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A B S T R A C T   

Baseflow, or the groundwater component of streamflow, is an important source of water for several applications, 
from increasing demands on freshwater resources to ecosystem health. Despite its relevance, our understanding 
of the processes driving baseflow and its interannual variability is limited. In this study, we focus on 458 U.S. 
Geological Survey streamflow gauges that have at least 50 years of daily data. We use a statistical modeling 
framework to select a set of predictors that represent the role of climate (i.e., precipitation, temperature and 
antecedent wetness) and land use (harvested acres of corn and soybeans). The models are able to describe well 
the variability in monthly baseflow across the region, with an average correlation coefficient between the 
observational records and the median of the fitted distribution of 0.70 among all months. Our results indicate 
that precipitation and antecedent wetness are the strongest predictors, where the latter was selected the most 
often. Temperature is an important predictor during the spring when snow-related processes are the most 
relevant. Agriculture was frequently selected in the Cornbelt region during the growing season (from March to 
July). The results of this study can inform future watershed management that sustains low flows and improves 
water quality.   

1. Introduction 

Baseflow is the portion of streamflow discharged from groundwater 
or other delayed sources. It is an important water resource because it 
sustains streamflow between precipitation events or periods of drought, 
and it has potential consequences for water quality (Kang et al., 2008; 
Schilling and Lutz, 2004; Schilling and Zhang, 2004). Although we have 
progressed significantly in our understanding of the changes in 
streamflow, we still do not fully understand what factors influence 
baseflow. Baseflow varies regionally and spatially because it is affected 
by differences in climate, topography, surface water, groundwater and 
human activities (Price, 2011; Santhi et al., 2008). Watershed charac
teristics, such as geology and topography, that promote infiltration and 
recharge have been shown to be important for sustaining baseflow (Price 
et al., 2011; Zimmer and Gannon, 2018). On the other hand, climate 
factors (e.g., precipitation and temperature) influence baseflow through 
water availability, evapotranspiration rates, and the timing of snowmelt 
runoff (Ahiablame et al., 2017a; Cadol et al., 2012; Gupta et al., 2018; 
Mishra et al., 2010; Slater and Villarini, 2017). Although climate 

controls the availability and timing of discharge, previous research has 
shown that climate alone cannot explain observed changes in baseflow 
(Raymond et al., 2008; Schilling and Libra, 2003; Tomer and Schilling, 
2009). Often, land use and land cover influence soil and topographic 
characteristics that dictate whether precipitation is distributed as either 
runoff or recharge. While previous studies identified changes in base
flow across large areas of the Midwest (Ahiablame et al., 2017a; Ayers 
et al., 2019; Ficklin et al., 2016; Zhang and Schilling, 2006), it is still 
unclear what factors are driving these changes. 

In the Midwest, natural vegetation of grasslands, wetlands and 
prairies have been converted to maize and soybean row crops (e.g., 
Frans et al., 2013). This area, also known as the Cornbelt region, is one of 
the highest yielding global agricultural areas for corn (Nikiel and Elta
hir, 2019). Studies have identified agricultural land use as an important 
driver for increases in baseflow across the region (Ahiablame et al., 
2017a; Ayers et al., 2019; Schilling, 2005; Schilling and Libra, 2003). 
For a watershed in Iowa, Schilling and Libra (2003) argued that 
improved agricultural management practices in the second half of the 
20th century contributed to increasing baseflow. In addition, tile 
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drainage has been a crucial part of agricultural systems. Tiles remove 
excess water from traditional wetlands which provides a nutrient rich 
environment for corn and soybean production (e.g., Kelly et al., 2016). 
While artificial drainage has changed the hydrologic regime across 
agricultural landscapes and contributes to baseflow (Arenas Amado 
et al., 2017; Basu et al., 2012; Blann et al., 2009; Schilling et al., 2019), 
the extent of its control remains unknown. Another component of land 
use change has been groundwater pumping for irrigation, which has 
been shown to decrease baseflow (e.g., Bhaskar et al., 2016; Wen and 
Chen, 2006); however, reliable records for groundwater storage are not 
available because they are not complete or long enough to analyze 
changes in water resources (Brutsaert, 2008). 

Large-scale landscape modifications have likely affected atmospheric 
processes such as temperature, precipitation, evapotranspiration, hu
midity and soil moisture (Alter et al., 2018; Bonan, 1997; DeAngelis 
et al., 2010; Germer et al., 2010; Huntington, 2006; Twine et al., 2004). 
Agricultural land use can intensify the effect of climate change because 
it transforms the surface energy balance and influences temperature at 
the regional scale (Mueller et al., 2016); For example, Bonan (1997) 
showed large differences in precipitation due to land use across the 
Midwest and documented wetter conditions during the summer that 
were likely a result of increased latent heat flux where crops had 
replaced forest vegetation. Agricultural intensification has added 
moisture to the global atmosphere through evapotranspiration, and a 
large percentage of the vapor actualizes directly over irrigated lands 
(Ferguson and Maxwell, 2011; Nocco et al., 2019; Sacks et al., 2009). 
These studies highlight how difficult it can be to determine the impact of 
climate and land use changes because human activities influence 
watershed characteristics and near surface climate dynamics. 

To date, there are no studies that disentangled the effects of 

interdependent controlling variables on baseflow. Previous climate and 
land use change research has tended to focus on streamflow (Ahiablame 
et al., 2017b; Chien et al., 2013; Gupta et al., 2018; Juckem et al., 2008; 
Kibria et al., 2016; Norton et al., 2019; Slater and Villarini, 2017); 
however, baseflow is a distinct streamflow component because it in
cludes subsurface water from different flow paths (i.e. deep regional 
groundwater storage and shallow near streamflow paths) (Miller et al., 
2014; Price, 2011). More detailed analysis is needed to understand how 
climate and land use have affected this nuanced water resource. Previ
ous studies that have determined the influence of forcing factors on 
baseflow have been limited in their scope where they have either 
examined baseflow on a small scale (e.g., Kibria et al., 2016; Mishra 
et al., 2010; Price et al., 2011) or on an annual basis (e.g., Brutsaert, 
2008) and/or their methods focused on individual drivers (Ayers et al., 
2019). For instance, Ayers et al. (2019) reported the correlation co
efficients between baseflow and different forcing factors, including 
precipitation, temperature and agricultural intensity; however, they did 
not account for the potential concurrent role of different drivers nor did 
they develop a statistical model to capture the influence of different 
drivers. Therefore, considering the gap in our attribution of the detected 
changes in baseflow, the crucial objective of this study is to determine 
the main drivers responsible for the historical changes in monthly 
baseflow at 458 U.S. Geological Survey (USGS) stream gauges in the U.S. 
Midwest. In term of drivers, we focus on the role of climate (precipita
tion, temperature, and antecedent wetness) and land use/land cover 
changes (agriculture) using regression models. 

Fig. 1. Map showing the study area with the location of the 458 streamflow gages and the percentage of harvested acres of corn and soybeans within each county. 
The map shows data for agricultural intensity from 2018. 
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2. Materials and methods 

2.1. Data 

We selected 458 USGS stream gauges located within 12 different U.S. 
Midwest states, which include: Illinois, Indiana, Iowa, Kansas, Michigan, 
Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and 
Wisconsin (Fig. 1). While the gauges themselves are located within these 
12 different states, their watershed boundaries extend outside of the 
region. The stations were chosen based on long-term gauging records 
where each record had at least 50 years of data. The record length was 
extended as far back as 1940 in some cases because of data availability; 
however, the oldest common year among the gauges is 1966. Mean daily 
streamflow data for these sites were downloaded from the USGS NWIS 
website (U.S. Geological Survey, 2016). Drainage areas of the catch
ments range from 19.63 km2 to 1,074,586 km2 with a median basin size 
of approximately 1525 km2. Across all basins the range of mean annual 
baseflow ranges from 0.02428 to 1192 m3/s with an average of 25.51 
m3/s. 

To model historical monthly baseflow, basin-averaged precipitation, 
antecedent wetness (i.e., the previous three month’s precipitation), 
temperature and agricultural land use were used as predictors in the 
model formulations (Table 1). Both monthly precipitation and monthly 
average temperature data were based on the Parameter-elevation 
Regression on Independent Slopes Model (PRISM) climate group (Daly 
et al., 2002). These data are freely available on a ~4-km grid resolution 
for the conterminous United States. PRISM data extend back to 1895 and 
thus cover the study period (1940–2019). For every USGS gauge, the 
monthly time series of mean monthly basin-average precipitation (and 
temperature) were calculated with the basin boundaries from the USGS 
Streamgage NHDPlus Version 1 (Stewart et al., 2006). We define ante
cedent wetness by using the previous month’s precipitation as an 
approximation for basin wetness. Because there is insufficient soil 
moisture data for the last 50 years, defining it from precipitation ob
servations is valuable for understanding water availability in the sub
surface. The sum of the previous three months was used for modeling 
baseflow in the Midwest, but we also performed sensitivity analysis to 
examine the role of different weighting schemes (see Section 3.4). 

To analyze land use changes, we considered the effects of agricul
tural intensity on baseflow. We used harvested acreage of corn and 
soybeans because they are the main crops that are grown in the study 
domain, and have been shown to be a significant predictor in similar 
studies (Neri et al., 2019; Schilling, 2005; Schilling et al., 2008; Slater 
and Villarini, 2017; Villarini and Strong, 2014). County-level data are 
obtained from the U.S. Department of Agriculture (USDA)’s National 
Agricultural Statistics Service (NASS) QuickStats database (USDA and 
NASS, 2020). Total annual corn and soybean harvested acres were 
computed as a weighted average for each watershed based on the per
centage of each county within an individual watershed, assuming that 
the crops were evenly distributed throughout the county (e.g., Neri 

et al., 2019; Villarini and Strong, 2014). Annual agricultural intensity 
values were used in model selection because crops are typically grown 
on an annual cycle. Similar to Slater and Villarini (2017), we only 
considered agriculture in watersheds that had at least 30% of the area 
covered by corn and soybeans at any given point in the historical time 
series. This threshold limits the inclusion of agriculture as a predictor to 
those watersheds that experienced substantial land use change (in corn 
and soybeans) over the study record, and excludes those that would have 
a false signal (i.e., watersheds that change from 0.005 to 0.1%). Few 
observations were missing from each dataset, so when missing data were 
present in the record (in either baseflow, precipitation, temperature, or 
antecedent wetness), the data for that year were excluded from the 
analysis. 

2.2. Baseflow separation 

Many different analytical methods have been developed to separate 
baseflow from streamflow (Arnold and Allen, 1999; Eckhardt, 2008; 
Lyne and Hollick, 1979; Nathan and McMahon, 1990; Sloto and Crouse, 
1996). In this study, we used a hydrograph separation method, the one- 
parameter digital filter technique that was first proposed by Lyne and 
Hollick (1979). The recursive digital filter used for baseflow separation 
is mathematically expressed as (Arnold and Allen, 1999; Lyne and 
Hollick, 1979; Nathan and McMahon, 1990): 

qt = α × qt− 1 +
(1 + α)

2
× (Qt − Qt− 1) (1)  

where qt is the filtered direct runoff at the t time step; qt− 1is the filtered 
direct runoff at the t-1 time step; α is the recession constant; Qt is the 
total streamflow at the t time step; and Qt− 1 is the streamflow at the t-1 
time step. 

The recession constant, α, is the parameter that describes the rate at 
which streamflow decreases following a rainfall event. We used α =
0.925 in our study because it has been shown to be an accurate value for 
watersheds in the U.S. Midwest, and studies have reported consistent 
results (Arnold and Allen, 1999; Nathan and McMahon, 1990). In 
addition, this method provides a quick and easy way to obtain a time 
series of baseflow which would otherwise be difficult to obtain for the 
458 stream gauges analyzed in this study. Other methods would require 
more information about the bedrock and stream type which is not 
realistic across a large region such as the Midwest (i.e., the Eckhardt 
method; Eckhardt, 2005). Figure S1 shows an example (USGS station 
05440000) of the streamflow hydrograph with the baseflow time series 
separated out. All baseflow separation calculations were performed in R 
using the EcoHydRology package (Fuka et al., 2018). 

2.3. Statistical modeling 

To describe variability in baseflow, we fit statistical models using 
precipitation (xp), antecedent wetness (xm), temperature (xt), and agri
cultural intensity (xa) as covariates. Our statistical modeling builds on 
the methodology described in Villarini and Strong (2014). 

We selected the gamma distribution for modeling monthly baseflow 
because it has worked well for modeling streamflow and low flows 
across the study area (Slater and Villarini, 2017; Villarini and Strong, 
2014). The gamma distribution has two parameters, which include the 
location, μ, and scale, σ, and they depend linearly on the predictors via a 
logarithmic link function. The variability of the μ parameter over time 
was described by one of 16 possible regression models that relate 
baseflow to the four covariates in our model. Four regression models are 
shown in Table 1 as examples for the most common model formulations. 
On the other hand, the σ parameter was held constant similar to previous 
studies (Slater and Villarini, 2017; Villarini and Strong, 2014). We 
modeled baseflow based on the parameterization in the Generalized, 
Additive Models for Location, Scale and Shape (GAMLSS; Rigby and 

Table 1 
Formulation of the four most common statistical models “Percent selected” in
cludes the number of models selected out of all models for every month and site.  

Model Model Formulation Percent 
Selected 

Pr þ Aw 
Precipitation + Antecedent Wetness 

log(μ1) = α1 + β1∙xp + γ1∙ 
xm  

41% 

Pr þ Aw þ Ag 
Precipitation + Antecedent 
Wetness + Agriculture 

log(μ3) = α3 + β3∙xp +

γ3∙xm + δ3∙xag  

20% 

Pr þ Aw þ Te 
Precipitation + Antecedent 
Wetness + Temperature 

log(μ4) = α4 + β4∙xp +

γ4∙xm + δ4∙xt  

13% 

Aw 
Antecedent Wetness 

log(μ1) = α1 + β1∙xm  11%  
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Stasinopoulos, 2005). The monthly models are probabilistic and provide 
a probability distribution for every year. 

Model selection is based on the Bayesian Information Criterion (BIC; 
Schwarz, 1978), which balances statistical fit with model parsimony. It 
utilizes a larger penalty function than other criteria such as the Akaike 
Information Criterion (Akaike, 1978), and it generally suggests a model 
with fewer parameters. At each of the 458 sites and for every month, the 
best fit GAMLSS model (one out of 16 potential models) was chosen in 
terms of the predictors and their functional relation to the parameters of 
the probability distribution. We ran model selection only on those 
months that contributed greater than 5% of total annual baseflow. We 
also performed leave-one-out cross validation where for each year and 
month we removed the observation and predicted it using the remainder 
of the observations in the record; this process was repeated for every 
year until we obtained a complete time series. The cross-validation re
sults were compared with the observed data using Pearson’s correlation 
coefficient R. 

2.4. Trend analysis 

The Mann-Kendall (MK) nonparametric trend test (Kendall, 1948; 
Mann, 1945) was used to determine the presence of temporal trends in 
monthly baseflow. It is a rank-based statistical method that determines 
monotonic patterns in the central part of the distribution. Trend detec
tion was run over the 1966–2018 record period because it is the common 
year for all stream gauges considered in this study. The MK statistic, Z, 

has the same interpretation as other trend-analysis statistics where a 
positive (negative) value indicates an increase (decrease) over time. To 
offset the potential impact of autocorrelation on the trend results, a 
variation of the MK test (i.e., prewhitening based on the approach 
described by Yue et al. (2002)) was used and the results are reported 
here. In this study, we set the significance level to 5%. We use this metric 
to assess how successful our models are at reproducing the observed 
trends in monthly baseflow. 

3. Results and discussion 

3.1. Statistical model fits 

For each month’s best fit model, the correlation coefficient was used 
as an assessment of the degree that the model simulations matched the 
observed baseflow records (Fig. 2). We also performed leave-one-out 
cross validation to evaluate the robustness of our model’s predictive 
ability. Overall, the correlation coefficients were high with a mean R =
0.70 and median R = 0.73 for all months. This indicates the good pre
diction skills of these statistical models. Goodness-of-fit varies based on 
regional differences in climatic differences, antecedent conditions and 
the presence of agricultural land use. The model fit distributions are best 
fit during the summer months where average R values are 0.69, 0.72, 
and 0.71 in May, June, and July, respectively. We are still able to cap
ture baseflow during periods of little to no precipitation which suggests 
that antecedent conditions play a large role in baseflow discharge. 

Fig. 2. Map of the Pearson correlation coefficient between the baseflow observations and the median of the best fitted model based on BIC for every month. For each 
site and month, model selection was only run if that month’s baseflow contributed more than 5% of total annual baseflow. 
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Correlation coefficients have an average value of 0.71, 0.68, and 0.59 
during December, January, and February, respectively. Models per
formed the worst in April (mean R = 0.57), and while it is comparatively 
low, it still indicates good correlation. These results show how monthly 
baseflow follows large-scale weather patterns in the study region 
(Andresen et al., 2012; Villarini, 2016). 

Models exhibit the poorest skill in the western part of the domain 
(Nebraska, Kansas, South Dakota, North Dakota and northern Minne
sota) where there is a difference in climate compared with the rest of the 
Midwest, and hydrologic response occurs later in the year because of 
snowmelt and rain on frozen ground in the spring (Neri et al., 2019; 
Villarini, 2016). Lower correlation is observed in Kansas and Nebraska 
which is a region where groundwater pumping is prevalent; a lowered 
water table from groundwater abstraction can alter lateral flow and 
decrease discharge from groundwater systems (Condon and Maxwell, 
2019). While groundwater pumping for agricultural purposes may be 
correlated with one another, previous studies have shown that while 
pumping alone has caused decreases in streamflow, irrigation for agri
culture may cancel out decreases on an annual basis (Brutsaert, 2008; 
Wang and Cai, 2010). Although we were not able to examine the 

relationship between baseflow and groundwater pumping in this study, 
it may be of interest for future research. 

To further examine how well our models perform, leave-one-out 
cross validation was conducted for the best-fitting model at every site 
and month. The correlation coefficients for cross-validation were high 
(mean R = 0.62, median R = 0.66) which supports previous findings that 
our models exhibit good skills. These results highlight the potential 
applicability of these models for monthly baseflow forecasting (Neri 
et al., 2019; Slater and Villarini, 2018). 

3.2. Forcing factors 

The uniqueness of our statistical modeling framework is that it se
lects the best set of covariates to describe the response variable (base
flow); Fig. 3 shows which drivers were chosen in the model formulations 
(Table 1) at every streamflow gauge and for selected months. Supple
mental material S2–S5 show the results for all months while Fig. 3 shows 
one month for each season (i.e., March, June, September, and 
December) for simplicity. We found that precipitation was a major 
driver across the region: 79% of the best-fitting models include it in the 

Fig. 3. The maps illustrate the relationship between monthly baseflow and monthly precipitation, monthly antecedent wetness, monthly temperature and annual 
corn and soybean harvested acres. Selected months (March, June, September and December) are shown here for simplicity. A colored circle indicates that each driver 
was selected in the model formulation where blue (red) indicates a positive (negative) relationship. A white circle indicates that model selection was run, but the 
driver was not selected at that site. 
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model formulation. As expected, increasing baseflow is positively 
related to precipitation because it is the major source of recharge to 
groundwater systems (Memon, 1995). From April to July, precipitation 
is chosen more often than other months of the year (between 77% and 
93%). During the spring, the U.S. Midwest often receives large amounts 
of rainfall, which are often associated with extratropical storms and 
atmospheric rivers (Nayak and Villarini, 2017; Villarini, 2016). 

Model selection for precipitation is different in the east compared to 
the northwest region. The precipitation-baseflow relationship is detec
ted more often in the east during the winter. There are differences in 
weather patterns which have a strong control over water resources. It is 
wetter and warmer in the central and eastern Midwest than the west, 
and these patterns can be observed in the variability of the relationship 
between baseflow and precipitation. Precipitation is selected as a driver 
during the winter months mostly in the east (Missouri, Illinois, Indiana 
and Ohio). It is considered a major driver given that precipitation inputs 
determine water availability for soil moisture conditions which is rele
vant to baseflow. These results support the notion that increasing 
regional precipitation is the dominant driver of positive streamflow 
trends across the area (Frans et al., 2013; Hodgkins et al., 2007; Slater 
and Villarini, 2016; Tomer and Schilling, 2009). 

Antecedent wetness was the most important driver in the U.S. Mid
west because it was selected most often (i.e. 93% of the best-fitting 
models included xm as a significant predictor). Similar to precipita
tion, a positive relationship between the two variables indicates that 
more moisture in the soil (from the previous three months precipitation) 
will lead to an increase in baseflow response. The model that was 
selected most often for all sites and months was the model that only 
considered antecedent wetness, xm, and precipitation, xp, in its model 
formulation (about 41% of sites; Table 1). It is well-established that 
basin wetness plays a major role in controlling the flow distribution, and 
it is especially important for low flows (Berghuijs et al., 2016; Slater and 
Villarini, 2017). Although baseflow is directly related to groundwater 
storage in a catchment, it also changes in response to precipitation 
events (Brutsaert, 2008). The ability of our models to capture baseflow 
during periods of little to no rainfall (from September-February) is 
largely dependent upon soil moisture. In the winter, wetter antecedent 
conditions paired with lower evapotranspiration rates could contribute 
to increased groundwater recharge and groundwater contribution to 
streamflow (Bosch et al., 2016). 

The inclusion of temperature as a predictor in the model produced a 
better fit for certain subregions and specific months. About 21% of all 
the best fit models (for every site and month) identify temperature as a 
significant predictor. These results show how monthly baseflow follows 
a strong seasonal pattern of winter precipitation and spring snowmelt. In 
colder months (January-March) there is a notable positive relationship 
between baseflow and temperature. As temperature warms in the spring, 
the relationship between temperature and baseflow flips from positive 
to negative. The negative relationship is first observed in March in the 
south and east (Nebraska, Missouri, Indiana and Ohio) where temper
atures get higher earlier in the year. Watersheds in higher latitudes hold 
snow for a longer time because temperatures are colder, and larger flows 
are not observed until later in the season when snow melts and the 
ground thaws (Byun et al., 2019). This phenomenon is observed with 
baseflow response in the northwest; continuing later into the spring the 
negative relationship gradually moves north (Iowa, Minnesota, the Da
kotas) and from April to May most sites identify temperature as a sig
nificant, negative predictor. The inverse relationship between 
temperature and baseflow is expected because warmer temperatures 
increase evaporation and thus reduce soil moisture. 

Temperature changes in the U.S. have trended towards warming over 
the past century. Trends in seasonality have been documented where a 
greater proportion of the regional warming has occurred in the winter 
and spring (Andresen et al., 2012; Kibria et al., 2016; Zhang et al., 2000) 
which have caused higher flows to occur in the winter and spring. There 
is also evidence that mean summer temperatures have decreased in 

sections of the U.S. Midwest (Andresen et al., 2012; Mueller et al., 2016) 
which could explain the inverse relationship between temperature and 
baseflow from April to July because increasing trends in baseflow have 
been documented throughout the region during these months (Ayers 
et al., 2019). In addition, cooling in the U.S. Midwest is often associated 
with agricultural intensity and evapotranspiration which could magnify 
this effect (Pan et al., 2004; Zhang et al., 2000). 

The influence of agricultural land use on baseflow is prominent in the 
Cornbelt region of the study area. Corn and soybean harvested acres are 
selected more often in the growing season (in watersheds with more 
30% of agricultural land cover, where xa was included as a potential 
predictor). Beginning in March and continuing into the summer is when 
models selected agriculture most often (i.e. 24% in March, 34% in May, 
41% in June, and 34% in July). For these months, the Cornbelt region is 
clearly highlighted in an arc from eastern North Dakota and into Iowa, 
Illinois, Indiana and western Ohio. Most sites show a positive relation
ship between annual harvested acres and monthly baseflow. These re
sults indicated that increases in agricultural land use have increased 
baseflow for watersheds with greater than 30% agricultural land use. 
While we can identify that agricultural intensity has influenced baseflow 
in the U.S. Midwest, we can only speculate about the specific mecha
nisms that are related to baseflow; for example, Schilling and Libra 
(2003) theorized that land use conservation practices, such as terraces, 
conservation tillage and contour cropping have contributed to 
increasing baseflow by slowing runoff and increasing infiltration in 
sloping agricultural fields. No-tillage practices can prevent early season 
soil evaporation and conserve water in the soil (Gallaher, 1977). On the 
other hand, tile drainage is one of the major changes in agricultural 
landscapes, and it has significantly altered the hydrologic regime across 
the region. Both tile drainage density and incision depth affect baseflow 
where increasing density and depth can increase tile contribution to 
baseflow (Schilling et al., 2012; 2019). To understand the exact mech
anisms of agricultural land practices and their influence on baseflow, we 
would need a different modeling framework than what is considered in 
this study. 

3.3. Monthly trend detection 

To validate our model predictions, trend analysis was conducted on 
the monthly baseflow record from 1966 to 2019. We compared the trend 
results from the observed baseflow record to the results from the median 
value of the fitted gamma distribution. Fig. 4 illustrates the spatial 
variability of the prewhitened Mann-Kendall observed and predicted 
(using the 50th percentile of the fitted gamma distribution) time series. 
Fig. 4 shows a side by side comparison using only four months, but the 
analysis was conducted for every month. The observed trends were 
described in detail in Ayers et al. (2019), and the goal here is not to 
analyze these trends. Rather we want to evaluate if our models can 
recreate the observed trends in monthly baseflow in terms of the drivers 
we have identified. Overall, the model predictions are good at repro
ducing monthly trends in baseflow. From May to August the two results 
agree the most when increasing trends are detected more often. On the 
other hand, the differences in trend analyses are the largest in both the 
southwest (Kansas, Nebraska and southern Missouri) and in the Great 
Lakes Region (northern Wisconsin and Michigan). Interestingly, these 
are both areas where decreases in baseflow have been identified in the 
baseflow record. The areas in Kansas and Nebraska are where ground
water abstraction has led to declining water tables (Brikowski, 2008; 
Sophocleous, 2005; Wen and Chen, 2006). In the Great Lakes region 
decreases in precipitation have been documented which may result in 
decreases in baseflow (Mallakpour and Villarini, 2015; Norton et al., 
2019). 

To evaluate the model results further, we compared the MK tau 
values between the observed and leave-one-out-cross validation trend 
results. Fig. 5 illustrates the how well the values match via the one-to- 
one line where each point is color coordinated by the correlation 
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Fig. 4. Results of the Mann-Kendall trend test applied to prewhitened time series data in the presence of serial correlation using the approach described by Yue et al. 
(2002). Observed and predicted (median of the probabilistic model fit) trends were analyzed from 1966 to 2019 with a 5% significance level. A blue upward (red 
downward) arrow shows an increasing (decreasing) trend, but a white circle indicates a site that documented no statistically significant trend. The observed trend 
results modified from Ayers et al. (2019). 

Fig. 5. Figure showing the agreement of the MK’s tau values between the observed and the leave-one-out-cross validation trend results over the 1966–2019 period. 
Each point is color coded based on the correlation coefficient between the observed and leave-one-out-cross validation time series. 
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coefficient between the two baseflow time series. For all months, most 
values are clustered around the one-to-one line indicating good model fit 
with little to no bias. The correlation coefficients of the leave-one-out- 
cross validation have high R values (mean R = 0.62, median R =
0.66). Values that deviate from the one-to-one line for MK tau are 
generally those that have lower correlation coefficients, as expected. 

3.4. Sensitivity analysis of antecedent wetness 

We performed a sensitivity analysis to determine which definition of 
antecedent conditions was most relevant to baseflow. The sum of the 
previous three months precipitation described above was compared 
with different ways of weighing them, including: 0.90 and 0.70 given to 
the previous month, 0.10 and 0.20 given to the second month, and 0 and 
0.10 given to the third month, respectively (Supplemental Materials S6 
and S7). As an example, for June, antecedent wetness was defined as 
90% of May’s precipitation, 10% of April’s precipitation, and no 
consideration for March. To determine which metric was most suitable, 
we ran our GAMLSS model for each definition and compared the results. 
The sensitivity analysis showed that the sum of the previous three 
months was the best metric for modeling baseflow in the U.S. Midwest. 
We concluded that the sum of the previous three month’s precipitation 
captures subsurface water availability better than the different weighted 
values analyzed here. 

4. Conclusions and future directions 

Our study described a method for evaluating the drivers of monthly 
baseflow in the U.S. Midwest. We focused on 458 long-term USGS 
stream gauges and developed statistical models that describe the inter
annual variability in monthly baseflow with different combinations of 
predictors (precipitation, antecedent wetness, temperature and agri
culture). We used leave-one-out cross validation and the Mann-Kendall 
trend test to verify our results. The outcomes of this study can be sum
marized as follows:  

1. Despite the simplicity of these statistical models, they are able to 
capture well the monthly variations in baseflow throughout the U.S. 
Midwest (mean R = 0.70); however, there were differences in model 
fits across the region and for different months. Generally, the models 
fit better during warm months (May-July) and in the central and 
eastern part of the U.S. Midwest. The robustness of these results was 
also supported by the leave-one-out cross validation (mean R =
0.62).  

2. Most models included both precipitation and antecedent wetness, 
and the model formulation that was selected most often included 
only these two predictors (41% of the best fit models for all months). 
Antecedent wetness was the most important predictor (92% included 
xm) followed by precipitation which was selected 79% of the time.  

3. Temperature was not a strong predictor (21%) but its inclusion from 
March to May produced a better fit in some areas like in the west and 
northwest. In the spring it is evident that temperature, likely through 
the effect of snowmelt, significantly influences monthly baseflow.  

4. Agriculture was selected as a relevant predictor most often during 
the growing season (from March to July). There was a positive 
relationship between agriculture and baseflow in the Cornbelt region 
which indicates that corn and soybean production promote baseflow 
discharge to streams.  

5. To further evaluate the performance of the modeling framework, we 
used the model formulations to identify monthly trends in baseflow. 
We compared the prewhitened MK trend analysis results from the 
observed monthly baseflow record to the median of the fitted dis
tribution. We found the same trends for most stations within the U.S. 
Midwest; however, our models were unable to capture the 
decreasing trends in Kansas, Nebraska, southern Missouri, and in 
northern Wisconsin and Michigan which is likely due to the role of 

other drivers not included as predictors (e.g., groundwater 
withdrawal).  

6. Overall, these results paint a different picture due to the role of 
agriculture compared with similar studies that focused on flooding 
and the frequency of flood events (e.g., Neri et al., 2019; Slater and 
Villarini, 2017), in which agriculture was not selected as an impor
tant predictor; it appears that agricultural intensity plays a more 
dominant role at the lower end of the discharge spectrum. 

Building on this study, there are a number of future research di
rections that this work could be taken. For instance, it could be of in
terest to evaluate the influence of specific mechanisms behind land use 
or climate change (e.g., tile drainage, conservation practices, evapo
transpiration or groundwater pumping), assess the interaction between 
baseflow drivers (e.g., land use on soil moisture conditions), examine 
future changes in baseflow based on projections of predictors, and 
quantify the relationship between baseflow and indicators of water 
quality. Although future research is needed to determine the influence of 
forcing factors in other regions of the world, our work provides a clear 
framework to understand and describe baseflow in the context of 
climate and land use change. Ultimately, these models show the po
tential applicability for monthly baseflow predictions and projections. 
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