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key factor influencing electricity

consumption

Visualization of the impact of

COVID-19 through satellite night-

time-light data
We present a cross-domain, data-driven approach to tracking and quantifying the

impact of COVID-19 on the US electricity sector, including (1) a first-of-its-kind

open-access data hub integrating electricity data with public health, mobility,

weather, and satellite data and (2) a cross-domain analysis quantifying the

sensitivity of electricity consumption to social distancing and public health

policies. Population mobility, particularly in the retail sector, which is indicative of

social distancing policy measures, emerges as the key factor driving changes in

electricity consumption.
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Context & scale

As the lifeblood of civil society,

the electricity sector is

undergoing highly volatile

changes due to COVID-19. The

dramatic reduction in electricity

consumption due to shutdown

policies during COVID-19 can in

fact be seen from space, as

visualized by night-light satellite

imagery in our study. In this work,

we release a first-of-its-kind open-

access data hub and cross-domain

analysis integrating traditional

electricity data with cross-domain

sources such as public health and

mobility data to quantify the

impact of these social distancing

and public health policies on

electricity consumption. In the

short term, this cross-domain

analysis can immediately aid

power system operators and

policy makers in their response to

the ongoing crisis. From a broader

perspective, this research departs

from the traditional landscape of

forecasting, reliability, and risk

assessment in the electricity

sector by introducing new

domains of data that will inform

planning, policy, and operation in

the future.
SUMMARY

The novel coronavirus disease (COVID-19) has rapidly spread around
the globe in 2020, with the US becoming the epicenter of COVID-19
cases since lateMarch. As the US begins to gradually resume economic
activity, it is imperative for policymakers and power system operators
to take a scientific approach to understanding and predicting the
impact on the electricity sector. Here, we release a first-of-its-kind
cross-domain open-access data hub, integrating data from across all
existing US wholesale electricity markets with COVID-19 case,
weather, mobile device location, and satellite imaging data.
Leveraging cross-domain insights from public health and mobility
data, we rigorously uncover a significant reduction in electricity con-
sumption that is strongly correlated with the number of COVID-19
cases, degree of social distancing, and level of commercial activity.

INTRODUCTION

As the US responds to the novel coronavirus disease (COVID-19) and states re-open

the economy, there is much uncertainty regarding the duration and severity of the

impact on the electricity sector. Given the rapid spread of COVID-19 and the corre-

sponding policy changes, there has been relatively little scholarly work on the impact

of COVID-19 on the electricity sector. Several reports from both peer-reviewed1,2

and non-peer-reviewed venues, such as news media,3 social media,4–6 consulting

firms,7,8 non-profit organizations,9 government agencies,10,11 and professional

communities,12,13 have shed some light on the adverse impact on the electricity

and clean energy sectors, including operational reliability degradation, decrease

in wholesale prices, and delayed investment activities. Electricity consumption ana-

lyses from regional transmission organizations (RTOs)14–16 also suggest an overall

reduction in energy consumption, especially in zones with large commercial activity.

However, such assessments are still at a nascent stage, with several gaps in existing

research. First, the lack of consistent assessment criteria renders results across

distinct geographical locations incomparable. Second, several existing statistical an-

alyses do not rigorously calibrate a baseline electricity consumption profile in the

absence of the pandemic considering the influence of exogenous factors like the

weather. Finally, cross-domain data like public health data (COVID-19 cases and

deaths) and social distancing data (mobile device location) that can provide valuable

insights have not been considered so far in the analysis of the electricity sector.

Here, we develop a cross-domain open-access data hub, COVID-EMDA+ (coronavirus

disease and electricity market data aggregation+ ), to track and measure the impact
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of COVID-19 on the US electricity sector.17 This data hub integrates information from

electricity markets with heterogeneous data sources like COVID-19 public health data,

weather, mobile device location information, and satellite imagery data that are typically

unexplored in the context of the energy system analysis. The integration of these cross-

domain datasets allows us to develop a novel statistical model that calibrates the elec-

tricity consumption based on mobility and public health data, which have otherwise not

been considered in conventional power system load analysis literature thus far.

Leveraging this cross-domain data hub, we uncover and quantify a ‘‘delayed’’ impact

of the number of COVID-19 cases, social distancing, and mobility in the retail sector

on electricity consumption. In particular, the diverse timescales and magnitudes of

top-down (federal or state policies and orders) and bottom-up (individual-level behavior

change in social distancing) responses to the pandemic collectively influence the elec-

tricity consumption in a region. We observe a significant reduction in electricity con-

sumption across all US markets (ranging from 6:36% to 10:24% in April, and 4:44% to

10:71% in May), which is strongly correlated with the rise in the number of COVID-19

cases, the size of the stay-at-home population (social distancing), and mobility in the

retail sector (representative of the share of commercial electricity use), which emerges

as the most significant and robust influencing factor.

Cross-Domain Data Hub: COVID-EMDA+

We first develop a comprehensive cross-domain open-access data hub, COVID-

EMDA+ (The + symbol in COVID-EMDA+ indicates the integration of cross-domain

datasets like public health and mobility data with conventional electricity market

data), publicly available on Github17, integrating electricity market, weather, mobile

device location, and satellite imaging data into a single ready-to-use format. The

original sources for each dataset are detailed in the Data and code availability sec-

tion. We pay special attention to the impact of COVID-19 on electricity markets in

the US18 for two reasons. First, electricity market data are usually timely, accurate,

abundant, and publicly available in the US, making the market dataset ideal for

impact tracking and measurement. Second, wholesale electricity markets in the US

cover the top eight hardest-hit states, and more than 85% of the national number

of confirmed COVID-19 cases as of May 2020 (Figure S1C).

There are seven RTOs or electricity markets in the US, namely, California (CAISO),19Mid-

continent (MISO),20 New England (ISO-NE),21 New York (NYISO),22 Pennsylvania-New

Jersey-Maryland Interconnection (PJM),23 Southwest Power Pool (SPP),24 and Electricity

Reliability Council of Texas (ERCOT).25 For each regional market, we aggregate data

pertaining to the load, generation mix, and day-ahead locational marginal price

(LMP). To improve the overall data quality, we also integrate market data from the En-

ergy Information Administration (EIA)26 and EnergyOnline company.27 The major chal-

lenges in integrating raw electricitymarket data into a unified framework are summarized

in the Experimental Procedures section. We integrate the electricity market data with

weather data28 (temperature, relative humidity, wind speed, and dew temperature)

from the National Oceanic and Atmosphere Administration (NOAA). We will use this

data to estimate an accurate baseline electricity consumption profile taking into account

weather, calendar, and economic factors (annual GDP growth rate), against which the

impact of COVID-19 will be quantified.

To obtain further cross-domain insights, we integrate public health data on COVID-19

cases from multiple sources29–31 and mobile device location data from SafeGraph32,33

comprising county-level social distancing data and pattern of visits to points of interests

(POIs) like restaurants and grocery stores (see Note S2 for a detailed description). We

aggregate the mobile device location data by county and POI category, and define the
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‘‘stay-at-homepopulation’’ and the ‘‘population of on-siteworkers’’ (indicative of the social

distancing level) as theestimatednumberofpeoplewhostayathomeallday, and thenum-

ber of people who work at a location other than their home for more than 6 h on a typical

workingday, respectively. The ‘‘mobility in the retail sector,’’ definedas thenumberof visits

to retail establishmentsperday (seeNoteS3 for a list of 25 includedmerchant types) is also

of interest, since it is indicative of the level of commercial activity. Finally, we integrate sat-

ellite imagery from theNASAVNP46A1 ’’BlackMarble’’34 dataset into theCOVID-EMDA+

hub as a tool for visualizing the impact of COVID-19 on electricity consumption (seeNote

S1 for a detailed description of this dataset). The complete architecture of the data hub is

shown in Figure S1A. The detailed description of all the original data sources and a sum-

mary of the utility of each cross-domain data source are provided inNote S4.

Using night-time light (NTL) data from satellite imagery, Figure 1 visualizes the

impact of COVID-19 on electricity consumption for New York City (see Note S1

for a detailed description of how the NTL data are processed to obtain these plots).

The reduction in NTL brightness provides a strong visual representation of the effect

of COVID-19 on electricity consumption level in such major urban areas (see Fig-

ure S2 for NTL visualization of other metropolises), where a significant component

of the electricity consumption comprises large commercial loads. This result serves

as a preview of the insights that emerge from the statistical analysis in the following

sections, namely, that the level of commercial activity (quantified by mobility in the

retail sector in our later analysis) is a key contributing factor for the change in elec-

tricity consumption during COVID-19. In the following analysis, we will leverage

the cross-domain COVID-EMDA+ data hub to quantify this reduction of electricity

consumption and demonstrate its correlation with the number of COVID-19 cases,

degree of social distancing, and level of commercial activity.

Quantifying Changes in Electricity Consumption across RTOs and Cities in the

US

Following the idea of predictive inference,36 we leverage the cross-domain COVID-

EMDA+ data hub to derive statistically robust results on the changes in electricity

consumption correlated with the COVID-19 pandemic. We achieve this by carefully

designing an ensemble backcast model to accurately estimate electricity consump-

tion in the absence of COVID-19, which is then used as a benchmark against which

the impact of COVID-19 is quantified.

We begin by analyzing the reduction in electricity consumption in the New York area,

which is the epicenter of the pandemic in the US. Figure 2 shows the comparison be-

tween actual electricity consumption profile, ensemble backcast results (with 10%�
90% and 25%� 75% quantiles), and the electricity consumption profile in previous

year (aligned by day of the week using NYISO data; for example, February 4, 2019

and February 3, 2020 are compared because they are both Mondays of the fifth

week in the respective year). The strong match between the curve shapes indicates

that the ensemble backcast estimations reliably verify the insignificant change in

electricity consumption before the COVID-19 outbreak (February 3 and March 2)

and much larger change afterward (April 6 and 27). Note that the electricity con-

sumption profile in 2019, although being a common and simple choice in many an-

alyses, is typically an inaccurate baseline for impact assessment in 2020.

A cross-market comparison, with both the point- and interval-estimation results, is

conducted in Table 1 to show the impact of COVID-19 on different marketplaces.

The interval estimation is calculated using the 10% and 90% quantiles, which can

be regarded as reliable estimation boundaries. The ensemble backcast models
2324 Joule 4, 2322–2337, November 18, 2020
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Figure 1. Visualization of the Impact of COVID-19 on Electricity Consumption Using NTL Data for

New York City

(A) NTL imagery before the outbreak of COVID-19 (February 8, 2020).

(B) NTL imagery during the outbreak (April 25, 2020). The sampling time of both representative

snapshots is 1 a.m. on Saturday, when the sky is clear of cloud. The raw data are pre-processed to

filter out ambient noise and focus on only the urban area of the city. A color map is used to clearly

illustrate the light intensity, in which bright color indicates strong light and dark color indicates dim

light. The background city map is retrieved from OpenStreetMap.35 See also Figure S2.
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successfully capture the dynamics of changes in electricity consumption and provide

a reliable statistical comparison among different regions. It is clearly seen that all the

markets experienced a reduction in electricity consumption in both April and May;

however, the magnitudes of the reductions were diverse, varying from 6:36% to
Joule 4, 2322–2337, November 18, 2020 2325



Figure 2. Electricity Consumption Profile Comparison in NYISO between the Ensemble Backcast Estimations, Past Profile, and Real Profile

Four typical Mondays are chosen for comparison during February to April. The ensemble backcast estimations include both a point- and interval-

estimation, and the 10%--90% and 25%--75%quantiles are also given. The past electricity consumption profiles in 2019 are aligned with the real profiles by

the day of the week.
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10:24% in April, and 4:44% to 10:71% in May. Additionally, our estimation results for

April match well with official reports.14–16 According to Table 1, NYISO and MISO

experienced the most severe reduction in electricity consumption in both April

and May, while ERCOT and SPP suffered the least. All electricity markets showed

a rebound in electricity consumption in June that may be correlated with partial re-

opening of the economy; however, the magnitudes of the rebound were once again

diverse across markets as seen in Table 1. Finally, in dense urban areas, the impact of

COVID-19 was more pronounced, with New York City and Boston experiencing a

14:10% and 11:32% reduction in electricity consumption respectively in April, likely

due to the high population density and large share of commercial energy use in

these areas. (The same factors explain why Houston, which is more geographically

dispersed, was not significantly impacted.) We will examine such potentially relevant

factors more closely in the following section.

Impact of Public Health, Social Distancing, and Commercial Activity on

Electricity Consumption During COVID-19

In order to interpret the changes in electricity consumption during COVID-19, we

begin by investigating three potential influencing factors, namely, public health

(indicated by the number of COVID-19 cases), the social distancing (indicated by

the size of the stay-at-home population and the population of on-site workers),

and the level of commercial activity (indicated by a reduction in visits to retail estab-

lishments). These influencing factors possess two important features that must be

taken into account while interpreting their influence on electricity consumption.

First, there is a complex multi-dimensional relationship between the number of

COVID-19 cases, social distancing, shut down rate of commercial activity, and elec-

tricity consumption, as shown in Figure 3A. For example, stricter social distancing

and shutdown of commercial activity slow down the spread of COVID-19.

Conversely, a rise in the number of COVID-19 cases results in an increase in social

distancing (size of the stay-at-home population), as well as shut down of businesses

(commercial loads). This trend is clearly discernible in mobile device location data as

an increase in the stay-at-home population (Figure S3) and a reduction in visits to

retail establishments (Figure S4). Figure 3C shows the trace of the evolution of daily
2326 Joule 4, 2322–2337, November 18, 2020



Table 1. Comparison of Changes in Electricity Consumption across Electricity Markets and Cities in the US

Electricity Consumption
Reduction (%)

CAISO MISO ISO-NE NYISO PJM SPP ERCOT

Average in February �1.31 �0.14 2.15 0.84 0.54 -0.90 -1.52

[�4.10, 1.24] [�2.09, 1.77] [�0.47, 4.58] [�1.47, 3.14] [�1.65, 2.57] [�3.18, 1.27] [�4.06, 0.86]

Average in March 2.68 1.77 5.24 4.51 2.68 2.47 �1.30

[0.52, 4.78] [0–0.41, 3.88] [2.33, 7.88] [2.01, �7.00] [0.19, 5.02] [�0.36, 5.14] [�1.00, 3.43]

Average in April 9.24 10.24 9.47 10.20 9.44 7.72 6.36

[6.64, 11.72] [7.88, 12.66] [6.26, 12.32] [7.26, 12.91] [6.74, 12.07] [4.49, 10.71] [3.77, 8.80]

Average in May 6.46 10.71 10.44 10.47 7.35 9.24 4.44

[3.24, 9.35] [8.28, 13.16] [6.70, 13.90] [7.17, 13.54] [4.45, 10.20] [6.22, 12.07] [2.10, 6.59]

Average in June 0.29 3.49 1.79 5.72 0.14 2.66 2.41

[�2.74, 3.04] [1.44, 5.54] [�1.78, 5.06] [2.37, 8.78] [�2.57, 2.52] [�0.05, 5.17] [0.54, 4.06]

Electricity consumption
reduction (%)

Boston Chicago Houston Kansas City Los Angeles New York City Philadelphia

Average in February 0.40 0.09 �0.55 0.10 �1.12 0.43 0.75

[�1.93, 2.60] [�2.41, 2.43] [�3.02, 1.93] [�2.76, 2.89] [�4.27, �1.83] [�2.12, �2.90] [�1.98, �3.40]

Average in March 7.12 2.95 -0.53 0.24 3.32 5.27 3.94

[4.63, 9.53] [0.26, 5.49] [�3.01, 1.70] [�3.44, 3.57] [0.61, 5.85] [2.60, 7.80] [�0.96, 6.86]

Average in April 11.32 9.81 5.33 9.04 11.06 14.10 8.93

[8.55, 13.93] [6.70, 12.66] [2.63, 7.79] [5.00, 12.55] [8.11, 13.82] [11.26, 16.80] [5.42, 12.18]

Average in May 9.36 9.51 3.63 7.01 3.91 14.77 8.24

[6.02, 12.41] [6.32, 12.51] [0.86, 5.85] [3.22, 10.67] [0.59, 7.06] [11.61, 17.76] [4.58, 11.71]

Average in June 0.41 3.24 4.41 0.21 �1.90 11.07 2.07

[�3.03, 3.38] [0.36, 5.84] [2.05, 6.48] [�2.56, 2.62] [�5.42, 1.34] [7.60, 14.02] [�1.20, 5.06]

All markets and cities experienced a reduction in electricity consumption in April but with diverse magnitude. Particularly, dense urban areas suffered the most

severe reduction in April.

Note: the RTOs are listed in an order from the Federal Energy Regulatory Commission, and the cities are given in an alphabetical order.
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new confirmed cases and social distancing, and the associated rate of reduction in

electricity consumption for two representative metropolises—New York City and

Philadelphia, indicating a fast-developing period in March 2020 and a more stable

period afterward. A slight rebound in the electricity consumption that may be corre-

lated with the partial reopening of the economy, and the relaxation of some social

distancing restrictions, is also observed in the trace of the electricity consumption

during June 2020. Similar trends are observed in other COVID-19 hotspot cities

that are in various stages of evolution of the pandemic (Figure S5). An alternative

visualization of the same result is shown in Figure S6 for all metropolises. The trace

of evolution of electricity consumption demonstrates the dynamically evolving,

multi-dimensional relationship between the number of COVID-19 cases, the size

of the stay-at-home population, and the reduction in electricity consumption.

Second, these influencing factors exhibit very different temporal dynamics. For

example, in New York City, Figure 3B shows a wide variation in the timescales of

the changes in the electricity consumption, public health, stay-at-home, work-on-

site, and retail mobility data. The mobility in the retail sector has the earliest

response in terms of the rate of change (gradually dropping from late February

2020 and continuing to go down until late April 2020), resulting from bottom-up re-

sponses of consumers to the emerging pandemic. On the other hand, the
Joule 4, 2322–2337, November 18, 2020 2327
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Figure 3. Factors Incluencing Electricity Consumption during COVID-19

(A) Multi-dimensional relationship between case load, social distancing, shut down of commercial activity, and electricity consumption. Heterogeneous

data sources from COVID-EMDA+ are applied as indicators of these factors.

(B) Wide variation in the timescales of different factors influencing electricity consumption during the COVID-19 pandemic. The raw number of

confirmed COVID-19 cases are offset by 1 and plotted on a logarithmic scale. The segments in bold indicate the transition periods for each variable (see

Figure S10 for the details on how these transition periods are defined and identified). It is apparent that the electricity consumption started dropping

almost immediately after the national emergency declaration. The number of new confirmed cases started to significantly rise a couple of days earlier.

The stay-at-home population and population of on-site workers started changing around the time of the national emergency declaration, while the

slight rebound around April 20 coincided with reopening policies in a few states. The mobility in the retail sector started dropping at the very early

stages of the COVID-19 outbreak, due to individual consumer responses to the pandemic.

(C) Trace of the evolution of daily new confirmed cases and social distancing, and the associated rate of reduction in electricity consumption for two

representative metropolises—New York City and Philadelphia. The bubble sizes indicate the percentage reduction in electrical consumption (with

larger bubble sizes indicating more reduction in consumption). The number of COVID-19 cases and the size of the stay-at-home population are

smoothed by a weekly moving average to properly extract the trends. Both cities follow a fast-developing period in March 2020 and a more stable

period afterward. A slight rebound in the electricity consumption is also observed in the trace during June 2020. See also Figures S5, S6, and S10.
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population of on-site workers shows a sharp, abrupt change right around mid-

March, as a result of top-down federal and state-level policy decisions, such as

stay-at-home orders. This insight, to our best knowledge, is first revealed in Fig-

ure 3B and suggests a very different efficacy of social distancing arising from top-

down government policies and from bottom-up individual responses. Finally, the

electricity consumption shows a delayed reduction with respect to the number of

COVID cases.

Taking into account these two features, we rigorously quantify the multi-dimensional

relationship shown in Figure 3A by calibrating several city-specific restricted vector

autoregression (restricted VAR)37 models. Restricted VAR models are powerful tools

for multivariate time series analysis with complex correlations and have been widely

adopted in econometrics38 and electricity markets.39

Compared with ordinary regression analysis, the restricted VARmodel allows for de-

pendencies between model variables that are too complex to be fully known.38

Please refer to the Experimental Procedures section for the definition, Methods

S1–S3 for details on the calibration and validation of the restricted VAR model,

and Tables S1–S4 for the model parameters and results of statistical tests on the

model. We now examine the restricted VAR model using the variance decomposi-

tion and impulse response analyses as described in Method S4. The variance

decomposition analysis indicates the influencing factors that contribute to changes

in electricity consumption, while the impulse response analysis describes the dynam-

ical evolution of the reduction in electricity consumption that would result from a unit

shock (1% increase or decrease) in one influencing factor. We note that the restricted

VAR model can be further fine-tuned by selecting the most significant influencing

parameters (see Note S5 and Figure S9 regarding the choice of VAR model param-

eters, andMethod S5 for the VAR model selection procedure). Figures 4 and S7 pre-

sent the variance decomposition and impulse response analyses for various COVID-

19 hotspot cities, indicating the ‘‘delayed’’ impact of various influencing factors on

electricity consumption. By analyzing Figures 4 and S7, we obtain three key findings.

The first key finding is that the mobility in the retail sector is the most significant and

robust factor influencing the decrease in electricity consumption across all cities.

This factor accounts for a significant proportion of the change in electricity consump-

tion in both the variance decomposition results (Figures 4A, 4C, and 4E) and the

impulse response analyses (Figures 4B, 4D, and 4F). For example, in Houston, a

1% decrease in the mobility of retail sector results in a 0.78% reduction in electricity

consumption in the steady state. Further, from the impulse response analyses (Fig-

ures 4B, 4D, 4F, S7B, S7D, S7F, and S7H), the electricity consumption is typically

most sensitive to changes in the mobility in the retail sector.

The second finding is that the number of new confirmed COVID-19 cases, although

easy to obtain, may not be a strong direct influence on the change in electricity

consumption. This finding is supported by observations of a low sensitivity of

the electricity consumption to this factor in impulse response results across all cit-

ies Figures 4B, 4D, and 4F. Note that a high proportion of a particular factor in the

variance decomposition may not always mean a high sensitivity to that factor in the

impulse response analysis; therefore, the variance decomposition analysis alone

cannot be used to infer the magnitude of influence of dependent or correlated

influencing factors.40 The low sensitivity of the electricity consumption to the num-

ber of COVID-19 cases in the impulse response analysis, taken together with its

occurrence as an important influencing factor in the variance decomposition,
Joule 4, 2322–2337, November 18, 2020 2329
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Figure 4. Restricted VAR Model Analyses for New York City, Philadelphia, and Houston

(A, C, and E) Variance decomposition (excluding the inertia of the electricity consumption itself) indicating the contribution of different influencing

factors, namely, the daily new confirmed COVID-19 cases, the stay-at-home population, and the population of on-site workers (indicative of social

distancing), and mobility in the retail sector (indicative of commercial electricity loads), to changes in electricity consumption.

(B, D, and F) Dynamical evolution of the reduction in electricity consumption that would result from a unit shock (1% increase or decrease) in one

influencing factor. See also Figure S7.
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indicates that it exerts an indirect influence on the electricity consumption through

other influencing factors (such as social distancing and commercial activity). This

result also partly explains the sharp corner in the trace of New York City’s elec-

tricity consumption in Figure 3C after mid-April, where no immediate growth in

the electricity consumption is observed despite the decrease in number of daily

new confirmed cases.

The third finding is that high sensitivities to some influencing factors may be observed in

cities with a mild overall reduction in electricity consumption. For example, Figure 4F

indicates that the change in electricity consumption in Houston is very sensitive to vari-

ations in the level of commercial activity (mobility in the retail sector), despite themagni-

tude of the change in electricity consumption not being very significant (Table 1). There-

fore, such cross-domain insights that are not readily available from traditional analyses

may need to be considered in evaluating policy decisions pertaining to the electricity

sector. In summary, our findings quantify the dynamics of the interplay between the

rise in the number of COVID-19 cases, increased social distancing, and reduced com-

mercial activity, in influencing electricity consumption in the US.
DISCUSSION

We introduced a timely open-access easy-to-use data hub aggregating multiple

data sources for tracking and analyzing the impact of COVID-19 on the US electricity

sector. The hub will allow researchers to conduct cross-domain analysis on the elec-

tricity sector during and after this pandemic. We further provided the first assess-

ment results with this data resource to quantify the intensity and dynamics of the

impact of COVID-19 on the US electricity sector. This research departs from conven-

tional power system analysis by introducing new domains of data that would have a

significant impact on the behavior of electricity sector in the future. Our results sug-

gest that the US electricity sector, and particularly the Northeastern region, is under-

going highly volatile changes. The change in the overall electricity consumption is

also highly correlated with cross-domain factors, such as the number of COVID-19

confirmed cases, the degree of social distancing, and the level of commercial activity

observed in each region, suggesting that the traditional landscape of forecasting,

reliability, and risk assessment in the electricity sector will now need to be

augmented with such cross-domain analyses in the near future. We also find very

diverse levels of impact in different marketplaces, indicating that location-specific

calibration is critically important.

The cross-domain analysis of the electricity sector presented here can immediately

inform both power system operators and policy makers as follows. Power system

operators can leverage the analysis for short-term planning and operation of the

grid, including load forecasting, and rigorous quantitative assessments of impacts

like renewable energy curtailment41,42 during COVID-19. From a policy-making

perspective, the restricted VAR analysis can be exploited to infer both the key

influencing factors such as the mobility in the retail sector that may not be

apparent from conventional analyses and the varied timescales of top-down (pol-

icy-level) and bottom-up responses (individual-level), driving changes in electricity

consumption.

This work also opens up several directions for future research by incorporating cross-

domain data into the analysis of the electricity sector. For example, vulnerable pop-

ulations like low-income households are facing an increased energy burden due to

COVID-19.43,44 In this context, we are exploring the integration of socio-economic
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data on demographics45 and the social vulnerability index (SVI)46 into the COVID-

EMDA+ data hub. The new cross-domain sources and analysis can then be leveraged

by policy makers to infer the energy burden on such vulnerable populations. The

change in electricity consumption can also be an early indicator of the economic im-

pacts of COVID-19 that are not yet reflected in traditional economic indicators like

the GDP growth rate. Historically, there has been a significant correlation between

electricity use and economic growth over the last four decades.47–49 Leveraging

the cross-domain COVID-EMDA+ data hub, the changes in the electricity sector

may be used by policy makers to provide short-term forecasts of the economic

impact of COVID-19, including the GDP growth rate, and the level of commercial

and industrial activity. The cross-domain restricted VAR analysis can also be

extended to analyze the impact of various policy decisions on the electricity sector,

and consequently, the short-term economic health.

EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Further information and requests for resources and materials should be directed to

and will be fulfilled by the Lead Contact, Le Xie (le.xie@tamu.edu).

Materials Availability

No materials were used in this study.

Data and Code Availability

The COVID-EMDA+ data hub and codes for all the analyses in this paper are publicly

available onGithub17. The supporting teamwill collect, clean, check, and update the

data daily and provide necessary technical support for unexpected bugs. In the Gi-

thub repository, the processed data (CSV format) are shared along with the original

data (CSV format) and their corresponding parsers (written in Python). Several simple

quick start examples are included to aid beginners. The details of the original sour-

ces are shown in Note S4.

Data Aggregation and Processing Methodology

In order to obtain cross-domain insights about the impact of COVID-19 on the

electricity sector, we integrate data from all US electricity markets with other hetero-

geneous data like weather, COVID-19 public health, satellite imagery, and mobile

device location data. The original sources for each dataset are provided in the

Data and code availability section. Although all seven US electricity markets have es-

tablished websites for public information disclosure, their download centers, data-

base structures, and user interfaces differ widely. Further, file formats, definitions,

historical data availability, and documentations are also extremely diverse across

these markets, making it difficult to integrate these data into a unified framework.

The major challenges in integrating data across different electricity marketplaces

are as follows.

(1) Some data are stored in hard-to-find pages without user-friendly navigation

links.

(2) Some data are not packed and collected in an aggregated file for the re-

quested date range. A batch downloader is needed to download these

data files one by one and then aggregate them into the desired single file.

(3) Inconsistent definitions and abbreviations are used among different markets.

The same concepts used by different data categories do not follow the same

terminology even within the same market.
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(4) Geographical information often lacks documentation.

(5) The data quality is not satisfactory. Data redundancy, duplicate data, and

missing data are common problems across all markets.

As shown in Figure S1, we design a processing flowchart to reorganize and harmo-

nize all heterogeneous data sources, following three principles—data consistence,

data compaction, and data quality control, as follows.

Data Consistence

(1) For each source of electricity market files, a specific parser is designed to

transform the data into a standard long table with date and hour indices. After

processing by the parser, raw data from different markets is converted to a

unified format.

(2) Geocoding is adopted to match the geographical scale of electricity market

data, COVID-19 case data, and weather data.

(3) In the final labeling step, all the field names of data files are translated to the

corresponding standard name from a pre-selected name list.

Data Compaction

(1) Redundant data are dropped by parsers, and the packing step transforms the

standard long tables into compact wide tables by pivoting the hour indices as

new columns. Usually, the compact wide table can achieve more than 10x file

compression rate compared with the unprocessed raw files.

(2) COVID-19 case data are aggregated to the scale of market areas.

(3) The minute-level weather observations are re-sampled into an hourly basis to

align with the resolution of market data.

Data Quality Control

(1) Single missing data (most frequent) are filled by linear interpolation.

For consecutive missing data (for example, consecutive missing dates,

which are very rare), data from the EIA, or EnergyOnline are carefully

supplemented.

(2) Outlier data samples are automatically detected when they are out of the pre-

defined reasonable range. Exceptions such as price spikes and negative pri-

ces in LMP data are carefully handled.

(3) Duplicate data are dropped, only the first occurrence of each data sample is

kept.

The detailed flow chart of the data quality control used in the COVID-EMDA+ data

hub is shown in Figure S8.
Ensemble Backcast Model

The ensemble backcast model is used to estimate the electricity consumption profile

in the absence of the COVID-19 pandemic, so that the difference between an

ensemble backcast model and the actual metered electricity consumption can be

used to quantify the impact of the pandemic. A backcast model is expressed as a

function that maps potential factors that may affect electricity consumption level,

including weather variables (such as temperature, humidity, and wind speed), date

of year, and economic prosperity (yearly GDP growth rate) to the estimated

electricity consumption. Given a group of backcast models, ensemble forecasting

is widely recognized as the best approach to provide rich interval information. A

group of backcast models for the daily average electricity consumption can be

described by
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bLmd =
1

N

XN
i = 1

bf i�Cmd ;Tmdq;Hmdq;Smdq;Em

�
; cm;d; (Equation 1)

where Cmd is the calendar information including month, day, weekday, and holiday

flag, bLmd is the estimated daily average electricity consumption for monthm and day

d, bf i is the ith backcast model, Tmdq;Hmdq;Smdq are temperature, humidity, and wind

speed within the selected quantiles q, and Em is the estimated GDP growth rate. We

typically include 25%, 50% (average value), 75%, and 100% (maximum) quantiles,

and the final inputs should be decided based on the data after extensive testing.

With the backcast estimations, the daily reduction in electricity consumption, rmd ,

is calculated as follows,

rmd =

 
1� 1bLmd

,
1

T

XT
t = 1

Lmdt

!
3 100%; cm;d; (Equation 2)

where T = 24 is the total number of hours in one day, and Lmdt is the electricity con-

sumption metered at time t on month m and day d. Equation 2 compares the

ensemble backcast and actual electricity consumption results and can be readily

extended to interval estimations by adjusting the ensemble backcast result.

The detailed procedure adopted here for building the ensemble backcast model is

as follows:

(1) Feature selection: we select calendar information (year-month-day, weekday-

weekend, holiday flag, etc.), weather data (daily average temperature, hu-

midity, wind speed, etc.), and economic conditions (monthly state-wide

GDP) as the input features.

(2) Base model selection: we choose a neural network as the base model and

determine the number of layers and the number of neurons in each layer

that minimize the training error, through a random search over the hyperpara-

meter space. Based on this approach, we find that a four-layer fully connected

neural network with ReLU activation function showed the best performance in

terms of accuracy and robustness.

(3) Model training: we then create a large group of model candidates by chang-

ing the number of neurons in the base model in a pre-defined range. These

model candidates are trained individually by randomly sampling the training

data, wherein 85% of the data points in 2018 and 2020 are randomly selected

as training data, while the remaining 15% are reserved for verification and

evaluation of model performance.

(4) Model validation: the performance of eachmodel is measured by testing over

the verification dataset, which contains 15% of the data points from 2018 and

2020. We calculate the average prediction error of each month and obtain a

1312 vector for each model and use the L2 norm of that vector as the error

metric. This metric prefers thosemodels that have a reasonable prediction ac-

curacy for every month, instead of those that are very accurate in predicting

the load for some months and poor in predicting the load for other months.

We train 800 different models and the top 25% models with the lowest error

metric are selected for the final ensemble backcast model.

In contrast to other algorithms that calibrate weather factors,50 our approach (1) pos-

sesses a high degree of flexibility in incorporatingmore potential influencing factors,

(2) has the ability to capturemore complicated correlations, and (3) gives an accurate

estimation of not only expected value but also the probability distribution of the

forecasted quantity.
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Restricted VAR

VAR37 is a stochastic processmodel that can be used to capture the linear correlation

betweenmultiple time series. Wemodel the dynamics of reduction in electricity con-

sumption using a restricted VAR model of order p as follows:

Xt = C +A1Xt�1 +.+ApXt�p +Et ; (Equation 3)

where

Ai =

26666664
ai1;1 ai1;2 . ai1;n

ai2;1 ai2;2 . ai2;n
« « 1 «

ain;1 ain;2 . ain;n

37777775; Xt =

2666664
x1t
x2t
«

xnt

3777775; C =

2664
c1

c2

«
cn

3775; Et =

2666664
e1
t

e2
t

«

en
t

3777775; (Equation 4)

in which Ai is the regression matrix, x1t represents the target output variable at time t,

namely the reduction in electricity consumption we wish to model, x2t ;.; xnt repre-

sent the selected n� 1 parameter variables including confirmed case numbers,

stay-at-home population, median home dwell time rate, population of on-site

workers, mobility in the retail sector, and etc., C and Et are respectively column vec-

tors of intercept and random errors, and the time notation t � p represents the p-th

lag of the variables.

The full procedure of building the restricted VARmodel mainly contains four steps as

follows, including pre-estimation preparation, restricted VAR model estimation,

restricted VAR model verification, and post-estimation analysis. These steps, out-

lined below, are detailed in Supplemental Methods 1–5.

Pre-Estimation Preparation

(1) Data preprocessing: several datasets are collected to calculate the inputs of

restricted VAR model, including electricity market data, weather data, num-

ber of COVID-19 cases, and mobile device location data. We take logarithms

of several variables, including electricity consumption reduction, new daily

confirmed cases, stay-at-home population, population of full-time on-site

workers, population of part-time on-site workers, and mobility in the retail

sector, while only keeping the original value of the median home dwell time

rate.

(2) Augmented Dickey-Fuller (ADF) test: test whether a time series variable is

non-stationary and possesses a unit root.

(3) Cointegration test: test the long-term correlation between multiple non-sta-

tionary time series.

(4) Granger causality Wald Test: estimate the causality relationship among two

variables represented as time series.

Restricted VAR Model Estimation

(1) Ordinary least square (OLS): we impose constraints on the OLS to eliminate

any undesirable causal relationships between variables.

Restricted VAR Model Verification

(1) ADF test: verify if the residual time series are non-stationary and possess a unit

root.

(2) Ljung-Box Test: verify the endogeneity of the residual data that may render

the regression result untrustworthy.

(3) Durbin-Watson test: detect the presence of autocorrelation at log 1 in the re-

siduals of the restricted VAR model.
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(4) Robustness test: test the robustness of the Restricted VAR model against

parameter perturbations.

Post-Estimation Analysis

(1) Impulse response analysis: describe the evolution of the Restricted VAR

model’s variable in response to a shock in one or more variables.

(2) Forecast error variance decomposition: aid in the interpretation of the

Restricted VAR model by determining the proportion of each variable’s fore-

cast variance that is contributed by shocks to the other variables.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.joule.

2020.08.017.
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Supplemental Figures
Figure S1: Architecture of COVID-EMDA+ data hub
Figure 1 shows the architecture of COVID-EMDA+ data hub, which cross-references information across three categories,
namely, different dates, data types (electricity market, weather, public health, mobile device location, and satellite imagery),
and locations (RTOs or representative cities). Details on data pre-processing and data quality monitoring are described in the
Methods section.
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Figure S1. Architecture of COVID-EMDA+ data hub. (a) Processing flowchart of COVID-EMDA+ data hub. Heterogeneous
data sources are handled, including electricity market, COVID-19 cases, mobile device location data, satellite imagery and
weather data. To coordinate five data sources in the same geographical scales, the geocoding technique is applied to transform
COVID-19 cases and weather data. The entire processing reflects the objective of data consistence, data compaction and data
checking. (b) The architecture contains the date, data category and location dimensions. The main dimension is the date due to
the importance of time-series relationships. Along the main dimension, one can retrieve multiple data slices or spreedsheet
data files. The yellow cubic represents one such load dataset for New York City. (c) Map of the United States representing the
regions of operation of the seven RTOs or electricity markets.



Figure S2: Night Time Light Images in COVID-19 Hotspot Cities
Figure S-2 shows the reduction in night-time light brightness, providing a visual representation of the effect of COVID-19 on
electricity consumption level in major cities, as the drop in light intensity is obvious and significant.

Figure S2. NTL data of 4 major metropolises in the United States. Sub-figures (A) - (D) show the night-time light images
before the outbreak of COVID-19 (Early and mid February); (E) - (H) show the nighttime light images during the pandemic
(Late April).



Figure S3: Comparison of Stay-at-home Population
Figure S-3 depicts a significant increase in the social distancing level indicating the change of people’s mobility amidst the
pandemic, with regional differences based on stringency and effectiveness of stay-at-home policies.
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Figure S3. Increased proportion of stay-at-home population with February 12 being the baseline. All the selected dates are
Wednesdays and non-holidays.



Figure S4: Change of Visits to Points of Interest (POIs)
Figure S-4 visualizes the change of visit patterns to common POIs in four hotspot cities from February 15 to April 25, from
which we can observe that (i) all cities suffered a sudden decline starting from March 13, the issuing date of the national
emergency, and (ii) the extent of the declines have similar characteristics with some regional divergences.
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Figure S4. Normalized number of daily total visits and visits to three selected POIs (restaurant, grocery, health and personal
care) from February 15 to April 25, 2020. The normalized numbers show the relative values of the daily visits with February
15 being the baseline.



Figure S5: Visualization of COVID-19 Cases, Size of Stay-at-home Population and Reduction in Electricity
Consumption
Figure S-5 shows the trace of the reduction in electricity consumption, new confirmed COVID-19 cases, and stay-at-home
population in Boston, Houston and Kansas City, to supplement the result in Figure 3-c of the main body.
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Figure S5. Trace of the reduction in electricity consumption, new confirmed COVID-19 cases and stay-at-home population
in Boston, Chicago, Los Angeles, Houston and Kansas City. The bubble sizes indicate the percentage reduction in electrical
consumption (with larger bubble sizes indicating more reduction in consumption). The number of COVID-19 cases and the size
of the stay-at-home population are smoothed by a weekly moving average to properly extract the trends.



Figure S6: Alternative Visualization of COVID-19 Cases, Size of Stay-at-home Population, and Reduction
in Electricity Consumption
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Figure S6. Trace of the reduction in electricity consumption, number of new confirmed COVID-19 cases, and stay-at-home
population in New York City, Philadelphia, Boston, Chicago, Los Angeles, Houston, and Kansas City. The bubble sizes indicate
the size of the stay-at-home population (with larger bubble sizes indicating a larger stay-at-home population). The number of
COVID-19 cases and the size of the stay-at-home population are smoothed by a weekly moving average to properly extract the
trends.



Figure S7: Additional VAR Analysis Results
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Figure S7. Restricted VAR model analysis for Boston, Chicago, Los Angeles and Kansas City. (a)(c)(e)(g) Variance
decomposition (excluding the inertia of the electricity consumption itself) indicating the contribution of different influencing
factors, namely, the daily new confirmed COVID-19 cases, the stay-at-home population and the population of on-site workers
(indicative of social distancing), and mobility in the retail sector (indicative of commercial electricity loads), to changes in
electricity consumption. (b)(d)(f)(h) Dynamical evolution of the reduction in electricity consumption that would result from a
unit shock (1% increase or decrease) in one influencing factor.



Figure S8: Details of Data Quality Control
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Figure S8. Data quality control mainly includes two aspects: outlier detection and missing data recovery. Backup data and
historical trend are used to achieve both functions. For those that cannot be handled, we record them in the data quality report
as shown in the Github as well.



Figure S9: Google Trends Activity Data
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Figure S9. Relative activity of each category of keywords (indicating the number of COVID-19 cases, number of COVID-19
deaths, number of ICU hospitalizations, and total number of hospitalizations) from Google Trends for each state where the
hotspot cities are located, except for Pennsylvania, as we could not access Google Trends data for that state. Each curve shows
the total weekly activity of all keywords from one category between 01/01/2020 and 06/28/2020. The list of all keywords
associated with each category is collected using the Google Trend feature "relate-queries". The resolution of the Google Trends
data is only up to 1%. The Google search activity associated with both the ICU and hospitalization categories of keywords
is typically less than 1% compared to the activity of the number of new cases, which resulted in both these curves being
mostly zero. The plot shows that number of COVID-19 cases and deaths are the two most searched factors, while ICU and
hospitalization statistics received very little attention in comparison.



Figure S10: Trend Transition of Cross-domain Variables
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Figure S10. Trend transition of cross-domain variables. First, we calculate the trend of each variable by eliminating the
periodical pattern. The algorithm we choose is tsa.seasonal.seasonal_decompose from the Statsmodels package in Python.
The seasonal component is first removed by applying a convolution filter to the data. The average of this smoothed series for
each period is the returned trend. Further we make an assumption that there is only one transition period for each variable
transferring from one steady stage to another. Based on this assumption, we determine the beginning and end of the transition
period. The beginning of the transition period is defined as the latest day on which the trend value is closest to the average
value of all the days before. Similarly, we select as the end of the transition period the earliest day on which the trend value
is closest to the average value on all following days. Note that the population of on-site workers is one exception in terms
of determining the beginning of its transition period, due to one roller-coaster period in the early stages. Therefore, for the
population of on-site workers, we determine the beginning of the transition period as the earliest day when the trend value is
lower than the previous valley.



Table S1: Restricted VAR Model Parameters

City Start Date End Date Lags Rule
Boston 03/25 05/21 4 2
Chicago 04/06 05/27 4 2
Houston 04/08 06/28 6 2
Kansas 03/26 06/03 4 2
Los Angeles 03/23 05/23 4 2
New York City 03/24 06/28 6 2
Philadelphia 03/24 06/06 6 2

Table S1. Hyperparameters for the restricted VAR models of each city. Start and end date refer to the time range of the
training data. Lags refer to the order of the restricted VAR models. Please see the definition of the Rule 2 in the Method S5.



Table S2: VAR Statistical Test Results

City Test Load Reduc-
tion

COVID-19
daily con-
firmed cases

Stay-at-home
population

On-site worker
population

Retail mobility

Boston

ADF test 0.001 0.000 0.001 0.000 0.016
Cointegration True
LB test 0.872 0.954 0.594 0.622 0.922
DW test 2.073 1.956 1.940 2.220 1.899
Stability True

Chicago

ADF test 0.000 0.000 0.000 0.000 0.000
Cointegration True
LB test 0.879 0.991 0.609 0.472 0.756
DW test 1.836 1.985 2.043 1.729 2.174
Stability True

Houston

ADF test 0.000 0.000 0.027 0.001 0.001
Cointegration True
LB test 0.863 0.997 0.873 0.895 0.738
DW test 1.798 1.758 1.979 2.010 1.743
Stability True

Kansas

ADF test 0.017 0.000 0.051 0.000 0.107
Cointegration True
LB test 0.793 0.927 0.893 0.935 0.364
DW test 2.065 2.117 2.053 2.200 2.326
Stability True

Los Angeles

ADF test 0.016 0.000 0.051 0.000 0.107
Cointegration True
LB test 0.934 0.966 0.978 0.703 0.834
DW test 1.987 1.898 2.089 2.107 1.936
Stability True

New York City

ADF test 0.000 0.026 0.000 0.000 0.001
Cointegration True
LB test 0.932 0.979 0.867 0.973 0.873
DW test 1.912 2.000 1.953 1.948 1.988
Stability True

Philadelphia

ADF test 0.009 0.012 0.000 0.000 0.062
Cointegration True
LB test 0.567 0.972 0.784 0.852 0.409
DW test 1.808 2.115 2.044 2.133 2.056
Stability True

Table S2. Statistical test results of the restricted VAR model of each city, including Augmented Dicket-Fuller (ADF),
cointegration, Ljung-Box (LB), Durbin-Watson (DW), and stability tests. Note that this table shows the p values of the ADF
and LB tests, the statistics value of the DW test, and the True/False value of the cointegration and stability test. Here, the
cointegration test result being True means that there is no variable having cointegration. The stability test result being True
means that the Restricted VAR model is stable.



Table S3: Availability and Correlation Test of COVID-19 Public Health Metrics

City Data Availability Mean Value Quantiles Correlation Coefficient
25% 50% 75% with Confirmed Case Data

New York City Confirmed Case X 1789.58 384.75 1025.00 2892.50 1.000
Death X 191.80 24.75 63.00 304.25 0.902

Hospitalization X 447.85 51.25 197.50 662.00 0.872
Philadelphia Confirmed Case X 214.85 8.25 162.00 332.25 1.000

Death X 13.27 0.00 6.50 18.00 0.615
Hospitalization × — — — — —

Boston Confirmed Case X 164.95 31.75 106.00 268.00 1.000
Death X 8.37 0.00 4.00 9.00 0.418

Hospitalization × — — — — —
Chicago Confirmed Case X 961.40 507.50 915.50 1392.75 1.000

Death X 50.53 29.75 47.00 67.25 0.557
Hospitalization X 1278.74 987.75 1400.50 1612.50 0.815

Los Angeles Confirmed Case X 815.98 332.75 806.50 1255.00 1.000
Death X 27.54 7.50 25.00 45.00 0.551

Hospitalization × — — — — —
Houston Confirmed Case X 243.97 56.00 170.00 289.00 1.000

Death X 3.09 0.00 2.00 5.00 0.494
Hospitalization × — — — — —

Kansas City Confirmed Case X 18.26 2.00 12.00 27.00 1.000
Death X 0.67 0.00 0.00 1.00 0.097

Hospitalization × — — — — —

Table S3. Availability of different COVID-19 metrics in various hotspot cities and their correlation with COVID-19 confirmed
case data.



Table S4: Statistical Tests of Restricted VAR Models Using Different COVID-19 Indicator Variables

City Model BIC AIC Explainable Rate Impulse Response-I Impulse Response-II
New York City RVAR-C -19.012 -23.289 43.6% Negative Positive

RVAR-D -18.729 -23.122 44.1% Positive Positive
RVAR-H -19.499 -23.776 36.1% Negative Positive

Philadelphia RVAR-C -16.548 -21.733 43.4% Negative Positive
RVAR-D -14.853 -20.038 47.7% Negative Positive

Chicago RVAR-C -16.978 -20.675 26.1% Negative Positive
RVAR-D -16.217 -19.914 24.4% Negative Positive

RVAR-H1 -20.571 -24.548 28.7% Negative Positive
RVAR-H2 -20.435 -24.132 15.6% Negative Positive

Los Angeles RVAR-C -14.162 -17.827 35.5% Negative Positive
RVAR-D -13.387 -17.084 32.7% Negative Positive

RVAR-C: Restricted VAR model using the number of confirmed cases
RVAR-D: Restricted VAR model using the number of deaths
RVAR-H / RVAR-H1: Restricted VAR model using the number of hospitalizations
RVAR-H2: Restricted VAR model using the ICU occupancy numbers

Table S4. Statistical results of restricted VAR models with different COVID-19 indicator variables. BIC and AIC are two
information criteria that capture the model performance, as described in supplemental S5; a model with a lower value of
AIC and BIC performs better. the explainable rate shows how much of the variance in the electricity consumption can be
explained by influencing factors other than its own trend. Impulse response-I is the electricity consumption change in response
to COVID-19 related factors; a negative value means that the electricity consumption drops when this factor increases. Impulse
response-II is the electricity consumption change in response to the mobility in the retail sector.



Supplemental Experimental Procedures
Note S1: Description of the Night-Time Light Dataset
Recent progress in on-board sensors and data processing algorithms for remote sensing satellites has opened up many
opportunities for monitoring and analyzing human activities on the surface of the Earth and characterizing the impact of human
activities on the environment, using satellite data on emission, radiation, atmosphere, vegetation, and water bodies. Among the
wide range of available data, Night-Time Light (NTL) has been well recognized as a valuable and unique source of data for
understanding the changes in human footprints and economic dynamics1. For our study, the NASA VNP46A1 "Black-Marble"2

dataset is selected as the data source for its high resolution, public availability and daily update. VNP46A1 is collected by the
NASA Suomi NPP sun-synchronous remote sensing satellite3 which has a orbiting period of 101.44 minutes. This satellite
measures the surface light radiation at a constant resolution of 500 meter per sample and samples daily at around local time
mid-night for every location across the globe. This dataset has been used in power system studies from the perspectives of
outage detection4 and grid restoration5.

The NTL dataset is used in this study as a tool for visualizing the impact of COVID-19 on electricity consumption. We note
that we only use the satellite image data for illustration and visualization, but not for numerical analysis, because the sampling
frequency of satellite images is too low in comparison to the other data sources we use. Each location is sampled only once per
day and most samples are contaminated by the presence of clouds that block the light over the area we are interested in. Further,
since a valid and informative satellite image sample must be taken when the sky is mostly clear of cloud, the frequency of valid
data is even lower.

We conduct a comparative study of the impact of COVID-19 on artificial nightlights for representative metropolises in
different RTO regions. Specifically, we focus on the cities of Boston, New-York City, Los Angles, and Houston. For each
city we select a typical day in both February (before the COVID-19 outbreak) and in April (during the outbreak). The two
representative snapshots selected for each city are taken from the same day-of-week and time-of-day, when the sky is clear of
cloud.

The raw at-sensor-Day-Night Band (DNB) data is pre-processed using the following procedures to reduce disturbances:

1. Manually locate the rectangle containing the targeted city on the tile-level NTL dataset.

2. Scan the raw data for abnormal pixels (indicated by a pixel-level Quality Flag), and approximate it by taking the average
of neighboring pixels.

3. Scale every pixel using the corresponding moon illumination fraction and pixel-level lunar angles of that day to reduce
disturbances from the moon.

4. Set pixels that have extremely low light intensity (< 10 nW · cm−2 · sr−1) to 0, to eliminate random ambient noises.

5. Apply a 5x5 low-pass kernel filter to smooth the image.

6. Map the light intensity values of each pixel to color using a colormap and plot on axis.

The processed NTL images are presented in supplemental Figure S1. The reduction in night-time light brightness provides a
visual representation of the effect of COVID-19 on electricity consumption level in major cities, as the drop in light intensity is
obvious and significant.



Note S2: Description of the Mobile Device Location Dataset
The original mobile device location dataset is obtained from SafeGraph6, 7, a data company that aggregates anonymized GPS
location data from numerous applications by census block group in order to provide location information. The original dataset
contains two major sub-datasets: (i) social distancing metrics and (ii) pattern of visits to Points of Interest (POIs).

Social Distancing Metric
The social distancing metric dataset is generated using a panel of GPS signals from anonymous mobile devices. Note that
"home" is defined as the common nighttime location of each mobile phone over a 6 week period, and part-time and full-time
workplaces are defined as the non-home locations where users spend from 3−6 hours and ≥ 6 hours respectively between 8
am and 6 pm in local time.

The following are the features selected for our analysis:

• Basic Information: (i) unique 12-digit FIPS code for the Census Block Group; (ii) start and end time for the measurement
period (namely 24 hours); (iii) count of devices whose homes are in the Census Block Group.

• Completely Stay-at-home Device Count: the number of devices that never leave "home" during the measurement
period, out of the total count of devices in the Census Block Group.

• Median Home Dwell Time: the median dwell time at "home" in minutes during the measurement period, for all devices
in the Census Block Group.

• Part-time Work-on-Site Device Count: the number of devices that go to part-time workplaces during the measurement
period, out of the total count of devices in the Census Block Group.

• Full-time Work-on-Site Device Count: the number of devices that go to full-time workplaces during the measurement
period, out of the total count of devices in the Census Block Group.

We aggregate the daily social distancing data by county. Denote the total count of the completely stay-at-home devices in a
county as C1, the median value of the median home dwell time in a county as C2, the total count of the part-time work-on-site
devices in a county as C3, the total count of the full-time work-on-site devices in a county as C4 and the total count of devices in
a county as C. Then, we define C1/C, C2/1440, C3/C, and C4/C as the county-level "completely stay-at-home rate", "home
dwell time rate", "part-time work-on-site rate" and "full-time work-on-site rate" respectively, which will be used for the
restricted VAR model.

Visit Pattern of POIs
The pattern dataset is a place traffic and demographic data aggregation available for about 4 million POIs that contains the
frequency of visits to various POIs, the dwell time, the residence location of visitors, etc.

The following are the features selected for our analysis:

• Basic Information: (i) the unique and consistent ID tied to each POI; (ii) name of the POI; (iii) physical address; (iv)
postal code; (v) brand; (vi) start and end time for measurement period (about one week) in local time; (vii) associated
category of the POI.

• Visits by Day: the number of visits to the POI each day over the covered time period.

The daily pattern data for "retail" POIs are collected as defined in Note S3. We aggregate and sum up the total number of
daily visits by county, which will be used as "retail mobility" data in the restricted VAR model.

We also make the following note regarding biases in the SafeGraph data set. SafeGraph officially answers questions about the
bias of the dataset8, 9 as follows. SafeGraph Patterns measures foot-traffic patterns to 3.6 million commercial points-of-interest
from over 45 million mobile devices in the United States, which are about 10% of devices in the U.S. SafeGraph explores
sampling bias on several dimensions including geographic (state/county/census block group) and demographic (race/educational
attainment/household income) perspectives. The quantitative analysis results9 show that the dataset is nearly unbiased in the
mentioned aspects.



Note S3: Definition of "Retail" Data Used in Restricted VAR Model
The "retail" data refers to aggregation of several categories of POIs from the “pattern of visits to POIs” dataset7. We select the
following 25 categories among a total of 168 POIs as indicators of mobility in the retail sector:

1. Automobile Dealers

2. Automotive Parts, Accessories, and Tire Stores

3. Beer, Wine, and Liquor Stores

4. Book Stores and News Dealers

5. Clothing Stores

6. Department Stores

7. Drinking Places (Alcoholic Beverages)

8. Electronics and Appliance Stores

9. Florists

10. Furniture Stores

11. Gasoline Stations

12. General Merchandise Stores, including Warehouse Clubs and Super-centers

13. Grocery Stores

14. Health and Personal Care Stores

15. Home Furnishings Stores

16. Jewelry, Luggage, and Leather Goods Stores

17. Lawn and Garden Equipment and Supplies Stores

18. Office Supplies, Stationery, and Gift Stores

19. Other Miscellaneous Store Retailers

20. Other Motor Vehicle Dealers

21. Restaurants and Other Eating Places

22. Shoe Stores

23. Specialty Food Stores

24. Sporting Goods, Hobby, and Musical Instrument Stores

25. Used Merchandise Stores



Note S4: Data Sources for the COVID-EMDA+ Data Hub
The original data sources for the COVID-EMDA+ data hub are as follows.

• Electricity market data: Data pertaining to load, generation mix and day-ahead locational marginal price (LMP) are
obtained from the California (CAISO)10, Midcontinent (MISO)11, New England (ISO-NE)12, New York (NYISO)13,
Pennsylvania-New Jersey-Maryland Interconnection (PJM)14, Southwest Power Pool (SPP)15, and the Electricity
Reliability Council of Texas (ERCOT)16. Electricity market data from the Energy Information Administration (EIA)17

and EnergyOnline company18 is used to improve quality and fill in missing data.
Purpose: This data has conventionally been used in power system load forecasting and analysis to understand changes in
electricity consumption.

• Weather data: The original weather data are obtained from the Iowa State University19. Various kinds of weather data
(temperature, relative humidity, wind speed and dew temperature) are collected from Automated Surface Observing
Systems (ASOS) stations that are supported by the National Oceanic and Atmosphere Administration (NOAA), and
can be extracted through an interactive website19. Note that typical ASOS stations are selected with consideration of
geographical distribution and missing data rate. We select two to three stations for each market area, whose average
missing data rates are below 0.5%.
Purpose: We integrate weather and economic data (state-level seasonally adjusted GDP growth rate) to estimate an
accurate baseline electricity consumption profile taking into account weather, calendar, and economic factors, against
which the impact of COVID-19 will be quantified.

• Satellite imagery data: In our study, the NASA VNP46A1 "Black-Marble"2 dataset is selected as the source of satellite
imagery data for its high resolution, public availability and daily update. VNP46A1 is collected by the NASA Suomi NPP
sun-synchronous remote sensing satelite3 which has an orbiting period of 101.44 minutes. This satellite measures the
surface light radiation at a constant resolution of 500 meter per sample and samples daily at around local time mid-night
for every location across the globe.
Purpose: We integrate satellite data (NTL data) as a tool for intuitive visualization of the impact of COVID-19 on
electricity consumption, especially in large urban and commercial centers.

• COVID-19 public health data: The original sources of confirmed COVID-19 case numbers and deaths is the John
Hopkins University dataset20, which contains county-level confirmed case and death numbers from January 22, 2020
(first U.S. case) onwards.
Purpose: In order to directly assess the impact of the pandemic on electricity consumption, we integrate public health data
on COVID-19 cases. However, the increase in COVID-19 cases indirectly influences electricity consumption through
factors like social distancing and shut down of commercial activity, that may not be captured solely using COVID-19
case data for electricity consumption analysis.

• Mobile device location data: The original mobile device phone location dataset is derived from SafeGraph6, 7, a data
company that aggregates anonymized GPS location data from numerous applications by census block group in order to
provide insights about physical locations. The whole original dataset contains two major subdatasets: (i) social distancing
metric and (ii) pattern of visits to Points of Interest (POIs). In the social distancing metric dataset, "home" is defined as
the location of users at midnight, and "full-time workplace" is defined as the non-home location at which users spend
more than 6 hours during daytime. The pattern dataset mainly contains (i) base information of POIs of 168 categories,
including location name, address, brand association, etc., and (ii) information of daily visits and dwell time in POIs.
Purpose: The rise in the number of COVID-19 cases indirectly influences electricity consumption through changes in
individual behavior (social distancing), as well as policy-level changes (work-from-home or stay-at-home orders). We
include mobile device location data to capture these influencing factors using two metrics - the stay-at-home population
and the population of on-site workers (indicative of the social distancing level), and the mobility in the retail sector,
indicative of the level of commercial activity.

Taken together, these cross-domain sources provide a more complete picture of the influencing factors and their complex
multi-dimensional relationship that contributes to the changes in electricity consumption observed during COVID-19.



Note S5: Remarks on Choice of Restricted VAR Model Parameters - Cases v.s. Hospitalizations/Deaths
We first note the number of hospitalizations or deaths may be substituted for the number of COVID-19 cases without any
change in the key findings (see supplemental Table S4). However, we choose to calibrate the restricted VAR model with the
number of confirmed cases (rather than deaths or hospitalizations) for the following reasons:

• First, the data on the number of COVID-19 cases is much easier to collect compared to other data such as the number of
hospitalizations and ICU occupancy. The most comprehensive COVID-19 databases including John Hopkins University,
the COVID Tracking Project, and the 1Point3Acres COVID Tracker only provide state-level hospitalization data. County-
level data must be individually collected from the numerous county health department websites, and the availability of
this data is not guaranteed. Further, among the seven hotspot cities that we focus on, only New York City and Chicago
have such city-level data available.

• Second, the number of deaths, while being more accurately reported than the number of COVID-19 cases, is a significantly
delayed indicator; therefore, behavioral responses influencing electricity consumption may have already occurred in
response to a rise in COVID-19 cases, before they are reflected in the number of deaths. Further, the number of deaths in
some cities (Boston, Houston and Kansas City) are too small to be suitable for our statistical analysis (supplemental
Table S3).

• Third, under-reporting or inaccuracies in the reported number of COVID-19 cases are not of much concern in this model,
since changes in electricity consumption are typically due to on individual and policy-level responses to the observed
(reported) information. In fact, an analysis of the number of COVID-19 cases using Google Trends (supplemental
Figure S9) shows that was the number of COVID-19 cases was the most searched COVID-19 related keyword, occurring
more than twice as often as COVID-19 deaths, indicating that the number of cases is a key factor in influencing the
behavioral changes (social distancing and mobility), that result in changes in electricity consumption (Note that searches
for COVID-19 hospitalizations and ICU occupancy were insignificant in comparison to the case numbers and deaths).

• Last and most importantly, the modelling accuracy using the number of confirmed COVID-19 cases is sufficiently high
from a statistical point of view. Further, we note that the core conclusions of the VAR model calibrated with the number
of deaths, hospitalizations, or ICU occupancy data (supplemental Tables S3 and S4) are essentially the same as those
derived from the VAR model calibrated with COVID-19 case data. Moreover, using the number of deaths instead of
the number of confirmed cases resulted in a lower fitting accuracy and potentially irregular impulse response directions
(See RVAR-D in supplemental Table S4). While the calibration of the VAR model with the number of hospitalizations
resulted in higher accuracy, especially in Chicago, the model results are similar to those obtained by calibrating the VAR
model using the number of confirmed cases.

Therefore, in summary, we choose the number of confirmed cases as the metric to capture the severity of the pandemic due to
its high availability, popularity and modelling performance.



Method S1: Pre-estimation Preparation
The Statsmodels21 module in Python is used to implement the estimation of coefficients in the restricted Vector Autoregression
(VAR) model and the corresponding statistical tests and analyses. We describe the key steps in estimating and verifying the
restricted VAR model as follows.

Data Pre-Processing
Collecting electricity market data, weather data, COVID-19 public health data, mobile device location data, we pre-process the
following variables as input candidates for the restricted VAR model:

• Load Reduction: Logarithm of the amount of load reduction (MW) - samples with negative reduction (increase) are
dropped for consistency.

• New Daily Confirmed Cases: Logarithm of the original count.

• Stay-at-home Population: Logarithm of the number of devices that stay at home completely.

• Median Home Dwell Time Rate: Median value of the home-dwelling time of sampled population.

• Population of Full-time On-site Workers: Logarithm of the net number of full-time on-site workers.

• Population of Part-time On-site Workers: Logarithm of the number of part-time on-site workers.

• Mobility in the Retail Sector: Logarithm of the number of visitors to retail locations as defined in Note S3.

Augmented Dicket-Fuller Test
The stationarity of time-series data is a prerequisite to calibrate a vector autoregression (VAR) model. Therefore, the Augmented
Dickey-Fuller (ADF) test22, a commonly used unit root test, is used to test whether a time-series variable is non-stationary
and possesses a unit root. The Augmented Dickey-Fuller test is carried out for each of the multiple time-series data that are
candidate variables for restricted VAR model estimation. Each time-series is differenced to improve stationarity.

Cointegration Test
The cointegration test23 is used to test the long-term correlation between multiple non-stationary time-series. In addition to
the ADF test which tests the stationarity of each de-trended input time-series, a cointegration test is used to detect potential
long-term correlation among the original inputs, which is signified by the presence of cointergation. If cointegration is detected,
the selected tuple of input time-series is not appropriate for restricted VAR modelling and needs to be dropped.

Granger Causality Wald Test
Granger causality24 is a probabilistic method to estimate the causality relationship among two variables represented as time-
series. The key intuition behind the Granger Causality test is the assumption that future events cannot have causal effects on the
past. To study the causality relationship between two variables, x and y, we test if the lagged series xt−n,n ∈ Z+ will affect
the current value yt for each time-step t, as concurrent and future values xt+n,n ∈ Z cannot affect yt . The Granger Causality
test is used to estimate the causal relationship between selected time-series variables shifted by the appropriate lag values. If
significant counter-logical casual relationships are identified, we impose constraints on restricted VAR modeling such that the
causalities are eliminated in the final restricted VAR model.



Method S2: Restricted VAR Model Estimation
After verifying the input variable time-series using the statistical tests described in Method S1, we have a set of de-trended
stationary input time-series that do not have long-term correlation among them. We model the dynamics of load reduction as a
Vector Autoregression (VAR) model of order p as follows:

Xt =C+A1Xt−1 + · · ·+ApXt−p +Et , (1)

where

Ai =


ai

1,1 ai
1,2 . . . ai

1,n
ai

2,1 ai
2,2 . . . ai

2,n
...

...
. . .

...
ai

n,1 ai
n,2 . . . ai

n,n

 , Xt =


x1

t
x2

t
...

xn
t

 , C =


c1

c2

...
cn

 , Et =


e1

t
e2

t
...

en
t

 , (2)

in which C and Et are respectively column vectors of intercept and random errors, x1
t represents the target output variable at

time t, namely the load reduction amount we wish to model, x2
t , ...,x

n
t represent the selected n−1 parameter variables including

the number of COVID-19 cases, completely stay-at-home rate, median home dwell time rate, etc, and the time notation t− p
represents the p-th lag of the variables. The coefficients ak

i, j are calculated separately for each variable using the Ordinary Least
Square (OLS) estimator:

xi
t = ∑

j,k
ak

i, jx
t−k
j + ci. (3)

Then, we can aggregate and concatenate all ak
i, j to obtain the regression matrix Ak, 0≤ k ≤ p.

If the result from the Granger causality test suggests that there may exist undesirable causal relationships between variables,
we can impose constraints on the OLS to eliminate such relationships from appearing in the restricted VAR model. For example,
if the Granger test suggests that variations in load reduction could be a causation of change in the stay-at-home population,
which is intuitively illogical, we can restrict the corresponding entries of the VAR model coefficient matrices that describe such
a relationship to zero during the OLS computation. With this Restricted VAR model, we ensure that the final model does not
include unwanted relationships between parameter variables.



Method S3: Restricted VAR Model Verification
To verify the restricted VAR model, we need to guarantee stationarity, non-autocorrelation, and normality of the residual data,
which is defined as

et = xt −
k

∑
i=1

Âixt−i− c, (4)

where et and xt are the residuals and observation vectors respectively on day t, k is the user-defined maximum lag, namely the
order of the restricted VAR model, and {Âi}k

i=1 are the estimated coefficient matrices derived from the estimated restricted
VAR model.

Augmented Dicket-Fuller Test for Residual Stationarity
In addition to verifying the stationarity of the input time-series data in Method S1, the ADF test is also used to check if the
residual data are non-stationary and possess a unit root.

Ljung-Box Test for Residual Autocorrelation
The endogeneity of the residual also needs to be verified, since the existence of endogeneity may render the regression result
untrustworthy. Therefore, the Ljung-Box test25, 26 is used to test whether any of a group of autocorrelations of the residual
time-series are different from zero. In this test, the null hypothesis is that the data are independently distributed while the
alternative hypothesis is that the data are not independently distributed and exhibit serial correlation. The test statistic26 is

defined as Q = n(n+2)∑
h
i=1

ρ2
i

n−i , where n is the number of residual data, h is the number of lags selected to be 40, and ρi is
the sample autocorrelation value at lag i. With significance level 5%, the critical region for rejection of the null hypothesis is
Q > χ2

0.95,h.

Durbin-Watson Test for Residual Autocorrelation
The Durbin-Watson statistic27 is another test statistic used to detect the presence of autocorrelation at lag 1 in the residuals of
the restricted VAR model. The null hypothesis is that the residuals are serially uncorrelated while the alternative is that they
come from a first order autoregression process.

Stability Test
The stability test is essentially a unit root test, by calculating the eigenvalues of the Restricted VAR model. We say that a
Restricted VAR model is stable if the absolute values of all eigenvalues are equal to or less than 1.

Robustness Test for Parameter Stability
The final step of examining a restricted VAR model is to test its robustness against parameter perturbations. The robustness of a
given restricted VAR model is established by slightly changing each input parameter and perform the statistical tests such as
AIC. We select the best model by considering the trade-off between robustness and accuracy and pick a model that has the best
validation accuracy while demonstrating robustness in the test results.



Method S4: Post-estimation Analysis
With a restricted VAR model that passes all statistical tests, we need to analyze and interpret the results of the model. We
perform the following analyses on the restricted VAR model.

Impulse Response Analysis
Impulse response analysis28 is an important step to describe the evolution of a restricted VAR model’s variable in reaction to a
shock in one or more variables.

For the p-th order restricted VAR model of the form

xt = c+A1xt−1 + · · ·+Apxt−p + et , (5)

where xt , c and et are n dimensional column vectors, Ai is p× p dimensional matrix. In the impulse response analysis, we set
the impulse response function R(t) as

R(t) =
p

∑
i=1

Ai ·R(t− i), (6)

with R(0) = [0, . . . ,1, . . . ,0]T in which only one user-defined element equals to 1.
It is particularly useful to consider the impulse response function as a predictive indicator that can forecast the dynamic

behavior of electricity consumption in response to a change in any exogenous influencing factor, given a certain initial state.
For example, suppose we have another model describing how public health policies impact social mobility, we can further
combine these two models and simulate the impacts of public policies on the electricity consumption.

Forecast Error Variance Decomposition
Forecast error variance decomposition (FEVD)29 is used to aid in the interpretation of the estimated restricted VAR model by
determining the proportion of each variable’s forecast error variance that is contributed by shocks to the other variables.

For the p-th order restricted VAR model in the form

xt = c+A1xt−1 + · · ·+Apxt−p + et , (7)

where xt , c and et are n dimensional column vectors, Ai is p× p dimensional matrix. Then, it can be reformulated as

Xt =C+AXt−1 +Et , (8)

where
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and In is a n×n identity matrix, A is a np×np matrix, and Xt , C and Et are np dimensional column vectors.
The mean square error of the h-step forecast of the i-th variable can be calculated as

MSE[xi(h)] = [
h−1

∑
j=0

Φ jΣeΦ
T
j ](i,i), (10)

where Σe is the covariance matrix of et , Φ j = JA jJT , J = [In, 0, . . . , 0]k×kp, A j is the j-th order power of A matrix, and
(i, i) denotes the i-th diagonal element of the matrix.

Further, for the forecast error variance decomposition, wi j(h) is defined to represent the proportion of forecast error variance
of the i-th variable at the h-th step accounted for by the shock to the j-th variable, that is,

wi j(h) =
∑

h−1
k=0(e

T
i Bke j)

2

MSE[xi(h)]
, (11)

where ei is the i-th columns of the identity matrix In×n, Bk =ΦkP, and P is a lower triangular matrix in the Cholesky factorization
of Σe such that Σe = PPT .



Method S5: Restricted VAR Model Selection
The aforementioned methods compute the coefficients of a restricted VAR model that is statistically robust. However, there is
no explicit rule for selecting the parameter variables and the range of the training data. A numerical search on the parameter
space is performed for each city to determine the optimal parameters. A list of parameters we use for iterative search is listed
below.

• Time-series from EMDA dataset used as input variables: [x1, ...,xn]

• Date range of training data: [T1,T2]

• Order of the Restricted VAR model: p, ranging from 1 to 7

• Rule to determine whether to set a Restricted VAR coefficient to 0: r

Note that we have the following three rule candidates:

1. Set 0 all coefficients (except for the first row) in the first column of each matrix in the Restricted VAR model.

2. In addition to the Rule 1, set the corresponding coefficients to 0 if the Granger Causality Wald Test suggests that the p
value between two variables is over 0.1.

3. In addition to the Rule 1, set the corresponding coefficients to 0 if the Granger Causality Wald Test suggests that the p
value between two variables is over 0.05.

For each combination of possible parameters, the procedures described in supplemental Methods S1,2,3,4 are performed to
examine feasibility and quantify the numerical performance. After searching the parameter space, we determine the optimal
combination of parameters according to the Akaike Information Criterion (AIC)30 and Bayesian Information Criterion (BIC)31.
An ideal model should have low AIC and BIC value, and be able to to explain a large proportion of the variance in load
reduction, while at the same time ensuring that the signs of the trends (increase/decrease) of all impulse responses are as desired.
The complete process of searching for the restricted VAR model is presented in Algorithm 1:

Algorithm 1: Iterative Search for VAR Parameters
Load complete training dataset into memory
Compute all np possible parameters combinations {[x1, ...,xn], [T1,T2], p, [d1,d2],r}
for parameter set i = 0 to np do

Difference the raw time-series array
Verify stationarity using ADF test
Test for cointegration
Perform Granger casuality test
Establish corresponding constraints for VAR computation
Solve Restricted VAR using OLS and obtain coefficient matricies
Test for model stationarity and residual autocorrelation
Quantify model performance using AIC and BIC information criteria

end for
Choose optimal parameter combinations and finalize model



Supplemental References
1. Zhao, M., Zhou, Y., Xuecao, L., Cao, W., He, C., Yu, B., Li, X., Elvidge, C., Cheng, W., and Zhou, C. (2019). Applications

of satellite remote sensing of nighttime light observations: Advances, challenges, and perspectives. Remote Sensing 11, 11.

2. Román, M.O. (2019). Black marble user guide version 1.0 (NASA).

3. National Aeronautics and Space Administration (2020). Npp mission overview (NASA).

4. Wang, Z., Román, M.O., Sun, Q., Molthan, A.L., Schultz, L.A., and Kalb, V.L. (2018). Monitoring disaster-related power
outages using nasa black marble nighttime light product (ISPRS).

5. Román, M.O., Stokes, E.C., Shrestha, R., and et. al (2019). Satellite-based assessment of electricity restoration efforts in
puerto rico after hurricane maria (PLoS ONE).

6. SafeGraph (2020). Social distancing metrics (Available: https://docs.safegraph.com/docs/
social-distancing-metrics [Online]).

7. SafeGraph (2020). Weekly patterns (Available: https://docs.safegraph.com/docs/weekly-patterns
[Online]).

8. SafeGraph (2020). What about bias in the safegraph dataset (SafeGraph, Available: https://www.safegraph.com/
blog/what-about-bias-in-the-safegraph-dataset [Online]).

9. SafeGraph (2020). Quantifying sampling bias in safegraph patterns (SafeGraph, Available: https:
//colab.research.google.com/drive/1u15afRytJMsizySFqA2EPlXSh3KTmNTQ#sandboxMode=
true&scrollTo=-FN0mq8qH3xJ [Online]).

10. California Independent System Operator (2020). California ISO open access same-time information system site (Available:
http://oasis.caiso.com/mrioasis/logon.do [Online]).

11. Midcontinent Independent System Operator (2020). MISO market reports (Available: https://www.misoenergy.
org/markets-and-operations/real-time--market-data/market-reports [Online]).

12. Independent System Operator New England (2020). Market and operations: ISO express (Available: https://www.
iso-ne.com/markets-operations/iso-express [Online]).

13. New York Independent System Operator (2020). Energy market and operational data (Available: https://www.nyiso.
com/energy-market-operational-data [Online]).

14. Pennsylvania-New Jersey-Maryland Interconnection (2020). PJM data miner 2 (Available: https://dataminer2.
pjm.com/list [Online]).

15. Southwest Power Pool (2020). Operational data (Available: https://marketplace.spp.org/groups/
operational_data [Online]).

16. Electric Reliability Council of Texas (2020). Grid information (Available: http://www.ercot.com/gridinfo
[Online]).

17. Energy Information Administration (2020). Hourly electric grid monitor (Available: https://www.eia.gov/beta/
electricity/gridmonitor/dashboard/electric_overview/US48/US48 [Online]).

18. EnergyOnline (2020). Industry data (Available: http://www.energyonline.com/data/ [Online]).

19. Iowa State University (2020). Iowa environmental mesonet: ASOS-AWOS-METAR data download (Available: https:
//mesonet.agron.iastate.edu/request/download.phtml [Online]).

20. Dong, E., Du, H., and Gardner, L. (2020). An interactive web-based dashboard to track COVID-19 in real time. The
Lancet Infectious Diseases .

21. Perktold, Josef and Seabold, Skipper and Taylor, Jonathan (2020). Statsmodels (Available: https://www.
statsmodels.org/stable/index.html [Online]).

22. Dickey, D.A. and Fuller, W.A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal
of the American statistical association 74, 427–431.

23. Engle, R.F. and Granger, C.W.J. (1987). Co-integration and error correction: Representation, estimation, and testing.
Econometrica 55, 251–276.

24. Granger, C. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37,
424–38.

https://docs.safegraph.com/docs/social-distancing-metrics
https://docs.safegraph.com/docs/social-distancing-metrics
https://docs.safegraph.com/docs/weekly-patterns
https://www.safegraph.com/blog/what-about-bias-in-the-safegraph-dataset
https://www.safegraph.com/blog/what-about-bias-in-the-safegraph-dataset
https://colab.research.google.com/drive/1u15afRytJMsizySFqA2EPlXSh3KTmNTQ#sandboxMode=true&scrollTo=-FN0mq8qH3xJ
https://colab.research.google.com/drive/1u15afRytJMsizySFqA2EPlXSh3KTmNTQ#sandboxMode=true&scrollTo=-FN0mq8qH3xJ
https://colab.research.google.com/drive/1u15afRytJMsizySFqA2EPlXSh3KTmNTQ#sandboxMode=true&scrollTo=-FN0mq8qH3xJ
http://oasis.caiso.com/mrioasis/logon.do
https://www.misoenergy.org/markets-and-operations/real-time--market-data/market-reports
https://www.misoenergy.org/markets-and-operations/real-time--market-data/market-reports
https://www.iso-ne.com/markets-operations/iso-express
https://www.iso-ne.com/markets-operations/iso-express
https://www.nyiso.com/energy-market-operational-data
https://www.nyiso.com/energy-market-operational-data
https://dataminer2.pjm.com/list
https://dataminer2.pjm.com/list
https://marketplace.spp.org/groups/operational_data
https://marketplace.spp.org/groups/operational_data
http://www.ercot.com/gridinfo
https://www.eia.gov/beta/electricity/gridmonitor/dashboard/electric_overview/US48/US48
https://www.eia.gov/beta/electricity/gridmonitor/dashboard/electric_overview/US48/US48
http://www.energyonline.com/data/
https://mesonet.agron.iastate.edu/request/download.phtml
https://mesonet.agron.iastate.edu/request/download.phtml
https://www.statsmodels.org/stable/index.html
https://www.statsmodels.org/stable/index.html


25. Box, G.E. and Pierce, D.A. (1970). Distribution of residual autocorrelations in autoregressive-integrated moving average
time series models. Journal of the American statistical Association 65, 1509–1526.

26. Ljung, G.M. and Box, G.E. (1978). On a measure of lack of fit in time series models. Biometrika 65, 297–303.

27. Durbin, J. and Watson, G.S. (1971). Testing for serial correlation in least squares regression. iii. Biometrika 58, 1–19.

28. Koop, G., Pesaran, M.H., and Potter, S.M. (1996). Impulse response analysis in nonlinear multivariate models. Journal of
econometrics 74, 119–147.

29. Lütkepohl, H. (2005). New introduction to multiple time series analysis (Springer Science & Business Media).

30. Sakamoto, Y., Ishiguro, M., and Kitagawa, G. (1986). Akaike information criterion statistics. Dordrecht, The Netherlands:
D. Reidel 81.

31. Chen, S., Gopalakrishnan, P., et al. (1998). Speaker, environment and channel change detection and clustering via the
bayesian information criterion. In Proc. DARPA broadcast news transcription and understanding workshop (Virginia,
USA), vol. 8, pp. 127–132.


	JOUL809_proof_v4i11.pdf
	A Cross-Domain Approach to Analyzing the Short-Run Impact of COVID-19 on the US Electricity Sector
	Introduction
	Cross-Domain Data Hub: COVID-EMDA+
	Quantifying Changes in Electricity Consumption across RTOs and Cities in the US
	Impact of Public Health, Social Distancing, and Commercial Activity on Electricity Consumption During COVID-19

	Discussion
	Experimental Procedures
	Resource Availability
	Lead Contact
	Materials Availability
	Data and Code Availability

	Data Aggregation and Processing Methodology
	Data Consistence
	Data Compaction
	Data Quality Control

	Ensemble Backcast Model
	Restricted VAR
	Pre-Estimation Preparation
	Restricted VAR Model Estimation
	Restricted VAR Model Verification

	Post-Estimation Analysis

	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References


	joul_809_mmc1.pdf
	Supplemental References


