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• Four models compared baseflow and
stormflow discharge to nitrate loads in
eight Iowa watersheds.

• The baseflow-stormflow models high-
light the importance of separating out
streamflow.

• Baseflow was better at predicting
smaller nitrate loads while stormflow
captured peak loads.
 b

F
or all eight watersheds, the baseflow-stormflow models had the highest correlation coefficients, which indi-
cates that both components are necessary and together improve nitrate load estimates. While baseflow models
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There is an ongoing need to increase our understanding of the sources and timing of stream nitrate loads across
agricultural watersheds in Iowa as water quality improvement strategies are implemented. The goal of this
study was to model the relationship between nitrate load and the two components of streamflow
(i.e., baseflow and stormflow) to quantify in-stream nitrate patterns and develop a new method for estimating
loads on days when monitoring data are not available. We analyzed eight watersheds in Iowa that had long-
term water quality data where grab samples have been collected from 1987 to 2019. Four regression models
were developed that related daily nitrate load to daily baseflow, stormflow, and streamflow discharge. The first
model considered baseflow as a predictor, the second model used stormflow, the third model included both
aseflow and stormflow as two different covariates, and the final model used total streamflow (unseparated).

estimated lower nitrate loads better, stormflow models captured the variability associated with larger loads. In
addition, streamflow models tended to overestimate large nitrate loads. This simple modeling framework can
be used to calculate daily, monthly and annual nitrate loads. Delineating nitrate loads between stormflow and
baseflow can help identify differences in nitrate sources for nutrient reduction and remediation.
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stormflow as two different covariates, and the finalmodel used total streamflow (unseparated). For all eight wa-
tersheds, the baseflowstormflowmodels had the highest correlation coefficients, which indicates that both com-
ponents are necessary and together improve nitrate load estimates. While baseflow models estimated lower
nitrate loads better, stormflow models captured the variability associated with larger loads. In addition,
streamflow models tended to overestimate large nitrate loads. This simple modeling framework can be used to
calculate daily, monthly and annual nitrate loads. Delineating nitrate loads between stormflow and baseflow
can help identify differences in nitrate sources for nutrient reduction and remediation.

© 2021 Published by Elsevier B.V.
1. Introduction

Nitrate‑nitrogen (nitrate) discharged to streams degrades drinking
water supplies around the world. Excess nitrate in streams and rivers
has resulted in large-scale eutrophication in receiving and downstream
waters (Buda and DeWalle, 2009; Wherry et al., 2021). For example, in
the U.S. Cornbelt state of Iowa, nitrate export is a major cause for hyp-
oxia in the Gulf of Mexico (Jones et al., 2018a; US EPA, 2015). Nitrate
originates from the application of commercial nitrogen fertilizers, live-
stock manure, and the fixation and mineralization of soil nitrogen
(e.g., Schilling and Lutz, 2004). Although the sources and environmental
consequences of nitrate are well known, the discharge-nitrate relation-
ship is not fully understoodwhich can confound efforts to link improve-
ments from nutrient reduction programs (e.g., Jones et al., 2018a,
2018b; Schilling et al., 2017; Schubert et al., 2004; Van Meter and
Basu, 2017; Zimmer et al., 2019). Accurately characterizing this relation-
ship can increase the effectiveness of reduction strategies and bring
accountability to public funds spent on water quality improvements.

Water quality monitoring programs are often limited because
funding is inadequate and field samples are costly to obtain. As a result,
studies usually rely on small-scale samples or generalized watersheds
models and programs are conducted on a short time scale (~a few
months to five years) (Schilling and Thompson, 2000). When data are
collected infrequently, it is a challenge to obtain a complete picture of
nitrate concentrations and loads. To acquire data between grab sample
observations, concentrations must be estimated, subjecting loads to
sources of error and uncertainty (Guo et al., 2002; Stenback et al.,
2011). Some studies have run physical models to fill in data gaps
(Drake et al., 2018; Hansen et al., 2007; Husic et al., 2019; Nikolaidis
et al., 2013), but these models are complex to develop and implement
on a large scale. Inmany cases, linear interpolation is used to fill inmiss-
ing data for nitrate concentration (e.g., Goolsby et al., 2000; Jones et al.,
2018a, 2018b; Kelly et al., 2015; Lee et al., 2016; Miller et al., 2017;
Schilling and Lutz, 2004; Zamyadi et al., 2007); however, this technique
is not without limitations. For example, it can be difficult to capture
long-term responses to variability in nitrate inputs, and loads can be
underestimated because rainfall event concentration peaks are absent
(Buda and DeWalle, 2009; Meter et al., 2017; Outram et al., 2016).

The discharge-nitrate concentration relationship is complicated
from the seasonal dynamics of nitrate transport. Spring runoff often
carries the majority of annual nitrate load (Campbell et al., 2006;
Brooks et al., 1998; Kincaid et al., 2020). Soil nitrate can accumulate dur-
ing prolonged dry periods, which magnifies stream concentrations and
loads when wet weather regimes return (Jones et al., 2016; Lucey and
Goolsby, 1993). Fluctuations in seasonal and annual discharge-nitrate
relationships have been examined, but often over monthly or annual
time scales (Basu et al., 2012; Kelly et al., 2015; Schilling and Lutz,
2004; Van Meter and Basu, 2017). Increasingly, there have been ad-
vances in the use of in situ nutrient sensors that measure nitrate con-
centrations at higher, continuous temporal resolutions than previously
used (Rode et al., 2016; Schwientek et al., 2013; Zimmer et al., 2019);
however, these technologies can be costly to implement and do not
yield a long-term perspective.

Stream nitrate concentrations and loads vary with different
streamflow sources. Although surface runoff transports nitrate, many
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studies have shown that it is mainly exported during baseflow condi-
tions (Kang et al., 2008; Schilling and Lutz, 2004; Schilling and Zhang,
2004; Villarini et al., 2016). Nitrate's solubility allows it to infiltrate
into the soil profile and shallow groundwaterwhere it enters the stream
network with baseflow (Kang et al., 2008). Loads have been shown to
increase disproportionately with baseflow (Schilling and Zhang,
2004); furthermore, Schilling and Lutz (2004) found that nearly 2/3 of
nitrate discharged to streams was through baseflow in an Iowa agricul-
tural watershed. Other studies have found higher baseflow nitrate
from agricultural landscapes compared with other land use types
(i.e., forested and urban) (Vanni et al., 2001; Schilling and Zhang,
2004; Buda and DeWalle, 2009). Agricultural practices such as artificial
drainage systems that quicken the delivery of precipitation to streams
reduces the opportunity for nitrate to be retained and consumedbynat-
ural processes (Kincaid et al., 2020). For example, Tesoriero et al. (2009)
reported that quickflowpathways (i.e., tile drains)were associatedwith
higher concentrations than those found in streamflow (Hernández-
García et al., 2020).

It can be difficult to disentangle the influence of different pathways
because of the complexities associated with land use and discharge.
Because Iowa agricultural watersheds have a large contribution to the
Gulf of Mexico hypoxic zone, nitrate transport in Iowa has been studied
extensively (e.g., Arenas Amado et al., 2017; Drake et al., 2018; Jones
et al., 2018a, 2018b; Kelly et al., 2016; Schilling, 2005; Schilling and
Lutz, 2004; Schilling and Wolter, 2001; Schilling and Zhang, 2004;
Stenback et al., 2011; Villarini et al., 2016). Previous studies have exam-
ined how the components of streamflow influence nitrate, but their
analyses have been limited in how they related nitrate with discharge,
i.e. either using total streamflow, or examining stormflow and baseflow
separately (e.g., Schilling and Lutz, 2004; Woodley et al., 2018). This
paper aims to use the relationship between daily nitrate load and dis-
charge to better understand hydrologic pathways and improve estima-
tion of nitrate on dayswhenmonitoring data are absent. Specifically, we
explore the relationship of streamflow and its two components
(i.e., baseflowand stormflow) by comparing the results from four differ-
ent models: one that only includes baseflow as a predictor, another
using stormflow, a third model incorporating baseflow and stormflow,
and a four model that uses streamflow (unseparated). This framework
has the potential to estimate nitrate fluctuations on a finer scale than
what has previously been reported.

2. Methods

2.1. Study area

Eight rivers across Iowa and their corresponding drainage areas
were selected for this analysis (Fig. 1). The watersheds vary in size
from 1020 to 4007 km2. Three of the watersheds (Solider, East
Nishnabotna and Floyd Rivers) drain to the Missouri River Basin, and
five (Upper Iowa, English, Cedar Creek, North Raccoon, and North Riv-
ers) drain to the Upper Mississippi River Basin. The watersheds lie
within Iowa's different landform regions: Des Moines Lobe, Southern
Iowa Drift Plane, Paleozoic Plateau and the Northwest Iowa Plains
(Prior, 1991). The dominant land use in these watersheds is row crop
farming of corn and soybeans (shown in Fig. 1 as the county level data



Fig. 1. Location of the eight United States Geological Survey (USGS) catchments in Iowa (corresponding to the Iowa Department of Natural Resources (IDNR) stations). Stream gauges are
indicated as grey circleswith theirwatershed boundaries (blue)which are overlaid on-top of the county level harvested acres of combined corn and soybeans in 2019. Thefigure in the top
right corner shows the location of Iowa in the continental U.S.
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reported as the fraction of total land dedicated to combined corn and
soybean harvested acres in 2019). Harvested acres were reported as a
fraction of the total land area dedicated to corn and soybeans, ranging
from 0.43 to 0.81. See Table 1 for more details about the characteristics
of each watershed analyzed in this study.

2.2. Data and statistical modeling

To assess the relationship between discharge and nitrate load, we
evaluated the long-termwater quality and discharge records at the out-
lets of the eight Iowawatersheds shown in Fig. 1. The Iowa Department
of Natural Resources (IDNR) ambientmonitoring program (IDNR, 2020)
has been sampling each site monthly since 1987. Samples were gener-
ally taken during the first week of the month, but the exact date varies
from month to month due to staffing and weather considerations.
Starting from January 1987 and ending May 2019, the total number of
observations among all eight watersheds ranged from 385 to 410 with
a mean of 395. They are the longest continuous water quality monitor-
ing records in the IDNR database. A US Environmental Protection
Agency (USEPA) approved Quality Assurance Project Plan governed
the program, and samples were analyzed by the State of Iowa Hygienic
Table 1
Watershed characteristic of the eight sites analyzed in this study. Column 2 reports the
area) as themean over the last 11 years (2009–2019), Column 3 is the average annual pr
and Column 5 refers to the Baseflow Index (BFI) for each watershed. The BFI is the long

Station
USGS station

Row Crop fraction

Upper Iowa River at Dorchester 05388250 0.43
English River at Riverside 05455500 0.61
Cedar Creek at Oakland Mills 05473400 0.45
North Raccoon River at Sac City 05482300 0.81
North River at Norwalk 05486000 0.55
Floyd River at Sioux City 06600500 0.75
Soldier River at Pisgah 06608500 0.72
East Nishnabotna River at Shenandoah 06809500 0.70
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Laboratory using EPA Method 353.2 (O'Dell, 1996). The IDNR sites are
co-located with U.S. Geological Survey (USGS) stream gauges, and
daily average discharge data were downloaded from the USGS NWIS
website (U.S. Geological Survey, 2016). Here we focus on the nitrate
load reported as kg NO3-N ha−1 per day calculated by multiplying the
concentration by daily mean discharge divided by watershed area. For
each watershed, we calculated nitrate load only for the days that
water quality samples were collected using all available water quality
data over the record period (January 1987 to May 2019). We assume a
negligible trend in nitrate load because row crop farming and nitrate
concentrations have leveled off since the 1980s (i.e., over the time
frame of this study period). Furthermore, Schilling and Zhang (2004)
found no temporal trend in nitrate data or streamflow data over the
1972–2000 period for the Raccoon River in Iowa (at the 0.05 signifi-
cance level).

Hydrograph separationwas performed to analyze the relationship of
load to baseflow and stormflow. To separate out baseflow from
streamflow, digital filters can be applied over a continuous streamflow
time series to obtain a time series of baseflow discharge. In this analysis,
the one-parameter digital filter method by Lyne and Hollick (1979) was
used because it has been shown to be an objective and reliable method
percentage of land dedicated to corn and soybeans (fraction of the total watershed
ecipitation (2002–2019), Column 4 is the average annual streamflow (1987–2019),
-term ratio of baseflow to total streamflow.

Average annual precipitation
(2002–2019) mm

Average annual streamflow
(1987–2019) m3/s

BFI

921 7356 0.84
949 5047 0.82
956 4366 0.79
790 4951 0.82
943 2438 0.81
779 4185 0.84
842 2327 0.84
870 7034 0.84

Image of Fig. 1


J.R. Ayers, G. Villarini, K. Schilling et al. Science of the Total Environment 782 (2021) 146643
in the Midwest (Ayers et al., 2019; Nathan and McMahon, 1990; Xie
et al., 2020). Baseflow is calculated using the following equation:

qt ¼ α � qt−1 þ
1þ αð Þ
2

� Qt−Qt−1ð Þ ð1Þ

where qt is the filtered runoff at the t time step; qt−1is the filtered direct
runoff at the t-1 time step; α is the a filter parameter or the recession
constant; Qt is the total streamflow at the t time step; andQt−1 is the to-
tal streamflow at the t-1 time step. The recession constant represents
the rate at which streamflow decreases after a rain event. We used α
= 0.925 because previous studies have found it to be a reliable value
in the U.S. Midwest (Arnold and Allen, 1999; Ayers et al., 2020;
Nathan andMcMahon, 1990). To quantify the relative amount of annual
baseflow in each watershed, we used the Baseflow Index (BFI) which
measures baseflow as a fraction of total streamflow. The BFI was calcu-
lated over the 1980–2019 period (Table 1, column 4).

The objective of this study was to estimate nitrate load during non-
analyzed days using discharge data. IDNR grab samples are collected
and reported as a daily point estimate, so each observation was related
to the corresponding daily mean discharge. To predict nitrate load (de-
pendent variable), wefit four statisticalmodels using different indepen-
dent variables, including one model that used daily baseflow discharge
as a predictor, a second model using stormflow, a third model included
baseflow and stormflow as predictors, and a fourth model using total
streamflow. Total streamflow refers to streamflow discharge that is
not separated into baseflow and stormflow components. Baseflow was
estimated by applying the Lyne and Hollick one-parameter baseflow
separationmethod to the streamflow time series. Stormflowwas calcu-
lated as the difference between streamflow and baseflow. Before fitting
the statistical models, we transformed the nitrate load and discharge
time series. In R, the BoxCox.ar function in the Time Series Analysis
(TSA) library determines an appropriate power transformation for a
time-series dataset (Chan and Ripley, 2020). We found that the square
root transformation was most appropriate for the nitrate load data
since it applies to datasets with positive values and allows for a straight-
forward interpretation of the results. On the other hand, the logarithm
transformation was used for the discharge data because it is a useful
method for highly skewed data and produces a time series with approx-
imately constant variance.

The Generalized Additive Model for Location Shape and Scale
(GAMLSS; Stasinopoulos and Rigby, 2007) was used to develop the sta-
tistical models because it allows for a high degree of flexibility in terms
of distributions and functional relationships in its parameters compared
to other statistical models. We selected the dependence of the model's
Table 2
Model formulations for each of the eight watersheds analyzed in this study. Wemodel nitrate l
include the following: baseflow(xb), stormflow(xq), and total streamflow(xt). We used the squa
series.

Station USGS station Baseflow model
formulation

Stormflow model
formulation

Upper Iowa River at Dorchester
05388250

sqrt (y1) = − 3.56 + 0.76 ∙
log (xb)

sqrt (y1) = − 2.0 +
log (xq)

English River at Riverside
05455500

sqrt(y1) = − 2.92 + 0.74 ∙
log (xb)

sqrt (y1) = − 2.23
log (xq)

Cedar Creek at Oakland Mills
05473400

sqrt(y1) = − 2.67 + 0.71 ∙
log (xb)

sqrt (y1) = − 2.32
log (xq)

North Raccoon River at Sac City
05482300

sqrt(y1) = − 2.46 + 0.60 ∙
og (xb)

sqrt (y1) = − 1.97
log (xq)

North River at Norwalk
05486000

sqrt(y1) = − 2.44 + 0.60 ∙
log (xb)

sqrt (y1) = − 2.13
log (xq)

Floyd River at Sioux City
06600500

sqrt(y1) = − 2.92 + 0.70 ∙
log (xb)

sqrt (y1) = − 1.94
log (xq)

Soldier River at Pisgah
06608500

sqrt(y1) = − 2.80 + 0.71 ∙
log (xb)

sqrt (y1) = − 1.87
log (xq)

East Nishnabotna River at Shenandoah
06809500

sqrt(y1) = − 3.27 + 0.67 ∙
log (xb)

sqrt (y1) = − 2.21
log (xq)
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parameters on covariates based on the Schwarz Bayesian Criterion
(SBC; Schwarz, 1978) which generally results in a more parsimonious
model than one obtained with respect to the Akaike Information Crite-
rion (AIC; Akaike, 1978). The lognormal distribution was selected be-
cause it resulted in the best model fit between discharge and nitrate
load compared with other distribution. A lognormal distribution is a
good distribution for describing continuous variables that cannot take
on negative values such as nitrate load. In these models, μ and σ are
the two parameters of the lognormal distribution where μ was depen-
dent on the discharge predictors in each model. We found that σ did
not significantly depend on the covariates analyzed here, so it was
held constant, with an estimated value that varied from site to site.
Table 2 includes the model formulation and the parameters estimated
for each model. Fig. 2 shows an example of the type of time series that
was created for each of the eight sites (USGS site 05482300, North Rac-
coon River at Sac City, Iowa) see Figs. S1-S7 for time series of the other
seven sites).We used the parameterization based on the GAMLSS pack-
age in R (Stasinopoulos and Rigby, 2007).

To quantify how well our models perform, we compute
the Pearson's correlation coefficient, R, between the observations and
the median of the fitted lognormal distribution (i.e., 50th quantile of
the probabilistic model fit; Fig. 3 and Fig. S1-S7). Furthermore, we eval-
uate model performance based on the mean square error (MSE) skill
score (SSMSE) and its decomposition (Hashino et al., 2006):

SSMSE ¼ 1−
MSE
σ2

0

ð2Þ

where σ0 is the standard deviation of the observations. A skill score of 1
indicates a perfect score, while lower values point to bias in the model
predictions. A value of 0 is indicates that the performance of the model
is the same as the climatology, while negative values point to a worse
performance.

SSMSE ¼ ρ2
ro− ρro−

σ r

σ0

� �2
−

μr−μ0

σ0

� �2
ð3Þ

where ρro2 is the potential skill (i.e., the skill if there were no biases) and
ρro represents the correlation coefficient. The ρro−

σ r
σ0

h i2
term calculates

the conditional bias (i.e., the slope reliability (SREL)) where σr repre-
sents the standard deviation of the model predictions. The term
μr−μ0
σ0

h i2
represents the unconditional bias (SME), where μr and μ0 are

the mean of the modeled and observational data, respectively. The de-
composition of the skill score identifies conditional and unconditional
bias in our model outputs.
oad (y1) as a function of different discharge covariates. The observed discharge time series
re root transformation for nitrate load and the log transformation for all the discharge time

Baseflow-stormflow model
formulation

Streamflow model
formulation

0.30 ∙ sqrt(y1) = − 3.18 + 0.52 ∙ log (xb) + 0.17
∙ log (xq)

sqrt (y1) = − 3.70 + 0.71 ∙
log (xt)

+ 0.40 ∙ sqrt(y1) = − 2.68 + 0.39 ∙ log (xb) + 0.26
∙ log (xq)

sqrt (y1) = − 3.72 + 0.82 ∙
log (xt)

+ 0.41 ∙ sqrt(y1) = − 2.56 + 0.36 ∙ log (xb) + 0.22
∙ log (xq)

sqrt (y1) = − 3.6 + 0.80 ∙
log (xt)

+ 0.37 ∙ sqrt(y1) = − 2.40 + 0.38 ∙ log (xb) + 0.22
∙ log (xq)

sqrt (y1) = − 2.75 + 0.53 ∙
log (xt)

+ 0.40 ∙ sqrt(y1) = − 2.37 + 0.38 ∙ log (xb) + 0.21
∙ log (xq)

sqrt (y1) = − 3.16 + 0.73 ∙
log (xt)

+ 0.35 ∙ sqrt(y1) = − 2.79 + 0.54 ∙ log (xb) + 0.18
∙ log (xq)

sqrt (y1) = − 3.20 + 0.68 ∙
log (xt)

+ 0.25 ∙ sqrt(y1) = − 2.67 + 0.61 ∙ log (xb) + 0.12
∙ log (xq)

sqrt (y1) = − 3.02 + 0.70 ∙
log (xt)

+ 0.34 ∙ sqrt(y1) = − 3.15 + 0.50 ∙ log (xb) + 0.20
∙ log (xq)

sqrt (y1) = − 3.92 + 0.76 ∙
log (xt)



Fig. 2. An example of the type of time series that was created for each of the eight sites illustrating the probabilisticmodel fit (USGS site 05482300; North Raccoon River at Sac City, Iowa).
Here, we illustrate the model fit over the last 10 years (2010–2019) for simplicity and visualization of model fit. The median is shown as a black line, while the area between the 5th and
95th (25th and 75th) percentiles are shaded in red (lighter red). The monthly observations are shown as grey points for comparison. Time series for all sites over the entire record
(1987–2019) are reported in Figs. S1-S7.
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3. Results

To estimate daily nitrate load, wemodeled load as a function of daily
discharge using observations over the study period (1987 to 2019). The
results from four different model formulations were analyzed: one had
baseflow as a covariate, one had stormflow, and a third model included
both baseflow and stormflow as covariates, and a fourth model using
total streamflow. As an example of how well the baseflow-stormflow
models reproduced observational records, Fig. 2 shows the time series
(from 2010 to 2019) of the probabilistic model fit for the North Raccoon
Fig. 3.Map showing the Pearson's correlation coefficient, R, between the observations and them
at each station. The four different model results are reported (baseflow, stormflow, baseflow-s

5

River at Sac City, Iowa. Although the results in Fig. 2 reference a single
site, model and shorted time frame, the same plots for all sites and
models were produced over the entire record period (Supplemental
material S1-S7 using the baseflow-stormflow model; the figures for
the baseflow and stormflow models are omitted for simplicity).

To compare between models, the Pearson's correlation coefficient
and skill score were calculated between the grab sample observations
and the median (50th quantile) of the probabilistic model fits (Figs. 3
and 4). Overall, the baseflow-stormflow models performed the best by
both methods. The mean of correlation coefficients (skill scores) across
edian of the fitted lognormal distribution (i.e., 50th quantile of the probabilisticmodel fit)
tormflow, and total streamflow).

Image of Fig. 2
Image of Fig. 3


Fig. 4.Maps illustrating the skill score between the daily grab samples and the median of the model fit (i.e., 50th quantile of the probabilistic model fit) at each station, highlighting the
limited impacts of conditional and unconditional biases. The results include the baseflow, stormflow, baseflow-stormflow, and total streamflow models.
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all sites and for each model included: 0.92 (0.80) for the stormflow-
baseflow models, 0.85 (0.69) with respect to the baseflow models,
0.81 (0.52) for the stormflow models, and 0.88 (0.42) for the
streamflow models. These results highlight variability among the per-
formance of each model. While the streamflow models performed sec-
ond best (on average) by the correlation coefficient, the skill scores
indicated bias in these models, particularly in southeast Iowa where
negative skill scores were reported. The skill score is more sensitive to
extreme values, and the streamflow models tended to overestimate
large nitrate loads compared with observations. On the other hand,
the baseflow and baseflow-stormflowmodels were more skillful, likely
because their peak load values were not as extreme, and baseflow ac-
counts for a large portion of nitrate loads. In other words, because
baseflow is modeled separately, the baseflow-stormflow and baseflow
models predicted nitrate loads better during the entire year, especially
from September to February when peak loads are negligible.

Furthermore, the scatterplots in Fig. 5 illustrate howwell eachmodel
fit by comparing the observations to the corresponding predicted me-
dian value (50th quantile of the probabilistic model fit) for all sites.
The baseflow-stormflow models showed the best agreement with the
observations (Fig. 5, column 3). Daily predicted values followed the
one-to-one line tightly, giving evidence of themodels' ability to capture
nitrate loads. The difference between the baseflow-stormflow and total
streamflow models illustrated that the baseflow-stormflow models
capture higher nitrate loads better (Fig. 5 columns 3 and 4). The
baseflow-stormflow models had the highest correlation coefficients,
followed by the streamflowmodels, but model performance varied be-
tween the baseflowmodels and the stormflow models. Baseflow was a
better predictor at lower nitrate loads (Fig. 5, first column). Overall,
predictions from this model matched observations well, but the
baseflow models had a tendency to underestimate larger nitrate loads.
Higher nitrate loads are associated with stormflow as precipitation
events mobilize copious amounts of nitrate held within the soil profile.
As a result, the stormflow models better captured nitrate loads in the
6

upper part of the distribution; however, the stormflow models had
more difficulty estimating lower loads (Fig. 5, column 3). The
baseflow-stormflow models borrow strength from both components
of streamflow, estimating values more accurately across the entire ni-
trate load distribution.

To obtain load estimates for non-analyzed days, daily discharge data
were used as inputs in the model formulations. Fig. 6 shows the type of
time series created using the median (i.e., 50th quantile) predicted
value from each model fit for the North Raccoon River at Sac City
(March 2017 to August 2018; see Supplemental Materials S8-S14 for a
daily time series at every station). It is important to note that the grab
sample observations are only available at a frequency of one per
month (grey circles), while the models produce daily estimates. Here,
we observed clear differences in howeachmodel estimates daily nitrate
loads. The baseflow models estimated steadier changes in loads from
day to day compared to the other three models. By only using baseflow
as a predictor, the model did not increase drastically nor did it capture
the variability associated with peak loads. The stormflow models esti-
mated larger nitrate loads, but the peaks were more extreme compared
with the baseflow and baseflow-stormflow models. Daily estimates
using the baseflow-stormflow model lied between the baseflow and
stormflow models. On the other hand, streamflow model estimates for
peak loads were drastically larger than any other model. Because
these models treat baseflow and streamflow the same, it is likely that
they cannot capture differences in loads exported through two separate
processes. Since the baseflow-stormflowmodels incorporate the bulk of
nitrate load from baseflow with the addition of nitrate mobilized with
stormflow, they captured loads during baseflow conditions as well as
the increased variability associated with stormflow.

4. Discussion

The results reported here highlight key differences in the nitrate-
discharge relationship. Although the baseflow-stormflowand streamflow

Image of Fig. 4


Fig. 5. Scatterplots comparing the relationship between the observational record and themedian of the daily model predictions (50th quantile of the probabilistic model fit). Each column
corresponds to the different models and the rows indicate the station results. The fill color represents the correlation coefficient over the entire record (1987–2019), as reported in Fig. 3.
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models performed well overall (R ≥ 0.83), the baseflow-stormflow
models performed the best, which highlights the importance of separat-
ing out the components of streamflow. The distinction between baseflow
and stormflow is critical fromMarch to Augustwhen stormflow loads are
associated with seasonal precipitation. From September to February, the
models are nearly identical because streamflow consists almost entirely
of baseflow and nitrate loads are substantially smaller. Thus, baseflow is
a more important predictor during low-flow months and in watersheds
that have a larger baseflow contribution. It is interesting to note that in
some watersheds the correlation coefficient was higher for the baseflow
model, whereas in others stormflow was a better predictor. Among the
eight rivers, thedifferences inmodel performance canbe attributed to dif-
ferences in land use, watershed characteristics, and climate. In this study,
we only speculate on watershed characteristics because Jones et al.
7

(2018a, 2018b) already examined the impact of precipitation for these
watersheds. Rather, we contextualize our modeling results by analyzing
how topography, geology and land use could control surface and subsur-
face pathways.

The Floyd River, Soldier River and East Nishnabotna River have
baseflow models that performed better than the stormflow models.
Thesewatersheds are located inwestern Iowa and drain to theMissouri
River, in contrast to the other five catchments which drain to the Upper
Mississippi River. The geology of the Floyd River, Solider River and East
Nishnabotna River is characterized by thick deposits of wind-blown
loess capping fine-textured glacial till (Jones et al., 2018b; Prior,
1991). These watersheds characteristics could be responsible for more
streamflowbeing routed through baseflow,whichwould drive the rela-
tionship between baseflow and nitrate load. Other studies conducted in

Image of Fig. 5


Fig. 6.Daily nitrate load predictions based onmodels inwhich baseflow is the only predictor (red line), stormflow is the only covariate (blue line), one inwhich both quantities are used as
predictors (green line), and one model that uses total streamflow as a predictor (grey line). The grey points are the monthly grab sample observations reported as the calculated daily
nitrate load. As an example, this time series shows the estimated daily values from March 2017 to August 2018 for the North Raccoon River at Sac City.
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Iowa found that baseflow contributes to nitrate loads more than
stormflow (Richards et al., 2021; Schilling and Lutz, 2004; Schilling
and Zhang, 2004). For example, Schilling and Zhang (2004) proposed
the term “baseflow enrichment ratio (BER)” to describe how baseflow
was enriched with greater nitrate load relative to the baseflow water
flux alone. Both the current study and Schilling and Zhang (2004)
show the importance of baseflow in contributing to nitrate loads in ag-
ricultural watersheds in Iowa.

On the other hand, the stormflowmodels in the Upper Iowa, English
River, Cedar Creek, North Raccoon and North River outperformed the
baseflowmodels. Geology, topography, and land use and land manage-
ment practices can alter nitrate inputs and transport pathways (Kincaid
et al., 2020; Villarini et al., 2016), and these drivers could be at work
here. The Upper Iowa River watershed is dominated by steep slopes un-
derlain by fractured and karstic shallow bedrock that feeds local rivers
with groundwater baseflow and springs (Jones et al., 2018b; Prior,
1991), whereas the landscape draining to the southern Iowa water-
sheds of the English River, North River, and Cedar Creek consists of
rolling hills of thin loess over glacial till that produce more stormflow
(Schilling and Libra, 2003). The topography in all of these watersheds
is dominated by hillslopeswhich is consistentwith stormflow contribu-
tions to nitrate loads. Contrastingly, the North Raccoon River watershed
is onewith low relief and extensive tile drainage andwewould not have
suspected major stormflow correlation to nitrate loads (Jones et al.,
2016). However, in extensively tile-drained watersheds like the North
Raccoon, the tile network can behave like a subsurface “karst” system
delivering stormflow loads to streams (Schilling and Helmers, 2008).
Furthermore, in the Cedar Creek watershed the performance of the
stormflow model (R value = 0.84) was similar to the baseflow-
stormflow model (0.85), and the baseflow model performed worse
(0.74) than at any other site. In this watershed, the BFI is slightly
lower relative to the seven other watersheds (Table 1, column 4). A
lower BFI could indicate that more streamflow is sourced from
stormflow, carrying a higher proportion of nitrate with it. It should be
considered that these hydrological differences may be lessened or
masked by Iowa's crop production system. Annual crops of corn and
soybeans are dominant in all watersheds, with similar planting and har-
vesting times, input amounts, and production methods. Only the Upper
Iowa watershed is distinctly different from a crop production stand-
point because of its lower fraction of row crop area. A diversity of
8

hydrological drivers of nitrate transport may be present and variable
among watersheds, but because the crop production system itself may
be the largest hydrological driver, the others do not produce a strong
enough nitrate signal to be apparent.

These results further highlight the seasonality of the discharge-
nitrate relationship, along with stormflow's influence on nitrate load
variability. Models were more skillful at predicting nitrate load during
baseflow conditions (September to February), but there were discrep-
ancies between peak loads and model fit. Daily average stormflow
may not be fine enough to capture the nitrate discharged with individ-
ual precipitation events, particularly during strong summertime storms.
To determine the magnitude of stormflow loads, we would either need
grab sample observations during large precipitation events or a dataset
with a shorter time step; however, data are difficult to obtain and/or not
available on a long-term scale (Arenas Amado et al., 2017; Duncan et al.,
2017;Miller et al., 2017; Schwientek et al., 2013). Although the utility of
this methodology is that it uses readily available discharge data to esti-
mate daily nitrate loads, there is still some variability left unexplained.
There is a potential for other varying hydrologic conditions to improve
estimates, such as antecedentwetness, precipitation events (magnitude
and intensity), and seasonal influence. These models could also be im-
proved by including additional predictors such as fertilizer application
data and land use types. In agricultural watersheds, higher nitrate
concentrations are associated with fertilizer application during the
growing season (March to August). Thus, including this information
could improve our models; however, fertilizer application datasets are
not readily available and are difficult to implement in practice because
nitrate delivered to streams also depends on plant uptake of nitrate
(Yue et al., 2019).

Predicting nitrate loads during baseflow and stormflow conditions
has important implications for effective nutrientmanagement practices.
Despite their simplicity, these regression models can be used to under-
stand nitrate loads delivered through surface and subsurface processes.
They can be used to identify when a pathway is likely to have large
loads, and target nutrient reduction practices accordingly. In particular,
these results show that methods that estimate nitrate loads with total
streamflow could be over estimating nitrate exports during extreme
events. Our model estimates of daily loads may track more accurately
with nitrate delivered to streams, providing an alternativeway to calcu-
late annual loads. Albeit simple, this modeling framework can be
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applied in other watersheds with similar water quality issues. More re-
search is needed to understand nitrate behavior and its controls during
peak run-off events.

5. Conclusions

In this studywe compared three differentmodel formulations to un-
derstand the relationship of daily nitrate load with different compo-
nents of the hydrograph. The model formulations included: one using
baseflow as a predictor, another with stormflow, a third mode that in-
cluded both baseflow and stormflow, and a final model using total
streamflow. Each model's performance was evaluated by calculating
the correlation coefficient between the observational record and the
median of the model fit. Overall, the baseflow-stormflow models
yielded the best model fit for all sites. These results highlight the impor-
tance of modeling baseflow and stormflow separately because of the
differences in their relative contributions throughout the year. While
baseflow was a better predictor at lower loads, stormflow captured
larger nitrate loads and the variability associated with peak events.
Between the baseflowmodels and stormflowmodels, therewere differ-
ences in model performance across the eight watersheds. For catch-
ments located in the western part of Iowa, where thick loess soils
predominate (Soldier River, Floyd River and East Nishnabotna River),
the baseflow model performed better than the stormflow model, indi-
cating that baseflow water yield may be contributing more to nitrate
load. On the other hand, stormflow models in the Upper Iowa, North
Raccoon, North, English and Cedar Creek basins showed similar or
slightly improved correlation with observational records than the
models that used baseflow alone. In these watersheds thinner topsoils,
subsurface drainage, and Karst topography may be distinguishing. The
differences in geologic and tile drainage characteristics contribute to
the variability in nitrate loads, and is dominated by stormflow in these
watersheds more than in those western Iowa. The framework devel-
oped here could be improved by considering other predictors or using
higher frequency water quality data to validate models. More work is
needed to resolve the relative contribution of baseflow and stormflow
to nitrate load.
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