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ABSTRACT

Three features are crucial for sequential forecasting and gen-
eration models: tractability, expressiveness, and theoretical
backing. While neural autoregressive models are relatively
tractable and offer powerful predictive and generative capabil-
ities, they often have complex optimization landscapes, and
their theoretical properties are not well understood. To address
these issues, we present convex formulations of autoregressive
models with one hidden layer. Specifically, we prove an exact
equivalence between these models and constrained, regular-
ized logistic regression by using semi-infinite duality to embed
the data matrix onto a higher dimensional space and introduc-
ing inequality constraints. To make this formulation tractable,
we approximate the constraints using a hinge loss or drop them
altogether. Furthermore, we demonstrate faster training and
competitive performance of these implementations compared
to their neural network counterparts on a variety of data sets.
Consequently, we introduce techniques to derive tractable, ex-
pressive, and theoretically-interpretable models that are nearly
equivalent to neural autoregressive models.

Index Terms— Neural Autoregressive Models, Convex
Optimization, Sequential Forecasting and Generation

1. INTRODUCTION

Sequential data is everywhere, from language to finance to
weather. By modeling this data, we can solve downstream
tasks such as predicting the weather and generating speech.
One idea is to model the probability distribution the data is
sampled from. However, these models, such as the restricted
Boltzmann machine [1], are intractable for large data sets.
Other models, such as traditional autoregressive models, i.e.,
AR, ARMA, and ARIMA models [2], make assumptions about
the data. These models are tractable but limit their expressive-
ness by making too many assumptions. Still other models,
such as deep autoregressive models [3, 4, 5, 6, 7], variational
autoencoders (VAEs) [8], and generative adversarial networks
(GANs) [9], make fewer assumptions and let neural networks
learn the probability distributions. While these models are ex-
pressive and usually tractable, we have little theoretical insight
into them, a barrier preventing their use in the real world. We

tackle this last category of models by attempting to develop
the theory and improve the tractability of deep autoregressive
models. In particular, we analyze two-layer autoregressive
models instead of state-of-the-art models such as PixelRNN
[5], WaveNet [7], and Image-GPT [6] to build the theoretical
foundations of these advanced models.

There are several directions of research to better under-
stand neural networks. Some approaches attempt to under-
stand the optimization landscape of such networks by proving
theoretical guarantees for algorithms [10, 11, 12] and specific
models [13, 14]. However, these methods do not allow for
analyses of neural networks besides convergence guarantees.
The mean field view [15] does not provide sufficient analysis
for a finite number of hidden units, whereas the neural tan-
gent kernel view [16] provides an insufficient interpretation
of empirical results. In [17, 18, 19, 20, 21], the authors intro-
duce equivalent convex programs for two-layer, dense neural
networks with convex loss. We extend their theory to deep,
autoregressive models in Section 2.2. Further, we introduce
tractable convex models by adapting the convex programs to
allow for mini-batching.
Our Contribution: We introduce exact and tractable convex
formulations for shallow neural autoregressive models. Using
semi-infinite duality [22], we show an equivalence between
the non-convex, binary cross-entropy loss of a two-layer au-
toregressive model and the convex loss of a constrained and
regularized logistic regression problem (Section 2). By prov-
ing this equivalence, we demonstrate that the two-layer autore-
gressive model essentially solves a logistic regression problem
in a constrained, higher dimensional space. This insight can
be used in future theoretical analysis of such models, such
as better interpretations of the learned distributions. More-
over, solving the convex problem is easier than solving the
non-convex one, since optimization algorithms for the former
efficiently reach the global minimum instead of getting stuck
in local optima.

Due to the constraints in this formulation, optimization
algorithms that take advantage of mini-batching cannot be ap-
plied directly. As such, we introduce two tractable versions of
the convex problem: (1) we approximate the constraints using
a hinge loss and (2) we drop the constraints to form a logistic
regression with group lasso problem [23] (Section 3). We then



Fig. 1. Two-layer autoregressive model. Output probability
for an entry is predicted using previous r = 3 entries. All
arrows with the same color are shared parameters.

evaluate efficient implementations of these formulations on
binary vector data sets and a binarized MNIST data set [24]
(Section 4). Lastly, we discuss how to extend this work to
other two-layer autoregressive models and beyond (Section 5).

2. EXACT FORMULATION

Suppose we have N sequences of M -dimensional, binary data,
X 2 {0, 1}N⇥M . We would like to model the probability
distribution, p(x), the sequences were sampled from. Section
2.1 sets up the non-convex formulation for an explanatory
subset of autoregressive models, and Section 2.2 derives an
equivalent convex formulation. Section 5 discusses extensions
to other two-layer autoregressive models.

2.1. Autoregressive Model

We first factorize the distribution p(x) using the chain rule:

p(x) =
MY

d=1

p(xd|x1, x2, . . . , xd�1) =
MY

d=1

p(xd|x<d),

where x<d = [x1, x2, . . . , xd�1]. We model each of these
conditional distributions with a Bernoulli random variable, i.e.,
p✓(xd|x<d) = Bern(µ(x<d)), where ✓ are the parameters
(weights) of the mean function µ : {0, 1}d�1 ! [0, 1]. This
function is modeled by a two-layer neural network (Figure
1), whose parameters are learned by minimizing a regularized
negative log likelihood loss.

We note here that several assumptions that result in slightly
worse-performing models are made for ease of explanation.
First, only the previous r elements of a sequence are used to
model the next element, instead of all previous elements. Sec-
ond, the mean function of each element’s conditional probabil-
ity distribution is the same. Third, the conditional probabilities
for the first r elements of the sequence are ignored. These

assumptions are likely not to be reflected in real data, but allow
for a more digestible introduction to the techniques below.

Mathematically, the model is constructed as follows:

x<d,(r) = [xd�r�1, xd�r, . . . , xd�1] 2 Rr

µ(x<d) = �(↵Th) = �(↵T (Ux<d,(r))+). (1)

The output is the expectation of the d-th element of the se-
quence, xd, and the inputs are the previous r elements, x<d,(r).
The first-layer weights are U 2 Rm⇥r, and the second-layer
weights are ↵ 2 Rm. The hidden layer, h = (Ux<d,(r))+ 2
Rm, uses ReLU activation, (·)+ = max(0, ·). The expectation,
µ(x<d), uses sigmoid activation, �(t) = 1

1+e�t . To learn the
data distribution, we simply minimize the binary cross-entropy
loss, CE, over the weights U and ↵.

Define L(a, b) = CE(�(a), b), D = M � r, F = ND,
and x̃ 2 RD as the last D elements of x. Construct
y 2 {0, 1}F by stacking x̃

(n)
d on top of each other for all

d = 1, . . . , D, n = 1, . . . , N . Construct X(r) 2 {0, 1}F⇥r

by stacking x̃(n)
<d,(r) in the same order. We introduce l2-

regularization terms for the weights and formulate the non-
convex objective:

p
⇤ := min

{↵j ,uj}m
j=1

L
⇣
↵T (UXT

(r))+,y
⌘
+

�

2

mX

j=1

(||uj ||22 + ↵
2
j ),

(2)

where � > 0 is a hyper-parameter, uj 2 Rr is the j-th row of
U , and ↵j is the j-th element of ↵.

2.2. Exact Convex Formulation

We construct a set of diagonal matrices. Let z 2 Rr be an
arbitrary vector and 1[X(r)z � 0] 2 {0, 1}F be an indicator
vector such that the j-th entry is Boolean: 1[X(r)z � 0]j :=
1[xT

(r),jz � 0]. We define diagonal matrices D1, . . . ,DP
1 as

the set of all possible matrices of the form Diag(1[X(r)z �
0]). Construct Gi = (2Di � In)X(r) and the objective,

f{vi,wi}P
i=1

= L
⇣ PX

i=1

DiX(r)(vi �wi),y
⌘

+ �

PX

i=1

(||vi||2 + ||wi||2), (3)

to get the convex problem below (vi,wi 2 Rr):

min
{vi,wi}P

i=1

f{vi,wi}P
i=1

subject to Givi � 0,Giwi � 0 for i = 1, . . . , P. (4)

Theorem 1 The non-convex (2) and convex (4) problems have
identical optimal values if m � m

⇤.2 Furthermore, given
1See section 3.3 for details about the number of matrices, P .
2m⇤ is bounded above by F+1. Please see [22] for a detailed explanation.



optimal solutions v⇤
i ,w

⇤
i for (4) such that at most one of v⇤

i or
w⇤

i is non-zero for all i = 1, . . . , P , an optimal solution for
(2) with m

⇤ neurons is

(u⇤
ji ,↵

⇤
ji) =

8
<

:

( v⇤
ip

||v⇤
i ||2

,
p
||v⇤

i ||2) if ||v⇤
i ||2 > 0

( w⇤
ip

||w⇤
i ||2

,�
p
||w⇤

i ||2) if ||w⇤
i ||2 > 0

.

By Theorem 1, we see that solving the convex problem (4) is
equivalent to solving the non-convex problem (2). Thus, since
(4) is a constrained, regularized logistic regression problem
(Section 3.1), training the deep autoregressive model in Section
2.1 is equivalent to solving a logistic regression problem.

3. TRACTABLE FORMULATIONS

Efficient mini-batch optimizers such as stochastic gradient
descent (SGD) are not immediately applicable to solving (4)
due to its constraints. To resolve this issue, we introduce the
relaxed convex problem and hinge loss approximation below.
We also discuss sampling the diagonal matrices.

3.1. Relaxed Convex Problem

Our first method to solve (4) efficiently is to remove the con-
straints. Specifically, given the same matrices D1, . . . ,DP ,
we define the following problem:

min
{vi,wi}P

i=1

f{vi,wi}P
i=1

. (5)

We now provide an interpretation of this convex program.
Define a set of data matrices Mi = DiX(r) for i = 1, . . . , P .
Then, each Mi is an arbitrary masking of X(r). This gives
us exactly the logistic regression with group lasso problem,
where each Mi is the local feature matrix. Thus, we can view
the first term in (5) as the aggregate binary cross-entropy loss
over P local linear models, where the local feature matrix is
a randomly masked version of the global feature matrix. The
second term is a group lasso regularization that combines the
local models into a global model.

Fig. 2. Geometry of the constraints.

Note that the
constraints in (4)
ensure that the dot
products of the local
variables with the
local data points are
positive, while those
with the other data
points are negative.
Geometrically, we construct two planes perpendicular to the
two local variables to create four half-spaces. The local data
are in the intersection of the two half-spaces containing the
variables, whereas all other data are in the intersection of
the two half-spaces that don’t contain the variables (Figure
2). Moreover, the local models use precisely the data in

the intersection of the two half-spaces containing the local
variables to compute their contribution to the global loss.

3.2. Hinge Loss Approximation
As an alternative to simply dropping the constraints, we ap-
proximate them via a hinge loss. The modified minimization
problem, with hyper-parameter ⇢ > 0, is

min
{vi,wi}P

i=1

f{vi,wi}P
i=1

+ ⇢

PX

i=1

1T ((Givi)+ + (Giwi)+) .

(6)
3.3. Sampling Diagonal Matrices
The number of diagonal matrices P needed in the convex for-
mulations is bounded above by a term on the order of k(Nk )

k,
where k is the rank of the matrix [22]. For instance, with
N = 1000 sequences of dimension D = 100 and r = 10 (a
small dataset), P  O(1050). It is infeasible to solve (4) (5),
or (6) with this many diagonal matrices. Instead, we sample P̃
diagonal matrices by generating P̃ uniformly random vectors
ui and picking Di = 1[X(r)ui � 0] for i = 1, . . . , P̃ .

4. EXPERIMENTS

We consider the following implementations of the convex
formulations: ‘nn-full’ minimizes the non-convex objective
(2), ‘exact-subsampled’ solves the exact convex problem
(4), ‘hinge-full’ minimizes the hinge loss-based problem (6),
‘relaxed-subsampled’ solves the relaxed convex problem (5),
and ‘relaxed-full’ minimizes the relaxed convex problem (5).
The ‘full’ implementations are trained on the entire dataset
with SGD (PyTorch), whereas the ‘subsampled’ ones are
trained on subsampled versions (1000 and 100,000 examples
for exact-subsampled and relaxed-subsampled) because train-
ing on the entire dataset is infeasible without SGD (CVXPY).

Fig. 3. Accuracy on MNIST valida-
tion data during training for the three
PyTorch models (10 iterations).

We evaluate the
implementations
on several bench-
mark data sets [4],
namely Adult, Con-
nect4, DNA, Mush-
rooms, RCV1, OCR-
letters, and NIPS-
0-12 (some results
shown). These data
sets are sampled
from distributions
of binary vectors of
dimension 100 to
500. We also evaluate the implementations on a binarized
MNIST data set of dimension 784.
PyTorch models: In general, the PyTorch implementations
(nn-full, hinge-full, and relaxed-full) performed the best on
the test set (Figure 4). Since relaxed-full performed as well



Fig. 4. Ground truth and generated images from MNIST test
data. CVXPY implementations trained on 10 vectors (less than
an image). Images generated by predicting each pixel given
previous 10 pixels in the ground truth image (not recursively).

as hinge-full and nn-full, the inequality constraints did not
affect the trained model’s performance. Furthermore, for some
data sets like Adult and Mushrooms, nn-full performed worse
than hinge-full and relaxed-full, suggesting that SGD occasion-
ally converged to a local minima in the non-convex landscape.
The PyTorch implementations for the convex approaches con-
verged faster than all other implementations. In particular, they
converged in fewer iterations than the neural network (Figure
3), due to the relative simplicity of optimizing a convex land-
scape.Additionally, hinge-full converged in fewer iterations
than relaxed-full, which we hypothesize to be because the con-
straints affect the convergence rate. However, each individual
iteration of hinge-full was slower than those for relaxed-full
and nn-full, which took the same time. Further analysis sug-
gests that this is due to additional loss and gradient calculations
from the hinge loss term.
CVXPY models: The CVXPY models (exact-subsampled
and relaxed-subsampled) were generally slower and performed
worse on the test sets than the PyTorch models (Figure 4).
However, they both performed much better on the train sets.
These results imply that, given a small subset of the train data,
the global solution to the convex problem (and thus the non-
convex problem) generalizes poorly to unseen data. Further-
more, relaxed-subsampled consistently performed even worse
than exact-subsampled, suggesting that the constraints are es-
sential when training on a small subset of the data. Lastly, since
relaxed-subsampled was trained on many more examples and
its training times were similar to those for exact-subsampled,
the relaxed CVXPY implementation was substantially faster
per example than the exact implementation.

5. DISCUSSION

We prove that a class of two-layer autoregressive models are
equivalent to constrained, regularized logistic regression prob-
lems and propose methods of solving these problems effi-
ciently. Through evaluation on several binary data sets, we

Table 1. Results for binary vector data sets. Negative log
likelihood (top), training time in seconds (bottom).

Model Adult DNA OCR RCV1

nn-full (baseline) 70.43 102.8 56.58 102.4
exact-subsampled 77.58 116.6 81.74 189.8
hinge-full 68.34 101.6 57.12 100.7
relaxed-subsampled 78.26 148.2 114.0 139.7
relaxed-full 68.84 101.9 55.89 101.3
nn-full (baseline) 593.7 235.6 583.4 1037
exact-subsampled 475.1 547.7 1009 4622
hinge-full 354.4 105.8 449.9 185.5
relaxed-subsampled 447.6 439.2 592.4 70868
relaxed-full 299.8 121.6 1121 678.0

demonstrate more efficient training and better performance of
these programs compared to the non-convex neural network.
Hence, we develop theoretically-backed, tractable, and power-
ful models for sequential forecasting and generation tasks.

We now discuss how to apply these techniques to other
two-layer autoregressive models. First, we note that the con-
struction of (4) only depends on the loss function L, not the
data X(r),y. Consequently, the relaxed convex problem and
hinge loss approximation apply for arbitrary data. Second,
Theorem 1 holds as long as the structure of (2) and (4) stays
the same. Furthermore, by applying the results from [22], we
can prove the equivalence for any convex L. Thus, as long as
we can represent the loss (without regularization) of any two-
layer autoregressive model as L(

Pm
j=1(Xuj)+↵j ,y) with

convex L, we can apply these techniques.
There are several clear directions to further pursue this

work. Research can be done into extending these techniques to
deeper autoregressive models, such as PixelRNN [5], WaveNet
[7], and Image-GPT [6]. Randomized dimension reduction [25,
26], iterative sketching [27, 28, 29, 30] and preconditioning
methods [31, 32] can be used to address high-dimensional
convex training problems. If successful, this could lead to
better interpretation and training stability of such models.
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