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ABSTRACT

Energy disaggregation is the task of discerning the energy con-
sumption of individual appliances from aggregated measurements,
which holds promise for understanding and reducing energy usage.
In this paper, we propose PHASED, an optimization approach for
energy disaggregation that has two key features: PHASED (i) exploits
the structure of power distribution systems to make use of readily
available measurements that are neglected by existing methods,
and (ii) poses the problem as a minimization of a difference of sub-
modular functions. We leverage this form by applying a discrete
optimization variant of the majorization-minimization algorithm
to iteratively minimize a sequence of global upper bounds of the
cost function to obtain high-quality approximate solutions. PHASED
improves the disaggregation accuracy of state-of-the-art models by
up to 61% and achieves better prediction on heavy load appliances.
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1 INTRODUCTION

Improving the energy efficiency of smart homes via machine learn-
ing (ML) methods constitutes an important research area with
many potential benefits, such as reducing the adverse effects of en-
ergy consumption on the environment. Energy disaggregation/non-
intrusive load monitoring (NILM) seeks to break down the energy
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usage of multiple household appliances from a single aggregated
power measurement [13]. NILM benefits a plethora of applications
in the areas of energy saving, automation in smart homes, anomaly
detection, and life coaching and recommendations [23].

Many ML approaches have been proposed for NILM; see [10] and
the references therein. Because the problem can be very ill posed,
these methods are primarily supervised and require appliance-level
training data available from homes with submeters (e.g., data sum-
marized in [21]) for learning a model that generalizes to new (un-
seen) homes using only their aggregated power consumption. In
this direction, sparse coding [8, 17, 20] and matrix/tensor factoriza-
tion [4, 22, 25] approaches aim to learn a latent factor/dictionary
from a training set, which is then used for disaggregation. The work
in [17] proposed a customized dictionary learning method, where
appliance-specific bases are learned from labeled training data such
that the disaggregation error is minimized. Another approach in
[22] used nonnegative matrix factorization (NMF), where one factor
corresponds to the normalized appliance-level power consumption
as the basis. The other factor forms the basis coefficients, which are
constrained to add up to 1 for each appliance to impose the “groupin”
effect. Although they are conceptually appealing, these methods
require large training data to capture all possible appliance states,
and they depend on the (hard to validate) assumption of common
latent factors between the training and test sets. Neural network
models have been deployed for the NILM task [16, 26]. For instance,
the work in [26] proposed a network architecture, called sequence-
to-point (seq2p), where the input is a window of the aggregated
time series, and the output corresponds to the appliance power at
the middle point in the given window. In addition to its large num-
ber of trainable parameters (> 30 M), the main drawback of seq2p
is that it trains a separate model for each appliance independently;
thus, it ignores the dependency among appliances (the aggregated
signal is a joint function of all the constituent appliances).

Recently, the work in [1] demonstrated that the energy disag-
gregation can be posed as a constrained set-function maximization
problem, which is NP-hard in its general form. The authors pro-
posed a discrete block successive approximation algorithm that
exploits the fact that the cost function is block-submodular [1].
Building on this line of work, we propose PHASED, a supervised
framework for energy disaggregation that leverages the connectiv-
ity structure of the power distribution networks. To the best of our
knowledge, there has not been any preexisting method that exploits
such information. This allows us to obtain multiple aggregated mea-
surements for each time instant, instead of a single measurement,
thereby reducing the under-determinacy of the problem. Using
appliance-level training data, we first learn to which energized line
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Figure 1: Split-phase (left) and three-phase (right).

(phase) an appliance is connected and the appliance consumption
levels at its different states (‘on’, ‘off’, ‘standby’, etc.). The effec-
tiveness of this model in breaking down aggregated signals is then
evaluated on the test set. Although this requires solving a challeng-
ing, NP-hard, combinatorial optimization problem, we prove that
the cost function can be decomposed as a difference of submodular
functions (DSF)—an overview of submodular functions is provided
in Appendix A. Leveraging the special properties of submodular
functions [3, 11], we devise an efficient successive approximation
algorithm for computing high-quality, albeit suboptimal solutions
for the problem. In contrast to [1], we establish that the cost func-
tion can be expressed in DSF form over the entire time horizon,
which results in a discrete approximation algorithm that features
more attractive “all-at-once” updates!. PHASED improves the error
of four distinct classes of state-of-the-art approaches by up to 61%
when averaged over appliances.

2 PROBLEM STATEMENT

Given a household outfitted with L appliances, let {yt}z;1 represent
the time series of the aggregated power consumption. The goal of
energy disaggregation is to decompose y; into L components of
the form y; = 25:1 xit, where x;; denotes the power consump-
tion of appliance i at time ¢. A particularly challenging aspect of
the problem is that it can be very under-determined because we
wish to infer the power consumption of multiple appliances from a
single measurement; however, in practice, the power distribution
system supplying a household with electricity comprises multiple
power lines, each corresponding to a different phase. The aggre-
gated power consumption at a given instant, ¢, then comprises
multiple measurements, {y; }521, where y} is the power measured

at the r" line (wire) at time ¢, and R € {2, 3} is the number of lines
depending on the low-voltage connection. The electrical networks
usually employ one of the following two connections:

(i) single-phase: also known as split-phase, commonly used in
North America for residential buildings. In this connection, the
transformer takes a single-phase input and provides a 240-V output
with a center tap that is connected to the ground, i.e., it provides
240-V that is divided into two 120-V live conductors. Light loads are
connected between a live conductor and the neutral to receive 120-
V, whereas heavy loads receive 240-V by being connected between
two live conductors [9]—see Fig. 1 (left).

(ii) three-phase: common in commercial buildings in the United
States and in residential buildings in Europe. In this connection, the
power is delivered over three live conductors. The premises are fed
with four lines (three live conductors and a neutral) [24]. Each live
conductor corresponds to a single phase with a phase separation
of 120° between any two live conductors. Fig. 1 (right) shows the
three-phase wye connection.

Icode is available at: https://github.com/Faisal Almutairi/submodularity_based_NILM.
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For both single- and three-phase-connected buildings, power con-
sumption readings are often taken at every live conductor; however,
the prevailing approaches in the literature do not consider the con-
nectivity structure of the electrical feeder, and they make the sim-
plifying assumption that aggregated power at a given time instant
is drawn only from a single line, i.e., R = 1. Consequently, available
information from other lines is summed, or even neglected.

3 PROPOSED METHOD: PHASED
Our proposed method, PHASED, is cognizant of the underlying resi-
dential feeder topology and exploits the readily available multiple
aggregated power measurements—each corresponding to the power
drawn from one of the lines supplying the household—to reduce the
under-determinacy of the problem. Note that a particular appliance
can be connected between either one of the live lines and the neu-
tral, or between two live lines. Consequently, appliances that are
connected to only one live line draw all of their consumed power
from this particular line, whereas appliances connected between
two live lines draw power from both lines. Formally:

yy =3k, wixie, Vr € [R], )
If appliance i is connected to only a single line r € [R] (and the
neutral), then wl.r =1and wf =0,V s # r. Otherwise, if appliance
i is connected between a pair of lines (r,s), then 0 < wir < 1,
0<w] <l,andw] +wj =1

We make the standard assumption that the power consumption

profile of every appliance i can be approximated by a finite number
N; > 2 of states (i.e., operational modes). Let p; € Rfyi denote a
vector of the (approximately) constant power consumption levels
of the ith appliance over all of its states. Because each appliance
can operate in only one state at a time, we can express the power
consumed by appliance i at time ¢ as:

Xie = pier, Vi€ L]t €[T] @
where e;; € {0, 1}Ni is a binary “selection” vector that represents
the state of appliance i at time t and whose entries sum to 1.

3.1 Formulation

Conditioned on the power consumption profiles { yi}{“zl and the
connectivity weights {w] }Eiﬁ)l)
disaggregation problem boils down to choosing a state for each
appliance at a time, t. Although exploiting the aggregated measure-
ments from multiple lines somewhat reduces the ill-posedness of
the problem, from an “equations versus unknowns” standpoint, it
is always under-determined. Consequently, we exploit the fact that
appliances change states infrequently over a short time horizon.
Hence, we propose performing the energy disaggregation task over
the entire time horizon while imposing temporal consistency on the
evolution of the binary selection vectors. This leads to the following
formulation:

being known a priori, the energy

min - S50 (7 - S Wi e)” - 20k diend e
leirkipn) 3)
st.oei, € {0,110V 1Te;, =1,Vie [L],t € [T]
where the first term represents the least-squares data fit over all
phases (lines); and the second term is a smoothness-inducing regu-
larizer that seeks to maximize the similarity between the states of
an appliance over consecutive time instants as in [1, 8];and A; € Ry
is a regularization parameter (we set it to 1 in the experiments). The
constraints in (3) guarantee the selection of only one state for each
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appliance at a time. Evidently, this problem is a discrete quadratic
program, which is NP-hard in its general form. As such, our objec-
tive is to design an approximation algorithm capable of yielding
high-quality, albeit suboptimal solutions in polynomial time. As
a first step, we equivalently reformulate (3) as a subset selection
problem. This requires expressing (3) in set-notation, which is done
as follows.

For each appliance i € [L], we define a “ground” set A; :=
{1,..,N;} that represents the universe of states that appliance i
can occupy. Then, let S; ; be the singleton set that represents the
state of appliance i at time ¢. Simple inspection reveals that e; ;
is the indicator vector of S;;, i.e., ej; = le,;p As an example, if
appliance i has N; = 4 states, and it is operating in the third state
att, thene;; = [0,0,1, O]T < 8;+ = {3}. To express the problem
concisely, let the set S; := U,~L=1 Si+ be the disjoint union of the
sets {Si,t}{‘zl, ie., S; “concatenates” the states of all appliances at
tas S := [S1,, -+, SL,s]. Analogously, we define the set 7~ :=
U%:l Aj to be the “super-universe” of all states across all appliances.
Let N := Zle N;. Then, we define:

B = [wipl whpl, ... wipl 1T e RN, vr € [R] (@)
which concatenates the consumption vectors of all appliances con-
nected to line r and scales them by their respective connectivity
weights, w]. Next, define the matrix B" := " " T and the vector
b} = 2y} B” for each line r € [R]. Finally, we define the diagonal
matrix A := diag(A11n;,,...,A.1n; ), where 1y, is a vector of all
ones of size Nj. Putting everything together and expanding the
least-squares terms, (3) can be equivalently expressed as:

{St?fitr}lf:l Zl}:l ZtT=1 (ﬂg,B’ﬂs, - ﬂgtb;) - ZtT=_1l (ﬂg/\ﬂsm) (5)
where the set I; := {S; ¢ T : |SfrnA;| = 1, Vi € [L],t €
[T]} guarantees that only one state is chosen per appliance at any
time. To further simplify the problem representation, we define
S = Uthl S; as the set that contains the states of all appliances
across all time instants. Note that S ¢ V = Uz;l 7. We also
define the block diagonal matrix Q" := It ® B”, where It is the
T % T identity matrix and ® is the Kronecker product. Next, we
define the time smoothness regularization matrix R := D ® A,
where D € R is a symmetric Toeplitz matrix, whose first super-
and sub-diagonal elements equal 1/2, and the remaining entries
are 0. Finally, let b" := [bgT, bgT, e ,b;T]T. Armed with these
definitions, we obtain the final subset-selection form of (3):

rsnei? {f(8) =3k, (15Q 15 -1%b") - 1LR1s} )
where I := L-Jz;l I;. Although an exact minimization of the qua-
dratic set functions is NP-hard in general, we now demonstrate
that the cost function of (6) exhibits a special property that enables
us to devise a simple polynomial-time approximation algorithm.
Proposition 1. The set function f(S) can be equivalently expressed
as a DSF: f(S) = g(8)—-h(S), whereg(S) := —]lgR]lS andh(S) =
215:1 —ﬂgers + Jlgbr are submodular functions.

3.2 Algorithm

To exploit the DSF form in our formulation, we utilize a discrete
optimization analogue of the majorization-minimization (MM) pro-
cedure proposed in [14, 19]. The approach is iterative and consists
of two main steps:
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1) Majorization: At each iteration k € IN, we compute a modular
upper bound ui «(S) of g(S) about the current solution set S K that
satisfies the following properties:

8(S) <ul (8).¥S ¢V, and g(5*) =uf, (55 )
Similarly, a modular lower bound vgk (8S) of h(S) is constructed
for the current solution set S¥ such that:

h(S) > ogk(S),vs c ¥V, and h(S*) = ugk(sk). ®)
2) Minimization: Upon replacing g(S) by uig; «(S) and A(S) by
vgk (S), we obtain a modular upper bound of f(S), which is tight

around the current solution set S = SK. The resulting problem
corresponds to minimizing a modular function
; =9 _h
min mi(S) = g (S) = 0g (S) )

which admits a simple solution. To see this, note that my(S) is a
modular function by construction, i.e., mg(S) = mZ]l s. To com-
pute the optimal solution, we simply inspect the entries of my
corresponding to each subset S; ; and pick the index of the smallest
entry, Vi € [L],t € [T], which costs only O(NT) in total.
Modular Upper Bound: Given aset Y C V, the super-differential
set 38 (Y) of a submodular function g(Y) is defined as [15]: 38 (Y) =
{y e R": g(X) < g(¥)+y(X)-y(Y),VX C V}, where every vec-
tor y € 38(Y) defines a modular function y(X) = yl1x,VX CV.
A supergradient y € 9"(Y) is used to define a modular upper
bound function of the form: ugy (X) :=g(Y) +y(X) —y(Y), which,
by construction, satisfies the properties (7). A particular choice of a
supergradient u‘ﬁl € #(Y) is given by [14]:
g0 {g(w —g\GD. Vied
uy, () = ) :
g({j}) - 5(0), Vji¢Y
With uigy obtained, we define the modular function for all subsets

(10)

ScVas ui S) = ]lguigy, which we then use as the desired upper
bound function in the majorization step.

Modular Lower Bound: The subdifferential set of a submodular
function h(.) for a given set Y C V is defined as [11, Section 6.2]:
(M) ={y eR" : i(X) > h(¥Y) +y(X) —y(Y),VX C V}. Let
vfly € 9, (Y) denote a subgradient of h at Y. We need to compute
such a subgradient for constructing our desired modular lower
bound. To do so, it suffices to compute any element in the set of
extreme points of 9h(Y'), which can be exactly characterized by The-
orem 6.11 in [11]. In [7], Edmonds presented a greedy procedure for
computing such extreme points. Given a set Y, let & be a permuta-
tion of the ground set V' = [n], which maps the elements of Y/ to the
first | Y| positions, i.e., (i) € Y,V i < |Y|. The remaining n — | Y|
positions of 7 can be assigned randomly. Every such permutation
vector defines a chain of subsets S,(ZO) c S,(rl) c..cC S,(,") with
elements S,(,O) =0, and S,(,i) ={n(1), 7x(2),---,x()},Vie€ [n]
ordered by inclusion, i.e., a (maximal) chain. Note that we have

S¥l-y. Using this chain, we define a vector v, e R™:
E4 Y.n

h(Sy) ifi=1

h ;

VY (7 (D) = () (i-1) .
h(S;") —h(S; '), otherwise

By construction, vf‘y - satisfies the description of an extreme point

of 9, (Y) in Theorem 6.11 in [11]. With vector Vhy " thus obtained,

we define the modular function for all subsets S C V as v@ ” (8) :=

]lgvg‘/ e Further, it has been shown [12] that for every Y C V,

(11)
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the modular function U$ . (S) satisfies the following properties:

()0 (S) <h(S).YS V. and (i) oh, (SP)=h(SY).Vie
[n]. While (i) implies the lower bound préperty, (ii) implies that:
oy (S =y (Y) =h(Y). (12)

Taken together, the obtained modular function 05‘/ ”(S) is a tight
lower bound of the submodular function h(Y) and satisfies the
desired properties in (8). The PHASED algorithm is summarized
in Algorithm 1 in Appendix B. The procedure exploits the DSF
structure of the cost function to perform approximate minimiza-
tion by successively minimizing a sequence of global upper bounds
while respecting the constraints. The steps comprising the inner
loop are computationally lightweight—refer to [2] for more details.
Regarding the generated iterates, we have the following chain of
inequalities: f(SK*1) < £(SK)-.. < f(S!); hence, PHASED mono-
tonically reduces the cost function of (6).
Learning Connectivity and State Variables: The power profiles
{ ;1,-}{“:1 are learned by performing the Lloyd-Max quantization on
the power consumption sequence {x; (t)}tT=1 in the training data,
and setting p; to be the centroid values of the quantization intervals.
The number of quantization intervals equals the number of states,
N;, which is fixed beforehand. Thereafter, the connectivity weights,
w], are obtained by solving the convex optimization problem:

min - % 2 (7 (0 - Ziy wix)®

{(wr &R
i T (ir=1) (13)
st. 0<w <1, ¥R w'=1Vie[L],re[R]

4 EXPERIMENTS

Datasets: We evaluate PHASED using two publicly available datasets:

REDD and ECO. Each dataset represents one of the two power
distribution systems described earlier as they were collected in
homes on different continents. REDD [18] contains data from 6
homes in the United States (House 5 is omitted because it does
not have enough data). The whole-home measurements consist of
the power readings at two lines; hence, the structure of the distri-
bution system is split-phase. ECO [6] contains data from 6 Swiss
households (we omit House 3 because it does not have enough
data after synchronizing the time series). The distribution system
here is three-phase, and the aggregated power consumption of each
household is available for each phase feeding the premises. For
both datasets, we collect all the time-stamped readings that have
both the aggregated and appliance-level measurements to ensure
synchronized readings, then we down-sample to 1 reading/minute.
Baselines and metric: We compare PHASED to four quite differ-
ent baselines to ensure broad evaluation. The baseline methods
(explained in Section 1) are: (i) DSC (discriminative sparse coding)
[17], (il) NMF [22], (iii) seq2p [26], and (iv) BSMA (block succes-
sive modular approximation) [1]. We measure the percentage of
energy deviated (PED) from the true consumption of appliance i in
a house h at a time ¢ using:
_ Ixi(th) —xi(,h)|

PED;(t, h) := T) (14)

where x;(t, h) and x; (¢, h) are the true and inferred power consump-
tion for appliance i at time ¢ in house h, and y(t, h) is the aggregated
power at ¢ in h. Then, we present the average of PED (APED) over
the total time ticks in all the houses:

F. M. Almutairi et al.

Table 1: APED% of appliances in REDD and ECO (lower is better).
Underline bold means best, bold is second best.

REDD ECO

Appliance DSC NMF seq2p BSMA Puasep | Appliance | DSC NMF seq2p BSMA PuASED

Fridge 3372 3232 1671 2096  20.17 Fridge 2153 12.58 1175 14.00 1385
Dishwasher | 397 547 517 298 222 | Dishwasher | 563 1685 1891 272  2.56
Microwave | 332 321 976 312 284 | Microwave | 1278 1521 474 703  3.57

Washer/dryer | 10.23 13.93 2.66 2.66 179 |Washer/dryer | 30.53 258 321 284  0.90

Stove 494 446 162  4.02 175 Stove 211 165 741  0.63 0.53

AC 180 157 174 186 1.64 Freezer 2674 2231 17.00 18.56  25.06
Bathroom GFI | 4.61 535 300 101 071 | Workstation | 31.05 1162 3.00 677 6.68
Outlet unknown| 6.72 823  2.63 9.5 494 | TV &stereo | 17.45 1233 591 1628  10.96

Kitchen outlet | 13.76 1503 543 6.8 5.33 Tablets 1950 1225 047 058  0.58
Lighting 1921 1779 553 1231 9.2 - - - - - -
Average 10231073 542 649 5.05 Average | 1859 1193 804 771 7.9

T H
Z[:l Zh=1 PEDi(ta h)
APED;(t, h) := o (15)
Zh:l Tp

where Ty, is the length of the time series of house h. The essence of
this metric is adopted from [4]. The percentage of energy correctly
allocated [18] is a complementary measure that can be represented
as (1 — PED). We split the data for each home into two halves—one
for training and the other for testing. Our approach and the BSMA
baseline are optimization-based and do not require training a model;
thus, the training data are used only to choose the state vectors, y;,
the number of states, Nj, and the connectivity weights, wl.r .
Results: Table 1 shows the prediction error for each appliance in
the REDD and ECO data—we show appliances that appears three
times or more. The homes in ECO do not have consistent types of
appliances; thus, we also include the typical appliances (e.g., mi-
crowave, stove) in Table 1 in addition to the common ones among
households. With the REDD data, PHASED has four appliances with
the APED less than 2%, whereas all the baselines have only two
appliances less than 2%. Compared to the baselines, PHASED signif-
icantly improves the prediction of appliances. PHASED reduces the
average of the APED among all appliances with DSC, NMF, seq2p,
and BSMA by 50.6%, 52.9%, 6.88%, and 22.2%, respectively, on
the REDD data. PHASED also improves the mean of the APED among
DSC, NMF, seq2p, and BSMA using the ECO data by 61.34%, 39.75,
10.63%, and 6.79%, respectively. Moreover, PHASED has the best (or
comparable in a few cases) performance for appliances with heavier
load (e.g., washer/dryer, AC, fridge, and stove) and appliances with
flexible usage time, e.g., dishwasher. Note that in a recent survey
study [5], seq2p has been shown to be the strongest baselines with
heavy load appliances. For instance, the APED of PHASED with
washer/dryer in the REDD data is only 17.45%, 12.83%, 67.16%,
and 67.24% of the APED of DSC, NMF, seq2p, and BSMA, respec-
tively. With the ECO data, the washer/dryer error percentage of
our method is only 2.96%, 34.98%, 28.13%, and 31.85% of the
APED of the DSC, NMF, seq2p, and BSMA, respectively.

5 CONCLUSIONS

We presented a supervised framework for energy disaggergation
that exploits the structure of power distribution systems by using
multiple aggregated measurements to improve the disaggregation
accuracy. The proposed approach formulates the problem as mini-
mizing the difference between two submodular functions, subject
to combinatorial constraints. Leveraging this form, we devised an
iterative approximation algorithm that minimizes a sequence of
global modular upper bounds on the cost function. The algorithm
provably exhibits a non-increasing cost and features compution-
ally lightweight updates. The effectiveness of PHASED was shown
against four state-of-the-art baselines on two datasets with different
power connectivity structures.
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A OVERVIEW OF SUBMODULAR FUNCTIONS

Given a ground set of n elements, V := {01, -+, v}, consider the
set function f : 2V — R that assigns a real value to any subset
S € V. Among the set functions, the subclass of the submodular
functions is notable for exhibiting many properties similar to both
convex and concave functions, and it arises in many applications in
machine learning [3]. Formally, a set function, f(.), is submodular
if and only if it satisfies f(X U {v}) — f(X) = f(Y U {o}) - f(Y)
forall X € Y € V\{v}. That is, given any subset of elements
X, the marginal gain derived by adding an element v to X does
not increase when we instead add v to the superset Y. Hence, sub-
modular functions exhibit a natural diminishing returns property.
A submodular set function y(.) is said to be modular if and only
if there exists a vector y € R" for all subsets X C V such that

y(X) =yT1lx = Teex yle).

B PHASED ALGORITHM

We present the summary of the algorithmic procedure in Algo-
rithm 1 below—code is available here.

Algorithm 1 : PHASED Algorithm

Initialization: Set k := 0, S° € 7 (randomly initialization).

Repeat: 1) Generate permutation s using S¥
2) Compute modular upper bound ugk (.) of g(.) using (10)
3) Compute modular lower bound vgk . (.) of h(.) using (11)
4) Compute Sk+l ¢ arg énll} m(S) in (9) via linear scan

5)Set k := k + 1. t€
Until stopping criterion is met
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