
to-point (seq2p), where the input is a window of the aggregated
time series, and the output corresponds to the appliance power at
the middle point in the given window. In addition to its large num-
ber of trainable parameters (> 30 M), the main drawback of seq2p
is that it trains a separate model for each appliance independently;
thus, it ignores the dependency among appliances (the aggregated
signal is a joint function of all the constituent appliances).

Recently, the work in [1] demonstrated that the energy disag-
gregation can be posed as a constrained set-function maximization
problem, which is NP–hard in its general form. The authors pro-
posed a discrete block successive approximation algorithm that
exploits the fact that the cost function is block-submodular [1].
Building on this line of work, we propose Phased, a supervised
framework for energy disaggregation that leverages the connectiv-
ity structure of the power distribution networks. To the best of our
knowledge, there has not been any preexisting method that exploits
such information. This allows us to obtainmultiple aggregated mea-
surements for each time instant, instead of a single measurement,
thereby reducing the under-determinacy of the problem. Using
appliance-level training data, we first learn to which energized line
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Figure 1: Split-phase (left) and three-phase (right).

(phase) an appliance is connected and the appliance consumption
levels at its different states (‘on’, ‘off’, ‘standby’, etc.). The effec-
tiveness of this model in breaking down aggregated signals is then
evaluated on the test set. Although this requires solving a challeng-
ing, NP–hard, combinatorial optimization problem, we prove that
the cost function can be decomposed as a difference of submodular
functions (DSF)—an overview of submodular functions is provided
in Appendix A. Leveraging the special properties of submodular
functions [3, 11], we devise an efficient successive approximation
algorithm for computing high-quality, albeit suboptimal solutions
for the problem. In contrast to [1], we establish that the cost func-
tion can be expressed in DSF form over the entire time horizon,
which results in a discrete approximation algorithm that features
more attractive “all-at-once” updates1. Phased improves the error
of four distinct classes of state-of-the-art approaches by up to 61%
when averaged over appliances.

2 PROBLEM STATEMENT

Given a household outfitted with 𝐿 appliances, let {𝑦𝑡 }𝑇𝑡=1 represent
the time series of the aggregated power consumption. The goal of
energy disaggregation is to decompose 𝑦𝑡 into 𝐿 components of
the form 𝑦𝑡 =

∑𝐿
𝑖=1 𝑥𝑖,𝑡 , where 𝑥𝑖,𝑡 denotes the power consump-

tion of appliance 𝑖 at time 𝑡 . A particularly challenging aspect of
the problem is that it can be very under-determined because we
wish to infer the power consumption of multiple appliances from a
single measurement; however, in practice, the power distribution
system supplying a household with electricity comprises multiple
power lines, each corresponding to a different phase. The aggre-
gated power consumption at a given instant, 𝑡 , then comprises
multiple measurements, {𝑦𝑟𝑡 }𝑅𝑟=1, where 𝑦

𝑟
𝑡 is the power measured

at the 𝑟𝑡ℎ line (wire) at time 𝑡 , and 𝑅 ∈ {2, 3} is the number of lines
depending on the low-voltage connection. The electrical networks
usually employ one of the following two connections:
(i) single-phase: also known as split-phase, commonly used in
North America for residential buildings. In this connection, the
transformer takes a single-phase input and provides a 240-V output
with a center tap that is connected to the ground, i.e., it provides
240-V that is divided into two 120-V live conductors. Light loads are
connected between a live conductor and the neutral to receive 120-
V, whereas heavy loads receive 240-V by being connected between
two live conductors [9]—see Fig. 1 (left).
(ii) three-phase: common in commercial buildings in the United
States and in residential buildings in Europe. In this connection, the
power is delivered over three live conductors. The premises are fed
with four lines (three live conductors and a neutral) [24]. Each live
conductor corresponds to a single phase with a phase separation
of 120◦ between any two live conductors. Fig. 1 (right) shows the
three-phase wye connection.

1code is available at: https://github.com/FaisalAlmutairi/submodularity_based_NILM.

For both single- and three-phase-connected buildings, power con-
sumption readings are often taken at every live conductor; however,
the prevailing approaches in the literature do not consider the con-
nectivity structure of the electrical feeder, and they make the sim-
plifying assumption that aggregated power at a given time instant
is drawn only from a single line, i.e., 𝑅 = 1. Consequently, available
information from other lines is summed, or even neglected.

3 PROPOSED METHOD: PHASED

Our proposed method, Phased, is cognizant of the underlying resi-
dential feeder topology and exploits the readily available multiple
aggregated power measurements—each corresponding to the power
drawn from one of the lines supplying the household—to reduce the
under-determinacy of the problem. Note that a particular appliance
can be connected between either one of the live lines and the neu-
tral, or between two live lines. Consequently, appliances that are
connected to only one live line draw all of their consumed power
from this particular line, whereas appliances connected between
two live lines draw power from both lines. Formally:

𝑦𝑟𝑡 =
∑𝐿

𝑖=1 𝑤
𝑟
𝑖
𝑥𝑖,𝑡 , ∀ 𝑟 ∈ [𝑅 ], (1)

If appliance 𝑖 is connected to only a single line 𝑟 ∈ [𝑅] (and the
neutral), then𝑤𝑟

𝑖
= 1 and𝑤𝑠

𝑖
= 0, ∀ 𝑠 ≠ 𝑟 . Otherwise, if appliance

𝑖 is connected between a pair of lines (𝑟, 𝑠), then 0 < 𝑤𝑟
𝑖

< 1,
0 < 𝑤𝑠

𝑖
< 1, and𝑤𝑟

𝑖
+𝑤𝑠

𝑖
= 1.

We make the standard assumption that the power consumption
profile of every appliance 𝑖 can be approximated by a finite number
𝑁𝑖 ≥ 2 of states (i.e., operational modes). Let 𝝁𝑖 ∈ R𝑁𝑖

+ denote a
vector of the (approximately) constant power consumption levels
of the 𝑖𝑡ℎ appliance over all of its states. Because each appliance
can operate in only one state at a time, we can express the power
consumed by appliance 𝑖 at time 𝑡 as:

𝑥𝑖,𝑡 = 𝝁𝑇𝑖 e𝑖,𝑡 , ∀ 𝑖 ∈ [𝐿], 𝑡 ∈ [𝑇 ] (2)
where e𝑖,𝑡 ∈ {0, 1}𝑁𝑖 is a binary “selection” vector that represents
the state of appliance 𝑖 at time 𝑡 and whose entries sum to 1.

3.1 Formulation

Conditioned on the power consumption profiles {𝝁𝑖 }𝐿𝑖=1 and the
connectivity weights {𝑤𝑟

𝑖
} (𝐿,𝑅)(𝑖,𝑟=1) being known a priori, the energy

disaggregation problem boils down to choosing a state for each
appliance at a time, 𝑡 . Although exploiting the aggregated measure-
ments from multiple lines somewhat reduces the ill-posedness of
the problem, from an “equations versus unknowns” standpoint, it
is always under-determined. Consequently, we exploit the fact that
appliances change states infrequently over a short time horizon.
Hence, we propose performing the energy disaggregation task over
the entire time horizon while imposing temporal consistency on the
evolution of the binary selection vectors. This leads to the following
formulation:

min
{e𝑖,𝑡 }

(𝐿,𝑇 )
(𝑖,𝑡=1)

∑𝑅,𝑇
𝑟,𝑡=1

(
𝑦𝑟𝑡 −∑𝐿

𝑖=1 𝑤
𝑟
𝑖
𝝁𝑇
𝑖
e𝑖,𝑡

)2 −∑𝐿,𝑇−1
𝑖,𝑡=1 𝜆𝑖e𝑖,𝑡

𝑇 e𝑖,𝑡+1

s.t. e𝑖,𝑡 ∈ {0, 1}𝑁𝑖 , 1𝑇 e𝑖,𝑡 = 1, ∀ 𝑖 ∈ [𝐿], 𝑡 ∈ [𝑇 ]
(3)

where the first term represents the least-squares data fit over all
phases (lines); and the second term is a smoothness-inducing regu-
larizer that seeks to maximize the similarity between the states of
an appliance over consecutive time instants as in [1, 8]; and 𝜆𝑖 ∈ R+
is a regularization parameter (we set it to 1 in the experiments). The
constraints in (3) guarantee the selection of only one state for each

https://github.com/FaisalAlmutairi/submodularity_based_NILM


Phased: Phase-Aware Submodularity-Based Energy Disaggregation NILM ’20, Nov 18, 2020, Virtual Event, Japan

appliance at a time. Evidently, this problem is a discrete quadratic
program, which is NP–hard in its general form. As such, our objec-
tive is to design an approximation algorithm capable of yielding
high-quality, albeit suboptimal solutions in polynomial time. As
a first step, we equivalently reformulate (3) as a subset selection
problem. This requires expressing (3) in set-notation, which is done
as follows.

For each appliance 𝑖 ∈ [𝐿], we define a “ground” set A𝑖 :=
{1, ..., 𝑁𝑖 } that represents the universe of states that appliance 𝑖
can occupy. Then, let S𝑖,𝑡 be the singleton set that represents the
state of appliance 𝑖 at time 𝑡 . Simple inspection reveals that e𝑖,𝑡
is the indicator vector of S𝑖,𝑡 , i.e., e𝑖,𝑡 = 1S𝑖,𝑡

. As an example, if
appliance 𝑖 has 𝑁𝑖 = 4 states, and it is operating in the third state
at 𝑡 , then e𝑖,𝑡 = [0, 0, 1, 0]𝑇 ↔ S𝑖,𝑡 = {3}. To express the problem
concisely, let the set S𝑡 :=

Ï𝐿
𝑖=1 S𝑖,𝑡 be the disjoint union of the

sets {S𝑖,𝑡 }𝐿𝑖=1, i.e., S𝑡 “concatenates” the states of all appliances at
𝑡 as S𝑡 := [S1,𝑡 , · · · ,S𝐿,𝑡 ]. Analogously, we define the set T :=Ï𝐿

𝑖=1 A𝑖 to be the “super-universe” of all states across all appliances.
Let 𝑁 :=

∑𝐿
𝑖=1 𝑁𝑖 . Then, we define:

𝜷𝑟 := [𝑤𝑟
1𝝁

𝑇
1 , 𝑤

𝑟
2𝝁

𝑇
2 , . . . , 𝑤

𝑟
𝐿𝝁

𝑇
𝐿 ]

𝑇 ∈ R𝑁 , ∀𝑟 ∈ [𝑅 ] (4)
which concatenates the consumption vectors of all appliances con-
nected to line 𝑟 and scales them by their respective connectivity
weights, 𝑤𝑟

𝑖
. Next, define the matrix B𝑟 := 𝜷𝑟𝜷𝑟𝑇 and the vector

b𝑟𝑡 = 2𝑦𝑟𝑡 𝜷
𝑟 for each line 𝑟 ∈ [𝑅]. Finally, we define the diagonal

matrix 𝚲 := diag(𝜆11𝑁1
, . . . , 𝜆𝐿1𝑁𝐿

), where 1𝑁1
is a vector of all

ones of size 𝑁𝑖 . Putting everything together and expanding the
least-squares terms, (3) can be equivalently expressed as:

min
{S𝑡 ∈I𝑡 }𝑇𝑡=1

∑𝑅
𝑟=1

∑𝑇
𝑡=1

(
1
𝑇
S𝑡B

𝑟
1S𝑡 − 1𝑇S𝑡 b

𝑟
𝑡

)
−∑𝑇−1

𝑡=1

(
1
𝑇
S𝑡Λ1S𝑡+1

)
(5)

where the set I𝑡 := {S𝑡 ⊂ T : |S𝑡 ∩ A𝑖 | = 1, ∀ 𝑖 ∈ [𝐿], 𝑡 ∈
[𝑇 ]} guarantees that only one state is chosen per appliance at any
time. To further simplify the problem representation, we define
S :=

Ï𝑇
𝑡=1 S𝑡 as the set that contains the states of all appliances

across all time instants. Note that S ⊂ V :=
Ï𝑇

𝑡=1 T . We also
define the block diagonal matrix Q𝑟 := I𝑇 ⊗ B𝑟 , where I𝑇 is the
𝑇 × 𝑇 identity matrix and ⊗ is the Kronecker product. Next, we
define the time smoothness regularization matrix R := D ⊗ 𝚲,
where D ∈ R𝑇×𝑇 is a symmetric Toeplitz matrix, whose first super-
and sub-diagonal elements equal 1/2, and the remaining entries
are 0. Finally, let b𝑟 := [b𝑟1

𝑇 , b𝑟2
𝑇 , · · · , b𝑟𝑡

𝑇 ]𝑇 . Armed with these
definitions, we obtain the final subset-selection form of (3):

min
S∈I

{
𝑓 (S) := ∑𝑅

𝑟=1

(
1
𝑇
SQ

𝑟
1S − 1𝑇Sb

𝑟
)
− 1𝑇SR1S

}
(6)

where I :=
Ï𝑇

𝑡=1 I𝑡 . Although an exact minimization of the qua-
dratic set functions is NP–hard in general, we now demonstrate
that the cost function of (6) exhibits a special property that enables
us to devise a simple polynomial-time approximation algorithm.
Proposition 1. The set function 𝑓 (S) can be equivalently expressed
as a DSF: 𝑓 (S) = 𝑔(S)−ℎ(S), where𝑔(S) := −1𝑇SR1S andℎ(S) :=∑𝑅
𝑟=1 −1𝑇SQ

𝑟
1S + 1𝑇Sb

𝑟 are submodular functions.

3.2 Algorithm

To exploit the DSF form in our formulation, we utilize a discrete
optimization analogue of the majorization-minimization (MM) pro-
cedure proposed in [14, 19]. The approach is iterative and consists
of two main steps:

1)Majorization: At each iteration 𝑘 ∈ N, we compute a modular
upper bound 𝑢𝑔S𝑘

(S) of 𝑔(S) about the current solution set S𝑘 that
satisfies the following properties:

𝑔 (S) ≤ 𝑢
𝑔

S𝑘
(S), ∀S ⊂ V, and 𝑔 (S𝑘 ) = 𝑢

𝑔

S𝑘
(S𝑘 ) (7)

Similarly, a modular lower bound 𝑣ℎS𝑘
(S) of ℎ(S) is constructed

for the current solution set S𝑘 such that:
ℎ (S) ≥ 𝑣ℎS𝑘 (S), ∀S ⊂ V, and ℎ (S𝑘 ) = 𝑣ℎS𝑘 (S𝑘 ) . (8)

2) Minimization: Upon replacing 𝑔(S) by 𝑢
𝑔

S𝑘
(S) and ℎ(S) by

𝑣ℎS𝑘
(S), we obtain a modular upper bound of 𝑓 (S), which is tight

around the current solution set S = S𝑘 . The resulting problem
corresponds to minimizing a modular function

min
S∈I

𝑚𝑘 (S) := 𝑢
𝑔

S𝑘
(S) − 𝑣ℎS𝑘 (S) (9)

which admits a simple solution. To see this, note that𝑚𝑘 (S) is a
modular function by construction, i.e.,𝑚𝑘 (S) = m𝑇

𝑘
1S . To com-

pute the optimal solution, we simply inspect the entries of m𝑘

corresponding to each subset S𝑖,𝑡 and pick the index of the smallest
entry, ∀𝑖 ∈ [𝐿], 𝑡 ∈ [𝑇 ], which costs only O(𝑁𝑇 ) in total.
ModularUpper Bound:Given a setY ⊆ V , the super-differential
set 𝜕𝑔 (Y) of a submodular function𝑔(Y) is defined as [15]: 𝜕𝑔 (Y) =
{y ∈ R𝑛 : 𝑔(X) ≤ 𝑔(Y)+𝑦 (X)−𝑦 (Y),∀X ⊆ V}, where every vec-
tor y ∈ 𝜕𝑔 (Y) defines a modular function 𝑦 (X) = y𝑇1X,∀X ⊆ V .
A supergradient y ∈ 𝜕ℎ (Y) is used to define a modular upper
bound function of the form: 𝑢𝑔Y (X) := 𝑔(Y) +𝑦 (X) −𝑦 (Y), which,
by construction, satisfies the properties (7). A particular choice of a
supergradient u𝑔Y ∈ 𝜕𝑔 (Y) is given by [14]:

u
𝑔

Y ( 𝑗) =
{
𝑔 (Y) − 𝑔 (Y\{ 𝑗 }), ∀𝑗 ∈ Y
𝑔 ( { 𝑗 }) − 𝑔 ( ∅), ∀𝑗 ∉ Y

(10)

With u
𝑔

Y obtained, we define the modular function for all subsets
S ⊆ V as𝑢𝑔Y (S) = 1𝑇Su

𝑔

Y , which we then use as the desired upper
bound function in the majorization step.
Modular Lower Bound: The subdifferential set of a submodular
function ℎ(.) for a given set Y ⊆ V is defined as [11, Section 6.2]:
𝜕ℎ (Y) = {y ∈ R𝑛 : ℎ(X) ≥ ℎ(Y) + 𝑦 (X) − 𝑦 (Y),∀X ⊆ V}. Let
vℎY ∈ 𝜕ℎ (Y) denote a subgradient of ℎ at Y. We need to compute
such a subgradient for constructing our desired modular lower
bound. To do so, it suffices to compute any element in the set of
extreme points of 𝜕ℎ(Y), which can be exactly characterized by The-
orem 6.11 in [11]. In [7], Edmonds presented a greedy procedure for
computing such extreme points. Given a set Y, let 𝝅 be a permuta-
tion of the ground setV = [𝑛], whichmaps the elements ofY to the
first |Y| positions, i.e., 𝝅 (𝑖) ∈ Y,∀ 𝑖 ≤ |Y|. The remaining 𝑛 − |Y|
positions of 𝝅 can be assigned randomly. Every such permutation
vector defines a chain of subsets S (0)

𝝅 ⊂ S (1)
𝝅 ⊂ ... ⊂ S (𝑛)

𝝅 with
elements S (0)

𝝅 = ∅, and S (𝑖)
𝝅 = {𝝅 (1), 𝝅 (2), · · · , 𝝅 (𝑖)},∀ 𝑖 ∈ [𝑛]

ordered by inclusion, i.e., a (maximal) chain. Note that we have
S |Y |
𝝅 = Y. Using this chain, we define a vector vℎY,𝝅

∈ R𝑛 :

vℎY,𝝅 (𝝅 (𝑖)) =
{
ℎ (S (1)

𝝅 ) if 𝑖 = 1

ℎ (S (𝑖 )
𝝅 ) − ℎ (S (𝑖−1)

𝝅 ), otherwise
(11)

By construction, vℎY,𝝅
satisfies the description of an extreme point

of 𝜕ℎ (Y) in Theorem 6.11 in [11]. With vector vℎY,𝝅
thus obtained,

we define themodular function for all subsetsS ⊆ V as 𝑣ℎY,𝝅
(S) :=

1
𝑇
Sv

ℎ
Y,𝝅

. Further, it has been shown [12] that for every Y ⊆ V ,
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the modular function 𝑣ℎY,𝝅
(S) satisfies the following properties:

(i) 𝑣ℎY,𝝅
(S) ≤ ℎ(S),∀ S ⊆ V , and (ii) 𝑣ℎY,𝝅

(S (𝑖)
𝝅 ) = ℎ(S (𝑖)

𝝅 ),∀ 𝑖 ∈
[𝑛]. While (i) implies the lower bound property, (ii) implies that:

𝑣ℎY,𝝅 (S |Y|
𝝅 ) = 𝑣ℎY,𝝅 (Y) = ℎ (Y) . (12)

Taken together, the obtained modular function 𝑣ℎY,𝝅
(S) is a tight

lower bound of the submodular function ℎ(Y) and satisfies the
desired properties in (8). The Phased algorithm is summarized
in Algorithm 1 in Appendix B. The procedure exploits the DSF
structure of the cost function to perform approximate minimiza-
tion by successively minimizing a sequence of global upper bounds
while respecting the constraints. The steps comprising the inner
loop are computationally lightweight—refer to [2] for more details.
Regarding the generated iterates, we have the following chain of
inequalities: 𝑓 (S𝑘+1) ≤ 𝑓 (S𝑘 ) · · · ≤ 𝑓 (S1); hence, Phased mono-
tonically reduces the cost function of (6).
Learning Connectivity and State Variables: The power profiles
{𝝁𝑖 }𝐿𝑖=1 are learned by performing the Lloyd-Max quantization on
the power consumption sequence {𝑥𝑖 (𝑡)}𝑇𝑡=1 in the training data,
and setting 𝝁𝑖 to be the centroid values of the quantization intervals.
The number of quantization intervals equals the number of states,
𝑁𝑖 , which is fixed beforehand. Thereafter, the connectivity weights,
𝑤𝑟
𝑖
, are obtained by solving the convex optimization problem:

min
{𝑤𝑟

𝑖
} (𝐿,𝑅)
(𝑖,𝑟=1)

∑𝑅
𝑟=1

∑𝑇
𝑡=1

(
𝑦𝑟 (𝑡 ) −∑𝐿

𝑖=1 𝑤
𝑟
𝑖
𝑥𝑖,𝑡

)2
s.t. 0 ≤ 𝑤𝑟

𝑖 ≤ 1,
∑𝑅

𝑟=1 𝑤
𝑟
𝑖
= 1, ∀ 𝑖 ∈ [𝐿], 𝑟 ∈ [𝑅 ]

(13)

4 EXPERIMENTS

Datasets:Weevaluate Phased using two publicly available datasets:
REDD and ECO. Each dataset represents one of the two power
distribution systems described earlier as they were collected in
homes on different continents. REDD [18] contains data from 6
homes in the United States (House 5 is omitted because it does
not have enough data). The whole-home measurements consist of
the power readings at two lines; hence, the structure of the distri-
bution system is split-phase. ECO [6] contains data from 6 Swiss
households (we omit House 3 because it does not have enough
data after synchronizing the time series). The distribution system
here is three-phase, and the aggregated power consumption of each
household is available for each phase feeding the premises. For
both datasets, we collect all the time-stamped readings that have
both the aggregated and appliance-level measurements to ensure
synchronized readings, then we down-sample to 1 reading/minute.
Baselines and metric: We compare Phased to four quite differ-
ent baselines to ensure broad evaluation. The baseline methods
(explained in Section 1) are: (i) DSC (discriminative sparse coding)
[17], (ii) NMF [22], (iii) seq2p [26], and (iv) BSMA (block succes-
sive modular approximation) [1]. We measure the percentage of
energy deviated (𝑃𝐸𝐷) from the true consumption of appliance 𝑖 in
a house ℎ at a time 𝑡 using:

𝑃𝐸𝐷𝑖 (𝑡, ℎ) :=
|𝑥𝑖 (𝑡, ℎ) − 𝑥𝑖 (𝑡, ℎ) |

𝑦 (𝑡, ℎ) , (14)

where 𝑥𝑖 (𝑡, ℎ) and 𝑥𝑖 (𝑡, ℎ) are the true and inferred power consump-
tion for appliance 𝑖 at time 𝑡 in houseℎ, and𝑦 (𝑡, ℎ) is the aggregated
power at 𝑡 in ℎ. Then, we present the average of 𝑃𝐸𝐷 (𝑨𝑷𝑬𝑫) over
the total time ticks in all the houses:

Table 1: 𝐴𝑃𝐸𝐷% of appliances in REDD and ECO (lower is better).

Underline bold means best, bold is second best.

REDD ECO

Appliance DSC NMF seq2p BSMA Phased Appliance DSC NMF seq2p BSMA Phased
Fridge 33.72 32.32 16.71 20.96 20.17 Fridge 21.53 12.58 11.75 14.00 13.85

Dishwasher 3.97 5.47 5.17 2.98 2.22 Dishwasher 5.63 16.85 18.91 2.72 2.56

Microwave 3.32 3.21 9.76 3.12 2.84 Microwave 12.78 15.21 4.74 7.03 3.57

Washer/dryer 10.23 13.93 2.66 2.66 1.79 Washer/dryer 30.53 2.58 3.21 2.84 0.90

Stove 4.94 4.46 1.62 4.02 1.75 Stove 2.11 1.65 7.41 0.63 0.53

AC 1.80 1.57 1.74 1.86 1.64 Freezer 26.74 22.31 17.00 18.56 25.06
Bathroom GFI 4.61 5.35 3.00 1.01 0.71 Work station 31.05 11.62 3.00 6.77 6.68

Outlet unknown 6.72 8.23 2.63 9.85 4.94 TV & stereo 17.45 12.33 5.91 16.28 10.96

Kitchen outlet 13.76 15.03 5.43 6.18 5.33 Tablets 19.50 12.25 0.47 0.58 0.58

Lighting 19.21 17.79 5.53 12.31 9.12 – – – – – –
Average 10.23 10.73 5.42 6.49 5.05 Average 18.59 11.93 8.04 7.71 7.19

𝐴𝑃𝐸𝐷𝑖 (𝑡, ℎ) :=
∑𝑇

𝑡=1

∑𝐻
ℎ=1 𝑃𝐸𝐷𝑖 (𝑡, ℎ)∑𝐻
ℎ=1𝑇ℎ

(15)

where 𝑇ℎ is the length of the time series of house ℎ. The essence of
this metric is adopted from [4]. The percentage of energy correctly
allocated [18] is a complementary measure that can be represented
as (1 − 𝑃𝐸𝐷). We split the data for each home into two halves—one
for training and the other for testing. Our approach and the BSMA
baseline are optimization-based and do not require training a model;
thus, the training data are used only to choose the state vectors, 𝝁𝑖 ,
the number of states, 𝑁𝑖 , and the connectivity weights,𝑤𝑟

𝑖
.

Results: Table 1 shows the prediction error for each appliance in
the REDD and ECO data—we show appliances that appears three
times or more. The homes in ECO do not have consistent types of
appliances; thus, we also include the typical appliances (e.g., mi-
crowave, stove) in Table 1 in addition to the common ones among
households. With the REDD data, Phased has four appliances with
the 𝐴𝑃𝐸𝐷 less than 2%, whereas all the baselines have only two
appliances less than 2%. Compared to the baselines, Phased signif-
icantly improves the prediction of appliances. Phased reduces the
average of the 𝐴𝑃𝐸𝐷 among all appliances with DSC, NMF, seq2p,
and BSMA by 50.6%, 52.9%, 6.88%, and 22.2%, respectively, on
the REDD data. Phased also improves themean of the𝐴𝑃𝐸𝐷 among
DSC, NMF, seq2p, and BSMA using the ECO data by 61.34%, 39.75,
10.63%, and 6.79%, respectively. Moreover, Phased has the best (or
comparable in a few cases) performance for appliances with heavier
load (e.g., washer/dryer, AC, fridge, and stove) and appliances with
flexible usage time, e.g., dishwasher. Note that in a recent survey
study [5], seq2p has been shown to be the strongest baselines with
heavy load appliances. For instance, the 𝐴𝑃𝐸𝐷 of Phased with
washer/dryer in the REDD data is only 17.45%, 12.83%, 67.16%,
and 67.24% of the 𝐴𝑃𝐸𝐷 of DSC, NMF, seq2p, and BSMA, respec-
tively. With the ECO data, the washer/dryer error percentage of
our method is only 2.96%, 34.98%, 28.13%, and 31.85% of the
𝐴𝑃𝐸𝐷 of the DSC, NMF, seq2p, and BSMA, respectively.

5 CONCLUSIONS

We presented a supervised framework for energy disaggergation
that exploits the structure of power distribution systems by using
multiple aggregated measurements to improve the disaggregation
accuracy. The proposed approach formulates the problem as mini-
mizing the difference between two submodular functions, subject
to combinatorial constraints. Leveraging this form, we devised an
iterative approximation algorithm that minimizes a sequence of
global modular upper bounds on the cost function. The algorithm
provably exhibits a non-increasing cost and features compution-
ally lightweight updates. The effectiveness of Phased was shown
against four state-of-the-art baselines on two datasets with different
power connectivity structures.



Phased: Phase-Aware Submodularity-Based Energy Disaggregation NILM ’20, Nov 18, 2020, Virtual Event, Japan

ACKNOWLEDGMENTS

The work of A. Konar and N. D. Sidiropoulos was supported in part
by the National Science Foundation under Grant NSF IIS-1908070.
This work was authored in part by the National Renewable Energy
Laboratory, operated by Alliance for Sustainable Energy, LLC, for
the U.S. Department of Energy (DOE) under Contract No. DE-AC36-
08GO28308. The work of A. S. Zamzam was supported in part by
the Laboratory Directed Research and Development Program at
the National Renewable Energy Laboratory. The views expressed
in the article do not necessarily represent the views of the DOE or
the U.S. Government. The U.S. Government retains and the pub-
lisher, by accepting the article for publication, acknowledges that
the U.S. Government retains a nonexclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form of
this work, or allow others to do so, for U.S. Government purposes.

A OVERVIEW OF SUBMODULAR FUNCTIONS

Given a ground set of 𝑛 elements, V := {𝑣1, · · · , 𝑣𝑛}, consider the
set function 𝑓 : 2V → R that assigns a real value to any subset
S ⊆ V . Among the set functions, the subclass of the submodular
functions is notable for exhibiting many properties similar to both
convex and concave functions, and it arises in many applications in
machine learning [3]. Formally, a set function, 𝑓 (.), is submodular
if and only if it satisfies 𝑓 (X ∪ {𝑣}) − 𝑓 (X) ≥ 𝑓 (Y ∪ {𝑣}) − 𝑓 (Y)
for all X ⊆ Y ⊆ V\{𝑣}. That is, given any subset of elements
X, the marginal gain derived by adding an element 𝑣 to X does
not increase when we instead add 𝑣 to the superset Y. Hence, sub-
modular functions exhibit a natural diminishing returns property.
A submodular set function 𝑦 (.) is said to be modular if and only
if there exists a vector y ∈ R𝑛 for all subsets X ⊆ V such that
𝑦 (X) = y𝑇1X =

∑
𝑒∈X y(𝑒).

B PHASED ALGORITHM

We present the summary of the algorithmic procedure in Algo-
rithm 1 below—code is available here.

Algorithm 1 : Phased Algorithm
Initialization: Set 𝑘 := 0, S0 ∈ I (randomly initialization).
Repeat: 1) Generate permutation 𝝅 using S𝑘

Repeat: 2) Compute modular upper bound 𝑢𝑔
S𝑘

(.) of 𝑔 (.) using (10)
Repeat: 3) Compute modular lower bound 𝑣ℎ

S𝑘 ,𝝅
(.) of ℎ (.) using (11)

Repeat: 4) Compute S𝑘+1 ∈ arg min
S𝑡 ∈I

𝑚𝑘 (S) in (9) via linear scan
Repeat: 5) Set 𝑘 := 𝑘 + 1.
Until stopping criterion is met
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