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Baseflow, or the groundwater component of streamflow, is an important source of water for several applications,
from increasing demands on freshwater resources to ecosystem health. Despite its relevance, our understanding
of the processes driving baseflow and its interannual variability is limited. In this study, we focus on 458 U.S.
Geological Survey streamflow gauges that have at least 50 years of daily data. We use a statistical modeling
framework to select a set of predictors that represent the role of climate (i.e., precipitation, temperature and
antecedent wetness) and land use (harvested acres of corn and soybeans). The models are able to describe well
the variability in monthly baseflow across the region, with an average correlation coefficient between the
observational records and the median of the fitted distribution of 0.70 among all months. Our results indicate
that precipitation and antecedent wetness are the strongest predictors, where the latter was selected the most
often. Temperature is an important predictor during the spring when snow-related processes are the most
relevant. Agriculture was frequently selected in the Cornbelt region during the growing season (from March to
July). The results of this study can inform future watershed management that sustains low flows and improves

water quality.

1. Introduction

Baseflow is the portion of streamflow discharged from groundwater
or other delayed sources. It is an important water resource because it
sustains streamflow between precipitation events or periods of drought,
and it has potential consequences for water quality (Kang et al., 2008;
Schilling and Lutz, 2004; Schilling and Zhang, 2004). Although we have
progressed significantly in our understanding of the changes in
streamflow, we still do not fully understand what factors influence
baseflow. Baseflow varies regionally and spatially because it is affected
by differences in climate, topography, surface water, groundwater and
human activities (Price, 2011; Santhi et al., 2008). Watershed charac-
teristics, such as geology and topography, that promote infiltration and
recharge have been shown to be important for sustaining baseflow (Price
et al., 2011; Zimmer and Gannon, 2018). On the other hand, climate
factors (e.g., precipitation and temperature) influence baseflow through
water availability, evapotranspiration rates, and the timing of snowmelt
runoff (Ahiablame et al., 2017a; Cadol et al., 2012; Gupta et al., 2018;
Mishra et al., 2010; Slater and Villarini, 2017). Although climate
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controls the availability and timing of discharge, previous research has
shown that climate alone cannot explain observed changes in baseflow
(Raymond et al., 2008; Schilling and Libra, 2003; Tomer and Schilling,
2009). Often, land use and land cover influence soil and topographic
characteristics that dictate whether precipitation is distributed as either
runoff or recharge. While previous studies identified changes in base-
flow across large areas of the Midwest (Ahiablame et al., 2017a; Ayers
et al., 2019; Ficklin et al., 2016; Zhang and Schilling, 2006), it is still
unclear what factors are driving these changes.

In the Midwest, natural vegetation of grasslands, wetlands and
prairies have been converted to maize and soybean row crops (e.g.,
Frans et al., 2013). This area, also known as the Cornbelt region, is one of
the highest yielding global agricultural areas for corn (Nikiel and Elta-
hir, 2019). Studies have identified agricultural land use as an important
driver for increases in baseflow across the region (Ahiablame et al.,
2017a; Ayers et al., 2019; Schilling, 2005; Schilling and Libra, 2003).
For a watershed in Iowa, Schilling and Libra (2003) argued that
improved agricultural management practices in the second half of the
20th century contributed to increasing baseflow. In addition, tile
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drainage has been a crucial part of agricultural systems. Tiles remove
excess water from traditional wetlands which provides a nutrient rich
environment for corn and soybean production (e.g., Kelly et al., 2016).
While artificial drainage has changed the hydrologic regime across
agricultural landscapes and contributes to baseflow (Arenas Amado
et al., 2017; Basu et al., 2012; Blann et al., 2009; Schilling et al., 2019),
the extent of its control remains unknown. Another component of land
use change has been groundwater pumping for irrigation, which has
been shown to decrease baseflow (e.g., Bhaskar et al., 2016; Wen and
Chen, 2006); however, reliable records for groundwater storage are not
available because they are not complete or long enough to analyze
changes in water resources (Brutsaert, 2008).

Large-scale landscape modifications have likely affected atmospheric
processes such as temperature, precipitation, evapotranspiration, hu-
midity and soil moisture (Alter et al., 2018; Bonan, 1997; DeAngelis
et al., 2010; Germer et al., 2010; Huntington, 2006; Twine et al., 2004).
Agricultural land use can intensify the effect of climate change because
it transforms the surface energy balance and influences temperature at
the regional scale (Mueller et al., 2016); For example, Bonan (1997)
showed large differences in precipitation due to land use across the
Midwest and documented wetter conditions during the summer that
were likely a result of increased latent heat flux where crops had
replaced forest vegetation. Agricultural intensification has added
moisture to the global atmosphere through evapotranspiration, and a
large percentage of the vapor actualizes directly over irrigated lands
(Ferguson and Maxwell, 2011; Nocco et al., 2019; Sacks et al., 2009).
These studies highlight how difficult it can be to determine the impact of
climate and land use changes because human activities influence
watershed characteristics and near surface climate dynamics.

To date, there are no studies that disentangled the effects of
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interdependent controlling variables on baseflow. Previous climate and
land use change research has tended to focus on streamflow (Ahiablame
et al., 2017b; Chien et al., 2013; Gupta et al., 2018; Juckem et al., 2008;
Kibria et al., 2016; Norton et al., 2019; Slater and Villarini, 2017);
however, baseflow is a distinct streamflow component because it in-
cludes subsurface water from different flow paths (i.e. deep regional
groundwater storage and shallow near streamflow paths) (Miller et al.,
2014; Price, 2011). More detailed analysis is needed to understand how
climate and land use have affected this nuanced water resource. Previ-
ous studies that have determined the influence of forcing factors on
baseflow have been limited in their scope where they have either
examined baseflow on a small scale (e.g., Kibria et al., 2016; Mishra
et al., 2010; Price et al., 2011) or on an annual basis (e.g., Brutsaert,
2008) and/or their methods focused on individual drivers (Ayers et al.,
2019). For instance, Ayers et al. (2019) reported the correlation co-
efficients between baseflow and different forcing factors, including
precipitation, temperature and agricultural intensity; however, they did
not account for the potential concurrent role of different drivers nor did
they develop a statistical model to capture the influence of different
drivers. Therefore, considering the gap in our attribution of the detected
changes in baseflow, the crucial objective of this study is to determine
the main drivers responsible for the historical changes in monthly
baseflow at 458 U.S. Geological Survey (USGS) stream gauges in the U.S.
Midwest. In term of drivers, we focus on the role of climate (precipita-
tion, temperature, and antecedent wetness) and land use/land cover
changes (agriculture) using regression models.

O USGS Streamflow Gage
|:| Watershed Boundary ]

Harvested Acres (%)
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Fig. 1. Map showing the study area with the location of the 458 streamflow gages and the percentage of harvested acres of corn and soybeans within each county.

The map shows data for agricultural intensity from 2018.
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2. Materials and methods
2.1. Data

We selected 458 USGS stream gauges located within 12 different U.S.
Midwest states, which include: Illinois, Indiana, Iowa, Kansas, Michigan,
Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and
Wisconsin (Fig. 1). While the gauges themselves are located within these
12 different states, their watershed boundaries extend outside of the
region. The stations were chosen based on long-term gauging records
where each record had at least 50 years of data. The record length was
extended as far back as 1940 in some cases because of data availability;
however, the oldest common year among the gauges is 1966. Mean daily
streamflow data for these sites were downloaded from the USGS NWIS
website (U.S. Geological Survey, 2016). Drainage areas of the catch-
ments range from 19.63 km? to 1,074,586 km? with a median basin size
of approximately 1525 km?2. Across all basins the range of mean annual
baseflow ranges from 0.02428 to 1192 m>/s with an average of 25.51
m3/s.

To model historical monthly baseflow, basin-averaged precipitation,
antecedent wetness (i.e., the previous three month’s precipitation),
temperature and agricultural land use were used as predictors in the
model formulations (Table 1). Both monthly precipitation and monthly
average temperature data were based on the Parameter-elevation
Regression on Independent Slopes Model (PRISM) climate group (Daly
et al., 2002). These data are freely available on a ~4-km grid resolution
for the conterminous United States. PRISM data extend back to 1895 and
thus cover the study period (1940-2019). For every USGS gauge, the
monthly time series of mean monthly basin-average precipitation (and
temperature) were calculated with the basin boundaries from the USGS
Streamgage NHDPlus Version 1 (Stewart et al., 2006). We define ante-
cedent wetness by using the previous month’s precipitation as an
approximation for basin wetness. Because there is insufficient soil
moisture data for the last 50 years, defining it from precipitation ob-
servations is valuable for understanding water availability in the sub-
surface. The sum of the previous three months was used for modeling
baseflow in the Midwest, but we also performed sensitivity analysis to
examine the role of different weighting schemes (see Section 3.4).

To analyze land use changes, we considered the effects of agricul-
tural intensity on baseflow. We used harvested acreage of corn and
soybeans because they are the main crops that are grown in the study
domain, and have been shown to be a significant predictor in similar
studies (Neri et al., 2019; Schilling, 2005; Schilling et al., 2008; Slater
and Villarini, 2017; Villarini and Strong, 2014). County-level data are
obtained from the U.S. Department of Agriculture (USDA)’s National
Agricultural Statistics Service (NASS) QuickStats database (USDA and
NASS, 2020). Total annual corn and soybean harvested acres were
computed as a weighted average for each watershed based on the per-
centage of each county within an individual watershed, assuming that
the crops were evenly distributed throughout the county (e.g., Neri

Table 1
Formulation of the four most common statistical models “Percent selected” in-
cludes the number of models selected out of all models for every month and site.

Model Model Formulation Percent
Selected

Pr + Aw log(py) = a1 + pr+xp + 71+ 41%
Precipitation + Antecedent Wetness X,

Pr + Aw + Ag log(us) = as + fz-xp + 20%
Precipitation + Antecedent Y3 *Xm + 03+ Xqg
Wetness + Agriculture

Pr + Aw + Te log(uy,) = a4 + Py-xp + 13%

Precipitation + Antecedent
Wetness + Temperature
Aw log(py) = a1 + By *Xm 11%

Antecedent Wetness

Y4+ Xm + O4°X¢
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et al., 2019; Villarini and Strong, 2014). Annual agricultural intensity
values were used in model selection because crops are typically grown
on an annual cycle. Similar to Slater and Villarini (2017), we only
considered agriculture in watersheds that had at least 30% of the area
covered by corn and soybeans at any given point in the historical time
series. This threshold limits the inclusion of agriculture as a predictor to
those watersheds that experienced substantial land use change (in corn
and soybeans) over the study record, and excludes those that would have
a false signal (i.e., watersheds that change from 0.005 to 0.1%). Few
observations were missing from each dataset, so when missing data were
present in the record (in either baseflow, precipitation, temperature, or
antecedent wetness), the data for that year were excluded from the
analysis.

2.2. Baseflow separation

Many different analytical methods have been developed to separate
baseflow from streamflow (Arnold and Allen, 1999; Eckhardt, 2008;
Lyne and Hollick, 1979; Nathan and McMahon, 1990; Sloto and Crouse,
1996). In this study, we used a hydrograph separation method, the one-
parameter digital filter technique that was first proposed by Lyne and
Hollick (1979). The recursive digital filter used for baseflow separation
is mathematically expressed as (Arnold and Allen, 1999; Lyne and
Hollick, 1979; Nathan and McMahon, 1990):

(1+a)
2

g =aXqg1+ X (Qr_Qr—l) (€9)]
where g, is the filtered direct runoff at the t time step; g, is the filtered
direct runoff at the t-1 time step; « is the recession constant; Q; is the
total streamflow at the t time step; and Q,_; is the streamflow at the t-1
time step.

The recession constant, a, is the parameter that describes the rate at
which streamflow decreases following a rainfall event. We used a =
0.925 in our study because it has been shown to be an accurate value for
watersheds in the U.S. Midwest, and studies have reported consistent
results (Arnold and Allen, 1999; Nathan and McMahon, 1990). In
addition, this method provides a quick and easy way to obtain a time
series of baseflow which would otherwise be difficult to obtain for the
458 stream gauges analyzed in this study. Other methods would require
more information about the bedrock and stream type which is not
realistic across a large region such as the Midwest (i.e., the Eckhardt
method; Eckhardt, 2005). Figure S1 shows an example (USGS station
05440000) of the streamflow hydrograph with the baseflow time series
separated out. All baseflow separation calculations were performed in R
using the EcoHydRology package (Fuka et al., 2018).

2.3. Statistical modeling

To describe variability in baseflow, we fit statistical models using
precipitation (x,), antecedent wetness (x,,), temperature (x,), and agri-
cultural intensity (x,) as covariates. Our statistical modeling builds on
the methodology described in Villarini and Strong (2014).

We selected the gamma distribution for modeling monthly baseflow
because it has worked well for modeling streamflow and low flows
across the study area (Slater and Villarini, 2017; Villarini and Strong,
2014). The gamma distribution has two parameters, which include the
location, u, and scale, o, and they depend linearly on the predictors via a
logarithmic link function. The variability of the y parameter over time
was described by one of 16 possible regression models that relate
baseflow to the four covariates in our model. Four regression models are
shown in Table 1 as examples for the most common model formulations.
On the other hand, the ¢ parameter was held constant similar to previous
studies (Slater and Villarini, 2017; Villarini and Strong, 2014). We
modeled baseflow based on the parameterization in the Generalized,
Additive Models for Location, Scale and Shape (GAMLSS; Rigby and
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Stasinopoulos, 2005). The monthly models are probabilistic and provide
a probability distribution for every year.

Model selection is based on the Bayesian Information Criterion (BIC;
Schwarz, 1978), which balances statistical fit with model parsimony. It
utilizes a larger penalty function than other criteria such as the Akaike
Information Criterion (Akaike, 1978), and it generally suggests a model
with fewer parameters. At each of the 458 sites and for every month, the
best fit GAMLSS model (one out of 16 potential models) was chosen in
terms of the predictors and their functional relation to the parameters of
the probability distribution. We ran model selection only on those
months that contributed greater than 5% of total annual baseflow. We
also performed leave-one-out cross validation where for each year and
month we removed the observation and predicted it using the remainder
of the observations in the record; this process was repeated for every
year until we obtained a complete time series. The cross-validation re-
sults were compared with the observed data using Pearson’s correlation
coefficient R.

2.4. Trend analysis

The Mann-Kendall (MK) nonparametric trend test (Kendall, 1948;
Mann, 1945) was used to determine the presence of temporal trends in
monthly baseflow. It is a rank-based statistical method that determines
monotonic patterns in the central part of the distribution. Trend detec-
tion was run over the 1966-2018 record period because it is the common
year for all stream gauges considered in this study. The MK statistic, Z,
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has the same interpretation as other trend-analysis statistics where a
positive (negative) value indicates an increase (decrease) over time. To
offset the potential impact of autocorrelation on the trend results, a
variation of the MK test (i.e., prewhitening based on the approach
described by Yue et al. (2002)) was used and the results are reported
here. In this study, we set the significance level to 5%. We use this metric
to assess how successful our models are at reproducing the observed
trends in monthly baseflow.

3. Results and discussion
3.1. Statistical model fits

For each month’s best fit model, the correlation coefficient was used
as an assessment of the degree that the model simulations matched the
observed baseflow records (Fig. 2). We also performed leave-one-out
cross validation to evaluate the robustness of our model’s predictive
ability. Overall, the correlation coefficients were high with a mean R =
0.70 and median R = 0.73 for all months. This indicates the good pre-
diction skills of these statistical models. Goodness-of-fit varies based on
regional differences in climatic differences, antecedent conditions and
the presence of agricultural land use. The model fit distributions are best
fit during the summer months where average R values are 0.69, 0.72,
and 0.71 in May, June, and July, respectively. We are still able to cap-
ture baseflow during periods of little to no precipitation which suggests
that antecedent conditions play a large role in baseflow discharge.

T TR Y R

March
le) 4

Fig. 2. Map of the Pearson correlation coefficient between the baseflow observations and the median of the best fitted model based on BIC for every month. For each
site and month, model selection was only run if that month’s baseflow contributed more than 5% of total annual baseflow.
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Correlation coefficients have an average value of 0.71, 0.68, and 0.59
during December, January, and February, respectively. Models per-
formed the worst in April (mean R = 0.57), and while it is comparatively
low, it still indicates good correlation. These results show how monthly
baseflow follows large-scale weather patterns in the study region
(Andresen et al., 2012; Villarini, 2016).

Models exhibit the poorest skill in the western part of the domain
(Nebraska, Kansas, South Dakota, North Dakota and northern Minne-
sota) where there is a difference in climate compared with the rest of the
Midwest, and hydrologic response occurs later in the year because of
snowmelt and rain on frozen ground in the spring (Neri et al., 2019;
Villarini, 2016). Lower correlation is observed in Kansas and Nebraska
which is a region where groundwater pumping is prevalent; a lowered
water table from groundwater abstraction can alter lateral flow and
decrease discharge from groundwater systems (Condon and Maxwell,
2019). While groundwater pumping for agricultural purposes may be
correlated with one another, previous studies have shown that while
pumping alone has caused decreases in streamflow, irrigation for agri-
culture may cancel out decreases on an annual basis (Brutsaert, 2008;
Wang and Cai, 2010). Although we were not able to examine the
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relationship between baseflow and groundwater pumping in this study,
it may be of interest for future research.

To further examine how well our models perform, leave-one-out
cross validation was conducted for the best-fitting model at every site
and month. The correlation coefficients for cross-validation were high
(mean R = 0.62, median R = 0.66) which supports previous findings that
our models exhibit good skills. These results highlight the potential
applicability of these models for monthly baseflow forecasting (Neri
et al., 2019; Slater and Villarini, 2018).

3.2. Forcing factors

The uniqueness of our statistical modeling framework is that it se-
lects the best set of covariates to describe the response variable (base-
flow); Fig. 3 shows which drivers were chosen in the model formulations
(Table 1) at every streamflow gauge and for selected months. Supple-
mental material S2-S5 show the results for all months while Fig. 3 shows
one month for each season (i.e., March, June, September, and
December) for simplicity. We found that precipitation was a major
driver across the region: 79% of the best-fitting models include it in the

December
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Fig. 3. The maps illustrate the relationship between monthly baseflow and monthly precipitation, monthly antecedent wetness, monthly temperature and annual
corn and soybean harvested acres. Selected months (March, June, September and December) are shown here for simplicity. A colored circle indicates that each driver
was selected in the model formulation where blue (red) indicates a positive (negative) relationship. A white circle indicates that model selection was run, but the

driver was not selected at that site.



J.R. Ayers et al.

model formulation. As expected, increasing baseflow is positively
related to precipitation because it is the major source of recharge to
groundwater systems (Memon, 1995). From April to July, precipitation
is chosen more often than other months of the year (between 77% and
93%). During the spring, the U.S. Midwest often receives large amounts
of rainfall, which are often associated with extratropical storms and
atmospheric rivers (Nayak and Villarini, 2017; Villarini, 2016).

Model selection for precipitation is different in the east compared to
the northwest region. The precipitation-baseflow relationship is detec-
ted more often in the east during the winter. There are differences in
weather patterns which have a strong control over water resources. It is
wetter and warmer in the central and eastern Midwest than the west,
and these patterns can be observed in the variability of the relationship
between baseflow and precipitation. Precipitation is selected as a driver
during the winter months mostly in the east (Missouri, Illinois, Indiana
and Ohio). It is considered a major driver given that precipitation inputs
determine water availability for soil moisture conditions which is rele-
vant to baseflow. These results support the notion that increasing
regional precipitation is the dominant driver of positive streamflow
trends across the area (Frans et al., 2013; Hodgkins et al., 2007; Slater
and Villarini, 2016; Tomer and Schilling, 2009).

Antecedent wetness was the most important driver in the U.S. Mid-
west because it was selected most often (i.e. 93% of the best-fitting
models included x, as a significant predictor). Similar to precipita-
tion, a positive relationship between the two variables indicates that
more moisture in the soil (from the previous three months precipitation)
will lead to an increase in baseflow response. The model that was
selected most often for all sites and months was the model that only
considered antecedent wetness, Xy, and precipitation, x,, in its model
formulation (about 41% of sites; Table 1). It is well-established that
basin wetness plays a major role in controlling the flow distribution, and
it is especially important for low flows (Berghuijs et al., 2016; Slater and
Villarini, 2017). Although baseflow is directly related to groundwater
storage in a catchment, it also changes in response to precipitation
events (Brutsaert, 2008). The ability of our models to capture baseflow
during periods of little to no rainfall (from September-February) is
largely dependent upon soil moisture. In the winter, wetter antecedent
conditions paired with lower evapotranspiration rates could contribute
to increased groundwater recharge and groundwater contribution to
streamflow (Bosch et al., 2016).

The inclusion of temperature as a predictor in the model produced a
better fit for certain subregions and specific months. About 21% of all
the best fit models (for every site and month) identify temperature as a
significant predictor. These results show how monthly baseflow follows
a strong seasonal pattern of winter precipitation and spring snowmelt. In
colder months (January-March) there is a notable positive relationship
between baseflow and temperature. As temperature warms in the spring,
the relationship between temperature and baseflow flips from positive
to negative. The negative relationship is first observed in March in the
south and east (Nebraska, Missouri, Indiana and Ohio) where temper-
atures get higher earlier in the year. Watersheds in higher latitudes hold
snow for a longer time because temperatures are colder, and larger flows
are not observed until later in the season when snow melts and the
ground thaws (Byun et al., 2019). This phenomenon is observed with
baseflow response in the northwest; continuing later into the spring the
negative relationship gradually moves north (Iowa, Minnesota, the Da-
kotas) and from April to May most sites identify temperature as a sig-
nificant, negative predictor. The inverse relationship between
temperature and baseflow is expected because warmer temperatures
increase evaporation and thus reduce soil moisture.

Temperature changes in the U.S. have trended towards warming over
the past century. Trends in seasonality have been documented where a
greater proportion of the regional warming has occurred in the winter
and spring (Andresen et al., 2012; Kibria et al., 2016; Zhang et al., 2000)
which have caused higher flows to occur in the winter and spring. There
is also evidence that mean summer temperatures have decreased in
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sections of the U.S. Midwest (Andresen et al., 2012; Mueller et al., 2016)
which could explain the inverse relationship between temperature and
baseflow from April to July because increasing trends in baseflow have
been documented throughout the region during these months (Ayers
et al., 2019). In addition, cooling in the U.S. Midwest is often associated
with agricultural intensity and evapotranspiration which could magnify
this effect (Pan et al., 2004; Zhang et al., 2000).

The influence of agricultural land use on baseflow is prominent in the
Cornbelt region of the study area. Corn and soybean harvested acres are
selected more often in the growing season (in watersheds with more
30% of agricultural land cover, where x, was included as a potential
predictor). Beginning in March and continuing into the summer is when
models selected agriculture most often (i.e. 24% in March, 34% in May,
41% in June, and 34% in July). For these months, the Cornbelt region is
clearly highlighted in an arc from eastern North Dakota and into Iowa,
Illinois, Indiana and western Ohio. Most sites show a positive relation-
ship between annual harvested acres and monthly baseflow. These re-
sults indicated that increases in agricultural land use have increased
baseflow for watersheds with greater than 30% agricultural land use.
While we can identify that agricultural intensity has influenced baseflow
in the U.S. Midwest, we can only speculate about the specific mecha-
nisms that are related to baseflow; for example, Schilling and Libra
(2003) theorized that land use conservation practices, such as terraces,
conservation tillage and contour cropping have contributed to
increasing baseflow by slowing runoff and increasing infiltration in
sloping agricultural fields. No-tillage practices can prevent early season
soil evaporation and conserve water in the soil (Gallaher, 1977). On the
other hand, tile drainage is one of the major changes in agricultural
landscapes, and it has significantly altered the hydrologic regime across
the region. Both tile drainage density and incision depth affect baseflow
where increasing density and depth can increase tile contribution to
baseflow (Schilling et al., 2012; 2019). To understand the exact mech-
anisms of agricultural land practices and their influence on baseflow, we
would need a different modeling framework than what is considered in
this study.

3.3. Monthly trend detection

To validate our model predictions, trend analysis was conducted on
the monthly baseflow record from 1966 to 2019. We compared the trend
results from the observed baseflow record to the results from the median
value of the fitted gamma distribution. Fig. 4 illustrates the spatial
variability of the prewhitened Mann-Kendall observed and predicted
(using the 50th percentile of the fitted gamma distribution) time series.
Fig. 4 shows a side by side comparison using only four months, but the
analysis was conducted for every month. The observed trends were
described in detail in Ayers et al. (2019), and the goal here is not to
analyze these trends. Rather we want to evaluate if our models can
recreate the observed trends in monthly baseflow in terms of the drivers
we have identified. Overall, the model predictions are good at repro-
ducing monthly trends in baseflow. From May to August the two results
agree the most when increasing trends are detected more often. On the
other hand, the differences in trend analyses are the largest in both the
southwest (Kansas, Nebraska and southern Missouri) and in the Great
Lakes Region (northern Wisconsin and Michigan). Interestingly, these
are both areas where decreases in baseflow have been identified in the
baseflow record. The areas in Kansas and Nebraska are where ground-
water abstraction has led to declining water tables (Brikowski, 2008;
Sophocleous, 2005; Wen and Chen, 2006). In the Great Lakes region
decreases in precipitation have been documented which may result in
decreases in baseflow (Mallakpour and Villarini, 2015; Norton et al.,
2019).

To evaluate the model results further, we compared the MK tau
values between the observed and leave-one-out-cross validation trend
results. Fig. 5 illustrates the how well the values match via the one-to-
one line where each point is color coordinated by the correlation
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Fig. 4. Results of the Mann-Kendall trend test applied to prewhitened time series data in the presence of serial correlation using the approach described by Yue et al.
(2002). Observed and predicted (median of the probabilistic model fit) trends were analyzed from 1966 to 2019 with a 5% significance level. A blue upward (red
downward) arrow shows an increasing (decreasing) trend, but a white circle indicates a site that documented no statistically significant trend. The observed trend
results modified from Ayers et al. (2019).
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coefficient between the two baseflow time series. For all months, most
values are clustered around the one-to-one line indicating good model fit
with little to no bias. The correlation coefficients of the leave-one-out-
cross validation have high R values (mean R = 0.62, median R =
0.66). Values that deviate from the one-to-one line for MK tau are
generally those that have lower correlation coefficients, as expected.

3.4. Sensitivity analysis of antecedent wetness

We performed a sensitivity analysis to determine which definition of
antecedent conditions was most relevant to baseflow. The sum of the
previous three months precipitation described above was compared
with different ways of weighing them, including: 0.90 and 0.70 given to
the previous month, 0.10 and 0.20 given to the second month, and 0 and
0.10 given to the third month, respectively (Supplemental Materials S6
and S7). As an example, for June, antecedent wetness was defined as
90% of May’s precipitation, 10% of April’s precipitation, and no
consideration for March. To determine which metric was most suitable,
we ran our GAMLSS model for each definition and compared the results.
The sensitivity analysis showed that the sum of the previous three
months was the best metric for modeling baseflow in the U.S. Midwest.
We concluded that the sum of the previous three month’s precipitation
captures subsurface water availability better than the different weighted
values analyzed here.

4. Conclusions and future directions

Our study described a method for evaluating the drivers of monthly
baseflow in the U.S. Midwest. We focused on 458 long-term USGS
stream gauges and developed statistical models that describe the inter-
annual variability in monthly baseflow with different combinations of
predictors (precipitation, antecedent wetness, temperature and agri-
culture). We used leave-one-out cross validation and the Mann-Kendall
trend test to verify our results. The outcomes of this study can be sum-
marized as follows:

1. Despite the simplicity of these statistical models, they are able to
capture well the monthly variations in baseflow throughout the U.S.
Midwest (mean R = 0.70); however, there were differences in model
fits across the region and for different months. Generally, the models
fit better during warm months (May-July) and in the central and
eastern part of the U.S. Midwest. The robustness of these results was
also supported by the leave-one-out cross validation (mean R =
0.62).

2. Most models included both precipitation and antecedent wetness,
and the model formulation that was selected most often included
only these two predictors (41% of the best fit models for all months).
Antecedent wetness was the most important predictor (92% included
xm) followed by precipitation which was selected 79% of the time.

3. Temperature was not a strong predictor (21%) but its inclusion from
March to May produced a better fit in some areas like in the west and
northwest. In the spring it is evident that temperature, likely through
the effect of snowmelt, significantly influences monthly baseflow.

4. Agriculture was selected as a relevant predictor most often during
the growing season (from March to July). There was a positive
relationship between agriculture and baseflow in the Cornbelt region
which indicates that corn and soybean production promote baseflow
discharge to streams.

5. To further evaluate the performance of the modeling framework, we
used the model formulations to identify monthly trends in baseflow.
We compared the prewhitened MK trend analysis results from the
observed monthly baseflow record to the median of the fitted dis-
tribution. We found the same trends for most stations within the U.S.
Midwest; however, our models were unable to capture the
decreasing trends in Kansas, Nebraska, southern Missouri, and in
northern Wisconsin and Michigan which is likely due to the role of
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other drivers not included as predictors (e.g., groundwater
withdrawal).

6. Overall, these results paint a different picture due to the role of
agriculture compared with similar studies that focused on flooding
and the frequency of flood events (e.g., Neri et al., 2019; Slater and
Villarini, 2017), in which agriculture was not selected as an impor-
tant predictor; it appears that agricultural intensity plays a more
dominant role at the lower end of the discharge spectrum.

Building on this study, there are a number of future research di-
rections that this work could be taken. For instance, it could be of in-
terest to evaluate the influence of specific mechanisms behind land use
or climate change (e.g., tile drainage, conservation practices, evapo-
transpiration or groundwater pumping), assess the interaction between
baseflow drivers (e.g., land use on soil moisture conditions), examine
future changes in baseflow based on projections of predictors, and
quantify the relationship between baseflow and indicators of water
quality. Although future research is needed to determine the influence of
forcing factors in other regions of the world, our work provides a clear
framework to understand and describe baseflow in the context of
climate and land use change. Ultimately, these models show the po-
tential applicability for monthly baseflow predictions and projections.
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